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Let F be a number field and f ∈ F [x1, . . . , xn] \ F . To
any completion K of F and any character κ of the group of
units of the valuation ring of K one associates Igusa’s local
zeta function ZK(κ, f, s). The holomorphy conjecture states
that for all except a finite number of completions K of F we
have that if the order of κ does not divide the order of any
eigenvalue of the local monodromy of f at any complex point
of f−1{0}, then ZK(κ, f, s) is holomorphic on C. The second
author already showed that this conjecture is true for curves,
i.e., for n = 2. Here we look at the case of an homogeneous
polynomial f , so we can consider {f = 0} ⊆ Pn−1. Under the
condition that χ(Pn−1

C \ {f = 0}) 6= 0 we prove the holomor-
phy conjecture. Together with some results in the case when
χ(Pn−1

C \ {f = 0}) = 0, we can conclude that the holomorphy
conjecture is true for an arbitrary homogeneous polynomial
in three variables.

We also prove the so-called monodromy conjecture for a
homogeneous polynomial f ∈ F [x1, x2, x3] with χ(P2

C \ {f =
0}) 6= 0.

0. Introduction.

0.1. Let K be a finite extension of the field Qp of p-adic numbers, RK the
valuation ring of K, PK the maximal ideal of RK , π a fixed uniformizing
parameter for RK , and K = RK/PK the residue field of K with cardinality
q. For z ∈ K, ordπz ∈ Z ∪ {+∞} denotes the valuation of z, |z| = q−ordπz

and ac(z) = zπ−ordπz is the angular component of z.
Let f(x) ∈ K[x], x = (x1, . . . , xn), be a nonconstant polynomial and κ

a character of R×
K , i.e., a homomorphism κ : R×

K → C× with finite image,
where R×

K denotes the group of units of RK . (We formally put κ(0) = 0.)
To these data one associates Igusa’s local zeta function ZK(κ, f, s), which
is the meromorphic continuation to C of

s 7−→
∫

Rn
K

κ(ac f(x)) |f(x)|s |dx|,
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for <(s) > 0, where |dx| denotes the Haar measure on Kn, normalized
such that Rn

K has measure 1. Replacing Rn
K by Pn

K we analogously define
ZK

0 (κ, f, s). Igusa [7] showed that they are rational functions of q−s.

0.2. We can write ZK(κ, f, s) and ZK
0 (κ, f, s) in terms of an embedded

resolution hK : Y K → An(K) of f−1{0} in An(K), see Theorem 1.5.1. Let
EK

j , j ∈ TK , be the (reduced) irreducible components of (hK)−1(f−1{0}),
and let Nj be the multiplicity of EK

j in the divisor of f ◦ hK on Y K . Then
Theorem 1.5.1 implies that when the order of κ divides no Nj at all, the
zeta functions ZK(κ, f, s) and ZK

0 (κ, f, s) will be holomorphic on C. Now
the Nj are not intrinsically associated to f−1{0}; but the order (as root of
unity) of any eigenvalue of the local monodromy on f−1{0} divides some
Nj , and those eigenvalues are intrinsic invariants of f−1{0} (see (1.6)). This
observation inspired Denef [2, Conjecture 4.4.2] to propose the following.

0.3. Holomorphy Conjecture. Let f ∈ F [x1, . . . , xn] \ F for some
number field F . Then for almost all completions K of F (i.e., for all ex-
cept a finite number) we have the following for any character κ of R×

K . If
the order of κ does not divide the order of any eigenvalue of the (complex)
local monodromy of f at any complex point of f−1{0}, then ZK(κ, f, s) is
holomorphic on C.

0.4. Remark. Denef also formulated this conjecture for ZK
0 (κ, f, s) and

for a generalization of those two involving a Schwartz-Bruhat function, i.e.,
a locally constant function with compact support.

0.5. The second author showed in [10] that this conjecture is true for
curves, i.e., for f ∈ F [x1, x2]. In this paper we consider the case of a
homogeneous polynomial f , but in an arbitrary number of variables; thus
f ∈ F [x1, . . . , xn]. Remark that for such f we can consider {f = 0} ⊆
Pn−1

C . Under the condition that χ(Pn−1
C \ {f = 0}) 6= 0 we will prove

the holomorphy conjecture for f . (Here χ(·) denotes the topological Euler-
Poincaré characteristic.) If this condition is not fulfilled we will formulate
a sort of ‘projective holomorphy conjecture’ implying Conjecture 0.3 as we
will prove in Theorem 3.5. Important is that with this projective version of
the holomorphy conjecture we actually drop the dimension by one. This will
enable us to prove the holomorphy conjecture for an arbitrary homogeneous
polynomial in three variables by reducing the problem to the situation of
curves. We will also prove all these results for the so-called topological zeta
function (see (2.3) for the definition of this function).

In the last section we will prove the monodromy conjecture for a homoge-
neous polynomial f in three variables (under the condition that χ(P2

C \{f =
0}) 6= 0) . This conjecture roughly states that if s0 is a pole of ZK(κ, f, s),
then exp(2π

√
−1<(s0)) is an eigenvalue of the local monodromy of f at some

complex point of f−1{0}.



ZETA FUNCTIONS FOR HOMOGENEOUS POLYNOMIALS 431

1. Explicit formulas.

1.1. In this section we will construct some embedded resolutions playing
the key role in the proof of our results. We will also state some general
formulas for Igusa’s local zeta function and for eigenvalues of the local mon-
odromy of f in terms of those embedded resolutions.

1.2. Let f ∈ F [x1, . . . , xn]\F be a homogeneous polynomial over some field
F of characteristic zero, P = ProjF [x1, . . . , xn] and D = Proj (F [x1, . . . ,
xn]/(f)). An embedded resolution of D in P consists of a nonsingular variety
Y and a proper birational morphism ϕ : Y → P such that the restriction
ϕ : Y\ϕ−1(D) −→ P\D is an isomorphism and ϕ−1(D) has normal crossings
in Y . By Hironaka [6] we can choose such an embedded resolution (Y, ϕ)
of D in P over F by means of blowing-ups. Let Ei, i ∈ T = Te ∪ Ts, denote
the (reduced) F -irreducible components of ϕ−1(D), where i ∈ Ts if and only
if Ei is a (reduced) irreducible component of the strict transform of D.

Then we can write f =
∏

i∈Ts

fNi
i , where each fi is an irreducible homoge-

neous polynomial over F and fi corresponds with Ei (i ∈ Ts) in the obvious
way. Let P be the divisor of f on P, i.e., P = div f =

∑
i∈Ts

NiPi, with
Pi = Proj (F [x1, . . . , xn]/(fi)). Then for i ∈ T we define Ni to be the mul-
tiplicity of Ei in the divisor ϕ∗(P ) on Y.

For a fixed point b of any Ei, we can choose local coordinates (u1, ..., un−1)
around b and local coordinates (v1, . . . , vn−1) around ϕ(b). Then νi − 1
is defined to be the multiplicity of Ei in the local divisor defined by
det

(
∂(v1,... ,vn−1)
∂(u1,... ,un−1)

)
. Remark that this is independent of the choice of b on

Ei and the choice of local coordinates around b and ϕ(b).
The ordered pairs of positive integers (Ni, νi), i ∈ T , are called the nu-

merical data of the resolution (Y, ϕ). For i ∈ T and I ⊆ T we denote
E◦i := Ei \

⋃
j 6=i

Ej , EI :=
⋂
i∈I

Ei and E◦I := EI \
⋃

j∈T \I
Ej . In particular when

I = ∅, we have that E∅ = Y. Remark that Y is the disjoint union of the E◦I .

1.3. For any field extension L of F we can take the base extension of the
resolution (Y, ϕ). The result will be an embedded resolution (YL, ϕL) of
Proj (L[x1, . . . , xn]/(f)) in ProjL[x1, . . . , xn] over L, with YL = YF ×F L.
If there is any danger of confusion we will include the field L in the notation
of (1.2) and thus write PL,DL, EL

i , T L, T L
e ,TL

s , E◦i
L, EL

I , E◦I
L.

For any field extension L1 ⊆ L2 we have that EL1
i ×L1 L2

∼=
⋃

j∈Ti

EL2
j ,

where Ti is some subset of T L2 and all EL2
j , j ∈ Ti, have the same numerical

data as EL1
i .
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1.4. Now we can start our construction of a suitable embedded resolution
of f−1{0} in An(F ).

1.4.1. First consider the blowing-up π : V → An(F ) of An(F ) with center
the origin. Denote the strict transform of f−1{0} in V with f−1{0} and the
inverse image of the origin (by π) with E0. Remark that E0

∼= P. Using the
crucial ingredient that f is homogeneous the following facts are not difficult
to verify:

(i) the intersection E0 ∩ f−1{0} is isomorphic to Dred;
(ii) there is an open covering {Vi} of E0 (respectively {Ui} of E0∩f−1{0})

such that V (respectively f−1{0}) is obtained by glueing products of
the form A1 × Vi (respectively A1 × Ui).

1.4.2. Then we can find an embedded resolution (Y, h) of f−1{0} in An(F )
over F by combining the point-centered blowing-up π with the resolution of
(1.2), taking into account the product with A1 pointed out in (ii) of (1.4.1).
Let Ei, i ∈ T = Te ∪ Ts, be the (reduced) F -irreducible components of
h−1(f−1{0}), where Ei is a (reduced) irreducible component of the excep-
tional divisor for i ∈ Te and of the strict transform of f−1{0} in Y for i ∈ Ts.
For each i ∈ T let Ni and νi − 1 be the multiplicities of Ei in the divisor of
respectively f ◦ h and h∗(dx1 ∧ · · · ∧ dxn) on Y . The (Ni, νi), for i ∈ T , are
called the numerical data of the resolution (Y, h). For i ∈ T and I ⊆ T we
denote E◦

i := Ei \
⋃
j 6=i

Ej , EI :=
⋂
i∈I

Ei and E◦
I := EI \

⋃
j∈T\I

Ej .

1.4.3. If E0 also denotes the strict transform of E0 in Y (remark that
0 ∈ Te in this situation), then the following remarks are easy consequences
of the homogeneity of f and the choice of our embedded resolution (Y, h):

(i) The intersection E0 ∩ Ei for i ∈ T \ {0} is canonically isomorphic to
one of the components Ej with j ∈ T . This will give us a bijection
between T \ {0} and T , so from now on we will assume T = T \ {0}.

(ii) Under this identification of T with T \{0} also Te and Ts coincide with
respectively Te \ {0} and Ts, and corresponding Ni and νi will be the
same.

(iii) The second fact of (1.4.1) will also hold for Y (respectively Ei) instead
of V (respectively f−1{0}).

(iv) The numerical data of E0 are N0 = deg f and ν0 = n; and h−1{0} =
E0.

1.4.4. In the same way as in (1.3) we can extend everything in (1.4) to any
field extension L of F .

1.4.5. Remark. From now on we associate to any homogeneous polyno-
mial the embedded resolutions and other notations of (1.2)-(1.4).
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1.5. Now we are ready to state some general results in terms of the em-
bedded resolutions constructed above. For the next two theorems we fix a
homogeneous polynomial f ∈ F [x1, . . . , xn] \ F , where F is some number
field.

Theorem 1.5.1 ([2, Section 3]). For almost all completions K of F (i.e.,
for all except a finite number) we have the following for a character κ of R×

K
of order d.

(i) If κ is not trivial on 1 + PK , then ZK(κ, f, s) and ZK
0 (κ, f, s) are

constant on C.
(ii) If κ is trivial on 1 + PK , then

ZK(κ, f, s) = q−n
∑

I⊆T K

∀i∈I:d|Ni

CK
I,κ

∏
i∈I

q − 1
qνi+sNi − 1

,

with CK
I,κ =

∑
k(−1)k Tr[Frob,Hk

c ((E◦
I

K)K ,Lκ)].
Here (·)K denotes reduction modulo PK , Lκ is a certain `-adic sheaf

on (Y K)K associated to κ, Tr denotes the trace, and Frob is the geo-
metric Frobenius of K.

For ZK
0 (κ, f, s) we have an analogous formula replacing CK

I,κ by a
similar constant CK

I,κ,0.

(The explicit expression of CK
I,κ is just given for completeness; we will not

need it in this paper.)

Theorem 1.5.2 ([5, Proposition 2 and Theorem 7]). For almost all com-
pletions K of F we have the following for a character κ of R×

K of order
d.

(i) If d does not divide deg f , then ZK(κ, f, s) = ZK
0 (κ, f, s) = 0.

(ii) If d divides deg f and κ is trivial on 1 + PK , then

ZK(κ, f, s) =
(1− q−1)q−(n−1)

1− q−(deg f)s−n

∑
I⊆T K

∀i∈I:d|Ni

CK
I,κ

∏
i∈I

q − 1
qνi+sNi − 1

,

where CK
I,κ is a certain constant.

1.5.3. Remark. By adapting the proof of Theorem 7 in [5] we easily find
that under the same conditions as in (1.5.2)(ii)

ZK
0 (κ, f, s) = q−(deg f)s−n (1− q−1)q−(n−1)

1− q−(deg f)s−n

∑
I⊆T K

∀i∈I:d|Ni

CK
I,κ

∏
i∈I

q − 1
qνi+sNi − 1

.
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1.5.4. Remark. Although we stated the two theorems above only for a
homogeneous polynomial, Theorem 1.5.1 also holds for an arbitrary polyno-
mial. But Theorem 1.5.2 is specific for the homogeneous case.

1.6. We now remind the definition of local monodromy [9]. Fix g ∈
C[x1, . . . , xn] \ C and b ∈ Cn with g(b) = 0. Let B ⊆ Cn be a small enough
ball with center b; the restriction g|B is a locally trivial C∞ fibration over a
small enough pointed disc D ⊆ C \ {0} with center 0. Hence the diffeomor-
phism type of the Milnor fiber M(g,b) := g−1{t} ∩ B of g around b does not
depend on t ∈ D, and the counterclockwise generator of the fundamental
group of D induces an automorphism of H ·(M(g,b), C) which is called the
local monodromy of g at b. By an eigenvalue of the local monodromy of g at
b we mean an eigenvalue of the monodromy action on (at least) one of the
Hq(M(g,b), C) for q = 0, . . . , n− 1.

1.6.1. Remark. In the same way as in (1.4.2) we associate to an arbitrary
embedded resolution of g−1{0} in An(C) the notations of that section. Now
fix such an embedded resolution.

Theorem 1.6.2 ([1, Theorem 3]). For b ∈ g−1{0} let Pq(t) denote the char-
acteristic polynomial of the monodromy action on Hq(M(g,b), C) for q =
0, . . . , n− 1. Then

n−1∏
q=0

(Pq(t))(−1)q+1
=

∏
i∈T

(1− tNi)−χ(E◦
i ∩h−1{b}).

1.6.3. In particular if b is the origin and if g is homogeneous, then (1.4.3)(iv)

implies that
n−1∏
q=0

(Pq(t))(−1)q+1
= (1−tdeg g)−χ(E◦

0 ). This assertion is also clas-

sically known and follows for example from [9, Section 9].

2. Holomorphy conjecture for homogeneous polynomials.

2.1. In this section we will use the embedded resolutions of Section 1 to pro-
vide in arbitrary dimension an easy proof of the holomorphy conjecture for
homogeneous polynomials under the additional characteristic-assumption
mentioned before in the introduction. In the next section we will treat the
case in which this assumption is not fulfilled.

Theorem 2.2. Let F be a number field and f ∈ F [x1, . . . , xn] \ F a ho-
mogeneous polynomial such that χ(Pn−1

C \ {f = 0}) 6= 0. For almost all
completions K of F we have the following for any character κ of R×

K . If the
order of κ does not divide the order of any eigenvalue of the (complex) local
monodromy of f at any point of f−1{0}, then ZK(κ, f, s) and ZK

0 (κ, f, s)
are holomorphic on C. In fact they are identically zero.
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Proof. We use the construction and notation of (1.2)-(1.4). It follows from
this construction (especially from (1.4.1)(i)) that χ(E◦

0) = χ(Pn−1
C \ {f =

0}) 6= 0. So (1.6.3) implies that e
2πi

deg f is an eigenvalue of the local mon-
odromy of f at the origin. From the conditions in the holomorphy conjec-
ture we find that the order of the character κ does not divide deg f , which
gives us the result by Theorem 1.5.2(i). �

2.3. Now we introduce the so-called topological zeta function Z
(r)
top(g, s),

which is associated to g ∈ C[x1, . . . , xn] and r ∈ N \ {0} by Denef and
Loeser [4, Section 3]. With the notations from remark (1.6.1) we have that

Z
(r)
top(g, s) =

∑
I⊆T

∀i∈I:r|Ni

χ(E◦
I )

∏
i∈I

1
νi + Nis

,

with s ∈ C. Replacing χ(E◦
I ) by χ(E◦

I ∩ h−1{0}) we analogously define
Z

(r)
top,0(g, s). When g is homogeneous it will easily follow from the proof of

Theorem 2.4 that Z
(r)
top(g, s) = Z

(r)
top,0(g, s). So from now on we just have to

deal with one of them. We can also formulate a holomorphy conjecture for
this topological zeta function.

Conjecture 2.3.1. If r ∈ N \ {0} does not divide the order of any eigen-
value of the local monodromy of g at any point of g−1{0}, then Z

(r)
top(g, s) is

holomorphic on C.

Theorem 2.4. Let f ∈ C[x1, . . . , xn] \ C be a homogeneous polynomial,
with χ(Pn−1

C \ {f = 0}) 6= 0. Then the holomorphy conjecture is true for
Z

(r)
top(f, s).

Proof. Let r ∈ N\{0} such that r does not divide the order of any eigenvalue
of the local monodromy of f at any point of f−1{0}. As in the previous proof
we find that r does not divide deg f , so with the notations of Section 1 the
topological zeta function reduces to

Z
(r)
top(f, s) =

∑
0 6∈I⊆T

∀i∈I:r|Ni

χ(E◦
I )

∏
i∈I

1
νi + Nis

.

Now consider a subset I of T with 0 6∈ I and ∀i ∈ I : r|Ni. From (1.4.3)(iii)
we know that (locally) E◦

I = HI×(A1\{point}), where HI is some subvariety
of E0. Because χ(A1 \ {point}) = 0, we can easily conclude that χ(E◦

I ) = 0,
implying Z

(r)
top(f, s) to be zero. �
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3. The case of Euler-Poincaré characteristic zero.

3.1. When χ(Pn−1
C \ {f = 0}) = 0 for the homogeneous polynomial f in

question, we are still able to prove the holomorphy conjecture by assuming
a sort of ‘projective holomorphy conjecture in Pn−1’. For n = 3 this will
actually give us a tool to prove the holomorphy conjecture by using the fact
that the holomorphy conjecture is true for curves. (See [10].)

3.2. Suppose that K is the completion of a number field F with respect to
some maximal ideal of its ring of integers and that κ is a character of R×

K
of order d such that d divides deg f and κ is trivial on 1 + PK . We define
the projective local zeta function associated to f and κ to be

ZK
proj(κ, f, s) =

1− q−(deg f)s−n

1− q−1
ZK(κ, f, s).

By Theorem 1.5.2(ii) we have, using the notations of Section 1, that

ZK
proj(κ, f, s) = q−(n−1)

∑
I⊆T K

∀i∈I:d|Ni

CK
I,κ

∏
i∈I

q − 1
qνi+sNi − 1

,

for almost all fields K and all characters κ as above. By comparing this ex-
pression with Theorem 1.5.1(ii) the underlying inspiration for this definition
should be clear.

3.3. Under the holomorphy conjecture for ZK
proj(κ, f, s) we understand: For

almost all fields K and for all characters κ as in (3.2) we have the following.
If the order of κ does not divide the order of any eigenvalue of the (complex)
local monodromy of any fj at any complex point of f−1

j {0}, then ZK
proj(κ, f, s)

is holomorphic on C.

Here fj denotes the polynomial you get by putting xj = 1 in the homoge-
neous polynomial f . Before stating the next theorem we formulate a lemma
that we will need in its proof.

Lemma 3.4 ([3, proof of Proposition 3.4]). Let g ∈ C[x1, . . . , xn] \ C. If
λ is an eigenvalue of the local monodromy of g at some point b on g−1{0},
then there is a point c on g−1{0} such that λ is a zero or a pole of the al-
ternating product of the characteristic polynomials of the monodromy action
on H i(M(g,c), C) for i = 0, . . . , n− 1.

Theorem 3.5. Let F be a number field and f ∈ F [x1, . . . , xn] \ F a ho-
mogeneous polynomial. The holomorphy conjecture for ZK

proj(κ, f, s) implies
the holomorphy conjecture for ZK(κ, f, s) (and for ZK

0 (κ, f, s)).
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Remark. Of course this theorem holds when χ(Pn−1
C \ {f = 0}) 6= 0, but

we know from the proof of Theorem 2.2 that this condition implies that the
order of κ does not divide deg f . So in the light of Theorem 1.5.2(i), we only
have to deal with a nontrivial case if χ(Pn−1

C \ {f = 0}) = 0.

Proof of Theorem 3.5. By Theorem 1.5.1(i) and Theorem 1.5.2(i) we may
assume that κ is trivial on 1 + PK and that the order d of κ divides deg f .
So we let K and κ be as in (3.2).

Suppose that the order of κ divides the order of some eigenvalue λ of the
local monodromy of some fj at some point b of f−1

j {0}. Then by Lemma 3.4
we may assume that λ is a zero or a pole of the alternating product of the
characteristic polynomials of the monodromy action on H i(M(fj ,b), C) for
i = 0, . . . , n − 2. Now, using Theorem 1.6.2 and the construction in (1.4)
(especially the results of (1.4.3)), it is not hard to find a point c (different
from the origin) of f−1{0} such that the product above equals the alternat-
ing product of the characteristic polynomials of the monodromy action on
H i(M(f,c), C) for i = 0, . . . , n − 1. So λ will also be an eigenvalue of the
local monodromy of f at c.

We can conclude that the condition in the holomorphy conjecture (for
ZK(κ, f, s) and ZK

0 (κ, f, s)) implies the condition in the holomorphy con-
jecture for ZK

proj(κ, f, s), and hence by assumption that ZK
proj(κ, f, s) is holo-

morphic on C (for almost all completions K of F ). Because ZK
proj(κ, f, s) is a

rational function in q−s (of non-positive degree), this yields that ZK
proj(κ, f, s)

is constant as function of s, and more concretely

ZK
proj(κ, f, s) =

1
qn−1

CK
∅,κ.

From (1.5.3) and (3.2) we find that

ZK
0 (κ, f, s) = q−(deg f)s−nZK(κ, f, s)

=
(1− q−1)q−(deg f)s−n

1− q−(deg f)s−n

1
qn−1

CK
∅,κ,

which is of degree zero (as rational function in q−s) if CK
∅,κ is different from

zero. But since Theorem 1.2 in [3] says that for almost all completions K of
F the degree of ZK

0 (κ, f, s) has to be strictly negative, we can conclude that
CK
∅,κ = 0 and so that ZK(κ, f, s) = 0 (and of course also that ZK

0 (κ, f, s) =
0). �
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3.6. Topological zeta function. Let f ∈ C[x1, . . . , xn] \ C be a homoge-
neous polynomial and r ∈ N \ {0} such that r divides deg f . Looking at the
definition of Z

(r)
top(f, s), but now thinking projectively, we are stimulated to

define

Z
(r)
top,proj(f, s) :=

∑
I⊆T

∀i∈I:r|Ni

χ(E◦I )
∏
i∈I

1
νi + sNi

.

Then by the proof of Theorem 2.4 and by the facts of (1.4.3) we see that
Z

(r)
top(f, s) = 1

n+(deg f)sZ
(r)
top,proj(f, s), so obviously Z

(r)
top,proj(f, s) is indepen-

dent of the chosen embedded resolution of D in P as in (1.2).

3.6.1. The holomorphy conjecture for Z
(r)
top,proj(f, s) can be formulated as

follows. If r ∈ N \ {0} does not divide the order of any eigenvalue of
the local monodromy of any fj at any point of f−1

j {0} and if r|deg f , then

Z
(r)
top,proj(f, s) is holomorphic on C.

3.6.2. Under the condition χ(Pn−1
C \ {f = 0}) = 0 the analogue of Theo-

rem 3.5 will hold for the topological zeta function. Indeed, if r - deg f , then
Z

(r)
top(f, s) is holomorphic on C by the proof of Theorem 2.4. If r|deg f , then

the same idea as in the proof of Theorem 3.5 will give us (under the as-
sumption of the holomorphy conjecture for Z

(r)
top,proj(f, s)) that Z

(r)
top(f, s) =

1
n+(deg f)sχ(Pn−1

C \ {f = 0}) = 0.

Theorem 3.7. For a homogeneous polynomial f in three variables the
holomorphy conjectures for Igusa’s local zeta functions ZK(κ, f, s) and
ZK

0 (κ, f, s) and for the topological zeta function Z
(r)
top(f, s) are true.

Proof. From the previous results it is clear that we just have to prove the
holomorphy conjecture for ZK

proj(κ, f, s) (and Z
(r)
top,proj(f, s)).

Take for the embedded resolution (YF , ϕF ) of (1.2) the (scheme-theoreti-
cal) canonical embedded resolution of DF in PF . By restricting we get the
canonical embedded resolution of f−1

j {0} in A2(F ) for any j ∈ {1, 2, 3}, so
we can use on every affine chart the same arguments as in the proof of the
holomorphy conjecture for curves [10]. By noting that the number Ni of an
irreducible component of the strict transform does not change by passing to
an affine chart, the proof of Theorem 3.7 is done. �

4. The monodromy conjecture.

4.1. Under the usual characteristic-assumption we will show in this section
how to prove the so-called monodromy conjecture of Igusa for an homoge-
neous polynomial in three variables using mainly the same ideas as in the
proof of Theorem 3.7.
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Theorem 4.2. Let F be a number field and f ∈ F [x1, x2, x3]\F a homoge-
neous polynomial such that χ(P2

C \{f = 0}) 6= 0. For almost all completions
K of F we have the following for any character κ of R×

K . If s0 is a pole of
ZK(κ, f, s), then exp(2π

√
−1<(s0)) is an eigenvalue of the local monodromy

of f at some complex point of f−1{0}.
Proof. As in the proof of Theorem 3.7 we take for the embedded resolution
(YF , ϕF ) of (1.2) the (scheme-theoretical) canonical embedded resolution
of DF in PF . By Theorem 1.5.1(i) and Theorem 1.5.2(ii) we may assume
that ZK(κ, f, s) = 1−q−1

1−q−(deg f)s−3 ZK
proj(κ, f, s). Because exp(2πi( −3

deg f )) is an
eigenvalue of the local monodromy of f at the origin (see the proof of The-
orem 2.2), we may also assume that s0 is a pole of ZK

proj(κ, f, s). As in
the proof of Theorem 5.2.1 in [2], we find that <(s0) = −νj

Nj
for some

j ∈ T C, with |EC
j \ E◦j

C| ≥ 3 or j ∈ T C
s . First suppose that j ∈ T C

s .
Then for some k ∈ {1, 2, 3} there is an irreducible component of f−1

k {0}
in A2(C), whose strict transform (by the restriction of ϕC) has numerical
data (Nj , νj) = (Nj , 1). It is well-known that in this case exp(2πi(−νj

Nj
))

is an eigenvalue of the local monodromy of fk at some nonsingular point
of f−1

k {0}. As in the proof of Theorem 3.5 this implies that exp(2πi<(s0))
is an eigenvalue of the local monodromy of f at some complex point of
f−1{0}. Next suppose that j /∈ T C

s and |EC
j \ E◦j

C| ≥ 3. Then EC
j will also

be an exceptional curve of the restriction of ϕC to some affine chart, which
is in fact the canonical embedded resolution of f−1

k {0} in A2(C) for some
k ∈ {1, 2, 3}. Now it is known, see for example [8], that then exp(2πi<(s0))
is an eigenvalue of the local monodromy of fk at some point of f−1

k {0}. Then
again we can conclude that exp(2πi<(s0)) is also an eigenvalue of the local
monodromy of f at some complex point of f−1{0}. This completes the proof
of Theorem 4.2. �

4.2.1. Remark. From Remark 1.5.3 we know that

ZK
0 (κ, f, s) = q−(deg f)s−nZK(κ, f, s),

so the monodromy conjecture is clearly also true for ZK
0 (κ, f, s) when χ(P2

C\
{f = 0}) 6= 0.

4.2.2. Remark. In a similar way we can prove the monodromy conjecture
for the topological zeta function (again for a homogeneous polynomial f in
three variables and under the condition that χ(P2

C \ {f = 0}) 6= 0). This
conjecture states the following for r ∈ N \ {0}. If s0 is a pole of Z

(r)
top(f, s),

then exp(2π
√
−1s0) is an eigenvalue of the local monodromy of f at some

complex point of f−1{0}.
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