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We study parabolic iterated function systems with overlaps
on the real line. We show that if a d-parameter family of such
systems satisfies a transversality condition, then for almost
every parameter value the Hausdorff dimension of the limit
set is the minimum of 1 and the least zero of the pressure
function. Moreover, the local dimension of the exceptional
set of parameters is estimated. If the least zero is greater
than 1, then the limit set (typically) has positive Lebesgue
measure. These results are applied to some specific families
including those arising from a class of continued fractions.

1. Introduction.

Let Φ = {φ1, . . . , φk} be a collection of self-maps on a closed intervalX ⊂ R.
We call Φ an iterated function system (IFS). Under standard contrac-
tivity hypotheses, there is a unique non-empty compact set JΦ such that
JΦ =

⋃k
j=1 φj(JΦ), called the limit set, or attractor, of the IFS.

If the sets φj(X) are mutually disjoint, then JΦ is a Cantor set. If,
in addition, φj are monotone, the limit set is known as a “cookie-cutter”;
then it is more common to view JΦ as the repeller of an expanding map
f :
⋃k

j=1 φj(X) → X defined by f(x) = φ−1
j (x) for x ∈ φj(X). Suppose that

all the maps φj are in C1+θ(X) for some θ ∈ (0, 1] and are hyperbolic, that
is, 0 < |φ′j(x)| < 1 on X. Then the Hausdorff dimension dim

H
(JΦ) is given

by Bowen’s formula [Bo2, R]:

dim
H

(JΦ) = s(Φ) where PΦ(s(Φ)) = 0.

Here PΦ(t) is the pressure function, which can be defined by

PΦ(t) = lim
n→∞

1
n

log
∑
ω∈In

‖φ′ω‖t

where I = {1, . . . , k}, φω = φω1 ◦ · · · ◦ φωn , and ‖ · ‖ is the supremum norm
on X.

The dimension formula was extended in [U] to the parabolic case, where
some of the maps have a neutral fixed point. A parabolic IFS is not uniformly
contracting, which makes the situation more subtle. It was proved in [U]
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that the Hausdorff dimension of the limit set is the least zero of the pressure
function. In contrast with the hyperbolic case (where the zero is unique),
in the parabolic case the pressure function is identically zero for all t larger
than the least zero.

We study the case when the “pieces” of the limit set are allowed to overlap.
One-dimensional IFS with overlaps arise naturally in the study of higher-
dimensional dynamical systems [PrU, BU, Si1, Si2, SSo] (in this sentence
the “dimension” refers to the phase space rather than to the limit set).
Moreover, IFS with overlaps occur in some problems on random matrix
products, random continued fractions, and in prediction theory, see [Pi, Ly,
LL].

There are many open problems related to IFS with overlaps, which are
notoriously difficult even when the maps are linear, see [PSo3]. The dimen-
sion of the limit set may be strictly less than the least zero of the pressure
function, for instance, if φω ≡ φτ for two distinct words ω and τ . Since it
is often hard to analyze an individual system, one can try to investigate a
“typical” (in the sense of Lebesgue measure) IFS in a parameterized fam-
ily. This method was first used by Falconer [F1] who considered families of
linear contractions with a linear dependence on parameter. Further work in
this direction was done in [PoS, So1, PSo2, So2, SSo]. An important role
in these papers was played by a certain “transversality condition”, which
controls the way the IFS depends on parameters.

In this paper this approach is extended to a class of non-linear IFS. Our
main result (Theorem 6.1) states that if a parameterized family {Φt} of
parabolic IFS satisfies the transversality condition, then for Lebesgue-a.e.
parameter t the Hausdorff dimension of the limit set is given by

dim
H

(JΦt) = min{1, s(t)} where s(t) := min{s : PΦt(s) = 0}.

Moreover, the limit set JΦt has positive Lebesgue measure for a.e. t such
that s(t) > 1. If a slightly stronger version of transversality is imposed,
then the local dimension of the exceptional set in the first statement can be
estimated above by s(t) + (d − 1), where d is the number of independent
parameters involved.

We illustrate our results by the following example (see Corollaries 7.4
and 7.5). Let φ(x) = x

1+x . This function is parabolic on [0, 1]. Let A =
{a1, . . . , ak}, with k ≥ 3, and consider the family of IFS on [0, 1]

ΦA = {φ(x+ aj)}k
j=1

for A ∈ U := {A ∈ Rk : ak = 0, aj > 0, j = 1, . . . , k − 1}.

Denote by JA the limit set of the IFS ΦA and let s(A) = min{t > 0 :
PΦA

(t) = 0}. We will prove that s : U → R is a continuous function, so
U<1 = {A ∈ U : s(A) < 1} and U>1 = {A ∈ U : s(A) > 1} are open sets.
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Proposition 1.1. (i) For Lebesgue-a.e. A ∈ U ,

dim
H

(JA) = min{s(A), 1}.
(ii) For any subset G ⊂ U<1 we have

dim
H
{A ∈ G : dim

H
(JA) < s(A)} ≤ sup

G
s(A) + (k − 2).

(iii) For Lebesgue-a.e. A ∈ U>1 the set JA has positive Lebesgue measure.
(iv) Similar results hold for the one-parameter family ΦA where A={a, 2, 0}

and a ∈ (0, 2).

Remarks. 1. We assumed that k ≥ 3 since for k = 2 either the limit
set is an interval, or the IFS has no overlaps, so the result is true for all
parameters by [U].

2. Proposition 1.1(iii) concerning the positive measure of the limit set
reflects a phenomenon which cannot occur in the non-overlapping case. It
is an open problem whether such limit sets can be “fat” Cantor sets or they
necessarily contain intervals.

3. The limit set JA can be described as the set of continued fractions of
the form

y = [1, Y1, 1, Y2, 1, Y3, . . . ] =
1

1 +
1

Y1 +
1

1 + . . .

where Yi ∈ A. The dimension of sets arising by some restriction in their
expansions (continued fractions, λ-expansions, etc.) was studied by many
authors. IFS with overlaps arise when the expansion for some numbers is
non-unique. The family of linear IFS {λx, λx+ 1, λx+ 3}, with λ ∈ (1

4 ,
2
5),

investigated in [KSS, PoS, So1], was an important “testing ground” in the
study of IFS with overlaps. The family {φ(x), φ(x + α), φ(x + 2)}, with
α ∈ (0, 2), that we consider in Proposition 1.1(iv) is a non-linear parabolic
analog.

4. A related problem is to analyze invariant (stationary) measures on
the limit set of an IFS. The fundamental question is whether this measure
is singular or absolutely continuous. This is interesting already for k = 2,
when the limit set is an interval. R. Lyons [Ly] investigated a family of
such measures for the IFS ΦA with A = {α, 0}. He showed singularity
for a certain interval of parameters and asked if the measure is absolutely
continuous for small α. In [SSU2], using some of the techniques developed
in this paper, we establish that the invariant measure is indeed absolutely
continuous for a.e. α in some interval.

Here is a brief outline of the contents of the paper.
Section 2 contains preliminaries concerning infinite hyperbolic IFS, in-

cluding properties of the pressure function.
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Section 3 deals with families of infinite hyperbolic IFS depending on pa-
rameters. Its main result, which is of independent interest, is Theorem 3.1,
which computes the Hausdorff dimension and Lebesgue measure of the limit
set of a.e. infinite hyperbolic IFS with overlaps from a family satisfying a
transversality condition.

The exceptional set of parameters, associated with Theorem 3.1, is ana-
lyzed in Section 4 where we estimate its local dimension from above.

In Section 5 we consider a single parabolic IFS. Following the approach
of [MU2, MU3], we reduce the parabolic IFS to an infinite hyperbolic IFS.
The limit sets of the parabolic and infinite hyperbolic systems differ in a
countable set, so they have the same dimension. We prove that the unique
zero of the pressure for the infinite hyperbolic IFS coincides with the least
zero of the pressure for the parabolic IFS, even though the pressure functions
for these systems differ (see Proposition 5.10(ii)).

In Section 6 we study families of parabolic IFS. Our main result, The-
orem 6.1, computes the Hausdorff dimension and Lebesgue measure of the
limit set of a.e. parabolic IFS with overlaps in a family satisfying a transver-
sality condition. Moreover, applying the results of Section 4 we estimate the
local dimension of the exceptional set, in the spirit of Proposition 1.1(ii).

Section 7 is devoted to examples. We consider two general classes of
examples. The most difficult part in applying Theorem 6.1 is checking the
transversality condition. In Propositions 7.1 and 7.2 we obtain effective
sufficient conditions for transversality. We conclude with specific examples
arising from continued fractions.

Notation. We write Bδ(t0) for the open ball of radius δ centered at t0 and
Ld for the Lebesgue measure in Rd. If µ is a measure we often write µA
without parentheses. The symbol � means that the inequality holds up to
an absolute multiplicative constant, and � means that both � and � are
true. Int(X) denotes the interior of a set X.

2. Preliminaries.

Let X ⊂ R be a closed interval. We consider a collection Ψ = {ψi}i∈I of
continuous self-maps ofX, where the set I may be finite or countable. We set
I∗ :=

⋃
n≥1 I

n and denote by I∞ the set of all infinite sequences of elements
of I. If ω ∈ I∗, then by |ω| we denote the length of ω. If ω ∈ I∗ ∪ I∞
and |ω| > n then ω|n = ω1ω2 · · ·ωn is the word consisting of the first n
letters of ω and σnω = ωn+1ωn+2 · · ·ω|ω|. The shift map σ : I∞ → I∞

sends an element {ωk}∞k=1 to the element {ωk+1}∞k=1. If ω ∈ In, then by
ψω : X → X we denote the composition ψω1 ◦ ψω2 ◦ · · · ◦ ψωn . Notice that
given ω ∈ I∞, the sequence of compact sets {ψω|n(X)}∞n=1 is descending
and therefore

⋂
n≥1 ψω|n(X) 6= ∅. If for every ω ∈ I∞ this intersection is a
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singleton, the collection Ψ is said to be a topological IFS. We can then
define the map πΨ : I∞ → X by setting

{πΨ(ω)} =
⋂
n≥1

ψω|n(X).

We call this map the natural projection induced by the topological IFS
Ψ, and its range, the set JΨ = πΨ(I∞), is called the limit set of Ψ. Thus,
limn→∞ diam

(
ψω|n(X)

)
= 0 and therefore,

πΨ(ω) = lim
n→∞

ψω|n(x)

for every x ∈ X. We also have the following useful identity:

πΨ(ω) = ψω|n (πΨ(σnω)) for any n ≥ 1.(2.1)

The limit set satisfies JΨ =
⋃

i∈I ψi(JΨ) but it need not be compact when
I is infinite [MU1]. We call Ψ a smooth IFS if the following condition is
satisfied.

Smoothness: There exists θ ∈ (0, 1] such that

ψi ∈ C1+θ(X → Int(X)), and ψ′i(x) 6= 0 for all x ∈ X and i ∈ I.
(2.2)

Given t ≥ 0 we define the pressure function PΨ(t) by the formula

PΨ(t) = lim
n→∞

1
n

logZn(Ψ, t)(2.3)

where Zn(Ψ, t) =
∑

|ω|=n ‖ψ′ω‖t and ‖ · ‖ denotes the supremum norm on
X. Observe that the limit in (2.3) really exists since the sequence n 7→
logZn(Ψ, t) is subadditive. Comparing this with the usual definition of
topological pressure (see e.g., [Bo1]) we see that PΨ(t) equals the pressure
of the shift map σ on I∞ with the potential

ω 7→ t log |ψ′ω1
(π(σω))|.

We call a smooth IFS hyperbolic if the following conditions are satisfied:

Hyperbolicity: For some γ ∈ (0, 1),

‖ψ′i‖ ≤ γ < 1, for all i ∈ I(2.4)

(any map satisfying this property will be called hyperbolic), and

Bounded Distortion Property: There exists K > 1 such that for all
n ∈ N and ω ∈ In,

K−1 ≤ |ψω(x)|
|ψω(y)|

≤ K for all x, y ∈ X.(2.5)

Such Ψ is a one-dimensional example of conformal IFS, introduced (for
infinite I) and explored in [MU1], where also the open set condition was
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assumed. It is well-known that (2.5) follows from (2.2) and (2.4) when I is
finite, see e.g., [B1] (see [MU1] for more general sufficient conditions).

From now on throughout the Sections 2-4, unless otherwise stated, we
assume that the smooth IFS Ψ is hyperbolic. Let

Θ(Ψ) = inf{t ≥ 0 : PΨ(t) <∞}.(2.6)

The behavior of the pressure function is described in the following lemma.

Lemma 2.1. The function t 7→ PΨ(t), for t ∈ (Θ(Ψ),∞), is finite, strictly
decreasing and continuous, and limt→∞ PΨ(t) = −∞.

Proof. The first statement is immediate from the definition of the number
Θ = Θ(Ψ). Now, given t > Θ and s > 0, we have by (2.4) for all n ≥ 1:

Zn(Ψ, t+ s) =
∑
|ω|=n

‖(ψω)′‖t+s ≤
∑
|ω|=n

‖(ψω)′‖tγns,

and therefore, PΨ(t + s) ≤ s log γ + PΨ(t) < PΨ(t). Thus, the function
t 7→ PΨ(t) is strictly decreasing on t ∈ (Θ,∞). Now, an application of
Hölder’s inequality shows that each function t 7→ Zn(Ψ, t) is log convex.
Therefore the function t 7→ PΨ(t), t ∈ (Θ,∞), is convex and, consequently,
continuous. By the definition of Θ we have PΨ(Θ + 1) < ∞. Hence, for
every t > 0 and every n ≥ 1,

Zn(Ψ,Θ + 1 + t) =
∑
|ω|=n

‖ψ′ω‖Θ+1+t ≤
∑
|ω|=n

‖ψ′ω‖1+Θ · ‖ψ′ω‖t

≤ γtn
∑
|ω|=n

‖ψ′ω‖1+Θ.

Therefore, PΨ(Θ + 1 + t) ≤ t log γ+PΨ(1 + Θ) and hence lims→+∞ PΨ(s) =
−∞. The proof is complete. �

Definition 2.2. Following [MU1] we call a hyperbolic system Ψ regular
if

∃ s(Ψ) ≥ Θ(Ψ) : PΨ(s(Ψ)) = 0.(2.7)

We denote by ΞX(K, γ, θ) the class of regular hyperbolic IFS on X.

In view of Lemma 2.1, if the number s(Ψ) exists, then it is unique. Also,
if #I <∞ then Ψ is regular since then Θ(Ψ) = 0 and PΨ(0) = log(#I) > 0.
The following lemma shows that s(Ψ) is always an upper bound for the
Hausdorff dimension of the limit set. The argument is well-known but we
include it for completeness. We write Hα(A) = limδ→0Hα

δ (A) for the α-
dimensional Hausdorff measure of a set A.

Lemma 2.3. If Ψ ∈ ΞX(K, γ, θ), then dim
H

(JΨ) ≤ s(Ψ).
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Proof. Fix ε, δ > 0 and take n1 so large that γn1 ≤ δ. By the definition
of s(Ψ) and Lemma 2.1 there exists n2 ≥ n1 and η > 0 such that for all
n ≥ n2,

1
n

log

∑
|ω|=n

‖ψ′ω‖s(Ψ)+ε

 ≤ −η.

Hence, for all n ≥ n2,

Hs(Ψ)+ε
δ (JΨ) ≤

∑
|ω|=n

diam (ψω(X))s(Ψ)+ε

≤ diam (X)s(Ψ)+ε
∑
|ω|=n

‖ψ′ω‖s(Ψ)+ε

≤ diam (X)s(Ψ)+εe−ηn,

and, consequently, Hs(Ψ)+ε
δ (JΨ) = 0. Thus, Hs(Ψ)+ε(JΨ) = 0, and letting

ε↘ 0 we conclude that dim
H

(JΨ) ≤ s(Ψ). �

Given an IFS Ψ = {ψi : i ∈ I} and F ⊂ I let ΨF = {ψi : i ∈ F}.
Denote Fin(I) = {F ⊂ I : #F <∞}. We are going to show that s(Ψ) is the
supremum of s(ΨF ) over F ∈ Fin(I). Along the way we obtain an estimate
on the speed of convergence in (2.3), which will be useful later.

Lemma 2.4. Let Ψ ∈ ΞX(K, γ, θ). Then
(i) for every t > 0 and every n ≥ 1,

PΨ(t) ≤ 1
n

logZn(Ψ, t) ≤ PΨ(t) +
t logK
n

.(2.8)

(ii) s(Ψ) = sup{s(ΨF ) : F ∈ Fin(I)}.

Proof. (i) The left-hand side inequality is immediate from the subadditivity
of the sequence n 7→ logZn(Ψ, t). In order to prove the right-hand side
inequality, fix n ≥ 1 and consider an arbitrary integer q ≥ 1. Then

1
qn

logZqn(Ψ, t) =
1
qn

log
∑

ω∈Iqn

‖ψ′ω‖t

≥ 1
qn

log

K−qt
∑

ω∈(In)q

q∏
i=1

‖ψ′τi
‖t


=
−t logK

n
+

1
qn

log

(∑
τ∈In

‖ψ′τ‖t

)q

=
−t logK

n
+

1
n

logZn(Ψ, t),
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where in the second displayed line we used (2.5) and ω = τ1 . . . τq, with
τi ∈ In. Letting q →∞ we obtain the right-hand side inequality of (2.8).

(ii) Since for every t ≥ 0 and every F ⊂ I we have PΨF
(t) ≤ PΨ(t),

the inequality s(Ψ) ≥ sup{s(ΨF ) : F ∈ Fin(I)} is obvious. The opposite
inequality will be deduced from (i). Fix an arbitrary Θ(Ψ) < t < s(Ψ).
Then 0 < PΨ(t) < ∞ and there exists n ∈ N so large that PΨ(t) > 2t log K

n .
Fix such an n. Clearly, Zn(Ψ, t) = sup{Zn(ΨF ) : F ∈ Fin(I)}, hence we
can find F ∈ Fin(I) satisfying

logZn(ΨF , t)
n

≥ logZn(Ψ, t)
n

− t logK
n

≥ PΨ(t)− t logK
n

>
t logK
n

.

But now, applying (2.8) to ΨF ∈ ΞX(K, γ, θ) we obtain

PΨF
(t) ≥ logZn(ΨF , t)

n
− t logK

n
> 0

which implies that t ≤ s(ΨF ). Thus, s(Ψ) ≤ sup{s(ΨG) : G ∈ Fin(I)}, and
the proof is complete. �

3. Families of hyperbolic IFS.

Let X ⊂ R be a compact interval and U ⊂ Rd an open set. Here we consider
families of hyperbolic IFS Ψt ∈ ΞX(K, γ, θ) depending on a parameter t ∈ U .
By Jt we denote the limit set of Ψt and by πt = πΨt : I∞ → Jt we denote
the natural projection introduced in Section 2. We need two conditions
concerned with the dependence of the IFS on t.

Distortion Continuity: For any η > 0 there exists δ > 0 such that

t1, t2 ∈ U, ‖t1 − t2‖ ≤ δ =⇒ ∀ω ∈ I∗, e−|ω|η ≤ ‖(ψt1
ω )′‖

‖(ψt2
ω )

′‖
≤ e|ω|η .

(3.1)

Transversality Condition: For any ω and τ in I∞ with ω1 6= τ1, there
exists a constant C1 = C1(ω1, τ1) such that

Ld{t ∈ U : |πt(ω)− πt(τ)| ≤ r} ≤ C1r for all r > 0.(3.2)

We emphasize that C1 depends only on ω1 and τ1. Thus, C1 can be assumed
independent of ω and τ if I is finite.

Now we can state the main result of this section. We write s(t) = s(Ψt).

Theorem 3.1. Suppose that {Ψt}t∈U is a family of IFS in ΞX(K, γ, θ)
satisfying (3.1) and (3.2). Then the function t 7→ s(t) is continuous on U
and

(i) dim
H

(Jt) = min{s(t), 1} for Lebesgue-a.e. t ∈ U ;
(ii) L1(Jt) > 0 for Lebesgue-a.e. t ∈ U such that s(t) > 1.



PARABOLIC IFS WITH OVERLAPS 449

The rest of the section is devoted to the proof of this theorem. We begin
with two lemmas which are easy consequences of (3.1) and (3.2).

Lemma 3.2. Given ε, a > 0 define η = −ε log γ
4a+ε and take δ = δ(η) coming

from (3.1) ascribed to η. Then for all ω ∈ I∗,

‖t0 − t‖ < δ =⇒ ‖(ψt0
ω )′‖a+ ε

4 ≤ ‖(ψt
ω)′‖a.

Proof. By (3.1) we have

‖(ψt0
ω )′‖a+ ε

4 ≤ e|ω|η(a+ ε
4
) · ‖(ψt

ω)′‖a+ ε
4

≤ e|ω|η(a+ ε
4
) · γ|ω|

ε
4 · ‖(ψt

ω)′‖a

= e|ω|(η(a+ ε
4
)+ ε

4
log γ) · ‖(ψt

ω)′‖a = ‖(ψt
ω)′‖a.

The proof is complete. �

Lemma 3.3. Suppose that the family Ψt satisfies (3.2). Then for every 0 <
α < 1 and for all ω, τ ∈ I∞ with ω1 6= τ1, there exists C2 = C2(α, ω1, τ1) > 0
such that ∫

U

dt
|πt(ω)− πt(τ)|α

≤ C2.

Proof. In view of (3.2), we can estimate as follows:∫
U

dt
|πt(ω)− πt(τ)|α

=
∫ ∞

0
Ld

{
t ∈ U :

1
|πt(ω)− πt(τ)|α

≥ x

}
dx

=
∫ ∞

0
Ld {t ∈ U : |πt(ω)− πt(τ)| ≤ r} r−α−1dr

=
∫ |X|

0
Ld {t ∈ U : |πt(ω)− πt(τ)| ≤ r} r−α−1dr +

+
∫ ∞

|X|
Ld {t ∈ U : |πt(ω)− πt(τ)| ≤ r} r−α−1dr

≤ C1(ω1, τ1)(1− α)−1|X|1−α + Ld(U)α−1|X|−α ,

and the lemma is proved. �

The next lemma is proved following the scheme of [SSo, Lemma 4.1(ii)];
it implies the continuity statement in Theorem 3.1.

Lemma 3.4. If the family Ψt ∈ ΞX(K, γ, θ), with t ∈ U , satisfies (3.1),
then the function t 7→ s(t) is continuous on U .
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Proof. Fix an arbitrary Φ ∈ ΞX(K, γ, θ). Then for every t > Θ(Φ) and
u ≥ 0 we have

PΦ(t+ u)− PΦ(t)

= lim
n→∞

1
n

log

∑
|ω|=n

‖φ′ω‖t+u

− log

∑
|ω|=n

‖φ′ω‖t


≤ lim

n→∞

1
n

log

γun
∑
|ω|=n

‖φ′ω‖t

− log

∑
|ω|=n

‖φ′ω‖t


= u log γ.

Therefore, for all t > Θ(Φ) and u > Θ(Φ)− t,

|PΦ(t+ u)− PΦ(t)| ≥ |u| · | log γ|.(3.3)

Recall that PΨti (s(ti)) = 0 by the definition of s(ti) = s(Ψti). Fix ε > 0,
consider δ > 0 produced by (3.1) with η = ε, and suppose that ‖t2−t1‖ < δ.
Then by (2.3) and (3.1),

|PΨt1 (s(t2))| = |PΨt1 (s(t2))− PΨt2 (s(t2))|

= lim
n→∞

1
n

log

∣∣∣∣∣
∑

|ω|=n ‖(ψt1
ω )′‖s(t2)∑

|ω|=n ‖(ψ
t2
ω )′‖s(t2)

∣∣∣∣∣ ≤ s(t2)ε.

Therefore, s(t2) > Θ(Ψt1) and in view of (3.3) we have

|s(t2)− s(t1)| ≤
1

| log γ|
|PΨt1 (s(t2))− PΨt1 (s(t1))|

=
1

| log γ|
|PΨt1 (s(t2))| ≤

s(t2)ε
| log γ|

,

and the desired statement follows. �

Following [SSo], we now prove the main ingredient needed for the proof
of Theorem 3.1.

Lemma 3.5. Suppose that the family {Ψt}t∈U satisfies (3.1) and (3.2).
Then

(i) for any t0 ∈ U and any ε > 0 there exists δ > 0 such that

dim
H

(Jt) ≥ min{s(t0), 1} − ε for Ld-a.e. t ∈ Bδ(t0).

(ii) Suppose that s(t0) > 1+ ε for some 0 < ε < 1. Then there exists δ > 0
such that

L1(Jt) > 0 for Ld-a.e. t ∈ Bδ(t0).
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Proof. Let s = min{s(t0), 1}. By Lemma 2.4(ii), there exists a finite subset
F of I such that s(Ψt0

F ) > s(t0)− ε
2 ≥ s− ε

2 . To simplify notation we set

Ψ = {ψi}i∈F = Ψt0
F .

Consider the function f : F∞ → R defined by f(ω) = log |ψ′ω1
(πΨ(σω))|. It

follows from (2.2) that f is Hölder continuous, and (2.1) implies
n−1∑
i=0

f(σiω) = log |ψ′ω|n(πΨ(σnω))| for all ω ∈ F∞.

Since PΨ(s(Ψ)) = 0, the theory of Gibbs states (see [Bo1], cf. [MU1] for a
more general setting) produces a Borel probability shift-invariant measure
µ on F∞ such that for some constant C3 ≥ 1, all ω ∈ F∞, and all n ≥ 1,

µ[ω|n] ∈ (C−1
3 , C3) |ψ′ω|n(πΨ(σnω))|s(Ψ) .

Here [ω|n] is the cylinder set of all sequences starting with ω1 . . . ωn. The
measure µ is called the Gibbs state for the potential ω 7→ s(Ψ)f(ω). Bounded
distortion (2.5) implies that there exists a constant C4 ≥ 1 such that for all
ω ∈ F∞ and all n ≥ 1,

µ[ω|n] ∈ (C−1
4 , C4) ‖ψ′ω|n‖

s(Ψ).(3.4)

Denote the product measure µ × µ by µ2. First we prove part (i) of the
lemma. By the potential-theoretic characterization of the Hausdorff dimen-
sion (see [F2, p. 79]) it is enough to show that

R(t) =
∫∫

F∞×F∞

dµ2(ω, τ)
|πt(ω)− πt(τ)|s−ε

<∞(3.5)

for a.e. t ∈ Bδ(t0), where πt = πΨt . Indeed, (3.5) means that the (s − ε)-
energy of the “push-down” measure µ ◦ π−1

t , supported on the limit set
JΨt

F
⊂ Jt, is finite.

Following the scheme of Kaufman [K] we prove that∫
Bδ(t0)

R(t)dt <∞

where δ = δ(η) comes from (3.1) and η = −ε log γ
4(s(Ψ)− ε

2
)+ε . For ρ ∈ Fn denote

Aρ = {(ω, τ) ∈ F∞ × F∞ : ω ∧ τ = ρ}

where ω∧τ is the largest common initial segment of ω and τ . For (ω, τ) ∈ Aρ

we have by (2.1), (2.5), and the Mean Value Theorem:

|πt(ω)− πt(τ)| = |(ψt
ρ)
′(c)| · |πt(σnω)− πt(σnτ)|(3.6)

≥ K−1‖(ψt
ρ)
′‖ · |πt(σnω)− πt(σnτ)|.
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By Lemma 3.2,

‖(ψt
ρ)
′‖s−ε ≥ ‖(ψt

ρ)
′‖s(Ψ)− ε

2 ≥ ‖ψ′ρ‖s(Ψ)− ε
4 for t ∈ Bδ(t0)(3.7)

where ψρ = ψt0
ρ . Now we can estimate using (3.6) and (3.7):∫

Bδ(t0)
R(t)dt =

∑
n≥0

∑
ρ∈F n

∫∫
Aρ

(∫
Bδ(t0)

dt
|πt(ω)− πt(τ)|s−ε

)
dµ2(ω, τ)

�
∑
n≥0

∑
ρ∈F n

∫∫
Aρ

[
‖ψ′ρ‖−s(Ψ)+ ε

4

∫
Bδ(t0)

dt
|πt(σnω)− πt(σnτ)|s−ε

]
dµ2(ω, τ)

�
∑
n≥0

∑
ρ∈F n

∫∫
Aρ

‖ψ′ρ‖−s(Ψ)+ ε
4 dµ2(ω, τ) .

In the last inequality we applied Lemma 3.3 which is possible because
(σnω)1 6= (σnτ)1. The multiplicative constant depends on (σnω)1 and
(σnτ)1, but since the set F is finite this does not cause a problem. Next,
applying (3.4) and (2.4) and denoting by [ρ] the cylinder set of ρ ∈ Fn we
obtain: ∫

Bδ(t0)
R(t)dt �

∑
n≥0

∑
ρ∈F n

∫∫
Aρ

‖ψ′ρ‖
ε
4

µ[ρ]
dµ2(ω, τ)

�
∑
n≥0

γ
nε
4

∑
ρ∈F n

µ2(Aρ)
µ[ρ]

≤
∑
n≥0

γ
nε
4

∑
ρ∈F n

(µ[ρ])2

µ[ρ]
=
∑
n≥0

γ
nε
4 <∞.

This concludes the proof of part (i).

(ii) Let η = −ε log γ
4+ε and determine δ = δ(η) from (3.1). In view of

Lemma 2.4, there exists a finite set F ⊂ I such that s(Ψt0
F ) ≥ 1 + ε

2 . We
use the same set-up as in the proof of part (i) and let Ψ = Ψt0

F . Recall that
µ is the Gibbs state for the potential ω 7→ s(Ψ) log |ψ′ω1

(πΨ(σω))| satisfying
(3.4). For every t ∈ Bδ(t0) consider

νt = µ ◦ π−1
t ,

the push-down measure on the limit set JΨt
F
⊂ Jt. It is enough to show that

νt is absolutely continuous with respect to the Lebesgue measure L1 for a.e.
t ∈ Bδ(t0). We prove that

I =
∫

Bδ(t0)

∫
R
D(νt, x) dνt dt <∞
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where

D(νt, x) = lim inf
r↘0

νt[x− r, x+ r]
2r

is the lower density of the measure νt at the point x. This will be sufficient
since then for a.e. t ∈ Bδ(t0) we will have D(νt, x) < ∞ for νt-a.e. x and
[M, Lemma 2.12] will imply that νt is absolutely continuous. The argument
below follows the scheme of [PSo1]. First we apply Fatou’s Lemma to get

I ≤ lim inf
r↘0

∫
Bδ(t0)

∫
R

νt[x− r, x+ r]
2r

dνt dt.(3.8)

Next we use the definition of νt to change the variable, write νt[x− r, x+ r]
as an integral of the indicator function, and change the variable once again
to obtain∫

R
νt[x− r, x+ r] dνt =

∫∫
F∞×F∞

1{ω∈F∞: |πt(ω)−πt(τ)|≤r} dµ2(ω, τ).

Substituting this into (3.8) and exchanging the order of integration yields

I ≤ lim inf
r↘0

(2r)−1

∫∫
F∞×F∞

Ld{t ∈ Bδ(t0) :

|πt(ω)− πt(τ)| ≤ r} dµ2(ω, τ)

= lim inf
r↘0

(2r)−1
∑
n≥0

∑
ρ∈F n

∫∫
Aρ

Ld{t ∈ Bδ(t0) :

|πt(ω)− πt(τ)| ≤ r} dµ2(ω, τ).

By (3.6), Lemma 3.2, and (3.2), we have for all (ω, τ) ∈ Aρ:

Ld{t ∈ Bδ(t0) : |πt(ω)− πt(τ)| ≤ r}

� Ld

{
t ∈ Bδ(t0) : |πt(σnω)− πt(σnτ)| ≤ Kr

‖(ψt
ρ)′‖

}
≤ Ld

{
t ∈ Bδ(t0) : |πt(σnω)− πt(σnτ)| ≤ Kr

‖ψ′ρ‖1+ ε
4

}
� r‖ψ′ρ‖−1− ε

4 .

Here we used again that the constant in (3.2) can be made independent of
ω and τ , due to the fact that F is finite. Now we can estimate the integral
I as follows:

I �
∑
n≥0

∑
ρ∈F n

∫∫
Aρ

‖ψ′ρ‖−1− ε
4 dµ2(ω, τ).

By (3.4) and (2.4),

‖ψ′ρ‖−1− ε
4 � (µ[ρ])−

1+ε/4
s(Ψ) ≤ (µ[ρ])−(1− ε

12
) � γ

nε
12 (µ[ρ])−1,
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since s(Ψ) > 1 + ε
2 and (1 + ε

4)/(1 + ε
2) < 1− ε

12 for ε < 1. Thus,

I �
∑
n≥0

γ
nε
12

∑
ρ∈F n

µ2(Aρ)
µ[ρ]

≤
∑
n≥0

γ
nε
12

∑
ρ∈F n

µ[ρ] =
∑
n≥0

γ
nε
12 <∞.

The proof is complete. �

Proof of Theorem 3.1. By Lemma 2.3, the function s(t) = min{s(Ψt), 1} is
an upper bound for the Hausdorff dimension of the limit set Jt. So we just
have to show that

dim
H

(Jt) ≥ s(t)

for a.e. t ∈ U . Suppose that this is not the case. Then we can find ε > 0
and t0, a density point of those t for which

dim
H

(Jt) < s(t)− ε.

Then there exists δ0 > 0 such that for each δ < δ0,

Ld

{
t ∈ Bδ(t0) : dim

H
(Jt) < min{s(t), 1} − ε

}
> 0.(3.9)

However, by the continuity of the function s(t) (see Lemma 3.4), if δ is small
enough then s(t) < s(t0) + ε

2 for all t ∈ Bδ(t0). Thus, for all δ sufficiently
small we obtain from (3.9) that

Ld

{
t ∈ Bδ(t0) : dim

H
(Jt) < min{s(t0), 1} −

ε

2

}
> 0.

This contradicts Lemma 3.5(i) and completes the proof of the first part of
Theorem 3.1. The second part follows immediately from Lemma 3.5(ii). �

4. Exceptional parameters.

In this section, following the scheme of Kaufman [K], we obtain an estimate
from above for the local Hausdorff dimension of the set of exceptional pa-
rameters in Theorem 3.1(i). As in Section 3, we assume that {Ψt}t∈U is a
family of IFS in ΞX(K, γ, θ) satisfying (3.1), but we will need the following
stronger transversality condition which will be checked for all the examples
that we consider. Denote by Nr(F ) the minimal number of balls of radius r
needed to cover the set F ⊂ Rd.

Strong Transversality Condition: For all ω and τ in I∞ with ω1 6= τ1,
there exists a constant C1 = C1(ω1, τ1) such that for all r > 0,

Nr ({t ∈ U : |πt(ω)− πt(τ)| ≤ r}) ≤ C1r
1−d.(4.1)

Of course, the strong transversality condition implies the transversality
condition (3.2). In the same way as Lemma 3.3 we can prove the following.
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Lemma 4.1. Suppose that the family Ψt satisfies the strong transversal-
ity condition (4.1). Let m be a Borel probability measure in Rd such that
m(Br(x)) ≤ Cru for some C, u > 0 and all x ∈ Rd, r > 0. Then for
every α < u − d + 1 and for all ω, τ ∈ A∞ with ω1 6= τ1, there exists
C2 = C2(α, ω1, τ1) > 0 such that∫

U

dm(t)
|πt(ω)− πt(τ)|α

≤ C2.

In the sequel any measure with the properties required in Lemma 4.1 will
be called a Frostman measure with exponent u. Next we prove the analog
of Lemma 3.5(i).

Lemma 4.2. Suppose that the family {Ψt}t∈U satisfies (3.1) and (4.1).
Then for any t0 ∈ U and any ε > 0 there exists δ = δ(t0, ε) > 0 such
that if m is a Frostman measure on Bδ(t0) with exponent u, then

dim
H

(Jt) ≥ min{s(t0), u− d+ 1} − ε

for m-a.e. t ∈ Bδ(t0).

Proof. We let s = min{s(t0), u − d + 1} and then repeat the proof of
Lemma 3.5(i) almost word by word. The only change is that now we prove
that

∫
Bδ(t0)R(t)dm(t) <∞ using Lemma 4.1 in the place where Lemma 3.3

was used. �

Now we can prove the main result of this section.

Theorem 4.3. Suppose that the d-parameter family of IFS {Ψt}t∈U satis-
fies (3.1) and (4.1). If G is an arbitrary subset of U , then for every ξ > 0
we have

dim
H

({
t ∈ G : dim

H
(Jt) < min{ξ, s(t)}

})
≤ min{ξ, sup

G
s(t)}+ d− 1.

Proof. Denote κ := min{ξ, supG s(t)}+ d− 1. By the countable stability of
the Hausdorff dimension, it is enough to prove that for all n ∈ N,

dim
H

({
t ∈ G : dim

H
(Jt) < min{ξ, s(t)} − 1

n

})
≤ κ.

Fix n and observe that it suffices to show that for all t0 in G there exists
δ = δ(t0) such that

dim
H

({
t ∈ Bδ(t0) : dim

H
(Jt) < min{ξ, s(t)} − 1

n

})
≤ κ

(just use that any cover of G contains a countable subcover and again the
countable stability of the Hausdorff dimension). To establish our claim,
suppose that it is false. Then there exists t0 such that for all δ > 0

dim
H

({
t ∈ Bδ(t0) : dim

H
(Jt) < min{ξ, s(t)} − 1

n

})
> κ.
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Choose δ > 0 so small that the statement of Lemma 4.2 holds with ε = 1
2n

and
|s(t)− s(t0)| < 1

2n for all t ∈ Bδ(t0) (by the continuity of s(t)). Then{
t ∈ Bδ(t0) : dim

H
(Jt) < min{ξ, s(t)} − 1

n

}
⊂
{
t ∈ Bδ(t0) : dim

H
(Jt) < min{ξ, s(t0)} −

1
2n

}
=: E,

hence dim
H

(E) > κ. By Frostman’s Lemma (see [M, Th.8.8]), there is a
Frostman measure m on the set E with exponent u = κ. By Lemma 4.2,
for m-a.e. t we have

dim
H

(Jt) ≥ min{s(t0), κ−d+1}− 1
2n

= min
{
s(t0),min

{
ξ, sup

G
s(t)

}}
− 1

2n
.

This is a contradiction since for all t ∈ E we have dim
H

(Jt) < min{ξ, s(t0)}−
1
2n and

min{ξ, s(t0)} ≤ min
{
s(t0),min

{
ξ, sup

G
s(t)

}}
.

�

Since the function t 7→ s(t), t ∈ U , is continuous, as an immediate conse-
quence of Theorem 4.3 we get the following estimate for the local dimension
of the exceptional set.

Corollary 4.4. For every t0 ∈ U we have

lim
r→0

dim
H

(
{t ∈ Br(t0) : dim

H
(Jt) < min{ξ, s(t)}}

)
≤ min{ξ, s(t0)}+ d− 1.

5. Parabolic IFS.

Let X ⊂ R be a compact interval. We say that a C1+θ map φ : X → X is
parabolic if the following requirements are fulfilled:

• there is only one point v ∈ X such that φ(v) = v;
• |φ′(v)| = 1 and 0 < |φ′(x)| < 1 for all x ∈ X \ {v}.
• There exists L1 ≥ 1 and β = β(φ) < θ/(1 − θ) (= ∞ if θ = 1) such

that

L−1
1 ≤ lim inf

x→v

||φ′(x)| − 1|
|x− v|β

≤ lim sup
x→v

||φ′(x)| − 1|
|x− v|β

≤ L1.

At the beginning of this section we state some useful properties of a single
parabolic map. They are very similar to [U, Lemmas 2.1-2.3]. First, inte-
grating the partial sums of the series

∑∞
n=1 |(φn)′(x)| we get the following.
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Lemma 5.1. For all x ∈ φ(X) \ {v} we have

|x− v|
|φ−1(x)− x|

≤
∞∑

n=1

|(φn)′(x)| ≤ |φ(x)− v|
|x− φ(x)|

Sending a sufficiently small neighborhood of v to infinity via the mapping
x 7→ 1/(x− v), one can easily prove the following two local results.

Lemma 5.2. For every neighborhood V of v there exists L2(V ) ≥ 1 such
that for all x ∈ X \ V and all n ≥ 1,

1
L2(V )

≤ |φn(x)− v| · n1/β ≤ L2(V ).

Lemma 5.3. For every neighborhood V of v there exists L3(V ) ≥ 1 such
that for all x ∈ X \ V and all n ≥ 1

1
L3(V )

≤ |(φn)′(x)| · n
β+1

β ≤ L3(V ).

Since β < θ/(1− θ), the following is immediate from Lemma 5.3.

Corollary 5.4. For every neighborhood V of v there exists L4(V ) <∞ such
that

∞∑
n=1

‖(φn)′‖θ
X\V

< L4(V )

where ‖ · ‖
X\V

denotes the sup-norm on X \ V .

Turning now our attention to iterated function systems we recall that a
C1+θ map φ is hyperbolic if 0 < |φ′(x)| < 1 for all x ∈ X.

Definition 5.5. Let Φ = {φ1, . . . , φk} be a collection of C1+θ functions on
a closed interval X ⊂ R such that φk is parabolic with the fixed point v and
the other functions are hyperbolic. We write Φ ∈ ΓX(θ) if, in addition,

φi(X) ⊂ Int(X) \ {v} for all i ≤ k − 1.(5.1)

Remark. We consider IFS with just one parabolic element. The case of
more than one parabolic function can also be handled, but at the cost of
additional technical complications.

Let A = {1, . . . , k}, A∗ :=
⋃

n≥1An, and suppose that

max{‖φ′i‖ : i ≤ k − 1} ≤ γ < 1.(5.2)

Lemma 5.6. An IFS Φ ∈ ΓX(θ) is a topological IFS.
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Proof. All we need to show is that the intersections
⋂

n≥1 φω|n(X) are sin-
gletons for all ω ∈ A∞. By (5.2),

lim
n→∞

diam (φω|n(X)) → 0(5.3)

if the sequence ω has infinitely many symbols other than k. The remaining
possibility is ω = wk∞ for some w ∈ A∗ but then (5.3) is still true since⋂

n≥1 φkn(X) = {v}. �

Now, following [MU2, MU3], given a parabolic IFS Φ ∈ ΓX(θ), consider
an associated infinite IFS

Φ∗ = {φn
kφi : n ≥ 0, i ≤ k − 1} .

We also write Φ∗ = {φ∗b}b∈I where φ∗b = φn
kφi and

I = {b = (n, i) : n ≥ 0, i ≤ k − 1}.

The following properties of Φ∗ are immediate from the definitions.

Corollary 5.7. Let Φ ∈ ΓX(θ). Then Φ∗ = {φ∗b}b∈I satisfies

(i) φ∗b ∈ C1+θ(X → Int(X)) for all b ∈ I;
(ii) 0 < ‖(φ∗b)′‖ ≤ γ < 1 for all b ∈ I;
(iii) JΦ = JΦ∗ ∪ {φw(v)}w∈A∗ so dim

H
(JΦ) = dim

H
(JΦ∗).

Thus there is an infinite hyperbolic IFS Φ∗ associated with a finite par-
abolic IFS Φ. This idea essentially goes back to Schweiger’s “jump trans-
formation” [Sc]. Our next goal is to show that Φ ∈ ΓX(θ) implies Φ∗ ∈
ΞX(K, γ, θ) for some K, see Definition 2.2. To achieve this, two more prop-
erties have to be verified: The bounded distortion property (2.5) and regular-
ity (2.7). Bounded distortion properties for parabolic IFS (without overlaps)
were investigated in [U]. Here a different version is needed but the approach
is similar.

In the next section we study families of parabolic IFS, and it will be very
important to know exactly what the various constants depend on. Therefore,
we introduce the following notation. Let Φ ∈ ΓX(θ). We write

Φ ∈ ΓX(θ, V, γ, u,M)(5.4)

if V is a connected open neighborhood of the parabolic point v such that

V ∩
k−1⋃
i=1

φi(X) = ∅,(5.5)

max{‖(φi)′‖, i ≤ k − 1} ≤ γ ∈ (0, 1),(5.6)

min{|φ′i(x)|, x ∈ X, i ≤ k} ≥ u ∈ (0, 1),(5.7)
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and

‖Φ′‖θ := max
i≤k

sup{|φ′i(x)− φ′i(y)| · |x− y|−θ} ≤M.(5.8)

By Definition 5.5, every Φ ∈ ΓX(θ) belongs to some ΓX(θ, V, γ, u,M).
The next lemma will also be useful when we consider families of parabolic

IFS. Recall that ‖ · ‖
X\V

denotes the supremum norm on X \ V .

Lemma 5.8. There exist constants L5 = L5(X, θ, V, γ, u,M) > 1 and L6 =
L6(θ, V, γ) > 0 such that for every Φ ∈ ΓX(θ, V, γ, u,M), all ω ∈ A∗, and
all x, y ∈ X \ V ,

L
−|x−y|θ
5 ≤ |φ′ω(y)|

|φ′ω(x)|
≤ L

|x−y|θ
5(5.9)

and
|ω|−1∑
j=0

‖φ′σjω‖
θ
X\V

≤ L6.(5.10)

Proof. We start with (5.10). Every τ ∈ A∗ can be written as

τ = kr1j1k
r2j2 . . . k

rljlk
rl+1(5.11)

where l ≥ 0 and rp ≥ 0, jp ≤ k − 1 for p ≤ l. When l = 0, Equation (5.11)
becomes τ = kr1 . One readily estimates using (5.5) and (5.6):

‖φ′τ‖X\V
≤ γl

l+1∏
p=1

‖(φrp

k )′‖
X\V

.

Applying this inequality to τ = σjω and summing over j we obtain

|ω|−1∑
j=0

‖φ′σjω‖
θ
X\V

≤ γlθ ·

 r1∑
j=1

‖(φj
k)
′‖θ

X\V
+ 1

 ·
l+1∏
p=2

‖(φrp

k )′‖θ
X\V

+ γ(l−1)θ ·

 r2∑
j=1

‖(φj
k)
′‖θ

X\V
+ 1

 ·
l+1∏
p=3

‖(φrp

k )′‖θ
X\V

+ · · ·+ γθ ·

 rl∑
j=1

‖(φj
k)
′‖θ

X\V
+ 1

 · ‖(φrl+1

k )′‖+
rl+1∑
j=1

‖(φj
k)
′‖θ

X\V
.
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Applying Corollary 5.4 for φ = φk and using that ‖(φr
k)
′‖

X\V
≤ 1 for all r,

we obtain
|ω|−1∑
j=0

‖φ′σjω‖
θ
X\V ≤ (L4(V ) + 1)

∞∑
i=0

γiθ =: L6 = L6(θ, V, γ) <∞,

and (5.10) is proved.

Now we turn to (5.9); clearly, it suffices to prove the right-hand side
inequality. Suppose first that x and y belong to the same connected compo-
nent of X \ V . Then using the Mean Value Theorem we conclude that for
every 0 ≤ j ≤ |ω| there exists cj ∈ X \ V such that |φσjω(y) − φσjω(x)| =
|φ′

σjω
(cj)| · |y − x|. We have for all 1 ≤ i ≤ |ω| by (5.7):∣∣∣log |φ′ωj

(φσjω(y))| − log |φ′ωj
(φσjω(x))|

∣∣∣
≤
∣∣∣∣|φ′ωj

(φσjω(y))|1
u
− |φ′ωj

(φσjω(x))|
∣∣∣∣

≤ ‖Φ′‖θ

u
|φσjω(y)− φσjω(x)|θ

=
‖Φ′‖θ

u
|φ′σjω(cj)|θ |y − x|θ.

Since cj ∈ X \ V , we obtain∣∣log |φ′ω(y)| − log |φ′ω(x)|
∣∣(5.12)

=

∣∣∣∣∣∣
|ω|∑
j=1

log |φ′ωj
(φσjω(y))| −

|ω|∑
j=1

log |φ′ωj
(φσjω(x))|

∣∣∣∣∣∣
≤

|ω|∑
j=1

∣∣∣log |φ′ωj
(φσjω(y))| − log |φ′ωj

(φσjω(x))|
∣∣∣

≤
|ω|∑
j=1

‖Φ′‖θ

u
|φ′σjω(cj)|θ |y − x|θ

≤ ‖Φ′‖θ

u
L6 |y − x|θ ≤ M

u
L6 |y − x|θ.

In the last displayed line we used (5.10) and (5.8). This completes the proof
of (5.9) when x and y are in the same connected component of X \ V . Now
suppose that they are in different components. Since then |y−x| ≥ diam (V ),
it suffices to show the existence of a constant L7 = L7(X, θ, V, γ, u,M) ≥ 1
such that |φ′ω(y)| ≤ L7 · |φ′ω(x)| for all ω ∈ A∗. To this end, suppose ω = τkn

where n ≥ 0 and τ|τ | 6= k. Let |τ | = l. Observe that the points φτlkn(x) and
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φτlkn(y) belong to φτl
(X) and hence are in the same connected component

of X \ V . Thus, in view of Lemma 5.3 and (5.12) we get

|φ′ω(y)|
|φ′ω(x)|

=
|φ′τ |l−1

(φτlkn(y))| · |φ′τl
(φkn(y))| · |φ′kn(y)|

|φ′τ |l−1
(φτlkn(x))| · |φ′τl

(φkn(x))| · |φ′kn(x)|

≤ exp
(
M

u
L6 |y − x|θ

)
γ

u
L3(V )2,

and it remains to note that |y − x| ≤ diam (X). The only possibility left is
ω = kn but then |φ′kn(y)| ≤ L3(V )2 |φ′kn(x)| by Lemma 5.3. The proof is
complete. �

Corollary 5.9. There exists a constant K1 = K1(X, θ, V, γ, u,M) > 1 such
that for every Φ ∈ ΓX(θ, V, γ, u,M), the associated infinite IFS Φ∗ satisfies
(2.5) with K = K1. More precisely, for all τ ∈ I∗ and all x, y ∈ X,

K
−|y−x|θ
1 ≤ |(φ∗τ )′(y)|

|(φ∗τ )′(x)|
≤ K

|y−x|θ
1 .

Proof. It is enough to prove only the right-hand side of this formula. By
the definition of the system Φ∗ we can write φ∗τ = φωφi, where ω ∈ A∗ and
i ∈ {1, 2, . . . , k − 1}. Then, applying (5.9) and (5.7) we can estimate as
follows:

|(φ∗τ )′(y)|
|(φ∗τ )′(x)|

=
|(φω ◦ φi)′(y)|
|(φω ◦ φi)′(x)|

=
|φ′ω(φi(y))|
|φ′ω(φi(x))|

· |φ
′
i(y)|

|φ′i(x)|

≤ L
|φi(y)−φi(x)|θ
5 exp

(
|φ′i(y)|
|φ′i(x)|

− 1
)

≤ L
|y−x|θ
5 exp

(
‖Φ′‖θ

u
|y − x|θ

)
≤ L

|y−x|θ
5 exp

(
M

u
|y − x|θ

)
,

and the proof is finished. �

The pressure function PΦ(t) for the parabolic IFS Φ is defined by

PΦ(t) = lim
n→∞

1
n

∑
|ω|=n

‖φ′ω‖t,

in accordance with (2.3). Observe that PΦ(0) = log k. In contrast with the
hyperbolic case, PΦ(t) ≥ 0 for all t > 0 since ‖φ′kn‖ = 1 for all n. It is easy
to see that PΦ(t) is non-increasing and continuous. Thus, PΦ(s) = 0 implies
PΦ(t) = 0 for all t > s. Denote

s(Φ) = min{t > 0 : PΦ(t) = 0}.
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If the pressure function has no zeros, we let s(Φ) = ∞, however, the next
proposition implies that s(Φ) <∞ for any Φ ∈ ΓX(θ).

Proposition 5.10. Let Φ ∈ ΓX(θ) and let Φ∗ be the associated infinite
hyperbolic IFS. Then

(i) Θ(Φ∗) = β
β+1 and Φ∗ is regular, i.e., there exists a unique s(Φ∗) >

Θ(Φ∗) such that PΦ∗(s(Φ∗)) = 0;
(ii) s(Φ∗) = s(Φ).

Before the proof, we point out the following.

Corollary 5.11. If Φ ∈ ΓX(θ) then
(i) Φ∗ ∈ ΞX(K1, γ, θ) where K1 is from Corollary 5.9;
(ii) dim

H
(JΦ) ≤ s(Φ).

Proof. (i) follows from Proposition 5.10(i) and Definition 2.2.
(ii) follows from Proposition 5.10(ii), Lemma 2.3, and Corollary 5.7. �

Proof of Proposition 5.10. (i) First we compute Θ(Φ∗), see (2.6) for the def-
inition. It follows from (5.1) and Lemma 5.3 that there exists a constant
K2 > 1 such that for all x ∈ X and b = (l, i) ∈ I,

|(φ∗b)′(x)| = |(φl
kφi)′(x)| ∈ (K−1

2 ,K2) (l + 1)−
β+1

β .(5.13)

Therefore,

|(φ∗b)′(x)| ≥ K−2
2 ‖(φ∗b)′‖ for all x ∈ X.(5.14)

Let t > β
β+1 . We have by (5.14), writing φ∗τ = φ∗τ1 . . . φ

∗
τn

:

Zn(Φ∗, t) =
∑
|τ |=n

‖(φ∗τ )′‖t ∈ (K−2tn
2 , 1)

∑
|τ |=n

‖(φ∗τ1)
′‖t . . . ‖(φ∗τn

)′‖t

= (K−2tn
2 , 1)

(∑
b∈I

‖(φ∗b)′‖t

)n

= (K−2tn
2 , 1)

 ∑
i≤k−1

∑
l≥0

‖(φl
kφi)′‖t

n

.

Next we use (5.13) to get

Zn(Φ∗, t) ∈ (K−3tn
2 ,Ktn

2 )

 ∑
i≤k−1

∑
l≥0

(l + 1)−
β+1

β
t

n

=
(
K−3tn

2 (k − 1)n,Ktn
2 (k − 1)n

)∑
l≥0

(l + 1)−
β+1

β
t

n

.
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Since PΦ∗(t) = limn→∞
1
n logZn(Φ∗, t) we obtain

log(k − 1)− 3t logK2 ≤ PΦ∗(t)−
∑
l≥0

(l + 1)−
β+1

β
t ≤ log(k − 1) + t logK2.

It follows that PΦ∗(t) < ∞ for t > β
β+1 and lim

t↘ β
β+1

PΦ∗(t) = +∞. Thus,

Θ(Φ∗) = β
β+1 . Since PΦ∗(t) is positive and finite for some t, we conclude

from Lemma 2.1 that there exists a unique solution s(Φ∗) for the Bowen’s
equation PΦ∗(t) = 0. Part (i) is proved.

(ii) First we observe that

s(Φ∗) = s′ := inf

t > 0 :
∑
n≥1

Zn(Φ∗, t) <∞

 .(5.15)

Indeed, since PΦ∗(t) is strictly decreasing, s(Φ∗) = inf{t > 0 : PΦ∗(t) < 0} .
If PΦ∗(t) < −ε < 0 then Zn(Φ∗, t) ≤ Ce−εn as n→∞ and so t ≥ s′. Thus,
s(Φ∗) ≥ s′. On the other hand, if

∑
n≥1 Zn(Φ∗, t) < ∞ then Zn(Φ∗, t) → 0

hence PΦ∗(t) ≤ 0. Therefore, s(Φ∗) ≤ s′ and (5.15) is proved.
Next we demonstrate that for all t > 0,

Zn(Φ, t) ≤ 1 +
∑
m≤n

Zm(Φ∗, t).(5.16)

Indeed, every ω ∈ An can be written as ω = kn or

ω = kr1i1k
r2i2 . . . k

rlilk
rl+1

where l ≥ 1 and ip ≤ k − 1, rp ≥ 0, for p ≤ l + 1. Thus, either φω = φn
k

or φω = φ∗τφ
rl+1

k for some τ ∈ I∗. In the latter case, ‖φ′ω‖ ≤ ‖(φ∗τ )′‖ and
|τ | = l ≤ n. Moreover, every map φ∗τ with |τ | ≤ n occurs in this procedure
at most once. The estimate (5.16) follows by noting that ‖φ′kn‖ = 1.

Now we can show that s(Φ∗) ≥ s(Φ) = min{t > 0 : PΦ(t) = 0}. In fact,
if
∑

n≥1 Zn(Φ∗, r) <∞ then Zn(Φ, r) is bounded by (5.16) and hence

PΦ(r) = lim
n→∞

1
n

logZn(Φ, r) ≤ 0.

Therefore, r ≥ s(Φ) and the desired inequality follows from (5.15).
It remains to verify that s(Φ∗) ≤ s(Φ). Recall Lemma 2.4(i) which says

that if Ψ ∈ ΞX(K, γ, θ) then for every t > 0 and every n ≥ 1,

PΨ(t) ≤ 1
n

logZn(Ψ, t) ≤ PΨ(t) +
t logK
n

.(5.17)

It is enough to prove that if r > s(Φ) then r ≥ s(Φ∗). We have PΦ(r) = 0.
Fix an arbitrary δ > 0. It suffices to show that PΦ∗(r) ≤ δ. It is convenient
to set Ψ := Φ∗. By the first part of this proposition, Φ∗ ∈ ΞX(K1, γ, θ).
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Take q ∈ N so large that r log K1

q < δ
8 . Then there exists a finite subset

F ⊂ I such that

0 <
1
q

logZq(Ψ, r)−
1
q

logZq(ΨF , r) <
δ

4
.

Now applying (5.17) to Ψ and ΨF (which is obviously in ΞX(K1, γ, θ) as
well) we obtain for all n ≥ q:

0 <
1
n

logZn(Ψ, r)− 1
n

logZn(ΨF , r) <
δ

4
+

2r logK1

q
<
δ

2
.(5.18)

Recall that ΨF is a finite IFS so its elements (which are of the form φl
kφi)

have some finite maximal length, say L, over the alphabet A. Therefore,
Zn(ΨF , r) ≤

∑
p≤nL Zp(Φ, r). Since PΦ(r) = 0, there exists m ∈ N such

that Zp(Φ, r) ≤ e
pδ
2L for p ≥ m. Then

Zn(ΨF , r) ≤
∑
p≤m

Zp(Φ, r) +
nL∑

p=m+1

e
pδ
2L ≤ C(eδn/2).

This implies that limn→∞
1
n logZn(ΨF , r) ≤ δ

2 , and together with (5.18) this
yields

PΨ(r) = lim
n→∞

1
n

logZn(Ψ, r) ≤ δ

2
+
δ

2
= δ,

as desired. The proof is complete. �

6. Families of parabolic IFS.

Let U ⊂ Rd be an open set. Here we consider families of parabolic IFS

Φt = {φt
1, . . . , φ

t
k−1, φk}

depending on t ∈ U , the closure of U . We assume that Φt ∈ ΓX(θ) for
all t ∈ U (see Definition 5.5.). Although the parabolic function does not
depend on the parameter, it is sometimes convenient to write φt

k ≡ φk for
t ∈ U . Let πt : A∞ → R be the natural projection associated with Φt and
denote Jt = πt(A∞). Two conditions which control the dependence on t
will be needed.

Continuity: The maps

t 7→ φt
i are continuous from U to C1+θ(X) for i ≤ k − 1.(6.1)

Transversality Condition: There exists a constant C ′1 such that for all ω
and τ in A∞ with ω1 6= τ1,

Ld{t ∈ U : |πt(ω)− πt(τ)| ≤ r} ≤ C ′1r for all r > 0.(6.2)
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This condition is almost identical to the transversality condition (3.2)
except that here A is finite so C ′1 is an absolute constant. Let

s(t) = s(Φt) = min{u > 0 : PΦt(u) = 0} .
The following theorem is the main result of the paper.

Theorem 6.1. Suppose that {Φt}t∈U is a family of parabolic IFS in ΓX(θ)
satisfying (6.1) and (6.2). Then the function t 7→ s(t) is continuous on U
and

(i) dim
H

(Jt) = min{s(t), 1} for Lebesgue-a.e. t ∈ U ;
(ii) L1(Jt) > 0 for Lebesgue-a.e. t ∈ U such that s(t) > 1.

Proof. The plan is to apply Theorem 3.1 to the family of associated infinite
hyperbolic IFS

Φt
∗ = {φn

kφ
t
i : n ≥ 0, i ≤ k − 1}.

Since the family {Φt}t∈U satisfies the continuity condition (6.1), we can find
V, γ, u,M , so that

Φt ∈ ΓX(θ, V, γ, u,M) for all t ∈ U,(6.3)

see (5.4) for the meaning of this notation. These numbers and the neigh-
borhood V of v will be fixed for the rest of the proof.

Observe that the constant K1 in Corollary 5.9 is independent of t ∈ U
and by Corollary 5.11(i) we have Φt

∗ ∈ ΞX(K1, γ, θ) for t ∈ U . Notice also
that s(t) = s(Φt

∗) by Proposition 5.10(ii). Thus, to prove the theorem it
remains to verify the distortion continuity property (3.1) and transversality
condition (3.2) for Φt

∗. We begin with the latter since it is easier.
As in Section 5, the alphabet for the IFS Φt

∗ will be I = {(n, i) : n ≥
0, i ≤ k − 1}. Let ζ and ξ be elements of I∞ with ζ1 6= ξ1. To distinguish
between the IFS Φt and Φt

∗ we denote by π∗t : I∞ → R the natural projection
corresponding to the IFS Φt

∗. Let ζ1 = (n, i) and ξ1 = (m, j). Clearly,

π∗t (ζ) = πt(ω), π∗t (ξ) = πt(τ)

where ω ∈ A∞ begins with kni and τ ∈ A∞ begins with kmj. Assume
without loss of generality that n ≤ m. Then

π∗t (ζ)− π∗t (ξ) = πt(ω)− πt(τ) = φn
k (πt(σnω))− φn

k (πt(σnτ))

and (σnω)1 6= (σnτ)1. Thus, by the Mean Value Theorem and (5.7), for
some c ∈ X,

|π∗t (ζ)− π∗t (ξ)| = |(φn
k)′(c)| · |πt(σnω)− πt(σnτ)| ≥ un|πt(σnω)− πt(σnτ)|.

Therefore, by (6.2),

Ld{t ∈ U : |π∗t (ζ)− π∗t (ξ)| ≤ r}
≤ Ld{t ∈ U : |πt(σnω)− πt(σnτ)| ≤ ru−n}
≤ C ′1ru

−n
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which implies (3.2) with C(ξ1, η1) := C ′1u
−n.

The property (3.1) for Φt
∗ is immediate from (6.1) and the following lemma

where we let

‖Φ−Ψ‖ = max
i≤k−1

‖φi − ψi‖ and ‖Φ′ −Ψ′‖ = max
i≤k−1

‖φ′i − ψ′i‖.

Lemma 6.2. There exists a positive constant C ′2 = C ′2(X, θ, V, γ, u,M)
such that for any Φ = {φ1, . . . , φk} and Ψ = {ψ1, . . . , ψk}, two parabolic
IFS in ΓX(θ, V, γ, u,M) with φk = ψk, the associated infinite hyperbolic IFS
Φ∗ and Ψ∗ have the following property. For any τ ∈ I∗ and any x ∈ X,

|(φ∗τ )′(x)|
|(ψ∗τ )′(x)|

≤ exp
(
C ′2|τ |

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

))
.

Proof. Let n = |τ | and observe that for all x ∈ X and 0 ≤ j < n:

|φ∗σjτ (x)− ψ∗σjτ (x)|
≤ |φ∗σj(τ |n−1)(φ

∗
τn

(x))− φ∗σj(τ |n−1)(ψ
∗
τn

(x))|
+ |φ∗σj(τ |n−1)(ψ

∗
τn

(x))− ψ∗σj(τ |n−1)(ψ
∗
τn

(x))|

≤ γn−j−1‖Φ∗ −Ψ∗‖+ |φ∗σj(τ |n−1)(x
′)− ψ∗σj(τ |n−1)(x

′)|,

for x′ = ψ∗τn
(x). Proceeding inductively we obtain

|φ∗σjτ (x)− ψ∗σjτ (x)| ≤
n−j∑
i=1

γn−i−1‖Φ∗ −Ψ∗‖ <
‖Φ∗ −Ψ∗‖

1− γ
.(6.4)

Observe that

‖Φ∗ −Ψ∗‖ = max
i≤k−1, m≥0

‖φm
k φi − φm

k ψi‖ = max
i≤k−1

‖φi − ψi‖ = ‖Φ−Ψ‖
(6.5)

since ‖(φm
k )′‖ = 1. Now let y = φ∗

σjτ
(x) and z = ψ∗

σjτ
(x), and suppose that

τj = (l, i). Then φ∗τj
= φl

kφi and ψ∗τj
= φl

kψi, and we can estimate by (5.9):

log

∣∣∣∣∣(ψ
∗
τj

)′(ψ∗
σjτ

(x))(
φ∗τj

)′(φ∗
σjτ

(x))

∣∣∣∣∣ = log
∣∣∣∣(φl

kψi)′(z)
(φl

kφi)′(y)

∣∣∣∣ = log
∣∣∣∣(φl

k)
′(ψi(z))

(φl
k)
′(φi(y))

∣∣∣∣+ log
∣∣∣∣ψ′i(z)φ′i(y)

∣∣∣∣
≤ logL5 · |ψi(z)− φi(y)|θ + u−1|ψ′i(z)− φ′i(y)|.

(6.6)

Next,
|ψi(z)− φi(y)| ≤ |ψi(z)− ψi(y)|+ |ψi(y)− φi(y)|

≤ |z − y|+ ‖Φ−Ψ‖ ≤ ‖Φ−Ψ‖ 2− γ

1− γ
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by (6.4) and (6.5). Furthermore,

|ψ′i(z)− φ′i(y)| ≤ |ψ′i(z)− ψ′i(y)|+ |ψ′i(y)− φ′i(y)|

≤ ‖Ψ′‖θ|z − y|θ + ‖Φ′ −Ψ′‖

≤M‖Φ−Ψ‖θ(1− γ)−θ + ‖Φ′ −Ψ′‖.

Combining the last two estimates with (6.6) yields

log

∣∣∣∣∣(ψ
∗
τj

)′(ψ∗
σjτ

(x))(
φ∗τj

)′(φ∗
σjτ

(x))

∣∣∣∣∣
≤ ‖Φ−Ψ‖θ

(
2− γ

1− γ

)θ

logL5

+ u−1
(
M‖Φ−Ψ‖θ(1− γ)−θ + ‖Φ′ −Ψ′‖

)
≤ C ′2

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

)
for some constant C ′2 = C ′2(X, θ, V, γ, u,M). Exchanging the roles of Φ and
Ψ we can see that∣∣∣∣∣log

∣∣∣∣∣(ψ
∗
τj

)′(ψ∗
σjτ

(x))(
φ∗τj

)′(φ∗
σjτ

(x))

∣∣∣∣∣
∣∣∣∣∣ ≤ C ′2

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

)
.

Finally, ∣∣∣∣log
∣∣∣∣(ψ∗τ )′(x)(φ∗τ )′(x)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

log

∣∣∣∣∣(ψ
∗
τj

)′(ψ∗
σjτ

(x))

(φ∗τj
)′(φ∗

σjτ
(x))

∣∣∣∣∣
∣∣∣∣∣∣

≤
n∑

j=1

C ′2

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

)
= nC ′2

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

)
.

The lemma is proved, and this also concludes the proof of Theorem 6.1. �

Given ω ∈ A∗ let h(ω) denote the number of hyperbolic letters (i.e., 6= k)
appearing in ω. We record the following useful corollary for future reference
although it is not needed in this paper.

Corollary 6.3. There exists a positive constant C ′2 = C ′2(X, θ, V, γ, u,M)
such that for any Φ = {φ1, . . . , φk} and Ψ = {ψ1, . . . , ψk}, two parabolic
IFS in ΓX(θ, V, γ, u,M) with φk = ψk, for all ω ∈ A∗ and all x ∈ X,

|φ′ω(x)|
|ψ′ω(x)|

≤ exp
(
C ′2h(ω)

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

))
.
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Proof. For any ω ∈ A∗ we can find τ ∈ I∗ and l ≥ 0 such that

φω = φ∗τφ
l
k and ψω = ψ∗τφ

l
k.

By Lemma 6.2 we have

|φ′ω(x)|
|ψ′ω(x)|

=
|(φ∗τ )′(φl

k(x))(φ
l
k)
′(x)|

|(ψ∗τ )′(φl
k(x))(φ

l
k)
′(x)|

=
|(φ∗τ )′(φl

k(x))|
|(ψ∗τ )′(φl

k(x))|

≤ exp
(
C ′2|τ |

(
‖Φ−Ψ‖θ + ‖Φ′ −Ψ′‖

))
which finishes the proof since |τ | = h(ω). �

We conclude this section with some finer results concerning exceptional
parameters in Theorem 6.1(i). These will turn out to be almost immediate
consequences of the results obtained in Section 4. The strong transversality
condition is formulated in the context of parabolic systems in the same
manner as the strong transversality condition in Section 4. Recall that
Nr(F ) is the minimal number of balls of radius r needed to cover the set
F ⊂ Rd.

Strong Transversality Condition: There exists a constant C ′1 such that
for all ω and τ in A∞ with ω1 6= τ1,

Nr ({t ∈ U : |πt(ω)− πt(τ)| ≤ r}) ≤ C ′1r for all r > 0.(6.7)

The same arguments as used in the proof of Theorem 6.1 demonstrate
that the strong transversality condition (6.7) for a parabolic IFS implies
the strong transversality condition (4.1) for the associated hyperbolic sys-
tem. Consequently, Theorem 4.3 and Corollary 4.4 respectively imply the
following.

Theorem 6.4. Suppose that {Φt}t∈U is a d-parameter family of parabolic
IFS in ΓX(θ) satisfying (6.1) and (6.7). If G is an arbitrary subset of U ,
then for every ξ > 0 we have

dim
H

({
t ∈ G : dim

H
(Jt) < min{ξ, s(t)}

})
≤ min

{
ξ, sup

G
s(t)

}
+ d− 1.

Corollary 6.5. Suppose that {Φt}t∈U is a d-parameter family of parabolic
IFS in ΓX(θ) satisfying (6.1) and (6.7). Then for every t0 ∈ U we have

lim
r→0

dim
H

({
t ∈ B(t0, r) : dim

H
(Jt) < min{ξ, s(t)}

})
≤ min{ξ, s(t0)}+d−1.
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7. Examples.

7.1. General classes of examples. We are going to apply Theorem 6.1 to
two more specific types of IFS families. In each case we need to impose some
bounds on derivatives to guarantee transversality (even strong transversal-
ity), which is the most difficult condition to check. Recall that ‖·‖Y denotes
the supremum norm on Y .

Proposition 7.1. Let Φ = {φ1, . . . , φk} ∈ ΓX(θ) and 1 ≤ d ≤ k − 1.
Assume that

φi are increasing for all i ≤ k;(7.1)

φi(X) ∩ φj(X) = ∅ for all d < i < j ≤ k(7.2)

and

‖φ′i‖+ ‖φ′j‖φ−1
j φi(X) < 1 for all i < j such that φi(X) ∩ φj(X) 6= ∅.

(7.3)

Consider the family

Φt = {φ1(x) + t1, . . . , φd(x) + td, φd+1(x), . . . , φk(x)}

where t = (t1, . . . , td) ∈ Rd.

Then there exists η > 0 such that {Φt : t ∈ Bη(0)} satisfies all the hy-
potheses of Theorem 6.1. Moreover, the strong transversality condition (6.7)
is satisfied.

Remark. It is not hard to find specific IFS satisfying the above proposition.
Notice that non-trivial examples start with k = 3. Indeed, if k = 2 there
is a dichotomy: the limit set is either connected or the projection map
πΦ : A∞ → JΦ is one-to-one. In the latter case there are no “overlaps”, so
the dimension formula holds by [U]. In the former case JΦ is an interval,
so there is no question about its dimension or measure. To get a non-trivial
example with k = 3, one can take a parabolic function, say, φ3(x) = sinx
on [0, b], with b < π/2, and add two more functions so that there is a “gap”
and an “overlap”. For instance, an increasing function φ2 may be chosen
to satisfy φ2(0) > sin b and φ2(b) = b, and the increasing function φ1 to
satisfy φ1(0) ∈ (0, sin b), φ1(b) < φ2(0). Consider a one-parameter family
Φt = {φ1(x)+t, φ2(x), φ3(x)} and call t admissible if these properties persist
for Φt. If t is admissible, then the limit set has the convex hull equal to [0, b].
We can define X = [0, b+ ε] for a small ε > 0, so that φ2(X) ⊂ Int(X). All
the assumptions of Proposition 7.1 are satisfied, provided that the derivative
of φ1 is sufficiently small, so the results of Section 6 apply.

Example 1. The family of IFS

Φt = {0.01(x+ 1)2 + t, 0.1x+ (4.5/11)π, sinx} on [0, 5π
11 + ε]
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satisfies all the conditions above for t ∈ [0.3, 0.97] if ε > is sufficiently small.
(We are grateful to P. Hanus for correcting our original faulty example.)

In the next proposition all elements of the IFS are assumed to be of the
form φ(x+aj) for a single function φ. Although this seems much more special
than Proposition 7.1, it covers some interesting families, in particular, those
which arise from a class of continued fractions.

Proposition 7.2. (i) Let Φ = {φ1, . . . , φk} ∈ ΓX(θ) and 1 ≤ d ≤ k−1 be
such that (7.2) is satisfied. We further assume that there exists a single
increasing function φ ∈ C1+θ on some interval Y and ai ∈ R, u > 0
such that

φi(x) = φ(x+ ai), i ≤ k,(7.4)

and

inf
x∈Y

|φ′(x)| ≥ u > 0.(7.5)

Let

Φt = {φ1(x+ t1), . . . , φd(x+ td), φd+1(x), . . . , φk(x)}

where t = (t1, . . . , td) ∈ Rd.

Denote by πt the projection map corresponding to Φt. If there exists
δ > 0 such that

∂

∂ti
πt(ξ)|t=0 < 1− δ for all ξ ∈ A∞ and all 1 ≤ i ≤ d,(7.6)

then there exists η > 0 such that {Φt : t ∈ Bη(0)} satisfies all the hy-
potheses of Theorem 6.1. Moreover, the strong transversality condition
(6.7) is satisfied.

(ii) Condition (7.6) holds if

‖φ′i‖ < 1/2 for all 1 ≤ i ≤ d.(7.7)

Example 2. Let Φa = {ln(x + a), ln(x + e2 − 2), ln(x + 1)}. This is a
parabolic IFS on [0, 2]. We have ‖φ′1‖ = 1/a, and so Proposition 7.2 and
Theorem 6.1 imply that the dimension formula holds for a.e. a ∈ (2, e2− 2).
(We need to enlarge the interval slightly and let X = [0, 2 + ε] so that
φ2(X) ⊂ Int(X).)

Turning to the proofs of Propositions 7.1 and 7.2, note that checking
strong transversality (6.7) is the only issue since all other properties obvi-
ously hold for sufficiently small perturbations of Φ. This will be done with
the help of the following elementary lemma.
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Lemma 7.3. Let U ⊂ Rd be an open, bounded set with smooth boundary.
Suppose that f is a C1 real-valued function in a neighborhood of U such that
for some i ∈ {1, . . . , d} there exists η > 0 satisfying

t ∈ U, |f(t)| ≤ η =⇒ ∂f(t)
∂ti

≥ η.(7.8)

Then there exists C = C(η) such that

Nr({t ∈ U : |f(t)| ≤ r}) ≤ Cr, ∀ r > 0.(7.9)

Proof. Recall that Nr(F ) denotes the minimal number of balls of radius
r needed to cover F . Since U is bounded it suffices to prove our lemma
for every r < η. Let M = f−1(0). By (7.8), grad(f)(t) 6= 0 for every
t ∈ M . Hence M is a (d − 1)-dimensional C1-manifold and (M ∩ U) ∪ ∂U
is contained in a union of finitely many compact connected C1 manifolds
with smooth boundaries. Thus there exists a constant C1 such that for
every r < η the set (M ∩ U) ∪ ∂U can be covered by C1r

1−d balls with
radii r. In order to complete the proof it is sufficient to show that for each
point t = (t1, t2, . . . , td) ∈ U with |f(t)| ≤ r, the distance between t and
(M ∩ U) ∪ ∂U does not exceed r/η. Indeed, we will then cover the set
f−1([−r, r]) by at most C1r

1−d balls with radii (1 + 1/η)r. But each ball
of radius (1 + 1/η)r can be covered by C2(η) balls of radii r, where C2(η)
depends only on η and the dimension d and we would therefore be done.

Without loss of generality let i = 1. Consider the function g(s) =
f(s, t2, . . . , td) defined in a neighborhood of t1. Suppose first that g(t1) ∈
[−r, 0]. By (7.8), the function g(s) increases for s > t1 until either the point
(s, t2, . . . , td) reaches the boundary of U , say at a point (u, t2, . . . , td) ∈ ∂U
and g(s) ∈ [−r, 0] for all s ∈ [t1, u], or g(s) will take on the value zero
earlier. Suppose that the first case materializes. Then g′(s) ≥ η for every
s ∈ [t1, u] by (7.8). By the Mean Value Theorem, |u− t1| ≤ r/η, and there-
fore, dist (t, ∂U) ≤ dist (t, (u, t2, . . . , td)) = |u−t1| ≤ r/η. So, we are done in
this case. If the second case holds, let w be that point for which g(w) = 0 and
g(s) ∈ [−r, 0] for every s ∈ [t1, w]. Then (w, t2, . . . , td) ∈ M and g′(s) ≥ η
for every s ∈ [t1, w]. Again by the Mean Value Theorem, |w − t1| ≤ r/η.
Then dist (t,M ∩ U) ≤ dist (t, (w, t2, . . . , td)) = |w − t1| ≤ r/η and we are
done in this case as well. If g(t1) ∈ [0, r], we proceed similarly letting s go
left from t1. The proof is complete. �

Proof of Proposition 7.1. It is convenient to write Φt = {φt
i}i≤k. The prop-

erties (7.3) and (5.1) persist under a small perturbation, so we can find
η ∈ (0, 1) such that

inf{dist (φt
i (X), v) : i ≤ k − 1, ‖t‖ ≤ η} ≥ η > 0;(7.10)
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inf{dist
(
φt

i (X), φt
j(X)

)
: φi(X) ∩ φj(X) = ∅, ‖t‖ ≤ η} ≥ η > 0;(7.11)

dist (φi(X), φj(x)) ≤ 3η =⇒ ‖φ′i‖+ |φ′j(x)| < 1− η for i ≤ d, i < j.

(7.12)

The continuity property (6.1) is obvious so we only need to verify the strong
transversality condition (6.7).

Consider ω, τ ∈ A∞, with ω1 6= τ1. Let i = ω1 and j = τ1. Without loss
of generality assume that i < j. If φi(X) ∩ φj(X) = ∅ then

|πt(ω)− πt(τ)| = |φt
i (πt(σω))− φt

j(πt(στ))| ≥ η > 0

for t ∈ Bη(0) by (7.11) and

{t ∈ Bη(0) : |πt(ω)− πt(τ)| ≤ r} ⊂ Br(0)(7.13)

(note that the left-hand side is empty for r < η). Thus (6.7) certainly holds
in this case. If φi(X) ∩ φj(X) 6= ∅ then i ≤ d and

πt(ω)− πt(τ) = ti + φi(πt(σω))− φt
j(πt(στ)).

We are going to use Lemma 7.3 with f(t) = πt(ω)− πt(τ) and U = Bη(0),
so we need to check (7.8). Since |φt

j(πt(στ)) − φj(πt(στ))| = |tj | ≤ η and
|ti| ≤ η, we have the implication

|f(t)| = |πt(ω)− πt(τ)| ≤ η =⇒ |φi(πt(σω))− φj(πt(στ))| ≤ 3η

=⇒ ‖φ′i‖+ |φ′j(πt(στ))| < 1− η
(7.14)

by (7.12). Since j 6= i we have

∂

∂ti
(πt(ω)− πt(τ)) = 1 +

∂

∂ti
φi(πt(σω))− ∂

∂ti
φj(πt(στ))

= 1 + φ′i(πt(σω)) · ∂
∂ti

πt(σω)− φ′j(πt(στ)) ·
∂

∂ti
πt(στ).

(7.15)

Observe that φ′i > 0 and ∂
∂ti
πt(σω) ≥ 0 by the assumption (7.1). Suppose

that (στ)n is the first symbol i in στ (if στ contains no i we have ∂
∂ti
πt(στ) =

0 and the claim is obvious). Then

πt(στ) = φt
στ |n−1

(
ti + φi

(
πt(σn+1τ)

))
,

and since ‖(φt
στ |n−1

)′‖ ≤ 1 we obtain

∂

∂ti
πt(στ) ≤ 1 + ‖φ′i‖ ·

∂

∂ti
πt(σn+1τ).

Proceeding inductively we see that
∂

∂ti
πt(στ) ≤ 1 + ‖φ′i‖+ ‖φ′i‖2 + . . . = (1− ‖φ′i‖)−1
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(recall that φi is hyperbolic since i ≤ d < k). Together with (7.15) this
implies

∂

∂ti
(πt(ω)− πt(τ)) ≥ 1− |φ′j(πt(στ))|(1− ‖φ′i‖)−1

=
1− ‖φ′i‖ − |φ′j(πt(στ))|

1− ‖φ′i‖
> η

(7.16)

by (7.14). We have verified (7.8), so the strong transversality condition (6.7)
holds by Lemma 7.3 and the proof is complete. �

Proof of Proposition 7.2. is similar to that of Proposition 7.1. We can choose
η > 0 so that (7.10) and (7.11) hold, and moreover,

∂

∂ti
πt(ξ) < 1− η for all ξ ∈ A∞, i ≤ d, t ∈ Bη(0).(7.17)

Again we only need to check strong transversality. Let ω, τ ∈ A∞ with
i = ω1, j = τ1, and i < j. If φi(X) ∩ φj(X) = ∅ we immediately obtain
(7.13) by (7.11). If φi(X) ∩ φj(X) 6= ∅ then i ≤ d and

πt(ω)− πt(τ) = φi

(
ti + πt(σω))− φt

j(πt(στ)
)

= φ (ai + ti + πt(σω))− φ (aj + κjtj + πt(στ))

= φ′(c) (A(tj) + ti + πt(σω)− πt(στ))

where κj = 1 if j ≤ d and 0 otherwise, and A(tj) = ai − aj − κjtj does not
depend on ti. Denoting f(t) := A(tj) + ti + πt(σω) − πt(στ) we have by
(7.5):

{t ∈ Bη(0) : |πt(ω)− πt(τ)| ≤ r} ⊂ {t ∈ Bη(0) : |f(t)| ≤ u−1r}.

If we show that ∂f
∂ti
≥η then strong transversality will follow from Lemma 7.3.

Since all φj are increasing it is easy to see that ∂
∂ti
πt(σω) ≥ 0, hence

∂f

∂ti
≥ 1− ∂

∂ti
πt(στ),

and the desired statement follows from (7.17).

(ii) It remains to derive (7.6) from (7.7). Let 1 ≤ i ≤ d. If ξ ∈ A∞
contains no i, then ∂

∂ti
πt(ξ) = 0. Otherwise we write ξ = wiξ̃ where w ∈ A∗

contains no i (the word w may be empty). Then

πt(ξ) = φt
wφi(ti + πt(ξ̃)),

hence
∂

∂ti
πt(ξ) ≤ ‖

(
φt

w)′‖ · ‖φ′i‖
(

1 +
∂

∂ti
πt(ξ̃)

)
≤ ‖φ′i‖

(
1 +

∂

∂ti
πt(ξ̃)

)
.
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Proceeding inductively we obtain that

∂

∂ti
πt(ξ̃) ≤

∞∑
n=1

‖φ′i‖n = 1− 1− 2‖φ′i‖
1− ‖φ′i‖

< 1− δ

for some δ > 0 by (7.7), and the proof is complete. �

7.2. A class of continued fractions. Here we study in detail IFS arising
from the function φ(x) = x

x+1 . Let A = {a1, . . . , ak} where ai > 0 for
i ≤ k−1 and ak = 0. Let ΦA = {φ(x+ai)}i≤k. Then φk = φ is parabolic on
[0, 1], with the neutral fixed point v = 0, for all A. The functions φ(x+ ai),
for i ≤ k−1, are hyperbolic on [0, 1]. Clearly, the IFS ΦA belongs to Γ[0,1](1)
(see Definition 5.5). The IFS ΦA with A = {α, 0} was recently considered
by Lyons [Ly] who studied the properties of the measure which arises from
applying the maps randomly and independently with equal probabilities.
However, as far as the limit set is concerned, the case k = 2 is trivial, since
then either the limit set is an interval, or the IFS has no overlaps, so the
dimension formula holds for all parameters by [U].

The connection with continued fractions is as follows: The limit set JA of
ΦA on [0, 1] coincides with the set of continued fractions of the form

y = [1, Y1, 1, Y2, 1, Y3, 1, . . . ] :=
1

1 +
1

Y1 +
1

1 + . . .

where Yi ∈ A, and also with the set of continued fractions of the form

y = 1− 1

(2 + Y1)−
1

(2 + Y2)−
1

(2 + Y3)− . . .

where Yi ∈ A. Indeed, these representations are immediate by writing
x+ α

x+ α+ 1
=

1

1 +
1

α+ x

and
x+ α

x+ α+ 1
= 1− 1

(1 + α) + x
.

Example 3. Let A = {a, 2, 0}. We start with the one-parameter family of
IFS ΦA corresponding to a ∈ (0, 2), however, we will see that the non-trivial
interval of parameters is smaller.

First observe that the limit set of the IFS {φ(x+ a), φ(x)} is an interval
if a ∈ (0, 1/2]. Let φ1(x) = φ(x + a). Then φ1(b) = b where b = 1

2(−a +√
a2 + 4a). This implies that [0, b] ⊃ φ1([0, b]) ∪ φ([0, b]), and this becomes

equality if and only if φ(b) ≥ φ1(0) which is equivalent to a ≤ 1/2. Since
the limit set can only increase when more functions are added, JA contains
an interval if a ≤ 1/2.
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Since φ2(x) = φ(x + 2) has the fixed point at
√

3 − 1, we see that Y :=
[0,
√

3− 1] is the convex hull of JA. We have, denoting φ3 = φ,

φ1(Y ) =

[
a

a+ 1
,

√
3− 1 + a√

3 + a

]
,

φ2(Y ) = [2/3,
√

3− 1],

φ3(Y ) = [0, 1− 1/
√

3].

Now, φ2(Y ) ∩ φ3(Y ) = ∅. We want to make sure that the IFS has both
a “gap” and an “overlap”. Note that φ1(Y ) ∩ φ2(Y ) 6= ∅ if and only if
a ∈ [3−

√
3, 2) and φ1(Y ) ∩ φ3(Y ) 6= ∅ if and only if a ∈ (0,

√
3− 1] (recall

that we only consider 0 < a < 2). Thus the “interesting” set of parameters
is U := (1

2 ,
√

3− 1) ∩ (3−
√

3, 2).
We want to apply Proposition 7.2 with k = 3 and d = 1. Let X =

[0,
√

3− 1 + ε] where ε is so small that φ2(X) ∩ φ3(X) = ∅. We have

‖φ′1‖ = φ′1(0) = (1 + a)−2 < 4/9 < 1/2,

since a > 1
2 . Thus (7.7) holds and all the assumptions of Proposition 7.2

are satisfied. Let s(a) = s(ΦA) where A = {a, 2, 0}; then s : U → R is
continuous. Let U<1 = {A ∈ U : s(A) < 1} and U>1 = {A ∈ U : s(A) > 1}.
We obtain the following:

Corollary 7.4. (i) dim
H

(JA) = min{s(a), 1} for Lebesgue-a.e. a ∈ U .
(ii) For any set G ⊂ U<1 we have

dim
H
{a ∈ G : dim

H
(JA) < s(a)} ≤ sup

G
s(a).

(iii) JA has positive Lebesgue measure for Lebesgue-a.e. a ∈ U>1.

Note that both U<1 and U>1 are non-empty. Indeed, continuity of s(a)
was established independent of transversality (see Lemma 3.4). Thus s(a)
is continuous on (0, 2). For a = 1

2 we know that the limit set of the IFS
{φ1, φ3} is an interval. Since adding an extra function to the IFS makes
s(a) strictly larger, we see that s(1

2) > 1. By continuity, this implies that
U>1 6= ∅. On the other hand, for a =

√
3 − 1 and for a = 3 −

√
3 the

IFS satisfies the open set condition, as the interiors of φi(Y ), i = 1, 2, 3,
are disjoint. Since the limit set is disconnected at these parameter values,
it follows, as in [U, Th.6.5], that s(

√
3 − 1) < 1 and s(3 −

√
3) < 1. By

continuity, this implies that U<1 6= ∅.

Example 4. Consider ΦA = {φ(x+ ai)}i≤k where

A ∈ U := {A ∈ Rk : ak = 0, aj > 0, j = 1, . . . , k − 1}, k ≥ 3.

This is a (k − 1)-parameter family of parabolic IFS.
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Corollary 7.5. (i) For Lebesgue-a.e. A ∈ U ,

dim
H

(JA) = min{s(A), 1}.

(ii) For any set G ⊂ U<1 we have

dim
H
{A ∈ G : dim

H
(JA) < s(A)} ≤ sup

G
s(A) + (k − 2).

(iii) For Lebesgue-a.e. A ∈ U>1 the set JA has positive Lebesgue measure.

Proof. As in Example 3, we have that if ai ≤ 1
2 for some i ≤ k − 1, then

JA contains an interval an and there is nothing to prove. If ai >
1
2 for all i,

then (7.7) holds. Then we can apply Proposition 7.2 (with d = k − 1, when
(7.2) is vacuous), and the statements follow from our theorems. �
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