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Let F be a number field and f € F[r1,...,2z,] \ F. To
any completion K of F' and any character k of the group of
units of the valuation ring of K one associates Igusa’s local
zeta function ZK (k, f,s). The holomorphy conjecture states
that for all except a finite number of completions K of F we
have that if the order of kK does not divide the order of any
eigenvalue of the local monodromy of f at any complex point
of =40}, then ZX (k, f, s) is holomorphic on C. The second
author already showed that this conjecture is true for curves,
i.e., for n = 2. Here we look at the case of an homogeneous
polynomial f, so we can consider {f = 0} C P*~1. Under the
condition that X(]P)g_l \ {f = 0}) # 0 we prove the holomor-
phy conjecture. Together with some results in the case when
x(PZ~"\ {f = 0}) = 0, we can conclude that the holomorphy
conjecture is true for an arbitrary homogeneous polynomial
in three variables.

We also prove the so-called monodromy conjecture for a
homogeneous polynomial f € F[zq,x2,z3] with x(P2\ {f =
0}) # 0.

0. Introduction.

0.1. Let K be a finite extension of the field Q, of p-adic numbers, R the
valuation ring of K, Pk the maximal ideal of Ry, 7 a fixed uniformizing
parameter for Rg, and K = R / Pr the residue field of K with cardinality
q. For z € K, ord,z € Z U {40c0} denotes the valuation of z, |z| = ¢g~°"d?
and ac(z) = zmr~°""* is the angular component of z.

Let f(z) € K[z],z = (x1,...,2y), be a nonconstant polynomial and x
a character of Ry, i.e., a homomorphism x : R — C* with finite image,
where Rj; denotes the group of units of Rx. (We formally put x(0) = 0.)
To these data one associates Igusa’s local zeta function ZX(k, f,s), which
is the meromorphic continuation to C of
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for R(s) > 0, where |dz| denotes the Haar measure on K", normalized
such that R% has measure 1. Replacing R} by P we analogously define
S

ZK(k, f, ). Igusa [7] showed that they are rational functions of ¢~*.

0.2. We can write ZX(k, f,s) and ZE(k, f,s) in terms of an embedded
resolution A : Y& — A™(K) of 7140} in A"(K), see Theorem 1.5.1. Let
EJK, j € TX, be the (reduced) irreducible components of (h)~Y(f=1{0}),
and let N; be the multiplicity of EJK in the divisor of f o b on Y. Then
Theorem 1.5.1 implies that when the order of x divides no INV; at all, the
zeta functions Z%(k, f,s) and Z& (k, f,s) will be holomorphic on C. Now
the N; are not intrinsically associated to f~{0}; but the order (as root of
unity) of any eigenvalue of the local monodromy on f~Y0} divides some
N;, and those eigenvalues are intrinsic invariants of =0} (see (1.6)). This
observation inspired Denef [2, Conjecture 4.4.2] to propose the following.

0.3. Holomorphy Conjecture. Let f € Flzy,...,x,) \ F for some
number field F'. Then for almost all completions K of F (i.e., for all ex-
cept a finite number) we have the following for any character k of Ry If
the order of k does not divide the order of any eigenvalue of the (complex)
local monodromy of f at any complex point of f~H0}, then ZX(k, f,s) is
holomorphic on C.

0.4. Remark. Denef also formulated this conjecture for Z& (k, f,s) and
for a generalization of those two involving a Schwartz-Bruhat function, i.e.,
a locally constant function with compact support.

0.5. The second author showed in [10] that this conjecture is true for
curves, i.e., for f € F[xj,z9]. In this paper we consider the case of a
homogeneous polynomial f, but in an arbitrary number of variables; thus
f € Flz1,... ,x,). Remark that for such f we can consider {f = 0} C
P! Under the condition that x(PE '\ {f = 0}) # 0 we will prove
the holomorphy conjecture for f. (Here x(-) denotes the topological Euler-
Poincaré characteristic.) If this condition is not fulfilled we will formulate
a sort of ‘projective holomorphy conjecture’ implying Conjecture 0.3 as we
will prove in Theorem 3.5. Important is that with this projective version of
the holomorphy conjecture we actually drop the dimension by one. This will
enable us to prove the holomorphy conjecture for an arbitrary homogeneous
polynomial in three variables by reducing the problem to the situation of
curves. We will also prove all these results for the so-called topological zeta
function (see (2.3) for the definition of this function).

In the last section we will prove the monodromy conjecture for a homoge-
neous polynomial f in three variables (under the condition that x(PZ\ {f =
0}) # 0) . This conjecture roughly states that if sq is a pole of ZX(x;, f, s),
then exp(2my/—1R(sp)) is an eigenvalue of the local monodromy of f at some
complex point of f~0}.
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1. Explicit formulas.

1.1. In this section we will construct some embedded resolutions playing
the key role in the proof of our results. We will also state some general
formulas for Igusa’s local zeta function and for eigenvalues of the local mon-
odromy of f in terms of those embedded resolutions.

1.2. Let f € F[z1,...,z,]\F be a homogeneous polynomial over some field
F' of characteristic zero, P = Proj F|z1,...,z,] and D = Proj (Flz1,...,
zn]/(f)). An embedded resolution of D in P consists of a nonsingular variety
Y and a proper birational morphism ¢ : Y — P such that the restriction
¢ : Y\¢ YD) — P\D is an isomorphism and ¢~!(D) has normal crossings
in Y . By Hironaka [6] we can choose such an embedded resolution (Y, ¢)
of D in P over F by means of blowing-ups. Let &;,i € 7 = 7T, U7, denote
the (reduced) F-irreducible components of o ~1(D), where i € 7T; if and only
if & is a (reduced) irreducible component of the strict transform of D.

Then we can write f = [] fZN ¢ where each f; is an irreducible homoge-
i€y

neous polynomial over F' and f; corresponds with &; (i € 75) in the obvious
way. Let P be the divisor of f on P, ie., P = divf = > .y N;F;, with
P; = Proj (Flz1,... ,zn]/(fi)). Then for i € T we define N; to be the mul-
tiplicity of & in the divisor ¢*(P) on Y.

For a fixed point b of any &;, we can choose local coordinates (u1, ..., up—1)
around b and local coordinates (vy,...,v,—1) around ¢(b). Then v; — 1
is defined to be the multiplicity of & in the local divisor defined by

det (3(1”7”"_1)> Remark that this is independent of the choice of b on

(U1seee s Un—1)
&; and the choice of local coordinates around b and ¢(b).

The ordered pairs of positive integers (N;,v;), i € 7, are called the nu-
merical data of the resolution (), ¢). For i € 7 and I C 7 we denote
E=\U& , & =N&and & =&\ U &;. In particular when

J#i iel JET\I
I =, we have that & = ). Remark that ) is the disjoint union of the &7

1.3. For any field extension L of F' we can take the base extension of the
resolution (), ). The result will be an embedded resolution (Y*, %) of
Proj (L[z1,... ,2,]/(f)) in Proj Lz1, ... ,z,] over L, with Y* = V¥ xp L.
If there is any danger of confusion we will include the field L in the notation
of (1.2) and thus write PX, DF &F TF 7L, TL g9l ek gol.

For any field extension L; C Lo we have that SiLl xr, Ly =2 | EJ-LQ,

JET;

where T} is some subset of 752 and all €J.L2, j € T;, have the same numerical

data as SiLl.
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1.4. Now we can start our construction of a suitable embedded resolution
of f~Y0} in A"(F).

1.4.1. First consider the blowing-up 7 : V. — A"(F') of A"(F) with center
the origin. Denote the strict transform of =40} in V with f~1{0} and the
inverse image of the origin (by 7) with Ey. Remark that Fy = P. Using the
crucial ingredient that f is homogeneous the following facts are not difficult
to verify:
(i) the intersection Fy N f~40} is isomorphic to Died;
(ii) there is an open covering {V;} of Ey (respectively {U;} of FoN f~4{0})
such that V' (respectively f~1{0}) is obtained by glueing products of
the form Al x V; (respectively Al x Uj).

1.4.2. Then we can find an embedded resolution (Y, h) of f~10} in A™(F)
over F' by combining the point-centered blowing-up 7 with the resolution of
(1.2), taking into account the product with A! pointed out in (ii) of (1.4.1).
Let E;,i € T = T, UTg, be the (reduced) F-irreducible components of
h=Y(f7Y0}), where E; is a (reduced) irreducible component of the excep-
tional divisor for i € T, and of the strict transform of f~40} in Y for i € Ts.
For each i € T let N; and v; — 1 be the multiplicities of E; in the divisor of
respectively foh and h*(dzq A--- Adxy) on Y. The (N;,v;), for i € T, are
called the numerical data of the resolution (Y, h). For ¢ € T and I C T we
denote E; = Ez\ U Ej, Er = ﬂ FE; and E}) = E]\ U Ej.
i iel JET\I

1.4.3. If Ey also denotes the strict transform of Ep in Y (remark that
0 € T, in this situation), then the following remarks are easy consequences
of the homogeneity of f and the choice of our embedded resolution (Y, h):

(i) The intersection Ey N E; for ¢ € T\ {0} is canonically isomorphic to
one of the components &£ with j € 7. This will give us a bijection
between 7"\ {0} and 7, so from now on we will assume 7 = 7"\ {0}.

(ii) Under this identification of 7" with 7"\ {0} also 7. and 7 coincide with
respectively T, \ {0} and T}, and corresponding N; and v; will be the
same.

(iii) The second fact of (1.4.1) will also hold for Y (respectively E;) instead
of V' (respectively f~1{0}).

(iv) The numerical data of Fy are Ny = deg f and 1y = n; and h=1{0} =
Ey.

1.4.4. In the same way as in (1.3) we can extend everything in (1.4) to any
field extension L of F.

1.4.5. Remark. From now on we associate to any homogeneous polyno-
mial the embedded resolutions and other notations of (1.2)-(1.4).
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1.5. Now we are ready to state some general results in terms of the em-
bedded resolutions constructed above. For the next two theorems we fix a
homogeneous polynomial f € F[z1,...,x,] \ F, where F' is some number
field.

Theorem 1.5.1 ([2, Section 3]). For almost all completions K of F (i.e.,
for all except a finite number) we have the following for a character k of Ry
of order d.
(i) If k is not trivial on 1 + Py, then ZX(k, f,s) and ZE(k, f,s) are
constant on C.
(i1) If k is trivial on 1+ Pk, then

K(I{’ f’ =q Z CIKH H le+sN 1’

ICTK ’LEI
vield|N;
with CK, = 3, (—1)F Tr[Frob, HE(EY™ )%, L,)].
Here (-)7 denotes reduction modulo Py, L, is a certain (-adic sheaf
on (YK)f associated to k, Tr denotes the trace, and Frob is the geo-
metric Frobenius of K.

For ZE(k, f,s) we have an analogous formula replacing Cfn by a

similar constant CII(H 0

(The explicit expression of C}fﬁ is just given for completeness; we will not
need it in this paper.)

Theorem 1.5.2 ([5, Proposition 2 and Theorem 7]). For almost all com-
pletions K of F we have the following for a character  of Ry of order
d.

(i) If d does not divide deg f, then ZX (k, f,s) = ZL (s, f,s) = 0.

(ii) If d divides deg f and k is trivial on 1+ Py, then

1
K (1 —q )q qg—1
(H7f7 S> —q —(deg f)s—n Z;K CI“ 11 qVi+8Ni -1’
IC 1€

VieI:d|N;

where C{{K 1S a certain constant.

1.5.3. Remark. By adapting the proof of Theorem 7 in [5] we easily find
that under the same conditions as in (1.5.2)(ii)

— g Hg— (1) -1
K _ _(deg frs—n (1 — ¢ )q K q
Zy (I{,f, 5) =49 (deg f)s=n 1— q—(degf)sfn Z CI’“ H q1/¢+sN¢ -1
ICTK icl

VicI:d|N;
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1.5.4. Remark. Although we stated the two theorems above only for a
homogeneous polynomial, Theorem 1.5.1 also holds for an arbitrary polyno-
mial. But Theorem 1.5.2 is specific for the homogeneous case.

1.6. We now remind the definition of local monodromy [9]. Fix ¢g €
Clz1,... ,zn) \ C and b € C" with g(b) = 0. Let B C C" be a small enough
ball with center b; the restriction g|p is a locally trivial C*° fibration over a
small enough pointed disc D C C\ {0} with center 0. Hence the diffeomor-
phism type of the Milnor fiber M,y = g Yt} N B of g around b does not
depend on t € D, and the counterclockwise generator of the fundamental
group of D induces an automorphism of H'(M,),C) which is called the
local monodromy of g at b. By an eigenvalue of the local monodromy of g at
b we mean an eigenvalue of the monodromy action on (at least) one of the
HY(Mg4p),C) for g =0,... ,n—1.

1.6.1. Remark. In the same way as in (1.4.2) we associate to an arbitrary
embedded resolution of g~{0} in A”(C) the notations of that section. Now
fix such an embedded resolution.

Theorem 1.6.2 ([1, Theorem 3]). Forb € g~ {0} let P,(t) denote the char-
acteristic polynomial of the monodromy action on Hq(M(%b),(C) for q =
0,...,n—1. Then

n—1
[T =T - e xsonion,
q=0 €T

1.6.3. In particular if b is the origin and if ¢ is homogeneous, then (1.4.3)(iv)
n—1

implies that [] (Pq(t))(*l)q+1 = (1—t4°89)~X(E5), This assertion is also clas-
q=0

sically known and follows for example from [9, Section 9].

2. Holomorphy conjecture for homogeneous polynomials.

2.1. In this section we will use the embedded resolutions of Section 1 to pro-
vide in arbitrary dimension an easy proof of the holomorphy conjecture for
homogeneous polynomials under the additional characteristic-assumption
mentioned before in the introduction. In the next section we will treat the
case in which this assumption is not fulfilled.

Theorem 2.2. Let F be a number field and f € Flxy,... ,xz,) \ F a ho-
mogeneous polynomial such that X(ngl \ {f = 0}) # 0. For almost all
completions K of F we have the following for any character k of Ry.. If the
order of k does not divide the order of any eigenvalue of the (complex) local
monodromy of f at any point of f~Y0}, then ZX(k, f,s) and ZE (k, £, s)
are holomorphic on C. In fact they are identically zero.
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Proof. We use the construction and notation of (1.2)-(1.4). It follows from
this construction (especially from (1 4.1)(1)) that x(Ej) = xPEI\A{f =

0}) # 0. So (1.6.3) implies that edesf is an eigenvalue of the local mon-
odromy of f at the origin. From the conditions in the holomorphy conjec-
ture we find that the order of the character x does not divide deg f, which
gives us the result by Theorem 1.5.2(3). O

2.3. Now we introduce the so-called topological zeta function Zt(g;(g, s),
which is associated to g € Clzy,...,z,] and r € N\ {0} by Denef and
Loeser [4, Section 3]. With the notations from remark (1.6.1) we have that

1
Zipos) = 3 xEDIL 5
IcT iel ¢
viel:r|N;

with s € C. Replacing x(E9) by x(E N h~Y0}) we analogously define

Z3ho

(g,8). When g is homogeneous it will easily follow from the proof of
Theorem 2.4 that Zt(;))( s) = Zt(OI)) 0(g,8). So from now on we just have to
deal with one of them. We can also formulate a holomorphy conjecture for

this topological zeta function.

Conjecture 2.3.1. If r € N\ {0} does not divide the order of any eigen-

value of the local monodromy of g at any point of g~Y{0}, then Zt(gg)(g, s) is
holomorphic on C.

Theorem 2.4. Let f € Clxy,...,z,] \ C be a homogeneous polynomial,
with X(]P’g_l\ {f = 0}) # 0. Then the holomorphy conjecture is true for

Z8 (f,9).

Proof. Let r € N\ {0} such that r does not divide the order of any eigenvalue
of the local monodromy of f at any point of f~1{0}. As in the previous proof
we find that r does not divide deg f, so with the notations of Section 1 the
topological zeta function reduces to

o 1
Zg%(f,S): > X(EJ)Hm-
0gICT iel " v
viel:r|N;

Now consider a subset I of T" with 0 ¢ I and Vi € I : r|N;. From (1.4.3)(iii)
we know that (locally) ES = Hy x (A\{point}), where H| is some subvariety
of Ey. Because y(A!\ {point}) = 0, we can easily conclude that y(E?) = 0,

implying Zt(g;))(f7 s) to be zero. O
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3. The case of Euler-Poincaré characteristic zero.

3.1. When X(]P’g_l \ {f = 0}) = 0 for the homogeneous polynomial f in
question, we are still able to prove the holomorphy conjecture by assuming
a sort of ‘projective holomorphy conjecture in P!, For n = 3 this will
actually give us a tool to prove the holomorphy conjecture by using the fact
that the holomorphy conjecture is true for curves. (See [10].)

3.2. Suppose that K is the completion of a number field F' with respect to
some maximal ideal of its ring of integers and that  is a character of Ry
of order d such that d divides deg f and & is trivial on 1 + Px. We define
the projective local zeta function associated to f and & to be

1— qf(degf)sfn %
l_q_l Z (K;?f75)'

By Theorem 1.5.2(ii) we have, using the notations of Section 1, that

qg—1
prOJ(“f’ =q¢ " Z CI”HquJrsN 1’

ICTK iel
Vie[:d‘ N;

prOJ(/{ f7 )

for almost all fields K and all characters s as above. By comparing this ex-
pression with Theorem 1.5.1(ii) the underlying inspiration for this definition
should be clear.

3.3. Under the holomorphy conjecture for Z rOJ(n f,s) we understand: For
almost all fields K and for all characters k as in (3.2) we have the following.
If the order of k does not divide the order of any ez’genvalue of the (complex)
local monodromy of any f; at any complex point off {O} then prOJ( )
18 holomorphic on C.

Here f; denotes the polynomial you get by putting z; = 1 in the homoge-
neous polynomial f. Before stating the next theorem we formulate a lemma
that we will need in its proof.

Lemma 3.4 ([3, proof of Proposition 3.4]). Let g € Clx1,...,z,] \ C. If
X is an eigenvalue of the local monodromy of g at some point b on g0},
then there is a point ¢ on g~ {0} such that X is a zero or a pole of the al-

ternating product of the characteristic polynomials of the monodromy action
on H'(My),C) fori=0,...,n—1.

Theorem 3.5. Let F' be a number field and f € F[ml,... ] \ F' a ho-
mogeneous polynomial. The holomorphy conjecture for prOJ(H, f,8) implies

the holomorphy conjecture for ZX (k, f,s) (and for Z& (k, f, s)).
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Remark. Of course this theorem holds when x (P& \ {f = 0}) # 0, but
we know from the proof of Theorem 2.2 that this condition implies that the
order of k does not divide deg f. So in the light of Theorem 1.5.2(i), we only
have to deal with a nontrivial case if x(PE '\ {f = 0}) = 0.

Proof of Theorem 3.5. By Theorem 1.5.1(i) and Theorem 1.5.2(i) we may
assume that s is trivial on 1 4+ Pg and that the order d of x divides deg f.
So we let K and k be as in (3.2).

Suppose that the order of x divides the order of some eigenvalue A of the
local monodromy of some f; at some point b of fjfl{O}. Then by Lemma 3.4
we may assume that A is a zero or a pole of the alternating product of the
characteristic polynomials of the monodromy action on H i(M( £, C) for
i =0,...,n —2. Now, using Theorem 1.6.2 and the construction in (1.4)
(especially the results of (1.4.3)), it is not hard to find a point ¢ (different
from the origin) of f~1{0} such that the product above equals the alternat-
ing product of the characteristic polynomials of the monodromy action on
Hi(M(f,C),C) for i = 0,...,n—1. So A will also be an eigenvalue of the
local monodromy of f at c.

We can conclude that the condition in the holomorphy conjecture (for
ZK(k, f,s) and Z{(x, f,s)) implies the condition in the holomorphy con-
jecture for pmJ(/ﬁ f,s), and hence by assumption that pmJ(K, f,s) is holo-
morphic on C (for almost all completions K of F'). Because mej(/i f,s)isa
rational function in ¢~* (of non-positive degree), this yields that Z prO_] (K, f,8)
is constant as function of s, and more concretely

1
Zpwoi (5 f18) = == Cile
q
From (1.5.3) and (3.2) we find that

Z§ (k. f,5) = a BT 2Rk, £ )
(L—g g el 1
1— q—(degf)s—n qn—l 0,0

which is of degree zero (as rational function in ¢~°) if Cé(n is different from
zero. But since Theorem 1.2 in [3] says that for almost all completions K of
F the degree of Z[X (k, f, s) has to be strictly negative, we can conclude that
Cé’(n = 0 and so that Z%(k, f,s) = 0 (and of course also that Z (k, f,s) =
0). O
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3.6. Topological zeta function. Let f € Clzy,...,2,]\ C be a homoge-
neous polynomial and r € N\ {0} such that r divides deg f. Looking at the

definition of Z" ( f,s), but now thinking projectively, we are stimulated to

top
define
1
20 i = S e[
P,proj . 4
ICT el Ut + s
Viel:r|N;

Then by the proof of Theorem 2.4 and by the facts of (1.4.3) we see that

t(:p(f> S) = n—&-(d}eg s t(g})),proj(f7 8), so obviously Zt(ol)) proj (f, 3) is indepen-

dent of the chosen embedded resolution of D in P as in (1.2).

3.6.1. The holomorphy conjecture for Z,D(OI)D prOJ( f,s) can be formulated as
follows. If r € N\ {0} does not divide the order of any eigenvalue of

the local monodromy of any f; at any point of f;l{()} and if r|deg f, then

Zt(g;proj(f, s) is holomorphic on C.

3.6.2. Under the condition x(P: '\ {f = 0}) = 0 the analogue of Theo-
rem 3.5 will hold for the topological zeta function. Indeed, if r { deg f, then
Zt(g}),(f, s) is holomorphic on C by the proof of Theorem 2.4. If r|deg f, then
the same idea as in the proof of Theorem 3.5 will give us (under the as-

sumptlon of the holomorphy conjecture for Zt(og)) prOJ( f,s)) that Ztgr))( fys) =
n—l—(degf (Pn 1\{f_0})_0

Theorem 3.7. For a homogeneous polynomial f in three wvariables the
holomorphy conjectures for Iqusa’s local zeta functions Z¥(k, f,s) and

ZK(k, f,s) and for the topological zeta function Zt(g}))(f, s) are true.

Proof. From the previous results it is clear that We just have to prove the
holomorphy conjecture for Z. pmJ(HJ, f,s) (and Ztop prOJ(f, s)).

Take for the embedded resolution (V¥ ') of (1.2) the (scheme-theoreti-
cal) canonical embedded resolution of D in P¥. By restricting we get the
canonical embedded resolution of fj_l{O} in A2(F) for any j € {1,2,3}, so
we can use on every affine chart the same arguments as in the proof of the
holomorphy conjecture for curves [10]. By noting that the number N; of an
irreducible component of the strict transform does not change by passing to
an affine chart, the proof of Theorem 3.7 is done. O

4. The monodromy conjecture.

4.1. Under the usual characteristic-assumption we will show in this section
how to prove the so-called monodromy conjecture of Igusa for an homoge-
neous polynomial in three variables using mainly the same ideas as in the
proof of Theorem 3.7.
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Theorem 4.2. Let F' be a number field and f € Flx1,x2, 23]\ F a homoge-
neous polynomial such that x(P2\ {f = 0}) # 0. For almost all completions
K of F we have the following for any character k of Ry. If so is a pole of
ZE (i, f,5), then exp(2my/—1R(sq)) is an eigenvalue of the local monodromy
of f at some complex point of f~10}.

Proof. As in the proof of Theorem 3.7 we take for the embedded resolution
(VF, of") of (1.2) the (scheme-theoretical) canonical embedded resolution
of D¥ in P¥. By Theorem 1.5.1(i) and Theorem 1.5.2(ii) we may assume

K 1—q~! K
that Z (Iﬂ}, f, 8) = Hf&l#)s%zproj
eigenvalue of the local monodromy of f at the origin (see the proof of The-

orem 2.2), we may also assume that sy is a pole of Zgoj(/{, fys). As in
the proof of Theorem 5.2.1 in [2], we find that R(sg) = %;J for some
j € TC, with |5;-C\5]C-’(C| > 3 or j € 7. First suppose that j € T.L.
Then for some k € {1,2,3} there is an irreducible component of f, {0}
in A%(C), whose strict transform (by the restriction of ¢*) has numerical
data (Nj,v;) = (Nj,1). It is well-known that in this case exp(27ri(_Tyjj))
is an eigenvalue of the local monodromy of f; at some nonsingular point
of fk_l{O}. As in the proof of Theorem 3.5 this implies that exp(2mi¥R(s¢))
is an eigenvalue of the local monodromy of f at some complex point of
f~Y0}. Next suppose that j ¢ 7L and ]ci’jc \ 5}-’((:] > 3. Then 5JC will also
be an exceptional curve of the restriction of ¢* to some affine chart, which
is in fact the canonical embedded resolution of f,~ 10} in A%(C) for some
k € {1,2,3}. Now it is known, see for example [8], that then exp(2mi¥R(s¢))
is an eigenvalue of the local monodromy of fj at some point of f,~ Y0}, Then
again we can conclude that exp(2miR(sp)) is also an eigenvalue of the local
monodromy of f at some complex point of f~1{0}. This completes the proof
of Theorem 4.2. O

(k, f,s). Because exp(2m’(%)) is an

4.2.1. Remark. From Remark 1.5.3 we know that
75k, fr5) = ¢ @B 28 (k, £ ),
so the monodromy conjecture is clearly also true for Zg (K, f,s) when X(IF’%\
{f=0})#0.
4.2.2. Remark. In a similar way we can prove the monodromy conjecture

for the topological zeta function (again for a homogeneous polynomial f in
three variables and under the condition that y(P% \ {f = 0}) # 0). This

conjecture states the following for » € N\ {0}. If so is a pole of Zt(gl))(f, s),

then exp(2mv/—1s¢) is an eigenvalue of the local monodromy of f at some
complex point of f~10}.
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