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Let (P, Ξ) be the naturally polarized model of the Prym
variety associated to the étale double cover π : C̃ → C of
smooth connected curves, where Ξ ⊂ P ⊂ Pic2g−2(C̃), and
g(C) = g. If L is any “nonexceptional” singularity of Ξ, i.e., a
point L on Ξ ⊂ Pic2g−2(C̃) such that h0(C̃, L) ≥ 4, but which
cannot be expressed as π∗(M)(B) for any line bundle M on
C with h0(C, M) ≥ 2 and effective divisor B ≥ 0 on C̃, then
we prove multL(Ξ) = (1/2)h0(C̃, L). We deduce that if C is
nontetragonal of genus g ≥ 11, then double points are dense in
singstΞ = {L in Ξ ⊂ Pic2g−2(C̃) such that h0(C̃, L) ≥ 4}. Let
X = α̃−1(P ) ⊂ Nm−1(|ωC |) where Nm : C̃(2g−2) → C(2g−2)

is the norm map on divisors induced by π, and α̃ : C̃(2g−2) →
Pic2g−2(C̃) is the Abel map for C̃. If h : X → |ωC | is the
restriction of Nm to X and ϕ : X → Ξ is the restriction of α̃ to
X, and if dim(singΞ) ≤ g−6, we identify the bundle h∗(O(1))
defined by the norm map h, as the line bundle Tϕ ⊗ ϕ∗(KΞ)
intrinsic to X, where Tϕ is the bundle of “tangents along the
fibers” of ϕ. Finally we give a proof of the Torelli theorem for
cubic threefolds, using the Abel parametrization ϕ : X → Ξ.

Introduction.

If C is a smooth curve of genus g, among the most basic tools for the study of
the natural theta divisor Θ(C) ⊂ Picg−1(C) of the Jacobian of C are Abel’s
and Riemann’s theorems that describe the geometry of the “Abel” map
α : C(g−1) → Θ(C) parametrizing Θ by the symmetric product of the curve.
They say the map α is birational, and that over a point L of multiplicity
µ on Θ, the fiber α−1(L) ∼= |L| ∼= Pµ−1, is smooth and isomorphic to the
complete linear system |L|, a projective space of dimension µ − 1. The
essential point here is that (one plus) the dimension of the fiber α−1(L)
computes the multiplicity of the point L on Θ. It follows also (see [K]) that
the normal bundle to the fiber α−1(L) in C(g−1) maps onto the tangent cone
to Θ at L, and that there is a natural determinantal equation for the tangent
cone to Θ at L.
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In the case of the Prym variety of a connected étale double cover π :
C̃ → C of a smooth curve C of genus g, the natural theta divisor Ξ(C) =
(P ∩Θ(C̃))red ⊂ Pic2g−2(C̃) is parametrized by the restriction ϕ : X → Ξ of
the Abel map α̃ : C̃(2g−2) → Θ(C̃) for C̃, to the inverse image α̃−1(P ) = X of
the natural translate P ⊂ Pic2g−2(C̃) of the Prym variety of π (see Section 1
below for the precise definitions). Consequently there are two natural ways
to study the theta divisor Ξ, either as the intersection (P ∩ Θ̃)red or as the
image of the Abel map ϕ : X → P . Using the intersection representation
2Ξ = (P · Θ̃), Mumford in [M1, p. 343] gives a Pfaffian equation for the
(projectivized) tangent cone PCLΞ of Ξ at a point L by restricting Kempf’s
equation for PCLΘ̃. This equation is valid only when the intersection PTLP∩
PCLΘ̃ is proper and hence equal as a set to PCLΞ. Mumford gave a necessary
and sufficient condition for the intersection PTLP ∩PCLΘ̃ to be proper, but
only when h0(C̃, L) = 2. I.e., [M1, Prop., p. 343], when h0(C̃, L) = 2 the
intersection PTLP ∩PCLΘ̃ is proper if and only if L is not of form π∗(M)(B)
for any line bundle M on C with h0(C,M) ≥ 2 and divisor B ≥ 0 on C̃.
Combining the intersection representation with the Abel parametrization of
Ξ, in the present paper we deduce (Theorem 2.1) that Mumford’s condition
for the intersection PTLP ∩ PCLΘ̃ to be proper is sufficient without any
hypothesis on h0(C̃, L). We also give a counterexample (Example 2.18) with
h0(C̃, L) = 4, to the necessity of the condition. The Abel parametrization
ϕ : X → Ξ of the theta divisor for Pryms differs from that for Jacobians in
that the fiber of the Abel map over a general point on a Prym theta divisor
is isomorphic to P1 rather than P0, and also that the source space X of
the Abel-Prym map is not always smooth. Thus there are two concepts of
normal space to a fiber of ϕ, the Zariski normal space and the normal cone.
We show in Corollary 2.8 that the intersection PTLP ∩ PCLΘ̃ is the image
of the union of the Zariski normal spaces in X at points of the fiber ϕ−1(L),
and consequently whenever X is smooth along ϕ−1(L), then PTLP ∩ PCLΘ̃
equals PCLΞ as sets. It follows that whenever X is smooth along ϕ−1(L),
one can compute the multiplicity of Ξ at L, from the dimension of the fiber
ϕ−1(L). I.e., then multL(Ξ) = (1/2)h0(C̃, L) = (1/2)(1 + dim ϕ−1(L)).
Finally the smoothness criterion of Beauville and Welters is used to show in
Lemma 2.15 that X is singular precisely over “exceptional” singular points of
Ξ, those called “case 1” by Mumford in [M1, p. 344]. (See Section 1.6 for the
definition.) Consequently one can use this analog for Prym varieties of the
Riemann singularities theorem (RST), to compute the multiplicity of Ξ at all
nonexceptional singular points. In Theorem 3.2 and Corollary 3.3 we prove,
by generalizing an argument of Welters, a criterion for the fiber ϕ−1(L) over
a generic point L of a component of singΞ to be ∼= P3. Combining this with
a result of Debarre, we deduce that if C is nontetragonal of genus g ≥ 11,
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and dim(P ) = p = g− 1, then on every component Z of singΞ of dimension
≥ p−6, double points of Ξ are dense, and at every double point L on Z, the
quadric tangent cone PCLΞ contains the Prym canonical curve ϕη(C). Since
it is known that dim(singΞ) ≥ p−6, this adds further evidence at least when
g ≥ 11, for a “modified Donagi’s conjecture”, (see [Do, D1, Ve, LS] and
Section 1.7 below). In particular, one can ask whether the Prym canonical
model of a doubly covered nontetragonal curve C of genus g ≥ 11 is the
unique spanning curve in the base locus of those quadric tangent cones to
Ξ at all double points of components Z of singΞ such that dim(Z) ≥ p− 6.
Since Debarre has shown that a general C with g ≥ 8 can be recovered in
this way, and since every Prym canonical model of a curve C with g ≥ 9
and Clifford index ≥ 3 is determined by the quadrics containing it ([LS]),
our density result brings the state of knowledge on this problem near that
which was provided for Jacobians by the paper [AM] of Andreotti and
Mayer. A primary problem remaining open is to prove, say for doubly
covered nontetragonal curves C of genus g ≥ 11, that the quadric tangent
cones at stable double points generate the ideal of all quadrics containing
ϕη(C), an analog of Mark Green’s theorem [Gr]. As a further application
of the dimension estimate in Proposition 3.1 we deduce Corollary 3.5(i) a
criterion for ϕ−1(singΞ) to have codimension ≥ 2 in X, and use this to prove
(Theorem 4.2) an intrinsic formula for the line bundle defined by the norm
map h on X. In Section 5 we apply the Riemann singularities theorem to a
proof of the Torelli theorem for a cubic threefold W . The proof assumes the
usual presentation of the intermediate Jacobian of W as the Prym variety
for a conic bundle representation of W . The new feature is that it describes
the geometry of Ξ via the Abel parametrization, which exists for all Prym
varieties, rather than the parametrization via the Fano surface of W , which
is somewhat peculiar to the cubic threefold. At the end of the paper we
append an outline of the results.

1. Background on Prym varieties.

1.1. General conventions and notation. In this paper all curves con-
sidered are smooth, complete, connected, nonhyperelliptic, and defined over
C. (This last restriction seems irrelevant in Sections 2 and 4 where any
algebraically closed field of characteristic 6= 2 should do, but in Section 3,
Corollary 3.4, we use results of Debarre [D1] where the field is assumed to
be C, in Lemma 3.6 we use Bertini’s theorem, and in Section 5, Lemma 5.5,
we use a result of [SV1] which depends on the characteristic zero Kawa-
mata Viehweg vanishing theorem.) The primary source for the definition
and basic properties of Prym varieties is [M1]. References in textbook form
are [LB] and [ACGH]. We also use the fundamental results of [B1], [D1],
and [We2].
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For any variety V and a point p on V , we denote by PCpV the projec-
tivized tangent cone of V at p, and by PTpV the projectivized Zariski tangent
space. If S ⊂ V is a subvariety then PNC(S/V ) denotes the projectivized
normal cone of S in V .

1.2. The Prym variety (P,Ξ) of a double cover π : C̃ → C. The
fundamental object of study is a connected étale double cover π : C̃ → C of
smooth curves, where if g = g(C) is the genus of C, then g̃ = g(C̃) = 2g−1.
The map π induces a norm map Nm : Picd(C̃) → Picd(C) on line bundles
for all d, and if d = 0, the Prym variety of π : C̃ → C, denoted P0(C̃/C)
or simply P0, is defined to be that connected component of Nm−1(0) ⊂
Pic0(C̃) which contains 0. To obtain a polarization on P0 consider the
translate P ⊂ Pic2g−2(C̃) defined as P = {L in Pic2g−2(C̃) : Nm(L) = ωC ,
and h0(C̃, L) is even}. Then the reduced codimension one subvariety Ξ =
{L in P : h0(L) > 0} ⊂ P defines a principal polarization on P such that as
divisors, P · Θ̃ = 2Ξ, where Θ̃ = {L : deg(L) = 2g − 2 = g̃ − 1, h0(C̃, L) >

0} ⊂ Pic2g−2(C̃) is the canonical theta divisor on Piceg−1(C̃). The principally
polarized Prym variety defined by π, is the pair (P0,Ξ) where Ξ is given only
up to translation, or (more often for us) the pair (P,Ξ) where the inclusion
Ξ ⊂ P is canonically defined. If g = g(C) and P is the Prym variety of
π : C̃ → C, we denote the dimension of P by p = dim(P ) = g − 1.

1.3. The divisor variety X defined by C̃ → C. The most important
geometric tool for study of a Jacobian variety is the family of Abel maps.
In particular for C̃, the principal such map is the birational surjection α̃ :
C̃(2g−2) → Θ̃ ⊂ Pic2g−2(C̃), defined by α̃(D) = O(D). Since Ξ = P ∩ Θ̃ as
sets, it is natural to restrict this map over P ; we denote the resulting map ϕ :
X → Ξ ⊂ P , the Abel parametrization of the Prym theta divisor Ξ, where
X = α̃−1(P ) ⊂ C̃(2g−2). The question of irreducibility and smoothness of
X has been studied by Welters and Beauville in [We2] and [B1]. When
C is nonhyperelliptic, X is a reduced, irreducible, normal, local complete
intersection variety, in particular Cohen Macaulay. Moreover by [M1], ϕ is
a P1 bundle over Ξsm = the subset of smooth points of Ξ, and over each
point of Ξ the fiber of ϕ is isomorphic to some Pn with n odd. Indeed, if
L is a point of Ξ ⊂ Θ̃ ⊂ Pic2g−2(C̃), then L is a line bundle on C̃ and
ϕ−1(L) ∼= |L|, so dim ϕ−1(L) = h0(C̃, L) − 1, where by definition of Ξ,
h0(C̃, L) is even and positive. It is possible for the fiber dimension of ϕ to
be one also over some “exceptional” singular points of Ξ.

1.4. The restricted norm map h : X → |ωC |. In addition to the Abel
map ϕ : X → Ξ, the other important map on X is the restriction to X of
the norm map Nm : C̃(2g−2) → C(2g−2) on divisors, denoted h : X → |ωC |.
Note that by definition of X, Nm maps X onto the canonical linear system
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|ωC | on C. Indeed X is defined as a scheme by Welters [We2] and Beauville
[B1] as a connected component of the inverse image of |ωC | under the norm
map. Thus if α : C(2g−2) → Θ(C) is the Abel map for C, since P and
|ωC | inherit their reduced scheme structures as components of the fibers
Nm−1(ωC) and α−1(ωC) respectively, and since the compositions α ◦ Nm
and Nm ◦ α̃ are equal, the scheme structure of X is induced either from
X ⊂ Nm−1(|ωC |) = (α ◦ Nm)−1(ωC), as a connected component of the
fiber over ωC of the composition C̃(2g−2) → C(2g−2) → Pic2g−2(C), or from
X = α̃−1(P ) ⊂ (Nm ◦ α̃)−1(ωC), as a connected component of the fiber over
ωC of the composition C̃(2g−2) → Pic2g−2(C̃) → Pic2g−2(C). Thus to study
X, one extracts from the diagram below:

α̃ : C̃(2g−2) −−−→ Pic2g−2(C̃)yNm Nm

y
α : C(2g−2) −−−→ Pic2g−2(C)

the following diagram of subvarieties and restrictions:

X
ϕ−−−→ Ξyh

y
|ωC | −−−→ {ωC}

The map h : X → |ωC | ∼= Pg−1 is a finite surjection, hence defines an ample
line bundle on X.

Definition 1.4.1. Denote by OX(1) the line bundle h∗(O(1)), where O(1)
is the standard ample line bundle on the projective space |ωC |.

In Theorem 4.2 below we give a formula for the line bundle OX(1),
in terms of data intrinsically defined by X, at least for curves C with
dim(singΞ) ≤ p−5, i.e., those C not on Mumford’s list in [M1, p. 344]. Now
the canonical model of the curve C is the dual variety of the branch divisor
of the map h and the curve C̃ parametrizes the irreducible components Dp

(see proof of Theorem 4.2 for the definition of the Dp) of the divisors h∗(H)
for hyperplanes H tangent to the branch locus of h in |ωC |. [Using [SV3] for
the irreducibility of the divisors Dp, the arguments in [SV4, pp. 357, 360],
generalize exactly]. Since the linear system defining h recovers π : C̃ → C, it
is of interest to know when it is complete, i.e., when h0(X,OX(1)) = g(C).
We conjecture this is true when C is nonhyperelliptic, but this remains open
for g ≥ 4 (see [SV4, p. 359] when g = 3).

1.5. Prym canonical curves. The double cover π : C̃ → C defines a
unique square-trivial line bundle η on C by ker(π∗ : Pic0(C) → Pic0(C̃)) =
{0, η}. The linear series ωC⊗η is base point free when C is nonhyperelliptic
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and the image ϕη(C) of the associated projective map ϕη : C → |ωC ⊗ η|∗ is
called the Prym canonical model of C. The line bundle ωC⊗η is very ample
when C is nontetragonal and also when C is a generic tetragonal curve; see
[D1] for a precise analysis of those tetragonal curves for which ωC ⊗η is not
very ample.

1.6. Stable and exceptional singularities. A point L of Ξ ⊂ Pic2g−2(C̃)
will be called (cf. [D1], [T1]) a “stable singularity” of Ξ (with respect to the
double cover π : C̃ → C) if and only if h0(C̃, L) ≥ 4, and an “exceptional
singularity” of Ξ (again with respect to π) if and only if L = π∗(M)(B),
where M is a line bundle on C with h0(C,M) ≥ 2 and B ≥ 0 is an effective
divisor on C̃. When a double cover C̃ → C representing (P,Ξ) is given
or understood, the set of stable singularities is denoted singstΞ, and the
set of exceptional singularities is denoted singexΞ. According to [M1, p.
343], for every Prym representation of (P,Ξ), we have singΞ = singstΞ ∪
singexΞ. Thus a Prym representation of (P,Ξ) defines a decomposition of
singΞ into two generally overlapping subsets, since in particular any line
bundle L = π∗(M)(B) on Ξ, where M is a line bundle on C with h0(C,M) ≥
3, is both stable and exceptional. For example, the unique singularity on
the theta divisor of the intermediate Jacobian of a cubic threefold W (see
Section 5 below), is both stable and exceptional, for any Prym representation
associated to a general line on W . Debarre has shown in [D1] that Prym
representations of the same abelian variety (P,Ξ) by different double covers
of tetragonal curves, can lead to different decompositions of singΞ into stable
and exceptional subsets. For g(C) ≥ 7, i.e., for p = dim(P ) ≥ 6, singstΞ is
always nonempty and every irreducible component of singstΞ has dimension
≥ p − 6, [D2]. By [M1], on any Prym theta divisor Ξ, all components of
singΞ of dimension ≥ p− 4 lie entirely in singex(Ξ), but for a general curve
of any genus singex(Ξ) is empty [see [LB, p. 389], and Prop. 2.19 below].

1.7. Donagi’s conjecture. In [Do] Donagi made his famous “tetragonal
conjecture”, which implies that two smooth connected étale double covers
C̃1 → C1, C̃2 → C2 of nontetragonal curves Ci, are isomorphic as double cov-
ers if and only if they define isomorphic polarized Prym varieties (Pi,Ξi).
Verra found in [Ve] a lovely counterexample where Ci are generic smooth
plane sextics (hence of genus 10). He noted that plane sextics are the only
curves with the same Clifford index as tetragonal curves and suggested that
consequently these may be the only counterexamples. The conjecture must
then be modified [cf. [LS]] to assume at least that Cliff(Ci) ≥ 3. One ap-
proach to proving the modified Donagi’s conjecture, analogous to Green’s
result in [Gr] which refines Andreotti Mayer’s approach for Jacobians, is to
try to show that a Prym canonical model ϕη(C) of a nontetragonal curve is
determined by the base locus of the quadric tangent cones at appropriately
determined double points of Ξ. This approach has several complications.
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First only the “stable” double points on Ξ have tangent cones which always
contain ϕη(C). Secondly since the subset singstΞ depends on the double
cover, one does not prove the conjecture simply by showing that ϕη(C) is
determined by the base locus of tangent cones to singstΞ. For example, al-
though there are generally three doubly covered tetragonal curves with the
same Prym variety, it is entirely possible that each double cover is deter-
mined by the tangent cones to Ξ at those double points which are stable for
that double cover. However, there are good reasons to believe this approach
will eventually succeed.

Debarre shows in [D1] that for Prym varieties of doubly covered nonte-
tragonal curves C of genus g ≥ 11, the locus singstΞ is intrinsically defined
by Ξ, independently of which double cover is considered to represent (P,Ξ).
In particular then singstΞ is the union of all irreducible components of singΞ
having dimension ≥ p− 6, where p = dim(P ). In [LS] it is shown using re-
sults of Green and Lazarsfeld that for all doubly covered curves C with
Cliff(C) ≥ 3 and g(C) ≥ 9, that ϕη(C) is determined by the base locus of
the quadrics containing it. Debarre shows in [D2] for g ≥ 7, and C general,
that the quadric tangent cones to Ξ at its double points (all of which are
stable when C is general), generate the ideal of quadrics containing ϕη(C).
The prerequisite existence and density result for stable double points on
generic Ξ follows from Welters’ “generic Riemann singularities theorem” for
Prym varieties in [We1]. In the present paper we provide another step in
this approach to Donagi’s conjecture, by proving a precise Riemann singu-
larities theorem for Prym varieties, Theorem 2.1 below, and deducing in
Corollary 3.4 that double points are dense in singstΞ, for every doubly cov-
ered nontetragonal curve C of genus g ≥ 11. In Corollary 2.22 below we also
deduce Welters’ generic RST for Prym varieties from the precise version in
Theorem 2.1.

2. A Riemann singularities theorem for Prym varieties.

In this section, assume C̃ → C is an étale connected double cover of a
smooth nonhyperelliptic curve C, Ξ ⊂ Θ̃ ⊂ Pic2g−2(C̃) is the natural
model Ξ = (Θ̃ ∩ P )red for the theta divisor of the associated Prym vari-
ety P ⊂ Pic2g−2(C̃), and L is a point of Ξ. Thus L is a line bundle on
C̃ with a positive even number of global sections, and Nm(L) = ωC . In
particular (1/2)h0(C̃, L) is an integer. Since as divisors 2Ξ = (Θ̃ · P ), it
follows that multLΞ ≥ (1/2)multLΘ̃ = (1/2)h0(C̃, L), and (1/2)h0(C̃, L) is
the “expected” multiplicity of Ξ at L. Our goal is a simple criterion for
multLΞ to equal this expected multiplicity.
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2.0. Terminology. If multLΞ = (1/2)h0(C̃, L), we say the “Riemann sin-
gularities theorem” (RST) holds at L. (In that case and that case only,
the Pfaffian described by Mumford in [M1, p. 343], the square root of the
restriction of Kempf’s equation for PCLΘ̃, gives an equation for the tangent
cone PCLΞ to the Prym theta divisor.) Recall that L is an “exceptional sin-
gularity” of Ξ if and only if it falls in case 1 of Mumford’s description [M1,
p. 344] of singularities of Ξ, i.e., if and only if L lies in Ξ and L = π∗(M)(B),
where M is a line bundle on C with h0(C,M) ≥ 2 and B ≥ 0 is an effective
divisor on C̃.

Theorem 2.1. Assume C̃ → C is an étale connected double cover of a
smooth nonhyperelliptic curve C of genus g ≥ 3, and L a point of Ξ ⊂ P ⊂
Pic2g−2(C̃). If L is not an exceptional singularity of Ξ, then multLΞ =
(1/2)h0(C̃, L); i.e., RST holds at every nonexceptional L on Ξ.

Corollary 2.2. If C is not tetragonal, g = g(C) ≥ 11, and C̃ → C is any
étale connected double cover, then RST holds at a general point L of every
component of the locus singstΞ of stable singularities of Ξ, i.e., at a general
point of every component of Ξ of dimension ≥ g − 7.

Remarks 2.3. (i) Mumford [M1, p. 343] originally proved Theorem 2.1
and its converse when h0(C̃, L) = 2. In [Sh, Lemma 5.7, p. 121] Shokurov
generalizes this argument to give a sufficient criterion for the RST condition
to fail as follows: If H0(C̃, L) contains a subspace of dimension greater than
(1/2)h0(C̃, L) which is isotropic for the form 〈s, t〉 = s ⊗ ι∗(t) − t ⊗ ι∗(s)
[M1, p. 343], where ι : C̃ → C̃ is the involution associated to the double
cover π : C̃ → C, then multLΞ > (1/2)h0(C̃, L). He applies this to show if
C is a general bielliptic curve, then Ξ has too many triple points for (P,Ξ)
to be the Jacobian of a curve.

(ii) The converse of Theorem 2.1 can fail when h0(C̃, L) > 2, as we will
show below by giving an example of an exceptional singularity L at which
the RST does hold, i.e., one with multLΞ = (1/2)h0(C̃, L).

(iii) Theorem 2.1 implies (Corollary 2.22 below) Welters’ theorem [We1]
that RST holds at every point of Ξ when C is a general curve, using only
the classical Gieseker Petri theorem [G], [ACGH, p. 215], which implies
that there are no exceptional singularities on Ξ when C is general.

(iv) We will apply Corollary 2.2 to prove (in Corollary 3.4 below) that if
C is nontetragonal and g ≥ 11, then a general point L of any component
of the locus singstΞ of stable singularities of Ξ is a double point. This
should be a fundamental initial step in any attempt to generalize the method
of Andreotti-Mayer [AM] and Green [Gr] to prove a suitable form of the
conjecture of Donagi [Do, Ve, LS], e.g., that the Prym map is injective on
the set of doubly covered smooth nontetragonal curves with g(C) = g ≥ 11.
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(v) Theorem 2.1 is true also when the curve C is hyperelliptic. In fact if
g(C) ≤ 5, or if C is either hyperelliptic or trigonal, the theorem is immediate
since then by [M1, R, AM] either dimP = p ≤ 4, or (P,Ξ) is a Jacobian,
so every component of singΞ has dimension ≥ p−4. Then by [M1, Lemma,
p. 345] the only nonexceptional points of Ξ are smooth points, and at smooth
points the conclusion of the theorem follows immediately from the equation
2Ξ = Θ̃·P , [M1, Cor., p. 342]. Pryms of generic doubly covered plane quintic
curves are either Jacobians of genus five curves or intermediate Jacobians of
cubic threefolds, and then all singularities on Ξ are exceptional as well.

Proof of Corollary 2.2. Debarre has shown [D1, Th. 3.1(i), p. 548] that with
the hypotheses of Corollary 2.2 every component of singexΞ has lower dimen-
sion than any component of singstΞ, so Corollary 2.2 follows immediately
from Theorem 2.1. �

Proof of Theorem 2.1. The first observation is that the problem is purely
set theoretic. �

Lemma 2.4. With the hypotheses of Theorem 2.1, the following statements
are equivalent.

(i) multLΞ = (1/2)h0(C̃, L).
(ii) PCLΞ = PCLΘ̃ ∩ PTLP as sets.
(iii) 2[PCLΞ] = [PCLΘ̃] · [PTLP ] as cycles.
(iv) PCLΘ̃ 6⊃ PTLP .

Sketch of Proof. If ϑ̃ is a Taylor series at L for the theta function of Θ̃, then
ϑ̃ restricts on TLP to ξ2, the square of the Taylor expansion at L of a theta
function for Ξ. Consequently, the lowest order term of ϑ̃ which does not
vanish identically on TLP equals the square of the lowest nonvanishing term
of ξ, i.e., equals the square of an equation for the tangent cone of Ξ at L.
In particular the leading term ϑ̃h of ϑ̃ defines PCLΞ as a set if and only if
ϑ̃h does not vanish identically on TLP . I.e., if ϑ̃h is the lowest nonvanishing
term of ϑ̃ on TLPic2g−2(C̃), hence an equation for the tangent cone of Θ̃ at
L, then ϑ̃|TLP = (ϑ̃h + · · · ) = ξ2 = (ξh/2 + · · · )2. Hence PTCLΘ̃ 6⊃ PTLP iff
ϑ̃h|TLP = (ξh/2)2 is not identically zero, iff ϑ̃h|TLP = (ξh/2)2 is the square
of an equation for the tangent cone of Ξ, iff ξh/2 is the first nonvanishing
term of ξ, iff multLΞ = h/2. Since by the classical Riemann singularities
theorem for Θ̃ we have h = h0(C̃, L), the lemma follows. �

We can now summarize the proof of Theorem 2.1 as follows: If ϕ : X → Ξ
is the Abel parametrization of the Prym theta divisor by the special variety
X of divisors on C̃, we show first in Corollary 2.9 that PCLΞ = PCLΘ̃∩PTLP
holds as sets whenever X is smooth at every point of the fiber ϕ−1(L). Then
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we complete the proof by showing in Lemma 2.15 that X is smooth along
ϕ−1(L) if and only if L is not an exceptional singularity of Ξ.

Tangent spaces to the divisor variety X ⊂ C̃(2g−2). Recall that for
each point L of P , the inclusion P ⊂ Pic2g−2(C̃) induces an inclusion of
projective tangent spaces |ωC ⊗ η|∗ = PTLP ⊂ PTLPic2g−2(C̃) = |ω eC |∗,
and that we want to determine the intersection in |ω eC |∗ of the subspace
PTLP with the projectivized tangent cone PCLΘ̃. From the Riemann Kempf
singularities theorem [K, Thm. 1, p. 178] the cone PCLΘ̃ is the union of
the projectivized images, under the differential of the Abel map, of the
tangent spaces to the symmetric product C̃(2g−2) at all points D̃ of the fiber
|L| = ϕ−1(L) ⊂ C̃(2g−2). I.e., PCLΘ̃ = ∪Pα̃∗(T eDC̃(2g−2)), where the union
is taken over all D̃ in |L|. To apply Kempf’s argument to X we need to
describe the Zariski tangent space to X at a point D̃ of |L|.

Lemma 2.5. If C̃ → C is any smooth connected étale double cover, C

nonhyperelliptic, X ⊂ C̃(2g−2) is the special variety of divisors on C̃, and α̃∗
is the differential of the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃) for C̃, then the
Zariski tangent space to X at D̃ is given by:

(2.5.1) T eDX = (α̃∗, eD )−1(TLP ).

Proof. The scheme structure of X may be defined by pulling back that of
P , X = α̃−1(P ). Thus the Zariski tangent space to X is also a pull back
from that of P , i.e., T eDX = (α̃∗)−1(TLP ). �

Since the cone PCLΘ̃ is ruled by the image spaces Pα̃∗(T eDC̃(2g−2)) =
〈D̃〉 = the span of the divisor D̃ in the canonical space |ω eC |∗ of the curve
C̃, in order to intersect PTLP with PCLΘ̃, a natural first step is to intersect
PTLP with each ruling 〈D̃〉.

Lemma 2.6. The intersection PTLP∩〈D̃〉 equals the projectivized image, in
PTLP ∼= |ω⊗η|∗, of the Zariski tangent space T eDX under the derivative ϕ∗, eD
of the restricted Abel map ϕ : X → Ξ. I.e., Pϕ∗(T eDX) = ((PTLP )∩ 〈D̃〉) ⊂
(PTLP ∩ PCLΘ̃).

Proof. Since the map α̃∗, eD : PT eDC̃(2g−2) → 〈D̃〉 is surjective by the Riemann

Kempf theorem (see also [MM]), its restriction to (α̃∗, eD)−1(〈D̃〉∩ PTLP ) =

(α̃∗, eD)−1(PTLP ) = PT eDX (by (2.5.1)), surjects onto 〈D̃〉 ∩ PTLP . Since

ϕ∗, eD is the restriction to T eDX of α̃∗, eD, thus Pϕ∗(T eDX) = PTLP ∩ 〈D̃〉 as
claimed. �

Corollary 2.7. For any point D̃ of X, dim(PTLP∩〈D̃〉) = dim(Pα̃∗(T eDX))
= dim T eDX − dim |D̃| − 1.



R.S.T. FOR PRYM THETA DIVISORS 489

Proof. This follows from the rank formula for a linear map. I.e., the linear
map ϕ∗, eD has domain = T eDX, projectivized image = PTLP ∩ 〈D̃〉, and we

claim the kernel equals T eD|D̃|. Indeed, since all fibers of the abel map α̃ on
C̃(2g−2) are nonsingular, and α̃−1(O(D̃)) = |D̃|, the kernel of α̃∗, eD equals

T eD|D̃| which has the same dimension as |D̃|, and since |D̃| ⊂ X, we also
have kernel (ϕ∗, eD) = T eD|D̃|. �

Corollary 2.8. As sets, the intersection PCLΘ̃∩PTLP equals the union of
the images Pϕ∗(T eDX) of all the Zariski tangent spaces to X at points D̃ of
|L| = ϕ−1(L).

Proof. This is immediate from Lemma 2.6 and the Riemann Kempf theorem.
�

Thus to determine when the intersection PCLΘ̃∩PTLP equals the tangent
cone PCLΞ as sets, we only need to determine when that tangent cone is the
set theoretic image of the Zariski tangent spaces along the fiber ϕ−1(L). For
a proper map between smooth varieties, if the scheme theoretic fiber over a
point L of the target variety is also smooth, then the normal bundle to the
fiber surjects onto the tangent cone to the image variety at L, [K, Lemma
p. 179], [MM, p. 230]. Since the scheme theoretic fibers of ϕ are equal to
the corresponding fibers of the Abel map α̃, they are always smooth, and
we get the following abstract version of the RST for Prym varieties.

Corollary 2.9. With the hypotheses of Theorem 2.1, if X is smooth at every
point of the fiber ϕ−1(L), then PCLΞ = PCLΘ̃ ∩ PTLP as sets.

Proof. The projective tangent cone PCLΞ is the exceptional fiber over L of
the blowup of Ξ at L, and the projective normal cone in X to ϕ−1(L) = |L|
is the exceptional fiber of the blowup of X along |L|. Since Ξ = ϕ(X)
and ϕ : X → Ξ ⊂ Pic2g−2(C̃) is proper, the map induced by ϕ on these
blowups is surjective. In particular the exceptional fiber over |L| surjects
onto the exceptional fiber over L, i.e., the projective normal cone in X to
|L| surjects onto the projective tangent cone PCLΞ, whether X is smooth
or not. Since the scheme theoretic fibers ϕ−1(L) = α̃−1(L) are equal, and
the fibers α̃−1(L) are always smooth by the Mattuck Mayer version of the
Riemann Roch theorem [MM], the fibers ϕ−1(L) are also smooth. Thus
whenever X is smooth at D̃, the projective normal space PN eD(|L|/X) is
a fiber of the projective normal cone PNC(|L|/X) and the induced map is
defined there by the derivative α̃∗. Since the tangent space T eDX and the
normal space N eD(|L|/X) = T eDX/T eD(|L|) = T eDX/kerα̃∗, have the same
image under α̃∗, Corollary 2.9 follows from Corollary 2.8. �

We deduce the following abstract version of Mumford’s result:



490 ROY SMITH AND ROBERT VARLEY

Corollary 2.10. If L is a point of Ξ such that h0(C̃, L) = 2, then Ξ is
singular at L iff the RST theorem fails for Ξ at L, iff L = O(D̃) = ϕ(D̃) is
the image of some singular point D̃ of X.

Proof. If h0(C̃, L) = 2, then the RST holds at L iff multLΞ = 1, iff Ξ is
smooth at L. If X is smooth at every point D̃ in ϕ−1(L), then Corollary 2.9
implies the RST holds at L. If X is singular at D̃, since dim X = g − 1,
then dim(T eDX) ≥ dim(X) + 1 ≥ g. If L = O(D̃) and h0(C̃, L) = 2,
then dim |D̃| = 1 = dim(ker(ϕ∗)), hence by Corollary 2.7 dim Pϕ∗(T eDX) ≥
g−2 = p−1 = dim PTLP . Since by Lemma 2.6, Pϕ∗(T eDX) = PTLP ∩〈D̃〉, it
follows that dim PTLP = dim(PTLP ∩〈D̃〉). Thus PTLP = (PTLP ∩〈D̃〉) ⊂
(PTLP ∩ PCLΘ̃) ⊂ PCLΘ̃. Hence RST fails at L = O(D̃), by Lemma 2.4
(iv). �

Detecting singularities of X. To complete the proof of Theorem 2.1 we
will relate the smoothness of X to the existence of exceptional singularities
on Ξ, in particular we show that L is an exceptional singularity of Ξ if and
only if X is singular at some point D̃ of ϕ−1(L). We will use formula (2.5.1)
for the tangent space to X to deduce a smoothness criterion for X, and
then relate it to Beauville’s formulation of Welters’ criterion. First of all, to
measure when X is singular at D̃ we need to compute the dimension of the
tangent space T eDX. Denote H0(C,ωC) by ΩC and H0(C̃,ω eC) by Ω eC .

Lemma 2.11. For any point D̃ of X, dim T eDX = g − 2 + dim{ω in ΩC

such that (π∗(ω)) ≥ D̃}.
Proof. By formula (2.5.1) T eDX = (α̃∗, eD)−1(TLP ) is the tangent space to X

at D̃. Hence T eDX is defined as a subspace of T eDC̃(2g−2) by the pullback
of those linear equations in T ∗

LPic2g−2(C̃) which vanish on TLP where L =
O(D̃). Now T ∗

LPic2g−2(C̃) ∼= Ω eC and the subspace of equations vanishing
on TLP corresponds to the subspace π∗(ΩC) = (Ω eC)+ ⊂ Ω eC . Hence the
codimension of T eDX in T eDC̃(2g−2) equals the number of equations in π∗(ΩC)
minus the number which pull back trivially to T eD(C̃(2g−2)), i.e., it equals g−
dim{ω in ΩC : π∗(ω) vanishes on α̃∗T eD(C̃(2g−2))}. Since Pα̃∗T eD(C̃(2g−2)) =
〈D̃〉 = the span of the divisor D̃ on the canonical model of C̃ in P∗(Ω eC) ∼=
PTLPic2g−2(C̃), the linear form π∗(ω) vanishes on α̃∗T eD(C̃(2g−2)) if and only
if (π∗(ω)) ≥ D̃. The following sequence thus summarizes the calculation.
(2.11.1)

0 → {ω in ΩC : (π∗(ω)) ≥ D̃} → (Ω eC)+ → T ∗eD(C̃(2g−2)) → T ∗eD(X) → 0.

Thus dim T eD(X) = dim T ∗eD(X) = (2g − 2) − g + dim{ω in ΩC such that

(π∗(ω)) ≥ D̃} = g − 2 + dim{ω in ΩC such that(π∗(ω)) ≥ D̃}. �



R.S.T. FOR PRYM THETA DIVISORS 491

Corollary 2.12 (smoothness criterion). X is smooth at D̃ if and only if the
only differentials ω on C such that π∗(ω) vanishes on D̃ are the multiples
of ω0 = the differential vanishing on Nm(D̃) = D0.

Proof. X is smooth iff dim T eDX = dim X = g− 1, and by Lemma 2.11, this
is equivalent to dim{ω in ΩC such that (π∗(ω)) ≥ D̃} = 1. �

Next we relate this to Beauville’s formulation [B1] of Welters’ criterion
[We2] for smoothness of X at D̃.

Lemma 2.13. X is singular at D̃ iff there exists an effective divisor A ≥ 0
on C such that h0(C,A) ≥ 2 and π∗(A) ≤ D̃.

Proof. Let D̃ = p1 +p′1 + · · ·+pr +p′r + q1 + · · ·+ qs, where each pair {pi, p
′
i}

is a conjugate pair, and the set p1, . . . , pr, q1, . . . , qs contains no conjugate
pairs. Then for any divisor A on C, π∗(A) ≤ D̃ iff A ≤ p1 + · · · + pr,
where p = π(p). Moreover for any differential ω on C, π∗(ω) ≥ D̃ iff
(ω) ≥ p1+· · ·+pr+q1+· · ·+qs. Now if X is singular at D̃, by Corollary 2.12
there are two independent differentials ω1, ω2 on C such that π∗(ωi) ≥ D̃,
and if we define A = p1 + · · ·+ pr, and B = q1 · · ·++qs, then for i = 1, 2 we
have (ωi) ≥ A + B, hence h0(K − A− B) ≥ 2. Since also π∗(D̃) = 2A + B

is a canonical divisor, h0(A) = h0(K − A − B) ≥ 2, and π∗(A) ≤ D̃, so
that the Beauville - Welters criterion is satisfied. Conversely, if there is an
A ≥ 0 such that h0(A) ≥ 2 and π∗(A) ≤ D̃, then since A ≤ p1 + · · · + pr,
the same two properties hold for p1 + · · · + pr, so we may as well assume
A = p1 + · · ·+ pr. Then again, h0(K −A−B) = h0(A) ≥ 2, so there are at
least 2 independent differentials ω such that (ω) ≥ A + B, and hence such
that π∗(ω) ≥ D̃, whence by Corollary 2.12 X is singular at D̃. �

This yields the following alternate dimension formula for T eDX.

Corollary 2.14. At any point D̃ of X, if A ≥ 0 is the largest effective
divisor on C such that π∗(A) ≤ D̃, then dim T eDX = g − 2 + h0(A).

Proof. In the notation of the previous proof, Serre duality yields h0(A) =
h0(K −A−B) = dim{ω in ΩC such that (π∗(ω)) ≥ D̃}. �

The usefulness of the B-W formulation of singularity of X at D̃, is its
close connection with the concept of exceptional singularities.

Lemma 2.15. A point L on Ξ is an exceptional singularity iff L = O(D̃) =
ϕ(D̃) for some singular point D̃ on X. I.e., singex(Ξ) = ϕ(singX).

Proof. If L = O(D̃) for some D̃ at which X is singular, then by Lemma 2.13,
D̃ = π∗(A)(B) where h0(A) ≥ 2 and B ≥ 0, and then taking M = O(A), L
is exceptional. Conversely, if L = π∗(M)(B) for some line bundle M on C
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with h0(M) ≥ 2 and B ≥ 0, and if A is any divisor in |M |, then π∗(A)(B) =
D̃ belongs to |L| = ϕ−1(L) ⊂ X, and X is singular at D̃ ≥ π∗(A), by
Lemma 2.13. �

Now Corollary 2.9, Lemma 2.4 and Lemma 2.15 imply Theorem 2.1.

Corollary 2.16. If L is a point of Ξ which is not an exceptional singularity,
then the RST holds at L, i.e., PCLΞ = PCLΘ̃ ∩ PTLP as sets, and hence
multLΞ = (1/2)h0(C̃, L).

Proof. If L is a point of Ξ which is not an exceptional singularity, then X

is smooth at every point D̃ of ϕ−1(L), so RST holds at L by Corollary 2.9.
and Lemma 2.4. �

In particular we recover Mumford’s result in its original form.

Corollary 2.17. If L is a point of Ξ such that h0(C̃, L) = 2, then Ξ is
singular at L iff L is an exceptional singularity. (In particular, “exceptional
singularities” are really singular points of Ξ.)

Proof. This follows from Corollary 2.10 and Lemma 2.15. �

The converse of Corollary 2.16 can fail when h0(C̃, L) ≥ 4.

Example 2.18. Let C be a nonhyperelliptic genus 5 curve with two van-
ishing even theta nulls M1, M2 with h0(Mi) = 2, and let the line bundle η
associated to the double cover be defined by their difference η = M1 −M2.
Then L = π∗(M1) implies Nm(L) = 2M1 = ωC , and h0(L) = h0(M1) +
h0(M1 + η) = h0(M1) + h0(M2) = 4, so L is a stable and exceptional sin-
gularity on Ξ. However by [V, p. 948, ll. 1-3], L is then a vanishing even
theta null on (P,Ξ) so multLΞ = either 2 or 4. Since C is nonhyperelliptic,
hence by [M1, p. 344] singΞ is zero dimensional, P is indecomposable so
multLΞ ≤ 3 by [SV1, p. 319]. Hence multLΞ = 2 = h0(L)/2, and L is both
a stable and exceptional double point on Ξ at which RST holds.

Gieseker’s theorem and exceptional singularities. We recall the fol-
lowing proof from [LB], modifying it slightly to conform to our definition of
exceptional singularity.

Proposition 2.19. If C is a general curve of genus ≥ 2, then for every
double cover C̃ → C, there are no exceptional singularities on Ξ.

Proof [LB, Remark (6.7) p. 389]. If C has a double cover with an excep-
tional singularity L on Ξ, then by definition L = π∗(M)(B), for some line
bundle M on C with h0(M) ≥ 2 and some divisor B ≥ 0 on C̃. Then
Nm(L) = (2M)(Nm(B)) = ωC , where Nm(B) ≥ 0. Hence h0(ωC − 2M) =
h0(Nm(B)) ≥ 1. We can deduce that C is special in moduli. For then
we can choose a 2 dimensional subspace W ⊂ H0(C,M) and consider
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the cup product map µ : W ⊗ H0(C,K − M) → H0(C,K). If E is the
base locus of the pencil |W |, the base point free pencil trick [ACGH,
p. 126] implies the kernel of µ is isomorphic to H0(K − 2M + E). Since
h0(K−2M +E) ≥ h0(K−2M) ≥ 1, the cup product map µ above is not in-
jective, thus neither is Petri’s map µ0 : H0(M)⊗H0(C,K−M) → H0(C,K),
of which µ is a restriction. Then by Gieseker’s theorem, [G], [ACGH, Thm
(1.7), p. 215], the curve C is not general. �

Remarks 2.20. The apparent contradiction between the two statements:
(i) that for g(C) ≥ 2 there are in general no exceptional singularities on Ξ,
and (ii) the theorem of Mumford that for g(C) ≤ 4, all singularities on Ξ
are exceptional, is of course resolved by the fact that in this range a general
Ξ has no singularities at all.

Proposition 2.19 gives a proof of the following result, whose statement
was communicated privately to us by Debarre.

Corollary 2.21. For any double cover of a general curve C of genus g ≥ 2,
the special variety of divisors X is smooth.

Proof. By Lemma 2.15, singX ⊂ ϕ−1(singexΞ), and by Proposition 2.19, for
general C, singexΞ = ∅. �

Corollary 2.22 ([We1]). If C is a general curve of genus g ≥ 2, then for
any connected étale double cover π : C̃ → C, RST holds everywhere on Ξ.

Proof. Since for any double cover of a general curve C, Ξ has no exceptional
singularities, RST holds everywhere on Ξ. �

3. On the density of double points in singstΞ.

As always, assume C is a smooth nonhyperelliptic curve and π : C̃ → C
a connected étale double cover. For potential use in the Andreotti-Mayer-
Green approach to Donagi’s conjecture, we want to give a criterion for the
existence of as many stable double points on Ξ as can be hoped for. We
will show in Corollary 3.4 below that if C is nontetragonal and of genus
g ≥ 11, then for all double covers of C, double points are dense in every
component of singstΞ. By Corollary 2.2 it would suffice to show the existence
of points L with h0(C̃, L) = 4, or equivalently with h0(C̃, L) ≤ 4 on every
component of singstΞ. Note that if C is nonhyperelliptic, and 3 ≤ g(C) ≤ 6,
then X is irreducible and 2 ≤ dim(X) ≤ 5. Hence for any L on Ξ, we
have h0(C̃, L) − 1 = dim ϕ−1(L) ≤ dim(X) − 1 ≤ 4, so that h0(C̃, L) ≤ 5,
and since h0(C̃, L) is even, in fact then h0(C̃, L) ≤ 4 for all points L on Ξ.
Hence giving a criterion for h0(C̃, L) ≤ 4 to hold at a general point L of a
component of singΞ is a challenge only when g(C) ≥ 7. We are not in fact
able to rule out the possible existence of small components of singΞ on which
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h0 is always ≥ 6, but we can obtain the estimate h0(C̃, L) ≤ 4 at general
points of relatively large components of singΞ. To do this we globalize an
argument of Welters [We1, Lemma 3.2, p. 681] for changing arbitrary points
L of singstΞ into ones with h0(C̃, L) = 4, using the “parity trick” of Mumford
[M2, bottom of p. 186]. I.e., if Nm(L) = ωC , h0(L) ≥ 1, and p is not a base
point of |L|, then Nm(L(p′ − p)) = ωC and h0(L(p′ − p)) = h0(L) − 1.
Applying this principle twice changes a point L of Ξ with h0(L) ≥ 4 into
another point L′ of Ξ with h0(L′) = h0(L) − 2. As just described, this
trick gives no information on whether the new point L′ lies on the same
component of singΞ as the original point L. To show every component of
singstΞ contains a point with h0 = 4 we use the following global version of
the parity trick (whose hypotheses are vacuous for g ≤ 4).

Proposition 3.1. Assume C is smooth, nonhyperelliptic, of genus g ≥ 5,
and π : C̃ → C any étale connected double cover. Let Z ⊂ ϕ−1(singΞ) be
any irreducible component of ϕ−1(singΞ) on which the generic fiber of ϕ is
∼= Pr, with r ≥ 3. Then there exists a closed irreducible subvariety Z ′ ⊂ X
such that dim(Z ′) = dim(Z), and |D′| ∼= Pr−2 for D′ general on Z ′. In
particular dim(ϕ(Z ′)) ≥ dim(ϕ(Z)) + 2.

Assuming Proposition 3.1, we deduce the following results.

Theorem 3.2. If C is smooth, not hyperelliptic, g(C) = g ≥ 3, C̃ → C
is an étale connected double cover, ϕ : X → Ξ is the Abel map, and Z an
irreducible component of ϕ−1(singΞ) such that dim(ϕ(Z)) ≥ dim(singΞ)−1,
then h0(C̃, L) ≤ 4 at a general point L on ϕ(Z).

Proof. We have shown in the remarks just above Proposition 3.1 that
h0(C̃, L) ≤ 4 is true everywhere on Ξ if g(C) ≤ 6. Assuming g ≥ 7 and
that the theorem is false, there is an irreducible component Z of ϕ−1(singΞ)
such that dim(ϕ(Z)) ≥ dim(singΞ) − 1, and at a general point L on ϕ(Z)
we have h0(C̃, L) ≥ 6. Then |L| ∼= Pr where r ≥ 5, whence |D′| ∼= Pr−2,
with r − 2 ≥ 3, where D′ is a generic point of the variety Z ′ constructed
in Proposition 3.1. Then ϕ(Z ′) ⊂ singstΞ, but dim(Z ′) ≥ dim singΞ + 1, a
contradiction. �

Corollary 3.3. Assume C is smooth, nonhyperelliptic, g(C) = g ≥ 6 and
dim(singΞ) ≤ p − 5 = g − 6, i.e., C not on Mumford’s list in [M1, Thm.,
p. 344]. Then for W ⊂ singstΞ any component of stable singularities, and a
general point L on W , we have h0(C̃, L) = 4.

Proof. If C̃ → C is an étale connected double cover such that dim(singΞ) ≤
p − 5, and W ⊂ singstΞ is any component of stable singularities, then
dim W ≥ p − 6 ≥ dim(singΞ) − 1. Thus by Theorem 3.2, for a general
point L on W , we have h0(C̃, L) ≤ 4. Since also h0(C̃, L) ≥ 4 by definition
of stable singularities, it follows that h0(C̃, L) = 4. �
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Corollary 3.4. If C is nontetragonal and g(C) = g ≥ 11, and W ⊂ singstΞ
is any component of stable singularities, then at a general point L on W ,
multLΞ = 2.

Proof. With these hypotheses, dim(W ) ≥ p−6, and dim(singexΞ) ≤ p−7 by
[D1, Th. 3.1(i), pp. 547-8]. Hence a general point L on W is not exceptional,
so RST holds at L by Theorem 2.1. Since C is not on Mumford’s list in
[M1, p. 344], also dim(W ) ≤ dim(singΞ) ≤ p − 5. Thus by Corollary 3.3,
multLΞ = 2. �

Corollary 3.5. Assume C is a smooth nonhyperelliptic curve and π : C̃ →
C a connected étale double cover.

(i) If g(C) ≥ 5, and dim(singΞ) ≤ p− 5, then dim ϕ−1(singΞ) ≤ p− 2.
(ii) If g ≥ 6, and dim(singΞ) = p− 6, then dim ϕ−1(singΞ) ≤ p− 3.

Proof. (i) If g ≥ 5, dim(singΞ) ≤ p − 5, and if there were a component Z
of ϕ−1(singΞ) of dimension p − 1, then the generic fiber dimension of ϕ on
Z must be ≥ 4, hence ≥ 5, (since all fibers are odd dimensional). But by
Proposition 3.1 there would be a subvariety Z ′ of X of the same dimension
as Z, such that for D′ general on Z ′, we have |D′| ∼= Pr−2. Then r − 2 ≥ 3
implies that ϕ(Z ′) ⊂ singΞ also, but dim Z ′ = dim Z implies that Z ′ is also
a component of ϕ−1(singΞ), a contradiction.

(ii) The same proof works again. �

Proposition 3.1 will be proved in Lemmas 3.6 through 3.10.

Lemma 3.6. If L is a line bundle on a curve C̃ such that dim |L| ≥ 2, then
there exists a divisor D in |L| of form D = E + p + q, with p and q each
occurring simply in D, and such that p is not a base point of |L| and q is
not a base point of |L− p|.

Proof. If dim |L| = r ≥ 2, and B1 is the base divisor of |L|, choose (by
Bertini) a divisor D1 in |L−B1| such that (i) D1 consists of distinct points
and (ii) supp(D1) ∩ supp(B1) = ∅, and let p be any point of D1. Then p is
not a base point of |L| so dim |L− p| = r − 1 ≥ 1. Since p does not belong
to the divisor B1 + D1 − p of |L − p|, then p does not belong to the base
divisor B2 of |L− p|. Then choose a divisor D2 in |L− p−B2| consisting of
distinct points and such that supp(D2)∩ supp(B2 +p) = ∅, and let q be any
point of D2. Then D = p + B2 + D2 = p + q + E satisfies the requirements
of the Lemma. �

Lemma 3.7. Let C̃ be a curve, let d ≥ 2 be an integer, and define D as
follows: D = {(p, q,D) : D ≥ p + q} ⊂ C̃ × C̃ × C̃(d). Then the projection
D → C̃(d) is a finite map of degree d(d−1) étale at (p, q,D) if p and q occur
simply in D.
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Proof. Since C̃ is assumed complete the map is proper and quasi finite,
hence finite, of the stated degree. If p, q occur simply in D = E + p + q,
the addition map C̃ × C̃ × C̃(d−2) → C̃(d) is étale at (p, q, E), so it suffices
to show the map D → C̃ × C̃ × C̃(d−2) taking (x, y, F ) to (x, y, F − x − y)
is étale at (p, q,D). But the map C̃ × C̃ × C̃(d−2) → D taking (x, y, H) to
(x, y, H + x + y) is a local analytic inverse from an analytic neighborhood
of (p, q, E) to an analytic neighborhood of (p, q,D). (Since the varieties are
smooth any local analytic bijection is a local analytic isomorphism.) �

Lemma 3.8. Let C̃ and D be as in Lemma 3.7 and assume further that C̃
has a fixed point free involution ι . If Z ⊂ D is any subvariety, define Z ′ =
{(p′, q′, D′) for all (p, q,D) in Z} = the “flip” of Z, where p′ = ι(p), q′ = ι(q),
and D′ = D − p− q + p′ + q′. Then dim Z = dim Z ′.

Proof. Since the map C̃ × C̃ × C̃(d−2) → D taking (x, y, H) to (x, y, H +
x + y) is an analytic bijection, it preserves the dimension of subvarieties,
so it suffices to check that in C̃ × C̃ × C̃(d−2) the map taking (x, y, H) to
(x′, y′,H) preserves the dimension of subvarieties. Since the map is a regular
involution, hence an isomorphism, it does indeed preserve dimension. �

Lemma 3.9. Let π : C̃ → C be any connected étale double cover of a smooth
curve C, with associated Prym theta divisor Ξ, and Abel map ϕ : X → Ξ.
If Z is an irreducible component of ϕ−1(singΞ), and L in ϕ(Z) is a general
point of the image of Z, then |L| = ϕ−1(L) ⊂ Zsm, and Z is the only
component of ϕ−1(singΞ) which dominates ϕ(Z).

Proof. Let U ⊂ ϕ(Z)sm be the (irreducible) open subset of ϕ(Z)sm ⊂ singΞ
on which dim |L| is minimal. Then over U , the map ϕ−1(U) → U is a locally
trivial projective bundle over a smooth irreducible base, hence ϕ−1(U) is a
smooth irreducible subset of ϕ−1(singΞ) containing an open, dense, subset
of Z. Thus Z ⊂ cl(ϕ−1(U)), and since Z is a maximal irreducible subset
of ϕ−1(singΞ), we must have Z = cl(ϕ−1(U)). This proves both statements
of the lemma. I.e., for L in U , ϕ−1(L) = |L| ⊂ ϕ−1(U) ⊂ Zsm. Moreover
we have shown that any component of ϕ−1(singΞ) dominating ϕ(Z) equals
cl(ϕ−1(U)). Indeed this proof shows that for every subvariety W ⊂ singΞ,
exactly one component of ϕ−1(W ) dominates W . �

Now we can deduce Proposition 3.1.

Lemma 3.10. Let Z ⊂ ϕ−1(singΞ) be any component of ϕ−1(singΞ) on
which the generic fiber of ϕ is ∼= Pr, r ≥ 3. Then there exists Z ′ ⊂ X such
that Z ′ is irreducible, dim Z ′ = dim Z, and such that for D′ general on Z ′,
we have |D′| ∼= Pr−2, and dim(ϕ(Z ′)) ≥ dim(ϕ(Z)) + 2.

Proof. Choose L a general point of ϕ(Z) and using Lemma 3.6, choose D1

in |L| ⊂ Zsm of form p1 + q1 + E1 = D1, where p1 and q1 occur simply in
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|L|, p1 is not a base point of |L| and q1 not a base point of |L− p1|. Define
Z̃ = {(p, q,D) : D ≥ p+q, and D belongs to Z} ⊂ X̃ = {(p, q,D) : D ≥ p+q,
and D belongs to X}. Then Z̃ → Z is finite and étale at (p1, q1, D1). Thus
since D1 is in |L| ⊂ Zsm, Z̃ is also smooth at (p1, q1, D1). Hence there is a
unique component Z̃1 of Z̃ containing the point (p1, q1, D1). Now “flip” Z̃1 as
in Lemma 3.8, to Z̃ ′

1 = {(p′, q′, D′) for all (p, q,D) in Z̃1} and let Z ′ = image
of Z̃ ′

1 under projection to X. Since by Mumford’s parity trick, [M2, p. 188,
step III], replacing two points changes the parity of D twice, hence leaves it
even, Z̃ ′

1 is contained in X̃. Hence the flipped set Z ′ lies in X. Then D′
1 ∈ Z ′

and |D′
1| ∼= Pr−2, by the choice of p1 and q1 in D1. So since no divisor in Z̃1

can have its dimension lowered by more than 2 through flipping 2 points,
thus for D′ generic in Z ′, we have |D′| ∼= Pr−2. Since the fibers of ϕ are
contained in complete linear series, hence the restricted Abel map ϕ : Z ′ → Ξ
has generic fiber dimension ≤ r− 2. Thus dim(ϕ(Z ′)) ≥ dim(ϕ(Z))+2. �

Remarks 3.11. (i) When C is nonhyperelliptic, the conclusion of Corol-
lary 3.3 that h0(C̃, L) = 4 for a general stable singularity L on Ξ, holds vacu-
ously when 3 ≤ g(C) ≤ 4 since then singstΞ = ∅. The equation h0(C̃, L) = 4
holds for all points L on singstΞ when g(C) = 5 by the remarks above Propo-
sition 3.1. Welters’ argument [We1, Lemma 3.2, p. 681], for the existence
of at least one point L on singstΞ with h0(C̃, L) = 4 whenever singstΞ 6= ∅,
already implies the conclusion of Corollary 3.3 for any double cover such
that singstΞ is irreducible.

(ii) Since it is known (see Proposition 5.1 below) that the tangent cone
to Ξ at a stable double point contains the Prym canonical model ϕη(C) of
C, Corollary 3.4 provides as many such quadrics as possible for nontetrag-
onal curves with g(C) ≥ 11. I.e., then for all L in a dense open subset
of singstΞ, PCL(Ξ) is a quadric such that ϕη(C) ⊂ PCL(Ξ). Considering
the results of [LS], a primary open question concerning Donagi’s conjecture
then is whether in this case these quadrics generate the space of all quadrics
containing ϕη(C).

For tetragonal curves, Debarre [D1] has shown that the Prym variety of
a generic tetragonal curve of genus g ≥ 13 arises as Prym variety of exactly
three doubly covered curves Ci, all tetragonal. Further, singΞ has dimension
p−6 and has 3 components of that dimension, and the generic point of each
component is nonexceptional for the representation of P as a tetragonal
Prym associated to exactly two of the Ci. Hence Corollary 3.3 implies that
the generic singular point on any one of the three components is a double
point, and it follows that the base locus of the quadric tangent cones to
any one of these components must contain the Prym canonical models of
the two curves Ci for which this is a stable, nonexceptional component. It
is conceivable that the quadric tangent cones at double points of the union
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of two of these components determines the unique curve Ci for which both
these components are stable.

(iii) The conclusion of Corollary 3.5(i) that dim ϕ−1(singΞ) ≤ p − 2,
holds also for all nonhyperelliptic curves C with g = 3, 4; for g = 3, it
holds since singΞ = ∅ and dim X = p = 2, and for g(C) = 4 it holds by
irreducibility of X, since dim X = 3 and all fibers of ϕ are odd dimen-
sional. For g = 5, Corollary 3.5(i) holds since then dim(singΞ) ≤ p − 5
implies singΞ = ∅, while dim X = 4. The hypothesis is necessary here
however since by Example 2.18, there is a doubly covered nonhyperelliptic
curve C with g(C) = 5,dim(singΞ) = 0 = p − 4, and h0(L) = 4. Thus
dim ϕ−1(L) = 3 = p− 1.

In Corollary 3.5(ii), the hypotheses cannot hold for g ≤ 5 and the con-
clusion can fail as we have seen. When g = 6, the hypothesis is necessary
since a plane quintic curve C with an odd double cover [M1, p. 348, line
1] such that (P,Ξ) ∼= (J(W ),Θ(W )) where W is a smooth cubic threefold,
gives an example of Ξ with dim(singΞ) = 0 = p − 5, and ϕ−1(singΞ) ∼= P3

has dimension 3 = p− 2.
(iv) Corollary 3.5 is useful for comparing line bundles on X with pull

backs of line bundles from Ξ. This will be applied in Section 4 to describe
the fundamental line bundle OX(1) associated to the divisor variety X. An
open question concerning the relation of X to the Prym Torelli problem is
to compute h0(X,OX(1)).

(v) We do not know, even when dim(singΞ) ≤ p − 5, whether any com-
ponents Z of ϕ−1(singΞ) exist that do not dominate components of singΞ.
In particular we do not know whether there exist any components Z of
ϕ−1(singΞ) on which the generic fiber dimension of ϕ is ≥ 5.

4. A formula for the line bundle OX(1) defined by the norm map
h : X → |ωC |.

Recall that if P is the Prym variety associated to a smooth connected étale
double cover C̃ → C, and g = g(C), then p = dim(P ) = dim(X) = g − 1,
where ϕ : X → Ξ is the restriction of the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃)
over Ξ ⊂ P ⊂ Pic2g−2(C̃), and dim(Ξ) = p − 1 = g − 2. The restriction
to X of the norm map Nm : C̃(2g−2) → C(2g−2) is denoted h : X → |ωC |,
and the associated line bundle h∗(O|ωC |(1)) is denoted OX(1). We will show
with mild genericity hypotheses that this line bundle is obtained from the
pullback ϕ∗(KΞ) of the canonical bundle on Ξ by twisting with the “tangent
bundle along the fibers of ϕ”. We must first give a definition of this relative
tangent sheaf for our present situation in which ϕ : X → Ξ is not necessarily
a P1 -bundle over sing(Ξ).
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Definition 4.1. Given ϕ : X → Ξ as above, define Tϕ on all of X to be the
coherent sheaf Tϕ = Hom(Ω1

ϕ,OX) = the dual OX -module of the relative
Kähler differentials Ω1

ϕ.

Note that on the open set U = ϕ−1(Ξsm), the restriction U → Ξsm is a
Zariski locally trivial P1 bundle, hence Tϕ is the intuitive relative tangent
bundle at least on U ; in particular its restriction to U is a subbundle of TX

whose restriction to each fiber of ϕ : U → Ξsm is the tangent bundle to the
fiber.

Theorem 4.2. Assume C is nonhyperelliptic, π : C̃ → C any étale con-
nected double cover and (P,Ξ) the Prym variety. If g(C) = 3 or 4, or if
g(C) ≥ 5 and dim(singΞ) ≤ g−6, then OX(1) ∼= Tϕ⊗ϕ∗(KΞ), where OX(1)
is the line bundle associated to the norm map h : X → |ωC |.

Corollary 4.3. (i) Under the hypotheses of Theorem 4.2, the line bundle
OX(1) is intrinsically defined on X, i.e., OX(1) is determined by X as an
abstract variety.

(ii) Under the hypotheses of Theorem 4.2, the sheaf Tϕ = Hom(Ω1
ϕ,OX)

is the unique line bundle on X which on X − ϕ−1(singΞ) equals the bundle
of tangents along the fibers of ϕ; in particular the hypotheses of Theorem 4.2
imply that Tϕ is a line bundle on all of X.

Proof of Corollary 4.3(i). First we will show the map ϕ is determined in-
trinsically by X.

Claim. Two points of X lie in the same fiber of ϕ if and only if they can
be joined by a smooth rational curve λ on X.

Since the fibers are projective spaces any two points in the same fiber are
joined by a curve isomorphic to P1. Moreover since P contains no rational
curves, every smooth rational curve on X is collapsed to a point by ϕ, hence
lies in some fiber of ϕ. Thus two points which are joined by a smooth
rational curve do lie in the same fiber of ϕ. QED for the Claim. �

(Note that ϕ can be regarded as the extremal contraction contR defined
by any smooth rational curve on X. I.e., if λ is a general fiber of ϕ on X,
then ϕ induces an exact sequence in homology 0 → R[λ] → H2(X, R) →
H2(Ξ, R) → 0, by Leray s.s.)

Thus the fibers of ϕ are characterized by X. Since Ξ = ϕ(X) is normal,
we claim Ξ is characterized as a scheme by the fibers of ϕ in X. First Ξ has
the quotient topology induced by ϕ, since ϕ is proper, so Ξ is determined as
a topological space. Then since Ξ is normal, OΞ = ϕ∗(OX), so the regular
functions on open subsets U of Ξ are functions on ϕ−1(U) which are constant
on the fibers of ϕ. Hence OΞ and the fibers of ϕ are determined by X. Since
X determines ϕ : X → Ξ, by Theorem 4.2 X determines OX(1). �
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Proof of Corollary 4.3(ii). Since OX(1) ∼= Tϕ ⊗ ϕ∗(KΞ), Tϕ = OX(1) ⊗
(ϕ∗(KΞ))∗ is the tensor product of two line bundles. QED Corollary 4.3. �

Proof of Theorem 4.2. If g = 3, the Prym is a 2 dimensional Jacobian and
ϕ : X → Ξ is a P1 bundle over a smooth genus 2 curve, and in this case the
formula has been proved in [SV4, p. 358]. If g ≥ 4, we claim it suffices, by a
“Hartogs” argument, to show that OX(1) and Tϕ ⊗ ϕ∗(KΞ) are isomorphic
on the open subset U = ϕ−1(Ξsm) of X.

Definition 4.4. We say a sheaf F on an irreducible scheme X has the
“Hartogs property” if its sections extend uniquely across closed sets of codi-
mension ≥ 2. I.e., if for every closed subset Z ⊂ X all of whose components
are of codimension ≥ 2 in X, and every open set V ⊂ X, the restriction
H0(V,F) → H0(V − (Z ∩ V ),F) is an isomorphism.

Lemma 4.5. If X is an irreducible Cohen Macaulay scheme and F is a
coherent sheaf of OX modules, then the sheaf F∗ = Hom(F ,OX) has the
Hartogs property. (In particular OX itself, all locally free OX modules, and
all “reflexive” OX modules, have the Hartogs property on a Cohen Macaulay
variety.)

Proof. This follows from some properties of depth, which we recall.
(i) If F is a coherent sheaf on a scheme X and Z ⊂ X is a closed subset,

then local sections of F extend uniquely across Z if and only if F has depth
≥ 2 along Z, ([Gro, Prop. 1.11, pp. 11-12, Thm. 3.8, p. 44] or see [SV5,
Prop. 18, p. 391], for a summary statement).

(ii) If X is an algebraic scheme, and Z ⊂ X a closed subset, such that
OX has depth ≥ 2 along Z, then for any coherent sheaf F of OX modules,
the coherent sheaf F∗ = Hom(F ,OX) also has depth ≥ 2 along Z, ([SV5],
Lemma 22, p. 392; similar to lemma, p. 21, of [S]).

(iii) If X is an irreducible noetherian Cohen Macaulay scheme, and Z ⊂
X a closed subset, then OX has depth ≥ k along Z if and only if every
irreducible component of Z has codimension ≥ k in X [H, p. 184]. QED for
Lemma 4.5. �

Since when C is nonhyperelliptic X is an irreducible normal local complete
intersection, in particular Cohen Macaulay, and since OX(1) and
ϕ∗(KΞ) are line bundles on X, it follows from Lemma 4.5 that both OX(1)
and Tϕ ⊗ ϕ∗(KΞ) have the Hartogs property on X. If g = 4, then (P,Ξ)
is a 3 dimensional Jacobian hence Ξ is singular only when (P,Ξ) is a hy-
perelliptic Jacobian and then Ξ has one singular point. Then since X is
irreducible of dimension 3 and every fiber of ϕ is an odd dimensional pro-
jective space, ϕ−1(singΞ) ∼= P1 hence has codimension two in X. Now using
Corollary 3.5(i), under the hypotheses of Theorem 4.2, also if g ≥ 4 then



R.S.T. FOR PRYM THETA DIVISORS 501

Z = ϕ−1(sing(Ξ)) has codimension at least 2 in X. Hence if we have an iso-
morphism between OX(1)⊗(ϕ∗(KΞ))∗ and Tϕ over X−Z = U = ϕ−1(Ξsm),
the isomorphism extends uniquely to an isomorphism over all of X.

Thus, from now on we will primarily consider U and the map ϕ : U →
Ξsm. We claim that on U , OX(1) ⊗ (Tϕ)∗ is the pullback of a line bundle
on Ξsm. To see this, take any point z in Ξsm and consider the preimage
ϕ−1(z) ∼= P1; we will check that the restrictions of OX(1) and Tϕ to ϕ−1(z)
are both line bundles of degree two. For OX(1)|ϕ−1(z), consider the map
h : X → |ωC | followed by the injective linear map of projective spaces π∗ :
|ωC | → |ω eC |; then the degree of this composition will equal the degree of the
restriction of h to ϕ−1(z), i.e., the degree of OX(1)|ϕ−1(z). The composition
X → |ω eC | is given by D 7→ D + ι∗(D), where ι : C̃ → C̃ is the involution.
On a line ϕ−1(z) = |Dz| = PH0(C̃, Lz), this map is induced by the map
H0(C̃, Lz) → H0(C̃, ω eC) on sections: s 7→ s ⊗ ι∗(s), where s ∈ H0(C̃, Lz),
ι∗(s) ∈ H0(C̃, ι∗(Lz)), and Lz ⊗ ι∗(Lz) ∼= π∗(Nm(Lz)) ∼= π∗(ωC) ∼= ω eC ;
thus the map ϕ−1(z) ∼= PH0(C̃, Lz) → PH0(C̃, ω eC) = |ω eC | is homogeneous
of degree 2, hence is given on ϕ−1(z) ∼= P1 by sections of OP1(2). On the
other hand, the restriction (Tϕ)|ϕ−1(z) is the tangent bundle of ϕ−1(z) ∼= P1

which has degree 2. Thus both OX(1) and Tϕ restrict to the line bundle
O(2) on each fiber ϕ−1(z) ∼= P1 (since z ∈ Ξsm) and hence the line bundle
OX(1)⊗ (Tϕ)∗ on U is trivial on each fiber of ϕ.

It follows that there exists a line bundle, say M, on Ξsm such that
OX(1) ⊗ (Tϕ)∗ ∼= ϕ∗(M). Indeed, if we set M = ϕ∗(OX(1) ⊗ (Tϕ)∗),
then M is a line bundle on Ξsm by Grauert’s theorem [H, Cor. 12.9,
p. 288], since F = OX(1) ⊗ (Tϕ)∗ is flat over Ξsm and for each z ∈ Ξsm,
h0(ϕ−1(z), (OX(1) ⊗ (Tϕ)∗)|ϕ−1(z)) = h0(ϕ−1(z),Oϕ−1(z)) = 1. Then the
natural homomorphism of line bundles on U , ϕ∗(M) = ϕ∗(ϕ∗(OX(1) ⊗
(Tϕ)∗)) → OX(1)⊗ (Tϕ)∗ is an isomorphism since it is evidently an isomor-
phism on each fiber.

It remains to show that the line bundle M on Ξsm is isomorphic to
KΞ|Ξsm. For this, we will show how to express divisors in both series
|OX(1)| and |KΞ| in terms of the “standard divisors” {Dp} on X. Re-
call that for any point p on C̃, the divisor Dp = {those D in X such
that D ≥ p}. Then for all points p in C, if Hp ⊂ |ωC | is the hyper-
plane of |ωC | ∼= (Pg−1)∗ corresponding to the point ϕω(p) of |ωC |∗ on the
canonical curve ϕω(C) ⊂ |ωC |∗ = Pg−1, and if π−1(p) = {p, p′}, then
h−1(Hp) = Dp +Dp′ . Thus OX(1) ∼= OX(Dp +Dp′). Now consider a general
point p ∈ C̃; then one knows ([SV2]) the following: Dp ⊂ X is irreducible,
maps birationally onto Ξ, and the formula ϕ(Dp∩Dp′) = Γp holds, where Γp

is the Gauss divisor on Ξ defined by the Prym canonical image ϕη(p) of the
point p = π(p) ∈ C. Since ϕ(Dp∩Dp′) = Γp ∈ |OΞ(Ξ)|, and OΞ(Ξ) ∼= KΞ by
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adjunction, we see that the divisor ϕ(Dp ∩ Dp′) on Ξ is a canonical divisor,
i.e., OΞ(ϕ(Dp ∩ Dp′)) ∼= KΞ. Let F ⊂ Ξ be the locus of points over which
ϕ : Dp → Ξ is not an isomorphism; since Dp → Ξ is birational and Ξ is
normal, codimΞ(F ) ≥ 2. Then V = (Ξsm − F ) is an open subset of Ξ with
complement of codimension ≥ 2, so it will suffice to show that M|V ∼= KΞ|V .

Now Dp ⊂ X provides a section of the P1-bundle ϕ : U → Ξsm over
V ⊂ Ξsm, and therefore N(Dp/U)|(Dp ∩ ϕ−1(V )) ∼= Tϕ|(Dp ∩ ϕ−1(V )). I.e.,
at a point x of Dp in ϕ−1(V ), Dp is transverse to the fiber ϕ−1(z), where z =
ϕ(x), so the tangent space Tx(ϕ−1(z)) ⊂ Tx(U) maps isomorphically onto
the normal space Nx(Dp) = Tx(U)/Tx(Dp). (Note that although the bundles
Tϕ and OX(Dp) are different both on X and on the open set U ⊂ X, indeed
they have different restrictions to fibers of ϕ, they have the same restrictions
to the section (Dp ∩ ϕ−1(V )) over V .) The normal bundle N(Dp/U) is the
restriction (to Dp ∩ U) of ODp(Dp) = OX(Dp)|Dp, so in ϕ−1(V ), (Tϕ)|Dp

∼=
ODp(Dp). On the other hand, restricting OX(1) to Dp gives OX(1)|Dp

∼=
OX(Dp + Dp′)|Dp

∼= ODP
(Dp + Dp′). Thus, in the open set ϕ−1(V ) ⊂ X,

we have the following restrictions to Dp : OX(1)|Dp
∼= ODp(Dp + Dp′) and

(Tϕ)|Dp
∼= ODp(Dp). Hence, taking the “difference”, we obtain the formula

(OX(1) ⊗ (Tϕ)−1)|Dp
∼= ODp(Dp′), and it remains to determine the line

bundle ODp(Dp′) ∼= ODp(Dp ∩ Dp′) on Dp. The map (ϕ−1(V ) ∩ Dp) →
V is an isomorphism, so it suffices to determine the line bundle M1 =
OV (ϕ(ϕ−1(V )∩ (Dp ∩Dp′))) on V . As noted above, this line bundle M1 on
V is the restriction to V of the line bundle OΞ(ϕ(Dp ∩ Dp′)) = KΞ. Thus,
M1

∼= KΞ|V , and hence (OX(1)⊗ (Tϕ)−1)|ϕ−1(V ) ∩ Dp
∼= ϕ∗(KΞ|V ). QED

Theorem 4.2. �

Remarks 4.6. (i) Since Mumford has classified all cases in which dim Ξ ≥
g − 5 [M1, p. 344], explicit criteria on π : C̃ → C can be given for the
hypothesis dim(singΞ) ≤ g − 6 of Theorem 4.2 to hold, in particular it
holds for all C of genus g ≥ 7 which are neither hyperelliptic, trigonal nor
bielliptic. We expect if C is also assumed to be nontetragonal, that then
dim(singΞ) = g − 7, at least for g(C) ≥ 11. Since Debarre [D1] gave a list
of those tetragonal curves with dim(singΞ) = g − 6, this would give a good
account of the dimension of singΞ.

(ii) The formula, OX(1) ∼= Tϕ ⊗ ϕ∗(KΞ), gives a simple way to think of
OX(1) in terms of the canonical bundle KX . Namely, consider in general
a P1-bundle ϕ : X → Ξ over a variety Ξ of general type; then KX would
have (in additive notation) the form Ω1

ϕ +ϕ∗(KΞ) and the relative canonical
bundle Ω1

ϕ is negative on the fibres of ϕ , so if one “changes the sign of
KX along the fibres” (i.e., replaces Ω1

ϕ + ϕ∗(KΞ) by Tϕ + ϕ∗(KΞ)), then
one obtains an ample line bundle on X intrinsic to the P1-bundle structure
ϕ : X → Ξ. The proof of Theorem 4.2 given here generalizes the one
in [SV4], and is our original proof of the OX(1) formula. The formula
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relating reducible divisors in |OX(1)| to Gauss divisors on Ξ, needed for this
generalization, is in [SV2].

(iii) It is possible to prove the result of Corollary 4.3(i), that the line
bundle OX(1), is intrinsically defined by X, without any hypotheses on
codim(ϕ−1(singΞ)). In this generality, the line bundle KX is more conve-
nient to work with than the coherent sheaf Hom(Ω1

ϕ,OX), and then (see
[SV3]) we can compute KX = 2ϕ∗(KΞ)−OX(1), which yields the formula
OX(1) = 2ϕ∗(KΞ) −KX . Since ϕ is determined by X in general (another
proof of this is also in [SV3]) this implies that X always determines the line
bundle OX(1). Note that if ϕ : X → Ξ were a P1 bundle, so that we had
KX = Ω1

ϕ + ϕ∗(KΞ) and Tϕ = Hom(Ω1
ϕ,OX), these sheaves would be line

bundles, and this new version of the formula would be equivalent to the one
proved above in Theorem 4.2. In particular, the formulas are always equiv-
alent over X − ϕ−1(singΞ) so that when ϕ−1(sing(Ξ)) has codimension ≥ 2
in X, by using the depth argument above to extend such an isomorphism,
the more general formula in [SV3] gives another proof of Theorem 4.2.

(iv) Recently Izadi and Pauly (see [IP]) have given a proof of a formula
for OX−(1), where X− is the “odd” half of the divisor variety for the Prym,
analogous to the one in Theorem 4.2 above. The proof in [SV3] of the
formula for OX(1) applies to X− as well, hence gives a version of their
formula. I.e., in that case we get again OX−(1) = (ϕ∗(KΞ))2⊗ (KX−)∗, but
since ϕ : X− → P− is birational onto a (smooth) abelian variety, a canonical
divisor of X− is the pullback of a canonical divisor of P− plus a divisor E
whose support is the exceptional divisor of ϕ : X− → P−, and thus one
gets OX(1) = (ϕ∗(KΞ))2⊗ (OX−(E))∗. The proof in [IP] (Lemma 2.2, p. 6,
[IP]) identifies the divisor E more precisely.

5. A proof of the Torelli theorem for cubic threefolds.

If W is a smooth cubic threefold, then associated to a general line λ on W
there is a conic bundle representation of W and consequently a Prym rep-
resentation of the intermediate Jacobian (J(W ),Θ(W )) as a Prym variety
(P,Ξ) associated to an “odd” double cover of a smooth plane quintic C [M1,
pp. 347-8], [CG, App.], [B2], [T2]. Moreover Ξ has a unique singular point,
a triple point at which the projective tangent cone is W . This unpublished
result of Mumford is treated particularly clearly in [B2]. Prym theory is
used there to establish that there is only one singular point L and then the
theory of the Abel Jacobi map on the Fano surface F of W , in particular
the “tangent bundle theorem” and the parametrization of Ξ by F × F , is
used to deduce the multiplicity and the structure of the tangent cone of Ξ
at L. The following argument computes the structure of Ξ at its unique
singular point, including the multiplicity and tangent cone, using the Abel
parametrization ϕ : X → Ξ (which exists for all Prym varieties), and the
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explicit form of the Prym canonical map defined by a conic bundle structure
on a cubic threefold.

First we give a criterion for the tangent cone at a point of Ξ to contain
the Prym canonical model ϕη(C) ⊂ |ωC ⊗ η|∗ of C.

Proposition 5.1. Let π : C̃ → C be any connected étale double cover of a
smooth nonhyperelliptic curve C of genus g ≥ 4, L any stable singular point
of Ξ (possibly also exceptional), and multLΞ = r. If (1/2)h0(C̃, L) = r,
i.e., if RST holds at L, or if L is base point free and (1/2)h0(C̃, L) ≤ r ≤
h0(C̃, L)− 1, then as sets ϕη(C) ⊂ PCL(Ξ).

Lemma 5.2. If p and p′ are conjugate points on the canonical model of C̃

in |ω eC |∗, i.e., if the double cover π : C̃ → C maps π(p) = π(p′) = p, and if
Lp,p′ is the line in |ω eC |∗ joining p to p′, and ϕη : C → ϕη(C) ⊂ |ωC ⊗ η|∗ is
the Prym canonical map, then ϕη(p) = Lp,p′ ∩ |ωC ⊗ η|∗.

Proof of Lemma 5.2. See [T1], p. 957, line 11, or [SV2], proof of part 1 of
main theorem, claim 1. �

Proof of Proposition 5.1. Lemma 5.2 implies ϕη(C) ⊂ Sec(ϕ eK(C̃)) ∩ PTLP .
Moreover 2Ξ = Θ̃ ·P implies PCL(Ξ) = {ϑ̃2r = 0}∩PTLP when r = multLΞ.
Hence we have only to show that, under the hypotheses of Proposition 5.1,
the inclusion Sec(ϕ eK(C̃)) ∩ PTLP ⊂ {ϑ̃2r = 0} ∩ PTLP holds. I.e., we are
assuming either 4 ≤ multLΘ̃ = 2r, or L is base point free and 4 ≤ multLΘ̃ ≤
2r ≤ 2multLΘ̃− 2. Hence, in the first case by [K, p. 183] and in the second
case by [ACGH, Thm. 1.6(ii), p. 232], we have Sec(ϕ eK(C̃)) ⊂ {ϑ̃2r = 0},
thus as desired we get ϕη(C) ⊂ Sec(ϕ eK(C̃))∩ PTLP ⊂ {ϑ̃2r = 0} ∩ PTLP =
PCL(Ξ). �

Remark 5.3. Since RST holds at every stable double point of Ξ, if C is
nontetragonal and g(C) = g ≥ 11, then in light of Proposition 5.1 and
Corollary 3.4, for all L in a dense open subset of singstΞ, PCL(Ξ) is a quadric
such that ϕη(C) ⊂ PCL(Ξ).

The Torelli theorem. We assume the following facts about the double
cover representing J(W ) as a Prym variety, [B2], [B3]. For a general line λ
on W , the family C of triangles on W having λ as one side, is a smooth curve
C doubly covered by the smooth connected curve C̃ of lines on W distinct
from λ but incident to λ. Associating each triangle to the plane it spans
embeds C as a quintic curve in the P2 of planes containing λ in P4, the double
cover C̃ → C is “odd” in the sense that h0(C,H⊗η) is odd, where H = O(1)
defines the plane embedding of C and η defines the double cover, and the
Prym variety (P,Ξ) associated to the double cover C̃ → C is isomorphic to
(J(W ),Θ(W )). The Prym canonical map ϕω⊗η : C → P4 takes a point of
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C to that vertex of the corresponding triangle on W which is “opposite”
λ. To prove Torelli for W it suffices to recover W from (P,Ξ). Since every
singularity on Ξ is either exceptional or stable, we want to classify these.
The proof of the next lemma is in [B2] but we include it for completeness.

Lemma 5.4. There is exactly one exceptional singularity on Ξ, L =
π∗(OC(1)), which is also stable and at which h0(C̃, L) = 4.

Proof (cf. [B2]). An exceptional singularity on Ξ is a line bundle L on C̃ of
form L = π∗(M)(B) where M is a line bundle on C with h0(M) ≥ 2 and B ≥
0 is an effective divisor on C̃, and where h0(C̃, L) is even and Nm(L) = ωC .
In particular M is an effective line bundle on C with ωC − 2M = O(π(B))
also effective, hence deg(M) ≤ 5. Since C is a smooth plane quintic, C is
neither hyperelliptic nor trigonal so deg(M) = 4 or 5, and the canonical
series |ωC | = |OC(2)| is cut out on C by conics. If deg(M) = 4 then
h0(C,M) ≤ 2 by Clifford so h0(M) = 2. Since C is not trigonal M has no
base point and thus there is a divisor D of 4 distinct points in |M |. By RRT,
h0(C,K−M) = 3 and hence there are 3 independent conics passing through
D. Then the 4 points of D fail by one to impose independent conditions
on conics so all 4 points of D lie on a line and |O(1) −D| is effective, i.e.,
M = O(1)(−p) for some point p on C. If deg(M) = 5, then M has at most
one base point and again there is a divisor D in |M | with 5 distinct points
and 2 ≤ h0(M) ≤ 3 by Clifford, implies h0(K −M) ≥ 2. Again at least 4
points of M lie on a line and we have either M = O(1) or M = O(1)(p− q)
where p, q are on C. Thus if H = OC(1) the only possibilities for M are H,
H−p or H+p−q, corresponding to series of form g2

5, g1
4, or g1

5 on C. The case
M = H gives the one actual exceptional singularity on Ξ, L = π∗(H). This
has h0(C̃, L) = 4, since h0(C̃, L) = h0(C,H) + h0(C,H ⊗ η), h0(C,H) = 3,
and h0(C,H ⊗ η) is odd and less than 3, hence = 1. If M = H + p− q, with
p 6= q, then deg(M) = 5 so L = π∗(M) and Nm(L) = 2M = K, so M is a
theta characteristic. But for M = H + p− q to be a theta characteristic, we
must have K = 2H − 2p + 2q = K − 2p + 2q, hence −2p + 2q = 0, and our
plane quintic would be hyperelliptic, a contradiction.

If M = H − p then we would have L = π∗(H − p)(B) and π∗(π∗(H −
p)(B)) = 2(H − p)(π∗B) = K − 2p + π∗(B) = K. Thus we would need
B = 2p or 2p′ or p + p′. If B = p + p′ then L = π∗(H), the singular point
we already have. If B = 2p, then the parity is opposite to that of π∗(H)
by Mumford’s parity trick [M2, p. 186] so h0(C̃, L) is not even. Hence
there are no exceptional singularities on Ξ other than the one coming from
L = π∗(H). �

Lemma 5.5. The point L = π∗(H) is a triple point on Ξ such that ϕη(C) ⊂
PCL(Ξ).
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Proof. Since both H and H ⊗ η are odd theta characteristics on C and
h0(C,M) = 3, it follows by [V, p. 948] that L is a singular odd theta
characteristic on P , in particular Ξ has odd multiplicity ≥ 3 at L. By
Lemma 5.4 above and the Lemma on p. 345 of [M1], dim(singΞ) = 0, so
the Prym variety (P,Ξ) is not a polarized product of elliptic curves, hence
by [SV1, p. 319], multLΞ ≤ 4, hence multLΞ = 3. That ϕη(C) ⊂ PCL(Ξ)
then follows from Proposition 5.1 since h0(C̃, L) = 4, and L = π∗(H) is base
point free since H is. �

Lemma 5.6. There are no nonexceptional singularities on Ξ.

Proof. By Theorem 2.1 the RST holds at every nonexceptional singularity
of Ξ. Since the source space X of the Abel map ϕ : X → Ξ is 5 dimensional
and irreducible, the largest possible fiber of ϕ is P3, so by Theorem 2.1
all nonexceptional singularities of Ξ are stable double points. Thus the
tangent cone at any such point is a quadric containing the Prym canonical
curve ϕη(C). The same argument proves this for every Prym representation
of J(W ), i.e., for every choice of general line λ on W , hence the tangent
quadric at every nonexceptional singular point contains the Prym canonical
model of every plane quintic Cλ associated to every general line λ on W .
Since the Prym canonical model ϕη(Cλ) is the locus of vertices of residual
pairs of lines in all triangles lying on W and having λ as one side [B3,
Remarque 6.27], the union of these Prym canonical curves is dense in W .
Since the tangent cone at a double point cannot contain the smooth cubic
hypersurface W , there are no double points on Ξ, and L = π∗(H) is in fact
the only singular point on Ξ. �

Lemma 5.7. The theta divisor Ξ has a unique singular point L, at which
PCLΞ = W .

Proof. We know the triple point L = π∗(OC(1)) is the unique singular point
on Ξ, and by the argument of Lemma 5.6 that PCLΞ contains the union of
the Prym canonical curves ϕη(Cλ) for every general line λ on W . Hence
PCLΞ ⊃ W , and since these are both cubic hypersurfaces and W is smooth,
we conclude PCLΞ = W .

This proves the Torelli theorem for W. �

6. Outline of the RST and its corollaries.

Theorem.
(1) For all L in Ξ, we have ∪|L|Pϕ∗(TDX) = PCLΘ̃ ∩ PTLP .
(2) For all L such that |L| ⊂ Xsm, we have ∪|L|Pϕ∗(TDX) = PCLΞ.
(3) SingexΞ = ϕ(singX), hence for all L in Ξ− singexΞ, |L| ⊂ Xsm.
(4) For all L in Ξ − singexΞ, we have PCLΞ = PCLΘ̃ ∩ PTLP , and thus

multLΞ = (1/2)h0(C̃, L), i.e., “RST holds” at every L in Ξ− singexΞ.
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(5) If g(C) ≥ 11 and C not tetragonal, then for any double cover of C,
sing2,st(Ξ) is dense in singstΞ.

(6) If 2 ≤ (1/2)h0(C̃, L) = multLΞ, i.e., if RST holds at L in sing Ξ, or if
L is base point free and if multLΞ = r, where 2 ≤ (1/2)h0(C̃, L) ≤ r ≤
h0(C̃, L)−1, then ϕη(C) ⊂ Sec(ϕ eK(C̃))∩PTLP ⊂ {ϑ̃2r = 0}∩PTLP =
PCL(Ξ), as sets.

(7) Cor: If g(C) ≥ 11 and C not tetragonal, then for any double cover of
C, ϕη(C) ⊂ PCL(Ξ) for all L in a dense open subset of singstΞ.

(8) Cor: If W is a smooth cubic threefold and (P,Ξ) the Prym variety
associated to the odd cover of the discriminant plane quintic C for the
conic bundle structure on W defined by any general line on W , then
ϕη(C) ⊂ PCL(Ξ), where L is the unique singular point on Ξ. Since the
union of these Prym canonical models is dense in W , W ⊂ PCL(Ξ),
and since by [SV1, V] L is a triple point, W = PCL(Ξ).

(9) Cor: The restricted norm map h : X → |ωC | is defined by a linear
subsystem of |OX(1)|, where OX(1) ∼= Tϕ ⊗ ϕ∗(KΞ), and Tϕ is the
bundle of tangents “along the fibers” of ϕ, in case dim(singΞ) ≤ p−5.
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