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It is shown that if (M,φ,α) is a W∗-dynamical system with
M a type I von Neumann algebra then the entropy of α w.r.t.
φ equals the entropy of the restriction of α to the center of
M . If furthermore (N,ψ, β) is a W∗-dynamical system with
N injective then hφ⊗ψ(α⊗ β) = hφ(α) + hψ(β).

1. Introduction.

In the theory of non-commutative entropy the attention has almost exclu-
sively been concentrated on non-type I algebras. We shall in the present
paper remedy this situation by proving the basic facts on entropy of auto-
morphisms of type I C∗- and von Neumann-algebras. The results are as nice
as one can hope. The CNT-entropy of an automorphism of a von Neumann
algebra of type I with respect to an invariant normal state is the classical
entropy of the restriction of the automorphism to the center of the algebra.
If one factor of a tensor product of two von Neumann algebras is of type I
and the other injective, then the entropy of a tensor product automorphism
with respect to an invariant product state is the sum of the entropies. The
results have obvious corollaries to type I C∗-algebras. The main idea behind
our proofs is the use of conditional expectations of finite index, as employed
in [GN].

We shall use the notation hφ(α) for the CNT-entropy of a C∗-dynamical
system as defined by Connes, Narnhofer and Thirring in [CNT], and h′φ(α)
for the ST-entropy defined by Sauvageot and Thouvenot in [ST].

2. Main results.

We first prove a general result for the Sauvageot-Thouvenot entropy for the
restriction of an automorphism to a globally invariant C∗-subalgebra of finite
index.

Proposition 1. Let (A,φ, α) be a unital C∗-dynamical system. Let B ⊂
A be an α-invariant C∗-subalgebra (with 1 ∈ B). Suppose there exists a
conditional expectation E : A → B such that E ◦ α = α ◦ E, φ ◦ E = φ and
E(x) ≥ cx for all x ∈ A+ for some c > 0. Then h′φ(α) = h′φ(α|B).
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Proof. Let (C, µ, β) be a C∗-dynamical system with C abelian. Using E we
can lift any stationary coupling on B⊗C to a stationary coupling on A⊗C.
This, together with the property of monotonicity of relative entropy, shows
that h′φ(α) ≥ h′φ(α|B).

Conversely, suppose λ is a stationary coupling of (A,φ, α) with (C, µ, β),
and P is a finite-dimensional subalgebra of C with atoms p1, . . . , pn. Let

φi(a) =
λ(a⊗ pi)
µ(pi)

for a ∈ A.

Then in the notations of [ST]

h′φ(α) = sup

{
Hµ(P |P−)−Hµ(P ) +

n∑
i=1

µ(pi)S(φ, φi)
∣∣∣∣ (C, µ, β, λ, P )

}
.

Since φi ≤ 1
µ(pi)

φ, φi is normal in the GNS-representation of φ. Since E is
φ-invariant, it extends to a normal conditional expectation of the closure of
A in the GNS-representation onto the closure of B. Thus we can apply [OP,
Theorem 5.15] to φ and φi, and (as in the proof of Lemma 1.5 in [GN]) get

n∑
i=1

µ(pi)S(φ, φi) =
n∑
i=1

µ(pi)(S(φ|B, φi|B) + S(φi ◦ E, φi))

≤
n∑
i=1

µ(pi)S(φ|B, φi|B)− log c.

It follows that h′φ(α) ≤ h′φ(α|B)− log c. Then for each m ∈ N

h′φ(α) =
1
m
h′φ(α

m) ≤ 1
m
h′φ(α

m|B)− 1
m

log c = h′φ(α|B)− 1
m

log c.

Thus h′φ(α) ≤ h′φ(α|B). �

By [ST, Proposition 4.1] the Sauvageot-Thouvenot entropy coincides with
the CNT-entropy for nuclear C∗-algebras. In fact, what is really necessary
for the coincidence of the entropies, is the existence of a net of unital com-
pletely positive mappings γi of finite-dimensional C∗-algebras into A such
that S(φ, ψ) = limi S(φ ◦ γi, ψ ◦ γi) for any positive linear functional ψ on
A, ψ ≤ φ. We therefore have:

Corollary 2. If in the above proposition A and B are injective von Neu-
mann algebras and φ is normal then hφ(α) = hφ(α|B).

To prove our main result we need also two simple lemmas. The first
lemma is more or less well-known.

Lemma 3. Let (M,φ, α) be a W∗-dynamical system. Then
(i) if p is an α-invariant projection in M such that suppφ ≤ p, then

hφ(α) = hφ(α|Mp);
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(ii) if {pi}i∈I is a set of mutually orthogonal α-invariant central projections
in M ,

∑
i pi = 1, then

hφ(α) =
∑
i

φ(pi)hφi
(αi),

where φi = 1
φ(pi)

φ is the normalized restriction of φ to Mpi, and αi =
α|Mpi.

Proof.
(i) easily follows from the definitions; (ii) follows from [CNT, VII.5(iii)],

(i) and [SV, Lemma 3.3] applied to the subalgebras M(pi1 + · · · + pin) +
C(1− pi1 − · · · − pin). �

The proof of the following lemma is left to the reader.

Lemma 4. Let T be an automorphism of a probability space (X,µ), f ∈
L∞(X,µ) a T -invariant function such that f ≥ 0 and

∫
X f dµ = 1. Let µf

be the measure on X such that dµf/dµ = f . Then hµf
(T ) ≤ ||f ||∞hµ(T ).

Theorem 5. Let (M,φ, α) be a W∗-dynamical system with M a von Neu-
mann algebra of type I. Let Z denote the center of M . Then hφ(α) =
hφ(α|Z).

Proof. By Lemma 3(i) we may suppose that φ is faithful. Then M is a direct
sum of homogeneous algebras of type In, n ∈ N ∪ {∞}. By Lemma 3(ii) we
may assume that M is homogeneous of type In. We first assume that n ∈ N.
Then Z = L∞(X,µ), where (X,µ) is a probability space and φ|Z = µ. Thus

M ∼= Z ⊗Matn(C) = L∞(X,Matn(C)), φ =
∫ ⊕

X
φxdµ(x),

where φx = Tr(·Qx) is a state on Matn(C), Tr the canonical trace on
Matn(C). We first assume Qx ≥ c > 0 for all x.

If s ∈ M+, s is a function in L∞(X,Matn(C)). Define the φ-preserving
conditional expectation E : M → Z by E(s)(x) = φx(s(x)). Then

E(s)(x) = Tr(s(x)Qx) ≥ cTr(s(x)) ≥ cs(x),

so E(s) ≥ cs, and it follows from Corollary 2 that hφ(α) = hφ(α|Z).
If there is no c > 0 such that Qx ≥ c for all x, let Xc = {x ∈ X |Qx ≥ c},

(c > 0),
Nc = L∞(Xc,Matn(C)) and Mc = Nc + CχX\Xc

,

where χX\Xc
is the characteristic function of X\Xc. Since φ is α-invariant

so is Mc, so by the above argument and Lemma 3, letting φc = 1
µ(Xc)

φ|Nc

and µc = 1
µ(Xc)

µ|Xc , we obtain

hφ(α|Mc) = µ(Xc)hφc(α|Nc) = µ(Xc)hµc(T |Xc) ≤ hµ(T ),
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where T is the automorphism of (X,µ) induced by α. Letting c → 0 and
using [SV, Lemma 3.3] we obtain the Theorem when M is finite.

If M is homogeneous of type I∞, we have M ∼= L∞(X,µ)⊗B(H), where
H is a separable Hilbert space. Let Tr denote the canonical trace on B(H).
Write again

φ =
∫ ⊕

X
φxdµ(x), φx = Tr(·Qx),

and let Ex(U) denote the spectral projection of Qx corresponding to a Borel
set U . Let Pc ∈ M = L∞(X,B(H)) be the projection defined by Pc(x) =
Ex([c,+∞)), where c > 0. Then Pc is an α-invariant finite projection. Let

Mc = PcMPc + C(1− Pc).

Then Mc is a finite type I von Neumann algebra. Its center is isomorphic to
L∞(Xc, µc)⊕C, and the restriction of φ to it is φ(Pc)µc ⊕ φ(1− Pc), where
Xc = {x ∈ X |Pc(x) 6= 0} and∫

Xc

f(x)dµc(x) =
1

φ(Pc)

∫
Xc

f(x)φx(Pc(x))dµ(x).

So we can apply the first part of the proof to Mc. Since dµc/dµ ≤ 1
φ(Pc)

,
applying Lemma 4 we get

hφ(α|Mc) = φ(Pc)hµc(T |Xc) ≤ hµ(T ).

Now letting c→ 0 we conclude that hφ(α) = hµ(T ). �

It should be remarked that in a special case the above theorem was proved
in [GS, Proposition 2.4].

If A is a C∗-algebra and φ a state on A, the central measure µφ of φ is
the measure on the spectrum Â of A defined by µφ(F ) = φ(χF ), where φ
is regarded as a normal state on A′′, see [P, 4.7.5]. Thus by Theorem 5
and [P, 4.7.6] we have the following:

Corollary 6. Let (A,φ, α) be a C∗-dynamical system with A a separable
unital type I C∗-algebra. Then hφ(α) = hµφ

(α̂), where α̂ is the automor-
phism of the measure space (Â, µφ) induced by α.

Since inner automorphisms act trivially on the center we have:

Corollary 7. If (M,φ, α) is a W∗-dynamical system with M of type I and
α an inner automorphism then hφ(α) = 0.

Note that in the finite case the above corollary also follows from a result
of N. Brown [Br, Lemma 2.2].

The next result was shown in [S] when φ is a trace.
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Corollary 8. Let R denote the hyperfinite II1-factor. Let A be a Cartan
subalgebra of R and u a unitary operator in A. If φ is a normal state such
that u belongs to the centralizer of φ then hφ(Adu) = 0.

Proof. As in [S], it follows from [CFW] that there exists an increasing
sequence of full matrix algebras N1 ⊂ N2 ⊂ . . . with union weakly dense in
R such that A ∼= An ⊗ Bn, where An = Nn ∩ A and Bn = (N ′

n ∩ R) ∩ A
for all n ∈ N. Let Mn = Nn ⊗ Bn. Then Mn is of type I and contains u.
Hence hφ(Adu|Mn) = 0. Since (∪nMn)− = R, hφ(Adu) = 0 by [SV,
Lemma 3.3]. �

If (A,φ, α) and (B,ψ, β) are C∗-dynamical systems we always have

hφ⊗ψ(α⊗ β) ≥ hφ(α) + hψ(β),

see [SV, Lemma 3.4]. Equality does not always hold, see [NST] or [Sa].
However, we have:

Theorem 9. Let (A,φ, α) and (B,ψ, β) be W∗-dynamical systems. Suppose
that A is of type I, and B is injective. Then

hφ⊗ψ(α⊗ β) = hφ(α) + hψ(β).

Proof. We shall rather prove that hφ⊗ψ(α ⊗ β) = hφ(α|Z(A)) + hψ(β). For
this it suffices to consider the case when A is abelian; the general case will
follow by the same arguments as in the proof of Theorem 5. (Note that
the mapping x 7→ Tr(x)− x on Matn(C) is not completely positive, but the
mapping x 7→ Tr(x)− 1

nx is by the Pimsner-Popa inequality. Thus replacing
M with M ⊗ B and Z with Z ⊗ B in the proof of Theorem 5 we have to
replace the inequality E(s) ≥ cs in the proof with E(s) ≥ c

ns.)
So suppose that A is abelian. It is clear that it suffices to prove that

if A1, . . . , An are finite-dimensional subalgebras of A, and B1, . . . , Bn are
finite-dimensional subalgebras of B, then

Hφ⊗ψ(A1 ⊗B1, . . . , An ⊗Bn) = Hφ(A1, . . . , An) +Hψ(B1, . . . , Bn).

We always have the inequality ”≥”, [SV, Lemma 3.4]. To prove the opposite
inequality consider a decomposition

φ⊗ ψ =
∑

i1,... ,in

ωi1...in .

Let H{φ⊗ψ=
P
ωi1...in}(A1 ⊗ B1, . . . , An ⊗ Bn) be the entropy of the corre-

sponding abelian model, so

H{φ⊗ψ=
P
ωi1...in}(A1 ⊗B1, . . . , An ⊗Bn)

=
∑

i1,... ,in

ηωi1...in(1) +
n∑
k=1

∑
i

S

φ⊗ ψ|Ak⊗Bk
,
∑
ik=i

ωi1...in |Ak⊗Bk

 .
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Set C = ∨nk=1Ak. Let p1, . . . , pr be those atoms p of C for which φ(p) > 0.
Define positive linear functionals ψm,i1...in on B,

ψm,i1...in(b) =
ωi1...in(pm ⊗ b)

φ(pm)
.

Let also φm be the linear functional on C defined by the equality φm(a) =
φ(apm). Then

ωi1...in =
r∑

m=1

φm ⊗ ψm,i1...in on C ⊗B,

and
ψ =

∑
i1,... ,in

ψm,i1...in for m = 1, . . . , r.

Since the supports of the positive functionals φm are mutually orthogonal
minimal projections in C, we have

n∑
k=1

∑
i

S

φ⊗ ψ|Ak⊗Bk
,
∑
ik=i

ωi1...in |Ak⊗Bk


≤

n∑
k=1

∑
i

S

φ⊗ ψ|C⊗Bk
,
∑
ik=i

ωi1...in |C⊗Bk


=

n∑
k=1

∑
i

S

φ⊗ ψ|C⊗Bk
,

r∑
m=1

φm ⊗

∑
ik=i

ψm,i1...in

 |C⊗Bk


=

n∑
k=1

∑
i

r∑
m=1

φ(pm)S

ψ|Bk
,
∑
ik=i

ψm,i1...in |Bk

 .

If ai ≥ 0 then η
(∑

i
ai

)
≤

∑
i
η(ai). Hence we have∑

i1,... ,in

ηωi1...in(1)

≤
r∑

m=1

∑
i1,... ,in

η(φm ⊗ ψm,i1...in)(1)

=
r∑

m=1

ηφ(pm)
∑

i1,... ,in

ψm,i1...in(1) +
r∑

m=1

φ(pm)
∑

i1,... ,in

ηψm,i1...in(1)

=
r∑

m=1

ηφ(pm) +
r∑

m=1

φ(pm)
∑

i1,... ,in

ηψm,i1...in(1).
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Thus

H{φ⊗ψ=
P
ωi1...in}(A1 ⊗B1, . . . , An ⊗Bn)

≤
r∑

m=1

ηφ(pm) +
r∑

m=1

φ(pm)H{ψ=
P
ψm,i1...in}(B1, . . . , Bn).

Since
∑

m ηφ(pm) = Hφ(C) = Hφ(A1, . . . , An), we conclude that

Hφ⊗ψ(A1 ⊗B1, . . . , An ⊗Bn) ≤ Hφ(A1, . . . , An) +Hψ(B1, . . . , Bn),

completing the proof of the Theorem. �
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