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Let E be an (L1, L∞)-interpolation space. Then (TE(t)f)(x)
= f(e−tx) defines a group on E. It is strongly continuous if
and only if E has order continuous norm. In any case, a
generator AE can be associated with TE. It is shown that
its spectrum is the strip {αE ≤ Re λ ≤ αE}, where αE and
αE are the Boyd indices of E. The operator BE = (AE)2

generates a holomorphic semigroup which governs the Black–
Scholes partial differential equation ut = x2uxx + xux, whose
well-posedness, spectrum and asymptotics in E are studied.

0. Introduction.

Let E be an (L1, L∞)-interpolation space on (0,∞), R or T. Then the upper
and lower Boyd indices αE and αE are of great importance. For example,
the Hilbert transform is bounded on E if and only if 0 < αE and αE < 1.
Also norm convergence of the Fourier series can be expressed in terms of the
Boyd indices (see [BS]). In his paper [Bo], Boyd computes the spectrum
of the Cesaro operator in terms of the Boyd indices. Here we consider a
natural one-parameter group of dilations (TE(t))t∈R on E. It turns out that
the Boyd indices are just the growth bounds (or exponential bounds) of this
group.

To be more precise, we consider an (L1, L∞)-interpolation space E on
(0,∞) througout this article. The group TE on E is defined by

(TE(t)f)(x) = f(e−tx)

for all f ∈ E, t ∈ R, x > 0. Now the first problem is that TE is not strongly
continuous, in general. In fact, one of our main results says that TE is a
C0-group if and only if E has order continuous norm.

Still it is possible to associate a generator AE to TE without any further
condition on the space, and we show that its spectrum is the strip

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
Thus the spectrum of AE varies very much in function of the space E. It
turns out that the Cesaro operator is just (1 − AE)−1. Thus it is bounded
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if and only if αE < 1. In that case we obtain its spectrum just by applying
the result above on the spectrum of AE .

Of particular interest is the operator BE = (AE)2. In fact, BE is a degen-
erate elliptic operator given by (BEf)(x) = x2f ′′(x) + xf ′(x) with suitable
domain. As a consequence of the results on AE we obtain much information
on BE . It always generates a generalized holomorphic semigroup VE on E.
So this semigroup gives the solution of the Black-Scholes partial differential
equation

(BS) ut = x2uxx + xux.

We show that the semigroup VE is strongly continuous if and only if E has
order continuous norm. Nevertheless, one of the main results says that TE

as well as VE are always σ(E,E′n)-continuous, where E′n is the Köthe dual
of E; i.e., the space of all functionals given by a measurable function. This
allows us to formulate precisely well-posedness for (BS) in E. Finally, we
consider perturbations of the operator BE . The results imply in particular
well-posedness of the more general equation

ut = αx2uxx + βxux + γu

where α > 0 is a constant and β, γ ∈ L∞(0,∞).

Because of its importance in mathematical finance (see [BlSc]), the Black-
Scholes partial differential equation has been investigated most recently. We
refer to Gozzi, Monte, Vespri [GMV], Barucci, Gozzi, Vespri [BGV] and
Colombo, Giuli, Vespri [CGV] for further information. We would like to
emphasize that the motivation for this work lies in the interesting relations
between properties of interpolation spaces and the semigroups considered
here. It is not at all a contribution to modelling in mathematical finance.

The paper is organized in the following way: After some preliminaries
we show in Section 2 that the semigroup TE is strongly continuous if and
only if E has order continuous norm. In that case we can use a result
of Greiner [G] to determine the spectrum of E. In the less conventional
situation where E does not have order continuous norm we use the theory
of resolvent positive operators and integrated semigroups. Now the situation
is much more complicated, and Section 3 is devoted to the generalization
of Greiner’s decomposition theorem to resolvent bipositive operators. In
Section 4 we prove the results on the spectrum in the general case. Here it
is also shown that the semigroup TE is σ(E,E′n)-continuous. In Section 5
we investigate the Black-Scholes operator BE = (AE)2. Its perturbations
are studied in Section 6.



BLACK–SCHOLES EQUATION AND INTERPOLATION 3

1. Preliminaries.

On the interval (0,∞) we consider Lebesgue measure (dm or dx). For a
Borel measurable function f : (0,∞) → C the distribution function is
defined by d|f |(λ) = m{t ∈ (0,∞) : |f(t)| > λ} for λ > 0. We will consider
only functions f for which d|f |(λ) < ∞ for some λ > 0. The space of all
such functions will be denoted by S0(0,∞). For f ∈ S0(0,∞) we define

f∗(t) = inf{λ > 0 : d|f |(λ) ≤ t} for t > 0.

Then f∗ : (0,∞) → (0,∞) is decreasing, right-continuous and equimea-
surable with |f | (i.e., df∗ = d|f |). The function f∗ is called the decreasing
rearrangement of |f | (see e.g., [BS]). In particular we recall that∫ t

0
f∗(s)ds = sup

{∫
A

|f |dm : A ⊂ (0,∞) measurable and m(A) ≤ t

}

(by [BS, Prop. 3.3., p. 53]).

Suppose that E is a linear subspace of S0(0,∞), which is a Banach space
with respect to the norm ‖·‖E . Then E will be called a rearrangement
invariant Banach function space if

f ∈ E , g ∈ S0(0,∞) and g∗ ≤ f∗ imply that g ∈ E and ‖g‖E ≤ ‖f‖E

(see e.g., [KPS]). If E is such a rearrangement invariant space on (0,∞),
we always have the continuous embeddings

L1 ∩ L∞(0,∞) ⊆ E ⊆ (L1 + L∞)(0,∞).

Here the spaces L1 ∩ L∞ and L1 + L∞ are equipped with the norms

‖f‖L1∩L∞ = max {‖f‖1 , ‖f‖∞},
‖f‖L1+L∞ = inf {‖g‖1 + ‖h‖∞ : f = g + h,

g ∈ L1(0,∞), h ∈ L∞(0,∞)},
respectively.

Given f, g ∈ S0(0,∞), we say that g is submajorized by f (in the sense
of Hardy-Littlewood-Polya) if∫ t

0
g∗(s)ds ≤

∫ t

0
f∗(s)ds for all t > 0,

which is denoted by g ≺≺ f .
Using this submajorization relation the exact (L1, L∞)-interpolation spaces

can be characterized. In fact, it is a result of A.P. Calderon (e.g., see [BS,
Theorem 2.12]) that a Banach space (E, ‖ ‖E), with E ⊆ (L1 + L∞)(0,∞),
is an exact (L1, L∞)-interpolation space if and only if,

f ∈ E, g ∈ S0(0,∞) and g ≺≺ f imply that g ∈ E and ‖g‖E ≤ ‖f‖E .
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In particular, such interpolation spaces are rearrangement invariant Ba-
nach function spaces. Although some of the results in this paper hold for
more general rearrangement invariant spaces, we will assume that the spaces
we consider are exact (L1, L∞)-interpolation spaces. This class includes
many of the classical function spaces (e.g., Lp-spaces, Orlicz spaces, Lorenz
spaces, Marcinkiewiecz spaces).

If E is a rearrangement invariant Banach function space on (0,∞) which
is monotone complete (i.e., 0 ≤ fn ∈ E, fn ≤ fn+1 a.e., sup

n
‖fn‖E < ∞

implies that there exists 0 ≤ f ∈ E such that fn ↑ f a.e. and ‖f‖E =
sup

n
‖fn‖E), then E is an exact (L1, L∞)-interpolation space (see e.g., [BS,

Theorem 2.2, p. 106]).
Similarly, any rearrangement invariant Banach function space with order

continuous norm is an exact (L1, L∞)-interpolation space.
Since every interpolation space can be renormed in such a way that it

becomes an exact interpolation space (see [BS]), in the following we will
assume that the interpolation space is exact, throughout the paper.

For s > 0 the dilation operator Ds, acting on measurable functions f on
(0,∞), is defined by

Dsf(t) = f(t/s), t > 0.

Clearly, the operators Ds are bounded on any (L1, L∞)-interpolation
space E and satisfy ‖Ds‖E ≤ max (1, s) for all s > 0. Note that (Dsf)∗ =
Dsf

∗ for all s > 0 and all f ∈ E, so in particular ‖Dsf‖E is an increasing
function of s.

For such a space E the upper and lower Boyd indices are defined by

αE = lim
s→∞

log ‖Ds‖
log s

, αE = lim
s↓0

log ‖Ds‖
log s

respectively, and satisfy 0 ≤ αE ≤ αE ≤ 1 (see e.g., [BS], [KPS]). By
way of example, if E = Lp ∩ Lq(0,∞), 1 ≤ p ≤ q ≤ ∞, (equipped with
the norm ‖f‖E = max (‖f‖p , ‖f‖q)), then αE = 1/q, αE = 1/p.

In Section 4 we will use the following result.

Lemma 1.1. Let E be an (L1, L∞)-interpolation space on (0,∞) and µ a
(positive) Borel measure on (0,∞).

Suppose that f ∈ E satisfies
∫∞
0 ‖Dsf‖E dµ(s) < ∞.

Then
∫∞
0 Dsf(x)dµ(s) is absolutely convergent for almost all x > 0,∫ ∞

0
Dsf(·)dµ(s) ∈ E and

∥∥∥∥∫ ∞

0
Dsf(·)dµ(s)

∥∥∥∥
E

≤
∫ ∞

0
‖Dsf‖E dµ(s).

In particular, if
∫∞
0 ‖Ds‖E dµ(s) < ∞, then

Tµf(x) =
∫ ∞

0
Dsf(x)dµ(s), a.e. x ∈ (0,∞),
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defines a bounded linear operator in E satisfying

‖Tµ‖E ≤
∫ ∞

0
‖Ds‖E dµ(s).

Proof. The proof is divided in two parts.

1. Suppose that f ∈ (L1 + L∞)(0,∞) is such that
∫∞
0 Dsf

∗(·)dµ(s) ∈
(L1 + L∞)(0,∞). We claim that

∫∞
0 Dsf(x)dµ(s) is absolutely convergent

for a.e. x ∈ (0,∞), and that∫ ∞

0
Dsf(·)dµ(s) ≺≺

∫ ∞

0
Dsf

∗(·)dµ(s).

Indeed, for any measurable set A ⊆ (0,∞) with m(A) < ∞ we have∫
A

(∫ ∞

0
|Dsf(x)|dµ(s)

)
dx =

∫ ∞

0

(∫
A
Dsf(x)dx

)
dµ(s) ≤

∫ ∞

0

(∫ m(A)

0
Dsf

∗(x)dx

)
dµ(s) =

∫ m(A)

0

(∫ ∞

0
|Dsf

∗(x)|dµ(s)
)
dx < ∞.

This shows in particular that
∫∞
0 |Dsf(x)|dµ(s) < ∞ for a.e. x ∈ (0,∞).

Moreover, ∫ t

0

(∫ ∞

0
|Dsf(·)|dµ(s)

)∗
(x)dx

= sup
{∫

A

(∫ ∞

0
|Dsf(x)|dµ(s)

)
dx : m(A) ≤ t

}
≤
∫ t

0

(∫ ∞

0
Dsf

∗(x)dµ(s)
)
dx for all t > 0,

and since |
∫∞
0 Dsf(x)dµ(s)| ≤

∫∞
0 |Dsf(x)|dµ(s) the claim follows.

2. Now assume that f ∈ E is such that
∫∞
0 ||Dsf ||Edµ(s) < ∞. Since

||Dsf ||E = ||Dsf
∗||E , it follows from [KPS, II.4.7] that

∫∞
0 Dsf

∗(·)dµ(s) ∈
E and ∥∥∥∥∫ ∞

0
Dsf

∗(·)dµ(s)
∥∥∥∥

E

≤
∫ ∞

0
‖Dsf‖E dµ(s).

From 1. above it follows that
∫∞
0 Dsf(x)dµ(s) is absolutely convergent

for a.e. x ∈ (0,∞), and∫ ∞

0
Dsf(·)dµ(s) ≺≺

∫ ∞

0
Dsf

∗(·)dµ(s).
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Since E is an exact (L1, L∞)-interpolation space, this implies that∫∞
0 Dsf(·)dµ(s) ∈ E and∥∥∥∥∫ ∞

0
Dsf

∗(·)dµ(s)
∥∥∥∥

E

≤
∫ ∞

0
‖Dsf‖Dsf ‖E dµ(s).

Finally it should be observed that the function
∫∞
0 Dsf(·)dµ(s) does not

depend (modulo Lebesgue null sets) on the choice of the representative f .
�

Next we recall some notions and results concerning resolvent positive
operators which will be needed later. Let E be a Banach lattice. An operator
A on E is called resolvent positive if there exists a number λ0 ∈ R such
that (λ0,∞) ⊂ %(A) and R(λ,A) ≥ 0 for all λ > λ0. Denote by

s(A) = sup{Reλ : λ ∈ σ(A)}
the spectral bound of A. It is known that

s(A) = inf{λ ∈ R ∩ %(A) : R(λ,A) ≥ 0}
and that, s(A) ∈ σ(A) if s(A) > −∞. Moreover, one hat

0 ≤ R(µ,A) ≤ R(λ,A) if µ > λ > s(A)(1.1)

and

|R(λ,A)x| ≤ R(Reλ,A)|x|(1.2)

for all x ∈ E , Re λ > s(A). We say that A generates an integrated
semigroup, if there exists a stronlgy continuous increasing function S :
[0,∞) → L(E) satisfying S(0) = 0 such that

R(λ,A) =
∫ ∞

0
e−λt dS(t) (λ > λ0)(1.3)

(as an improper strongly defined Riemann-Stieltjes integral) for some λ0 ≥
%(A). In that case S is called the integrated semigroup generated by
A, and it is known that (1.3) converges whenever Reλ > s(A). Moreover,

R(λ,A) = λ

∫ ∞

0
e−λtS(t) dt (Reλ > max{s(A), 0}).(1.4)

We need the following lemma.

Lemma 1.2. Assume that S is bounded. Then s(A) < 0.

Proof. It follows from [A2] Proposition 6.1 that s(A) ≤ 0. Now (1.4) implies
that ‖R(λ,A)‖ ≤ M = sup

t≥0
‖S(t)‖ for λ > 0. This implies that 0 ∈ %(A)

and R(0, A) = lim
λ↓0

R(λ,A) ≥ 0. Then for small µ < 0

R(µ,A) =
∞∑

n=0

(−µ)nR(0, A)n+1 ≥ 0.
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This implies that s(A) < 0. �

It is known that a resolvent positive operator generates a once integrated
semigroup if D(A) is dense or E has order continuous norm. We refer to
[A2] for this and further information. Without any further assumption, it
is known ([A3, Corollary 4.5]) that every resolvent positive operator A gen-
erates a twice integrated semigroup S2; i.e., S2 : [0,∞) → L(E) is strongly
continuous increasing function such that

R(λ,A) =
∫ ∞

0
λ2e−λtS2(t) dt (Reλ > max{s(A), 0}).

Of course, if A generates a C0-semigroup, then S(t) =
∫ t
0 T (s) ds is the

once-integrated semigroup and S2(t) =
∫ t
0

∫ s
0 T (r)dr ds the twice integrated

semigroup generated by A.

2. The Cesaro operator in spaces with order continuous norm.

In this section we will show that the theory of strongly continuous positive
semigroups provides on efficient framework to compute the spectrum of the
Cesaro operator in certain rearrangement invariant Banach function spaces.
Let E be an (L1, L∞)−interpolation space on (0,∞). For t ∈ R and f ∈ E
let T (t)f(x) = f(e−tx) for a.e. x ∈ (0,∞). This defines a bounded linear
operator T (t) on E satisfying ‖T (t)‖E ≤ max(1, et), and TE = {T (t)}t∈R
is a group. The growth bounds of this group are

ω+
0 (TE) := lim

t→∞

log ‖T (t)‖E

t
= lim

s→∞

log ‖Ds‖
log s

= αE ,

ω−0 (TE) := lim
t→∞

log ‖T (−t)‖E

t
= lim

s↓0

log ‖Ds‖
log s

= −αE .

Now assume in addition that E has order continuous norm. Using that
stepfunctions on bounded intervals are dense in E, it follows immediately
that TE is a strongly continous group. Let AE be the generator of TE . The
spectral bounds of AE are defined by

s+(AE) = sup{Reλ : λ ∈ σ(AE)},

s−(AE) = sup{Reλ : λ ∈ σ(−AE)} = s+(−AE).

Then − ω−0 (TE) ≤ −s−(AE) ≤ s+(AE) ≤ ω+
0 (AE), and

σ(AE) ⊆ {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}.

Theorem 2.1. Let E be a rearrangement invariant Banach function space
on (0,∞) with order continuous norm. Then

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
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Proof. The proof is divided in three steps:

1. First we show that σ(AE) is invariant under purely imaginary trans-
lations. To this end, for τ ∈ R we define the isometry Mτ : E → E by
Mτf(x) = xiτf(x) for a.e. x ∈ (0,∞) and all f ∈ E. Then M−1

τ T (t)Mτ =
e−itτT (t) for all t, τ ∈ R, and so M−1

τ AEMτ = AE − iτ for all τ ∈ R.
Hence σ(AE) = σ(M−1

τ AEMτ ) = σ(AE)− iτ for all τ ∈ R.

2. Next we will show that σ(AE) ∩ R = [− s−(AE) , s+(AE)]. It is
clear that σ(AE) ∩ R ⊆ [− s−(AE) , s+(AE)]. Moreover, since TE consists
of positive operators, s+(AE) , − s−(AE) ∈ σ(AE) (see e.g., [N], C - III,
Theorem 1.1). Take µ ∈ ρ(AE) ∩ R. We claim that either µ > s+(AE) or
µ < − s−(AE). Indeed, defining

Iµ = {f ∈ E : R(µ,AE)|f | ≥ 0} and
Jµ = {f ∈ E : R(µ,AE)|f | ≤ 0},

it follows from the Theorem on p. 43 in [G] that Iµ and Jµ are TE−invariant
bands satisfying E = Iµ ⊕ Jµ. Since any band in E is of the form {f ∈
E : f = 0 a.e. on B} for some measurable subset B ⊆ (0,∞), it is easy
to see that the only TE−invariant bands are E and {0}. Hence Iµ = E or
Jµ = E. Suppose that Iµ = E. From the definition of Iµ it then follows
that R(µ,AE) ≥ 0, which implies that µ > s+(AE) (see [N, C - III,
Theorem 1.1.]). If Jµ = E, a similar argument shows that µ < − s−(AE),
by which the claim is proved.

3. Finally we show that s+(AE) = αE and s−(AE) = −αE . Take
λ > s+(AE). Then (see e.g., [N, C - III, Theorem 1.2.])

R(λ,AE)f =
∫ ∞

0
e−λtT (t)f dt for all f ∈ E.

Fix f ∈ E. Observe that (T (t)f)∗ = T (t)f∗ and that the function
t 7→ T (t)f∗ is increasing for t ≥ 0. Hence

R(λ,AE)f∗ =
∫ ∞

0
e−λsT (s)f∗ ds ≥

∫ ∞

t
e−λsT (s)f∗ ds ≥ e−λt

λ
T (t)f∗

for all t ≥ 0 (note that λ > s+(AE) ≥ −ω−0 (TE) = αE ≥ 0). This implies
that

‖T (t)f‖E ≤ λeλt ‖R(λ,AE)f∗‖E ≤ λeλt ‖R(λ,AE)‖E ||f ||E
for all t ≥ 0. This shows that ω+

0 (TE) ≤ λ, and consequently ω+
0 (TE) ≤

s+(AE). Hence ω+
0 (TE) = s+(AE), i.e., αE = s+(AE). Via a similar

argument it follows that s−(AE) = −αE . Combining the results of (1), (2)
and (3) we see that

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE}.
�
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Recall that the Cesaro operator C on (0,∞) is given by

Cf(x) =
1
x

∫ x

0
f(u)du , x > 0,

defined for functions f on (0,∞) which are integrable on (0, x) for all x > 0.
If E is a rearrangement invariant Banach function space on (0,∞) such that
Cf ∈ E for all f ∈ E, we denote the induced operator in E by CE . Then
CE is a positive, and so a bounded operator on E.

Corollary 2.2. Let E be a rearrangement invariant Banach function space
on (0,∞) with order continuous norm. Then the Cesaro operator is bounded
on E if and only if αE < 1. In that case the spectrum σ(CE) of CE is given
by

σ(CE) =
{
λ ∈ C : 1 − αE ≤ Re

(
1
λ

)
≤ 1 − αE

}
∪ {0}.

Proof. Assume that αE < 1. Then s(AE) < 1 by Theorem 2.1. Moreover,
we have

(R(1, AE)f)(x) =
(∫ ∞

0
e−tT (t)f dt

)
(x)

=
∫ ∞

0
e−tf(e−tx) dt =

1
x

∫ x

0
f(u)du

for almost all x ∈ E and all f ∈ E.
Conversely, assume that the Cesaro operator is bounded on E. Consider

the operators S(t) =
∫ t
0 e

−sT (s) ds. Then

(S(t)f)(x) =
1
x

∫ x

e−tx
f(u)du ≤ (CEf)(x) a.e.

Hence ‖S(t)‖ ≤ ‖CE‖ (t ≥ 0). This implies that s(AE) < 1 by Lemma 1.2.
Now assume that αE < 1. Then CE = R(1, AE). From the spectral

mapping theorem for resolvents and Theorem 2.1. it follows that

σ(CE) =
{

1
1− z

: z ∈ σ(AE)
}
∪ {0}

=
{
λ ∈ C : 1 − αE ≤ Re

(
1
λ

)
≤ 1− αE

}
∪ {0}.

�

Remark 2.3. 1. For E = Lp(0,∞) , 1 < p < ∞, the result of the above
corollary was obtained by D.W. Boyd in [Bo]. In the same paper the result
of the above corollary is announced but, as fas as we know, a proof was
never published.
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2. For a large class of rearrangement invariant Banach function spaces
E on (0,∞) it is well-known that boundedness of CE is equivalent with
αE < 1. For spaces E with the Fatou property, this result is originally
due to D.W. Boyd [Bo]. Proofs can also be found in e.g., [BS]. In a
later section of the present paper we will discuss this equivalence for general
(L1, L∞)-interpolation spaces.

3. In [A4] the semigroup TE has been used on E = Lp(0,∞) to
produce an example of p-dependent spectrum. It is remarkable that on
Lp ∩ Lq(1,∞) , p 6= q, the type of the semigroup is strictly larger than the
spectral bound [A5].

4. In the proof of Theorem 2.1 it was not necessary to compute the
explicit form of the generator AE of TE . However, it is not difficult to show
that this generator is given by AEf(x) = −xf ′(x), a.e. x ∈ (0,∞), with
domain

D(AE) = {f ∈ E : f ∈ ACloc(0,∞) and xf ′(x) ∈ E}.
We leave the details to the reader.

Crucial in the above approach is the strong continuity of the group TE . As
we have seen, if E has order continuous norm, then TE is strongly continuous.
We will show next that strong continuity of TE implies that E has order
continuous norm. In the theorem which follows we need not assume that
E is an (L1, L∞)-interpolation space. In fact, if E is any rearrangement
invariant Banach function space on (0,∞), then TE is a group of bounded
linear operators in E with ‖T (t)‖ ≤ max(1, et) for all t ∈ R (this follows
from [KPS, Section II, 4.3]).

Theorem 2.4. Let E be a rearrangement invariant Banach function space
on (0,∞). The group TE is strongly continuous if and only if E has order
continuous norm.

In the proof of this theorem we will use a criterion for order continuity
of the norm which is implicit in [KPS, (Section II, 4.5)]. For the sake of
convenience we will state this criterion in the next lemma and provide the
proof.

Lemma 2.5. Let E be a rearrangement invariant Banach function space
on (0,∞). Then E has order continuous norm if and only if

(i)
∥∥∥f∗χ(0, 1

n
)

∥∥∥
E
→ 0 (n→∞) for all f ∈ E;

(ii)
∥∥∥f∗χ(n,∞)

∥∥∥
E
→ 0 (n → ∞) for all f ∈ E.

Proof. It is clear that order continuity of the norm implies (i) and (ii).
Now assume that E satisfies (i) and (ii). First observe that (ii) implies that
f∗(t) → 0 as t → ∞ for all f ∈ E, i.e., that m{x ∈ (0,∞) : |f(x)| > λ} <
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∞ for all λ > 0 and all f ∈ E. Now suppose that fn ∈ E (n = 1, 2, . . . )
such that fn ↓ 0 a.e. . Let ε > 0 be given. By (i), (ii) there exists N ∈ N such
that

∥∥∥f∗1χ(0,1/N)

∥∥∥
E
< ε and

∥∥∥f∗1χ(N,∞)

∥∥∥
E
< ε. From the above observation

it follows that f∗n(1/N) ↓ 0 as n→∞. Hence there exists n0 ∈ N such that
f∗n(1/N) < ε for all n ≥ n0. For n ≥ n0 we have

‖fn‖E = ‖f∗n‖E ≤
∥∥∥f∗nχ(0, 1

N
)

∥∥∥
E

+
∥∥∥f∗nχ[ 1

N
,N ]

∥∥∥
E

+
∥∥∥f∗nχ(N,∞)

∥∥∥
E

≤
∥∥f∗1χ(0,1/N)

∥∥
E

+ ε
∥∥∥χ[1/N,N ]

∥∥∥
E

+
∥∥∥f∗1χ(N,∞)

∥∥∥
E

≤ 2ε+ εC
∥∥∥χ[1/N,N ]

∥∥∥
L1+L∞

≤ (2 + C)ε,

where C > 0 is the embedding constant of E into (L1 + L∞)(0,∞). This
shows that ‖fn‖E ↓ 0 (n → ∞), and we may conclude that E has order
continuous norm. �

Proof of Theorem 2.4. As observed already above, if E has order continuous
norm, then TE is strongly continuous. Now assume that TE is strongly
continuous. Fix f ∈ E and define g(s) = f∗(s− 1) for s > 1 and g(s) = 0
for 0 < s ≤ 1. Then g∗ = f∗, so g ∈ E. Since T (t)g(s) = 0 for
0 < s ≤ et, it follows that |T (t)g − g| ≥ gχ(1,et] for all t > 0, and
so
∥∥gχ(1,et]

∥∥
E
≤ ‖T (t)g − g‖E for all t > 0. Hence

∥∥gχ(1,et]

∥∥
E
→ 0 as

t ↓ 0. Now (gχ(1,et])∗ = f∗χ(0,et−1] implies that
∥∥f∗χ(0,et−1]

∥∥
E
→ 0 as

t ↓ 0, which shows that
∥∥f∗χ(0,1/n)

∥∥
E
→ 0 (n → ∞). It remains to show

that
∥∥f∗χ(n,∞)

∥∥
E
→ 0 (n → ∞). Define n0 = 0 and nk = 3(nk−1 + 1) for

k = 1, 2, . . . , and let

h(s) =

{
f(s+ k − nk − 1) if nk < s ≤ nk + 1 , k = 1, 2 . . .
0 otherwise.

Then h∗ = f∗, so f ∈ E. Now let ε > 0 be given. By the strong
continuity of TE , there exists 0 < t0 ≤ 1 such that ‖T (− t0)h − h‖E < ε.
Take k0 such that e−t0 < nk (nk + 1)−1 for all k ≥ k0. Now observe

that h is supported on the set
∞⋃

k=1

(nk , nk + 1] and T (− t0)h is supported

on
∞⋃

k=1

(e−t0nk , e
−t0(nk + 1)]. Since, by the definition of the nk’s and by the

choice of k0 , nk−1 + 1 < e−t0nk < e−t0(nk + 1) < nk for all k ≥ k0, it
follows that hχ(nk0

,∞) and T (− t0)χ(nk0
,∞) are disjointly supported. Hence,

|T (− t0)h− h| ≥ |T (− t0)h − h|χ(nk0
,∞) ≥ hχ(nk0

,∞)
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which implies that
∥∥∥hχ(nk0

,∞)

∥∥∥
E
< ε. Now

(hχ(nk0
,∞))

∗ = f∗χ(k0−1,∞) , so
∥∥f∗χ(k0−1,∞)

∥∥
E
< ε.

This shows that
∥∥f∗χ(n,∞)

∥∥
E
→ 0 (n → ∞). Via Lemma 2.5 it now

follows that E has order continuous norm. �

The above theorem shows in particular that it is not possible to compute
the spectrum of the Cesaro operator using the theory of strongly continuous
(semi)groups, as in the proof of Theorem 2.1, if the space E does not have
order continuous norm. This is one of the motivations for the investigations
in the next section. In particular we will need an appropriate substitute for
the spectral decomposition theorem for generators of strongly continuous
groups of G. Greiner [G].

3. Spectral decomposition.

Througout this section we assume that A is an operator on a complex Banach
lattice E such that ±A is resolvent positive (we say that A is resolvent
bipositive). Then we know from the proof of [N, C-III Corollary 1.6] that
σ(A) 6= ∅. Denote by

s(A) = sup{Re λ : λ ∈ σ(A)}
the spectral bound of A. Then we know that

σ(A) ⊂ {λ ∈ C : −s(−A) ≤ Re λ ≤ s(A)};(3.1)
s(A),−s(−A) ∈ σ(A);(3.2)
R(λ,A) ≥ 0 if λ > s(A);(3.3)
R(λ,A) ≤ 0 if λ < −s(−A).(3.4)

Definition 3.1. Let µ ∈ (−s(−A), s(A)). We say that A allows a spec-
tral decomposition with respect to µ if there exists a band decompo-
sition E = E1 ⊕E2 such that R(λ,A)Ei = Ei (i = 1, 2) for all λ ∈ %(A)
and such that the part Ai of A in Ei satisfies

σ(A1) = {λ ∈ σ(A) : Reλ < µ},
σ(A2) = {λ ∈ σ(A) : Reλ > µ}.

In particular, in that case ±Ai is resolvent positive and s(A1) < µ and
−s(−A2) > µ.

The main result of this section is the following:

Theorem 3.2. Let µ ∈ (−s(−A), s(A)) ∩ %(A). Then A allows a spectral
decomposition with respect to µ if one of the following two conditions is
satisfied.
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(a) The operator A satisfies
(Kµ) x ∈ D(A) implies |x| ∈ D(A) and |(µ−A)|x| | ≤ |(µ−A)x|;
(b) The domain D(A) is dense.

The condition (Kµ) is a weak form of Kato’s equality which we will discuss
later.

For the proof we can assume that µ = 0 which we will do in the following.
It is known that for λ ∈ %(A)∩R one has R(λ,A) ≥ 0 if and only if λ > s(A)
(see [N, C-III Theorem 1.1]). In view of this, following Greiner’s idea [N,
C-III Theorem 4.8], we set

E1 = {x ∈ E : R(0, A)|x| ≥ 0};
E2 = {x ∈ E : R(0, A)|x| ≤ 0}.

Lemma 3.3. a) E1 and E2 are closed ideals in E.
b) The operator A allows a spectral decomposition with respect to 0 when-

ever E1 + E2 = E.

Remark 3.4. Lemma 3.3 a) is true without additional hypotheses. Condi-
tions (a), (b) of Theorem 3.2 are used to show that E = E1 +E2. Our point
is to replace in Greiner’s argument the semigroup (which does not need to
exist here, see Example 3.13) by the twice integrated semigroup. Moreover,
we simplify the argument using the following description of the abscissa of
the Laplace transform (see [ANS, Proposition 1.1] or [HP, Sec. 6.2] for a
proof).

Lemma 3.5. Let X be a Banach space and f : [0,∞) → X be continuous.
Then abs (f) ≤ 0 (i.e., f̂(λ) := lim

t→∞

∫ t
0 e

−λsf(s) ds exists whenever Reλ >

0) if and only if

sup
t≥0

e−wt

∥∥∥∥∫ t

0
f(s) ds

∥∥∥∥ <∞, for all w > 0.

Proof of Lemma 3.3. Let S be the twice integrated semigroup generated by
A; that is, S : [0,∞) → L(E) is strongly continuous and there exists ω ≥ 0
such that (ω,∞) ⊂ %(A), sup

t≥0
‖e−ωtS(t)‖ <∞ and,

R(λ,A)x = λ2

∫ ∞

0
e−λtS(t)x dt (Reλ > ω, x ∈ E).

Then S(t) ≥ 0 and S(t)R(λ,A) = R(λ,A)S(t) for all λ ∈ %(A), t ≥ 0 and
for all x ∈ E,∫ t

0
S(s)x ds ∈ D(A) and A

∫ t

0
S(s)x ds = S(t)x− t2

2
x.(3.5)
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See Section 1 and [A3] for these notions and results. We claim that for
x ∈ E,

x ∈ E1 if and only if abs (S(·)|x|) ≤ 0.(3.6)

In fact, if x ∈ E1, then by (3.5) (since 0 ∈ %(A)),∫ t

0
S(s)|x| ds =

t2

2
R(0, A)|x| − S(t)R(0, A)|x|

≤ t2

2
R(0, A)|x| (t ≥ 0).

Hence abs (S(·)|x|) ≤ 0 by Lemma 3.5. Conversely, assume abs (S(·)|x|) ≤ 0.
Then r(λ) = λ2

∫∞
0 e−λtS(t)|x| dt (Re λ > 0) is holomorphic and for

λ > ω one has r(λ) = R(λ,A)|x|, or equivalently, λA−1r(λ)−r(λ) = A−1|x|.
This remains true for Re λ > 0 by the uniqueness of holomorphic extensions.
Hence R(λ,A)|x| = r(λ) ≥ 0 for λ ∈ (0, ε) where ε > 0 such that (0, ε) ⊂
%(A). This implies R(0, A)|x| ≥ 0.

a) It follows from (3.6) and Lemma 3.5 that E1 is an ideal. Closedness
follows from the definition. Replacing A by −A we see that also E2 = {x :
R(0,−A)|x| ≥ 0} is a closed ideal.

b) It is clear that E1 ∩ E2 = {0}. Now assume that E1 + E2 = E. Then
E1 and E2 are projection bands.

Let λ0 > s(A). Since R(λ0, A) ≥ 0 and R(λ0, A)S(t) = S(t)R(λ0, A)
it follows from (3.6) and Lemma 3.5 that R(λ0, A)Ei ⊂ Ei (i = 1, 2).
Hence R(λ0, A)P1 = P1R(λ0, A) where P1 denotes the band projection onto
E1. It follows easily that x ∈ D(A) implies P1x ∈ D(A) and AP1x = P1Ax;
and this in turn implies R(λ,A)P1 = P1R(λ,A) for all λ ∈ %(A). Thus
R(λ,A)Ei ⊂ Ei (i = 1, 2) for all λ ∈ %(A). Hence %(A) = %(A1)∩%(A2).
Finally, by the first part of the proof, Q(λ)x = λ2

∫∞
0 e−λtS(t)x dt exists for

all x ∈ E1 and Reλ > 0. Thus Q(λ) ∈ L(E1), A−1Q(λ) = Q(λ)A−1 and
λA−1Q(λ)x−Q(λ)x = A−1x if Reλ > ω and so for Reλ > 0 by holomorphy.
This implies that λ ∈ %(A1) and Q(λ) = (λ− A1)−1 if Re λ > 0. Similarly,
{λ : Reλ < 0} ⊂ %(A2). �

Lemma 3.6. If (K0) holds, then E = E1 + E2.

Proof. Let 0 ≤ x ∈ E and y = R(0, A)x. Then |y| ∈ D(A) and |A|y| | ≤
|Ay| = x. Thus x1 := 1

2(x−A|y|) ≥ 0 and x2 := 1
2(x+A|y|) ≥ 0. Moreover,

R(0, A)x1 = 1
2(R(0, A)x + |y|) = 1

2(y + |y|) = y+ ≥ 0. Thus y1 ∈ E1.
Similarly, R(0, A)x2 = −y− ≤ 0 so that x2 ∈ E2. Clearly, x = x1 + x2. We
have shown that E+ ⊂ E1+ + E2+. This implies the claim. �

Now we prove Theorem 3.2. Under the hypothesis (a), the proof is com-
plete. Case (b) follows from the following lemma.
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Lemma 3.7. Assume that D(A) is dense. Then E = E1 + E2.

Proof. We can assume that E is a real Banach lattice.

a) Let x ∈ D(A3), σ = sign q(x) ∈ L(E′′) where q : E → E′′ is the
canonical embedding. We show that

〈σAx, ϕ〉 = 〈|x|, A′ϕ〉 (ϕ ∈ D(A′3)).(3.7)

In fact, it follows from the resolvent equation that R(λ,A) is decreasing
on (s(A),∞). Consequently, λR(λ,A)y = R(λ,A)Ay + y is bounded on
[s(A)+1,∞) and so R(λ,A)y → 0 (λ→∞) for y ∈ D(A). This implies
that λR(λ,A)y → y (λ→∞) if y ∈ D(A2). Finally,

λ2R(λ,A)y − λy = λR(λ,A)Ay → Ay (λ→∞)

if y ∈ D(A3). For the same reason,

λ2R(λ,A)′ϕ− λϕ→ A′ϕ (λ→∞)

if ϕ ∈ D(A′3). Consequently, if 0 ≤ ϕ ∈ D(A′3), then

〈σAx, ϕ〉 = lim
λ→∞

〈σ(λ2R(λ,A)x− λx) , ϕ〉

= lim
λ→∞

〈σ(λ2R(λ,A)x)− λ|x|, ϕ〉

≤ lim sup
λ→∞

〈λ2R(λ,A)|x| − λ|x|, ϕ〉

= lim sup
λ→∞

〈|x|, λ2R(λ,A)′ϕ− λϕ〉

= 〈|x|, A′ϕ〉.

Replacing A by −A gives (3.7) for 0 ≤ ϕ ∈ D(A′3). Let µ0 > s(A). Since
D(A′3) = R(µ0, A)′3E′ = D(A′3)∩E′+−D(A′3)∩E′+ we obtain (3.7) for all
ϕ ∈ D(A′3).

b) Next we assume that µ = 0 ∈ %(A) as before. Given y ∈ D(A2), we
show that there exists z′′ ∈ E′′ such that |z′′| ≤ |y| and

|R(0, A)y| = R(0, A)′′z′′.(3.8)

In fact, let x = R(0, A)y, σ = sign q(x), z′′ = σy. Let ψ ∈ D(A′2), ϕ =
R(0, A)′ψ. Then by (3.7),

〈R(0, A)′′z′′, ψ〉 = 〈z′′, R(0, A)′ψ〉
= 〈z′′, ϕ〉 = −〈σAx, ϕ〉 = −〈|x|, A′ϕ〉
= 〈|x|, ψ〉.

Since D(A′2) = (R(0, A)′)2E′ separates points, (3.8) follows.
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c) Let y ∈ D(A2)+. Then (R(0, A)y)+ ∈ E1. In fact,

(R(0, A)y)+ = 1/2(|R(0, A)y|+R(0, A)y)
= 1/2(R(0, A)′′z′′ +R(0, A)y)
= R(0, A)′′y′′1

where y′′1 = 1/2(y + z′′) ≥ 0. It follows from (3.5) that(∫ t

0
S(s) ds

)′′
= t2/2 R(0, A)′′ − S(t)′′R(0, A)′′.

Hence (∫ t

0
S(s) ds

)′′
y′′1 = t2/2 R(0, A)′′y′′1 − S(t)′′R(0, A)′′y′′1

= t2/2 (R(0, A)y)+ − S(t)(R(0, A)y)+

≤ t2/2 (R(0, A)y)+.

Hence ∥∥∥∥∫ t

0
S(s)(R(0, A)y)+ ds

∥∥∥∥ =
∥∥∥∥∫ t

0
S(s)R(0, A)′′ y′′1 ds

∥∥∥∥
≤ t2/2 ‖R(0, A)‖ ‖(R(0, A)y)+‖.

Thus abs (S(·)(R(0, A)y)+) ≤ 0 by Lemma 3.5.
It follows from (3.6) that (R(0, A)y)+ ∈ E1.

d) Let y ∈ D(A2)+. Then, applying c) to (−A) we have

(R(0, A)y)− = (R(0,−A)y)+ ∈ E2.

Thus R(0, A)y = (R(0, A)y)+ − (R(0, A)y)− ∈ E1 + E2.
Since for µ > s(A), D(A2) = R(µ,A)2E = R(µ,A)2E+−R(µ,A)2E+ one

has D(A2) = D(A2)+ −D(A2)+. Thus D(A3) = R(0, A)D(A2) ⊂ E1 + E2.
Consequently, E = D(A3) ⊂ E1 + E2 = E1 + E2, the sum of closed ideals
being closed [S, III.1.2]. �

Let T ∈ L(E). A band B of E is called reducing for T if TB ⊂ B and
TBd ⊂ Bd (equivalently, T commutes with the band projection onto B).

Corollary 3.8. Let A be an operator on E such that

(a) ±A is resolvent positive;
(b) R(λ,A) has no nontrivial reducing band for some (equivalently all )

λ ∈ %(A).
(c) D(A) is dense or A satisfies (Kµ) for all µ ∈ R.

Then σ(A) ∩ R = [−s(−A), s(A)].
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Next we give several comments concerning the inequality (Kµ). Greiner
[G] (see also [N, C-III Section 4]) uses Kato’s equality

(K) A|x| = Re ((sign x)Ax)

in his proof of the decomposition theorem. It holds for all x ∈ D(A) if A is
the generator of a positive C0-group on a σ-order complete Banach lattice.
In particular, D(A) is a sublattice of E. Here, for x ∈ E, x = Re x− iImx
denotes the complex conjugate of x. Moreover, for x ∈ E, the operator
sign x ∈ L(E) is uniquely determined by the properties

(sign x)x = |x|
|(sign x)y| ≤ |y| (y ∈ E)

(sign x)y = 0 if y ⊥ x.

It is clear that A − µ satisfies (K) for all µ ∈ R if A satisfies (K). Thus
condition (K) implies condition (Kµ) for all µ ∈ R.

However, the converse is not true. In fact, in the following proposition we
show that the adjoint A′ of the generator A of a positive C0-group always
satisfies (Kµ) for all µ ∈ R. However, we show by an example that (K) may
be violated.

Proposition 3.9. Let B be the generator of a positive C0-group T on a
Banach lattice F and let A = B′ on E = F ′. Then A satisfies (Kµ) for all
µ ∈ R.

Proof. We can assume µ = 0. Recall that D(B′) = Fav (B′) = {ϕ ∈ F ′ :
lim supt↓0 1/t‖T (t)′ϕ − ϕ‖ < ∞}, see [EN, Chapter II.5.19] or [CH]. Let
ϕ ∈ D(B′). Let 0 ≤ x ∈ E , 1 ≥ t ≥ 0. Then

〈|T (t)′ϕ− ϕ|, x〉 = sup
|y|≤x

|〈T (t)′ϕ− ϕ, y〉|

= sup
|y|≤x

∣∣∣∣∫ t

0
〈B′ϕ, T (s)y〉 ds

∣∣∣∣
≤
∫ t

0
〈|B′ϕ|, T (s)x〉 ds.

It follows that〈
1
t
(T (t)′|ϕ| − |ϕ|), x

〉
=

〈
1
t
(|T (t)′ϕ| − |ϕ|), x

〉
≤

〈
1
t
|T (t)′ϕ− ϕ|, x

〉
≤ 1

t

∫ t

0
〈|B′ϕ|, T (s)x〉 ds

≤ ‖B′ϕ‖ sup
0<t≤1

‖T (s)x‖.
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Thus, |ϕ| ∈ Fav (B′) = D(B′). Moreover,

〈B′|ϕ| , x〉 = lim
t↓0t

1
t
〈T (t)′|ϕ| − |ϕ| , x〉

≤ lim
t↓0t

1
t

∫ t

0
〈|B′ϕ| , T (s)x〉 ds

≤ 〈|B′ϕ|, x〉.
Hence B′|ϕ| ≤ |B′ϕ|. �

Remark 3.10. It follows from Proposition 3.9 that Theorem 3.2 also holds
if A is the adjoint of a generator B of a positive C0-group. But of course,
this can be directly seen by applying Theorem 3.2 to B.

Next we show that in the situation of Proposition 3.7 it can happen that
|B′|ϕ| | 6= |B′ϕ| for some ϕ ∈ D(B′); in particular, B′ does not satisfy (K)
in general.

Example 3.11. Consider in the space E = C0(R), equipped with the sup-
norm, the C0-group (T (t))t∈R given by T (t)f(x) = f(x+ t) for all x, t ∈ R.
The generator B of this group is given by Bf = f ′ with D(B) = {f ∈
C1

0 (R) : f ′ ∈ C0(R)}. Identifying the dual space C0(R)′ with the space
Mb(R) of all bounded Borel measures on R, it is easy to see that D(B′) =
{µ ∈ Mb(R) : Dµ ∈ Mb(R)} and B′µ = −Dµ for all µ ∈ D(B′), where
Dµ denotes the distributional derivate of the measure µ. As is well-known,
every µ ∈ D(B′) is absolutely continuous with respect to Lebesgue measure
and is of the form µ = fdx with f ∈ L1(R) ∩ BV (R). Moreover, for such
measures µ we have Dµ = df (where df denotes the Borel measure induced
by f). Now take f = −1(−1,0] + 1(0,1] and µ = fdx. Then µ ∈ D(B′)
and B′µ = −Dµ = δ−1 − 2δ0 + δ1, hence |B′µ| = δ−1 + 2δ0 + δ1 (here δp
denotes the Dirac measure at the point p). Since |µ| = |f |dx, it follows that
B′|µ| = −D|µ| = −δ−1 + δ1, hence |B′|µ|| = δ−1 + δ1. This shows that
|B′|µ|| 6= |B′µ|, so B′ does not satisfy the Kato equality.

Remark 3.12. a) In Example 3.11 one has D(B′) = L1(R), and the part
A of B′ in L1(R) generates a positive C0-group (given by the right shift).
Thus the part of B′ in D(B′) does satisfy (K).

b) More generally, D(A) is a band if A is a resolvent positive operator on
a KB-space ([AB, Appendice]).

We conclude giving an example where ±A is resolvent positive, E is a
reflexive Banach lattice, but neither A nor −A generate C0-semigroups.

Example 3.13. a) Let (F, ‖ ‖F ) be a Banach function space on (0,∞)
corresponding to the function norm ‖ ‖F given by

‖f‖F = ‖f‖Lp(0,∞) + ‖f‖Lq(1,∞)
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where 1 < p < q < ∞. Then (T (t)f)(x) = f(etx) defines a lattice
C0-semigroup on F . Let B be its generator. Then σ(B) = {λ ∈ C : Re λ =
−1

p} and R(λ,B) ≥ 0 for λ > −1
p , R(λ,B) ≤ 0 for λ < −1

p . But −B is not
generator of a C0-semigroup.

b) Taking E = F⊕F and A = B⊕(−B) one obtains the desired example.

Proof of a). Let G = Lp(0,∞). Then (U(t)f)(x) = f(etx) defines a positive
C0-group on G. Let A be its generator. Then σ(A) = {λ ∈ C : Re λ = −1

p}
and (R(λ,A)f)(x) =

∫∞
0 e−λtf(etx) dt = xλ

∫∞
x f(s)s−λ−1 ds for λ > −1

p .
One has U(t)F ⊂ F and T (t) = U(t)|F (t ≥ 0). Thus B is the part

of A in F .
Observe that R(λ,A)G ⊂ F (λ > −1

p). In fact, let 0 ≤ f ∈ G, g(x) =
(R(λ,A)f)(x) = xλ

∫∞
x f(s)s−λ−1 ds. Then

g(x) ≤ xλ‖f‖p

(∫ ∞

x
s(−λ−1)p′ ds

) 1
p′

≤ const · ‖f‖p · x−
1
p

for x ≥ 1 (where 1
p + 1

p′ = 1). Thus g · 1(1,∞) ∈ L∞(1,∞) ∩ Lp(1,∞) ⊂
Lq(1,∞).

It follows that (−1
p ,∞) ⊂ %(B) and R(λ,B) = R(λ,A)|F ≥ 0 (λ > −1

p).
Since, for λ > −1

p , D(A) = R(λ,A)G ⊂ F , we have R(λ,A)G ⊂ F for all
λ ∈ %(A). Thus, for λ < −1

p , λ ∈ %(B) and R(λ,B) = R(λ,A)|F ≤ 0.
Assume that −B generates a C0-semigroup (T (−t))t≥0. Then T (t)f =

lim
n→∞

(I+ t
nB)−nf in F for all f ∈ F . Since F is continuously embedded into

G, it follows that T (t) = U(−t).
However, U(−t)F 6⊂ F, t > 0, which is a contradiction. In fact, let

−1
p < α < −1

q and f(x) = (1− x)α1(0,1)(x). Then∫ ∞

0
|f(x)|p dx =

∫ 1

0
(1− x)αp dx =

∫ 1

0
yαp dy =

1
αp+ 1

<∞.

Thus f ∈ F . However, for t > 0 , U(−t)f 6∈ Lq(1,∞). In fact,

‖U(−t)f‖q
Lq(1,∞) =

∫ ∞

1
f(e−tx)q dx =

1∫
e−t

(1− y)αq dy et

=
∫ 1−e−t

0
yαq dy et = ∞

since αq + 1 < 0. �

In Section 4 a whole class of operators A is given for which ±A is resolvent
positive but D(A) is not dense. The preceding example has the additional
remarkable property that the semigroup operators T (t) which always exist
as operators from D(A2) into E are not bounded on E. Recall, that A
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generates a twice integrated semigroup S and T (t)x = d2

dt2
S(t)x exists for

all x ∈ D(A2).

4. The Cesaro operator on arbitrary interpolation spaces.

In this section we shall illustrate how the theory developed in the previous
section can be used to obtain results analogous to the ones in Section 2, but
now for a much larger class of function spaces.

Let E be an exact (L1, L∞)-interpolation space on (0,∞). As in Section 2
we denote by TE = {T (t)}t∈R the group defined by T (t)f(x) = f(e−tx).
Since we do not assume that E has order continuous norm, the group TE

need not be strongly continuous (see Theorem 2.4). For t ≥ 0 define

S+(t)f(x) =

t∫
0

T (s)f(x) ds =

t∫
0

f(e−sx) ds , x > 0 , f ∈ E.

Using that E is an (L1, L∞)-interpolation space, it follows that S+(t) is a
bounded linear operator in E and ‖S+(t)‖E ≤ et−1 for all t ≥ 0. Moreover,
‖S+(t+ h)− S+(t)‖E ≤ het+h for all t, h ≥ 0. Similarly, if we define

S−(t)f(x) =

t∫
0

T (−s)f(x) ds =

t∫
0

f(esx) ds, x > 0, f ∈ E,

then ‖S−(t)‖E ≤ max(1 − e−t, t) and ‖S−(t + h) − S−(t)‖E ≤ he−t for
all t, h ≥ 0. We show next that {S+(t)}t≥0 and {S−(t)}t≥0 are actually
integrated semigroups in E. To this end, for λ ∈ C with Re λ > 1 define

R(λ)f(x) = x−λ

x∫
0

uλ−1f(u)du, x > 0, f ∈ E.

Via interpolation, R(λ) is a bounded linear operator in E and

‖R(λ)‖E ≤ (Reλ− 1)−1.(4.1)

Similarly, for Reλ < 0 we define

R(λ)f(x) = −x−λ

∞∫
x

uλ−1f(u)du, x > 0, f ∈ E;

then

‖R(λ)‖E ≤ (−Reλ)−1.(4.2)

Now it is not difficult to verify that R(λ) = R(λ,AE) on {Reλ > 1} ∪
{Reλ < 0}, where AE : D(AE) → E is given by

D(AE) = {f ∈ E : f ∈ ACloc(0,∞), xf ′(x) ∈ E}, AEf(x) = −xf ′(x).
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Moreover, integration by parts shows that

R(λ,AE)f = λ

∞∫
0

e−λtS+(t)fdt, Re λ > 1, f ∈ E

and

R(λ,−AE)f = λ

∞∫
0

e−λtS−(t)fdt, Re λ > 0, f ∈ E.

Hence, {S+(t)}t≥0 and {S−(t)}t≥0 are the integrated semigroups generated
by AE and −AE respectively. In particular, ±AE are resolvent positive.

Remark 4.1. From the estimates (4.1) and (4.2) on R(λ,AE) above, it
follows that the part of AE in D(AE) generates a strongly continuous group
(cf. [A1, Corollary 4.2]). It is easy to see that this group is the restriction of
TE to D(AE). This implies that D(AE) = {f ∈ E : lim

t→0
‖T (t)f − f‖E = 0}.

In combination with Theorem 2.4, this shows that D(AE) is dense if and
only if E has order continuous norm.

Theorem 4.2. Let E and AE be as above. Then

σ(AE) = {λ ∈ C : αE ≤ Reλ ≤ αE},

where αE and αE denote the lower- and upper-Boyd indices of E.

Proof. We divide the proof in five steps.

(1) As before, we denote s+(AE) = sup{Reλ : λ ∈ σ(AE)} and s−(AE) =
s+(−AE). Then σ(AE) ⊆ {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}. Moreover,
s+(AE), −s−(AE) ∈ σ(AE) as ±AE are resolvent positive.

(2) Next we may use Corollary 3.8 to conclude that

σ(AE) ∩ R = [−s−(AE), s+(AE)].

Indeed, from the explicit form of AE given above it follows immediately
that AE satisfies the Kato equality and hence (K0). Furthermore, using the
representation of R(λ,AE) as an integral operator for Reλ > 1 it is easily
seen that R(λ,AE) has no nontrivial reducing bands.

(3) For τ ∈ R we define the isometry Mτ in E by Mτf(x) = xiτf(x), x >
0. Then M−1

τ AEMτ = AE − iτ , and hence σ(AE) = σ(AE) − iτ for all
τ ∈ R.

A combination of (1), (2) and (3) already shows that

σ(AE) = {λ ∈ C : −s−(AE) ≤ Reλ ≤ s+(AE)}.
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(4) We will show now that s+(AE) = αE . Take ω > αE . From the
definition of αE it follows that there existsMω > 0 such that ‖Ds‖E ≤Mωs

ω

for all s ≥ 1. Since

S+(t)f(x) =
∫ t

0
f(e−sx) ds =

∫ et

1
Duf(x)

du

u

for all f ∈ E, x > 0 and t ≥ 0, it follows from Lemma 1.1 that

‖S+(t)‖E ≤
∫ et

1
‖Du‖E

du

u
≤ Mω

ω
eωt

for all t ≥ 0. Hence, if Reλ > w then the integral
∫∞
0 e−λtS+(t) dt is con-

vergent and R(λ) = λ
∫∞
0 e−λtS+(t) dt is analytic on {Reλ > ω}. Therefore

s+(AE) ≤ ω, and this shows that s+(AE) ≤ αE . Now take λ > s+(AE).
For t ≥ 0 we have (since λ > 0) :

R(λ,AE) =

∞∫
0

e−λsdS+(s) ≥
t∫

0

e−λsdS+(s) ≥ e−λtS+(t),

so ‖S+(t)‖E ≤ eλt‖R(λ,AE)‖E . For f ∈ E the function s 7→ T (s)f∗ is
increasing on [0,∞), hence

0 ≤ T (t)f∗(x) ≤
∫ t+1

t
T (s)f∗(x) ds ≤ S+(t+ 1)f∗(x), x > 0,

and so

‖T (t)f‖E = ‖T (t)f∗‖E ≤ ‖S+(t+ 1)f∗‖E ≤ (eλ‖R(λ,AE)‖E)eλt‖f‖E .

This shows that ‖T (t)‖E ≤ Cλe
λt for all t ≥ 0, which implies (see the

beginning of Section 2) that αE ≤ λ. Hence αE ≤ s+(AE).

(5) Finally we show that s−(AE) = −αE . To prove that s−(AE) ≤ −αE

we may assume that αE > 0, as s−(AE) ≤ 0. Take −αE < ω < 0. From
the definition of αE it follows that there exists Mω > 0 such that ‖Ds‖E ≤
Mωs

−ω for all 0 < s ≤ 1. Via Lemma 1.1 we see that

S−(∞)f(x) :=
∫ ∞

0
f(esx) ds =

1∫
0

Duf(x)
du

u
, f ∈ E, x > 0,

defines a bounded linear operator in E with ‖S−(∞)‖E ≤ (−ω)−1Mω.
Moreover, using Lemma 1.1 again, ‖S−(t) − S−(∞)‖E ≤ (−ω)−1Mωe

ωt

for all t ≥ 0. Hence (cf. [A2, Proposition 5.5]; [HP, Theorem 6.2.1])
λ 7→

∫∞
0 e−λtdS−(t) is analytic on {Re λ > ω} and so s−(AE) ≤ ω. This

shows that s−(AE) ≤ −αE .
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Now we show that −αE ≤ s−(AE). We may assume that s−(AE) < 0, as
αE ≥ 0. Take s−(AE) < λ < 0. Then

R(λ,−AE) =

∞∫
0

e−λsdS−(s) ≥
t∫

t−1

e−λsdS−(s) ≥ e−λ(t−1){S−(t)−S−(t−1)}

for all t ≥ 1. For f ∈ E the function s 7→ T (−s)f∗ is decreasing on [0,∞),
so

0 ≤ T (−t)f∗(x) ≤
t∫

t−1

T (−s)f∗(x) ds = S−(t)f∗(x)− S+(t)f∗(x), x > 0,

and hence

‖T (−t)f‖E = ‖T (−t)f∗‖E ≤ eλ(t−1)‖R(λ,−AE)‖E‖f‖E

for all t ≥ 1. From this estimate it follows immediately that −αE ≤ λ,
and we may conclude that −αE ≤ s−(AE). This completes the proof of the
theorem. �

Corollary 4.3. Let E be an exact (L1, L∞)-interpolation space on (0,∞).
Then the Cesaro operator CE is bounded on E if and only if αE < 1. In
that case

σ(CE) =
{
λ ∈ C : 1− αE ≤ Re

(
1
λ

)
≤ 1− αE

}
∪ {0}.(4.3)

Proof. If αE < 1 then, by the above theorem, 1 ∈ %(AE) and integration by
parts gives

R(1, AE)f(x) =

∞∫
0

e−tS+(t)f(x) dt =

∞∫
0

e−tf(e−tx) dt

=
1
x

x∫
0

f(u)du , a.e. x ∈ (0,∞)

for all f ∈ E, i.e., R(1, AE) = CE . The indentity (4.3) now follows from a
combination of Theorem 4.2 with the spectral mapping theorem for resol-
vents. Conversely, assume that the Cesaro operator is bounded on E. It is
easy to see that the integrated semigroup generated by A− I is given by

(W (t)f)(x) =

t∫
0

e−sf(e−sx) ds.
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Since

(W (t)f)(x) ≤ 1
x

x∫
0

f(u)du (x− a.e.)

it follows that ‖W (t)‖ ≤ ‖CE‖ for all t ≥ 0. By Lemma 1.2 this implies that
s(A− I) < 0. �

Remark 4.4. If we assume that αE > 0 then it follows by an argument
similar to the above that the operator C̃E , defined by

C̃Ef(x) =

∞∫
x

f(u)
du

u
, a.e. x ∈ (0,∞), f ∈ E,

is bounded on E and

σ(C̃E) =
{
λ ∈ C : αE ≤ Re

(
1
λ

)
≤ αE

}
∪ {0}.

Indeed, if αE > 0 then 0 ∈ σ(AE) and C̃E = −R(0, AE). It should be ob-
served that in this general situation (i.e., without any additional assumption
on the norm of E) it seems that this last result cannot be obtained via a
duality argument from Corollary 4.3.

As before, let E be an exact (L1, L∞)-interpolation space on (0,∞), and
we denote by {TE(t)}t∈R the group of bounded operators in E given by
TE(t)f(x) = f(e−tx) for all f ∈ E. As we have seen, if E does not have
order continuous norm, this group is not strongly continuous. However,
there is always a natural (locally convex) topology in E with respect to
which the group is continuous. For this purpose, let E′n denote the Köthe
dual (or associate space) of E, i.e.,

E′n =

g ∈ L0(0,∞) :

∞∫
0

|fg|dx <∞ ∀ f ∈ E

 .

Every g ∈ E′n defines a bounded (order continuous) linear functional ϕg on

E, given by 〈f, ϕg〉 =
∞∫
0

fgdx for all f ∈ E. In this way we can identify E′n

with subspace of the norm dual E′ (and under the present assumptions on
E, this subspace is norming for E). As is known, equipped with the norm
‖g‖

E′n
= ‖ϕg‖E′n

, the space E′n is an exact (L1, L∞)-interpolation space on
(0,∞).

Proposition 4.5. The group {TE(t)}t∈R is continuous with respect to σ(E,
E′n), i.e., for every f ∈ E and g ∈ E′n the function t 7→

∫∞
0 T (t)f(x)g(x)dx

is continuous.



BLACK–SCHOLES EQUATION AND INTERPOLATION 25

Proof. First we assume that E is satisfies the additional condition

(∗) f∗(x) → 0 as x→∞ for all f ∈ E.

For every g ∈ E′n we define the seminorm pg on E by pg(f)=
∫∞
0 f∗(x)g∗(x)dx

for all f ∈ E. Note that subadditivity of pg follows from [BS, Proposition
3.6 and (3.10) on p. 54]. Actually we will show that {TE(t)}t∈R is continuous
with respect to the topology σ∗ generated by the seminorms {pg : g ∈ E′n}.
Since, by the Hardy-Littlewood quality,∣∣∣∣∣∣

∞∫
0

f(x)g(x)dx

∣∣∣∣∣∣ ≤
∞∫
0

f∗(x)g∗(x)dx ∀ f ∈ E, g ∈ E′n,

the result of the proposition then follows immediately.
We denote by S the linear span of all characteristic functions 1(a,b] with

0 ≤ a < b < ∞. We claim that S is dense in E with respect to σ∗. Let A
be a measurable subset of (0,∞) such that A ⊆ (0, R] for some 0 < R <∞.
Then there exists a sequence {Bn}∞n=1 of subsets of (0, R], each Bn being
a finite union of intervals, such that m(A4 Bn) → 0 (n → ∞). This
implies that (1A − 1Bn)∗ → 0 on (0,∞) as n → ∞, and so, by dominated
convergence, pg(1A−1Bn) → 0 (n→∞) for all g ∈ E′n. Hence 1A ∈ Sσ∗.
Now take 0 ≤ f ∈ E. Then there exists a sequence {fn}∞n=1 of simple
functions on bounded measurable sets such that 0 ≤ fn ↑ f a.e. on (0,∞).
Since f∗(x) → 0 as x → ∞, it follows that (f − fn)∗ ↓ 0 on (0,∞). Hence
pg(f−fn) → 0 (n→∞) for all g ∈ E′n by dominated convergence. From
this we may conclude that f ∈ Sσ∗, by which the claim is proved.

Now we show that pg(TE(t)f − f) → 0 (t→ 0) for all f ∈ E, g ∈ E′n.
This is easily verified for f ∈ S. Take f ∈ E arbitrary, h ∈ S and g ∈ E′n.
Then

pg(TE(t)f − f) ≤ pg(TE(t)(f − h)) + pg(TE(t)h− h) + pg(f − h).

For −1 ≤ t ≤ 1 we have

pg(TE(t)(f − h)) =

∞∫
0

[TE(t)(f − h)]∗g∗dx

=

∞∫
0

TE(t)(f − h)∗g∗dx ≤
∞∫
0

(f − h)∗(e−1x)g∗(x)dx

=

∞∫
0

(f − h)∗(x)g∗(ex)edx = pg1(f − h),
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where g1 ∈ E′n is given by g1(x) = eg∗(ex). This shows that

lim sup
t→0

pg(TE(t)f − f) ≤ pg1(f − h) + pg(f − h)

for all h ∈ S. Since Sσ∗ = E, we may conclude that lim
t→0

pg(TE(t)f − f) = 0.

Observe that for f ∈ E, g ∈ E′n and s ∈ R we have

pg(TE(s)f) =

∞∫
0

TE(s)f∗ · g∗dx = es
∞∫
0

f∗(x)g∗(esx)dx

= es
∞∫
0

f∗[TE′n(−s)g]∗dx = pgs(f),

where gs = esTE′n(−s)g. From this it follows that

lim
t→s

pg(T (t)f − T (s)f) = 0

for all f ∈ E, g ∈ E′n and s ∈ R. This concludes the proof of the proposition
in the case that E satisfies (∗).

Now assume that E does not satisfy (∗). Then 1 ∈ E and so E′n ⊆ L1,
which implies that E′n satisfies (∗). Since E is a subspace of (E′n)′n, it follows
from the first part of the proof that

lim
t→0

∞∫
0

f · TE′n(t)gdx =

∞∫
0

fgdx

for all f ∈ E and g ∈ E′n. Since
∞∫
0

TE(t)f · gdx = et
∞∫
0

fTE′n(−t)gdx,

this implies that lim
t→s

∫∞
0 TE(t)f · gdx =

∫∞
0 fgdx for all f ∈ E and g ∈ E′n.

This suffices to prove the proposition in this case.

5. The Black-Scholes partial differential equation in
(L1, L∞)-interpolation spaces.

The Black-Scholes partial differential equation is a degenerate parabolic
equation of the form

ut = x2uxx + xux (t > 0, x > 0).(5.1)

The aim of this section is to discuss its well-posedness, spectral properties
and asymptotic behaviour in (L1, L∞)-interpolation spaces. It is convenient
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to consider the corresponding operator

B : D(0,∞)′ → D(0,∞)′

Bf = x2f ′′ + xf ′;
i.e., 〈Bf, ϕ〉 = 〈f, ((m2ϕ)′ −mϕ)′〉

for all ϕ ∈ D(0,∞), f ∈ D(0,∞)′ where m(x) = x (x > 0).
Given an (L1, L∞)-interpolation space E we consider the part BE of B

in E; i.e., BE is the operator on E with domain

D(BE) = {f ∈ E : Bf ∈ E}
BEf = Bf .

Here we use that E ⊂ L1
loc(0,∞) ⊂ D(0,∞)′ with the usual identification of

functions with distributions. The following proposition allows us to use the
results of the preceding sections.

Proposition 5.1. Let E be an (L1, L∞)-interpolation space. Then BE =
(AE)2.

Proof. Recall that D(AE) = {f ∈ E : mf ′ ∈ E}, AEf = −mf ′.
a) We show that λ2 − BE is injective for λ > 1. Let k ∈ D(BE) such

that (λ2 −BE)k = 0. Let h = λk +mk′ ∈ D(0,∞)′. Then λh−mh′ = 0 in
D(0,∞)′. This implies that h ∈ C(0,∞) and

(x−λh)′ = x−λ−1(−λh+ xh′) = 0.

Hence h(x) = cxλ for some constant c. Thus λk(x) + xk′(x) = cxλ ∈
D(0,∞)′. Hence k ∈ C∞(0,∞) and

(xλk)′ = xλ−1(λk + xk′) = cx2λ−1.

This implies that xλk = ax2λ+b for some constants a and b. We have shown
that k(x) = axλ + bx−λ which is in L1 + L∞ only if a = b = 0.

b) Now let f ∈ D(BE). Let λ > 1. Then λ ∈ %(±AE). Hence λ2 ∈ %(A2
E)

and R(λ2, A2
E) = (λ − AE)−1(λ + AE)−1. Let k = R(λ2, A2

E)(λ2 − BE)f .
Then k ∈ D(A2

E). Since A2
E is a restriction of BE we have (λ2 − BE)k =

(λ2−BE)f . Since (λ2−BE) is injective, it follows that f = k ∈ D(A2
E). �

As a first consequence we determine the spectrum of BE .

Theorem 5.2. Let E be an (L1, L∞)-interpolation space with Boyd indices
αE and αE. Then

σ(BE) =
{
r + is : α2

E − s2

4α2
E

≤ r ≤ α2
E − s2

4α2
E

}
;

i.e., σ(BE) is the region between two parabolas (with appropriate modifica-
tion if αE = 0 or αE = αE = 0).
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Proof. By Theorem 4.2 we have

σ(AE) = {λ ∈ C : αE ≤ Re λ ≤ αE}.
Since σ(BE) = σ(AE)2 it follows that

σ(BE) = {α2 + 2αβi− β2 : β ∈ R, αE ≤ α ≤ αE}

=
{
α2 − s2

4α2
+ is : s ∈ R, αE ≤ α ≤ αE

}
which implies the claim. �

Thus the spectrum of BE varies very much as a function of the (L1, L∞)-
interpolation space.

Next we consider the semigroup generated by BE .

Theorem 5.3. Let E be an (L1, L∞)-interpolation space with order contin-
uous norm. Then BE generates a holomorphic C0-semigroup VE on E of
angle π/2. Moreover, the exponential type ω(VE) of VE is given by

ω(VE) = (αE)2.

Proof. This follows directly from the fact that BE = (AE)2 and that AE

generates a C0-group (cf. [N, Theorem 1.15]). It follows from Theorem 5.2
that s(BE) = (αE)2. Since VE is holomorphic, s(BE) = ω(VE). �

If E does not have order continuous norm, then D(BE) is not dense. Still
the holomorphic estimate for the resolvent is valid. This situation is very
well studied by E. Sinestrari [Si] from which we quote the following result.

Theorem 5.4. Let A be an operator on a Banach space X. Assume that
there exist w ∈ R, θ ∈ [0, π/2] such that{

w + Σ(θ + π/2) ⊂ %(A) and
‖λR(λ,A)‖ ≤M if λ ∈ w + Σ(θ + π/2).(5.2)

Then there exists a holomorphic mapping

T : Σ(θ) → L(X)

such that T (z + z′) = T (z)T (z′) (z, z′ ∈ Σ(θ)),

sup
|Argz|<θ′

‖e−wzT (z)‖ <∞ for all 0 < θ′ < θ,(5.3)

and

R(λ,A) =

∞∫
0

e−λtT (t) dt (λ > ω).(5.4)

In that case, we call T the generalized holomorphic semigroup gener-
ated by A.
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Here we used the usual notation

Σ(θ) = {reiα : r > 0, α ∈ (−θ, θ)}.
The semigroup T has the following regularity property. Considering D(Ak)
as a Banach space for the norm ‖x‖D(Ak) = ‖x‖+ ‖Ax‖+ . . .+ ‖Akx‖, one
has

T (·)x ∈ C∞((0,∞), D(Ak)) and(5.5)
d

dt
T (t)x = AT (t)x (t > 0)(5.6)

for all x ∈ X, k ∈ N, see [Si] for this. Denoting by

s(A) = sup{Reλ : λ ∈ σ(A)}
the spectral bound of A, as before, and by

ω(T ) = inf
{
w ∈ R : sup

t≥0
‖e−ωtT (t)‖ <∞

}
the type of T , one has as in the strongly continuous case

s(A) = ω(T ).(5.7)

Proof of (5.7). Let Y = D(A) ⊂ X and denote by A0 the part of A in
Y . Then A0 generates a holomorphic C0-semigroup (T0(t))t≥0 on Y and
one has T0(t) = T (t)|Y . Since D(A) ⊂ Y one has σ(A) = σ(A0) (by [A4,
Proposition 1.1]), and in particular s(A) = s(A0). Let w′ > s(A). Then

‖T0(t)‖L(Y ) ≤M ′ew
′t (t ≥ 0).

Since T (1)X ⊂ Y , it follows that ω(T ) ≤ ω′. �

Now we can formulate the following result for the operator BE .

Proposition 5.5. Let E be an (L1, L∞)-interpolation space. Then BE gen-
erates a generalized holomorphic semigroup VE on E. The semigroup VE is
strongly continuous if and only if E has order continuous norm. Finally the
exponential type of VE is given by

ω(VE) = (αE)2.(5.8)

Proof. It follows from (4.1) and (4.2) that

‖R(λ,AE)‖ ≤ (|Reλ| − 1)−1 (|Reλ| ≥ 1).(5.9)

Now the argument given in [N] A-II Theorem 1.14 and 1.15 shows that
BE = A2

E satisfies (5.2). Hence BE generates a generalized holomorphic
semigroup.

If D(BE) is dense, then also D(AE) is dense, since D(BE) ⊂ D(AE).
Conversely, assume that D(AE) is dense. Then λR(λ,AE) → I strongly as
λ → ∞. Hence (λR(λ,AE))2 → I strongly as λ → ∞. Thus D(BE) =
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D(A2
E) is dense. Now the second claim follows from Theorem 2.4. Finally,

Theorem 5.2 and (5.7) imply that ω(VE) = s(BE) = (αE)2. �

Next we establish the usual formula for VE .

Proposition 5.6. Let E be an (L1, L∞)-interpolation space. Then

〈VE(t)f, ϕ〉 = (4πt)−1/2

∫
R

e−r2/4t〈TE(r)f, ϕ〉dr(5.10)

for all f ∈ E, ϕ ∈ E′.

Proof. We use the following formula

e−λ|r|

2λ
=

∞∫
0

e−λ2t(4πt)−1/2e−r2/4t dt,(5.11)

valid for all λ > 0, r ∈ R (see [D, p. 138]).
For λ > 1 we have
∞∫
0

e−λ2tVE(t) dt = R(λ2, A2
E)

= (λ−AE)−1(λ+AE)−1 = −R(λ,AE)R(−λ,AE)

=
R(λ,AE) +R(−λ,AE)

2λ

=
1
2λ

 ∞∫
0

e−λtTE(t) dt+

∞∫
0

e−λtTE(t) dt


=

+∞∫
−∞

e−λ|r|

λ
TE(r) dr

=

+∞∫
−∞

TE(r)

∞∫
0

e−λ2t(4πt)−1/2e−r2/4t dt dr

=

∞∫
0

e−λ2t

∫
R

(4πt)−1/2e−r2/4tTE(r) dr dt.

Here the integrals involving TE(t) are understood in the σ(E,E′)-duality.
Observe that it suffices to evaluate by f ∈ E+ and ϕ ∈ E′+ only, so that
Fubini’s theorem can be applied. Now the claim follows from the uniqueness
theorem for Laplace transforms. �
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It is easy to deduce a pointwise expression from (5.10):

(VE(t)f)(x) = (4πt)−1/2

∫
R

e−r2/4tf(e−rx) dr(5.12)

= (4πt)−1/2

∞∫
0

e−(log x−log y)2/4tf(y)
dy

y
.

Thus VE is an integral operator.
From Proposition 5.6 we now deduce the following continuity result.

Proposition 5.7. Let E be an exact interpolation space and E′n its Köthe
dual. Then VE is σ(E,E′n)-continuous, i.e.,

lim
t↓0
〈VE(t)f, ϕ〉 = 〈f, ϕ〉

for all f ∈ E, ϕ ∈ E′n.

Proof. Let f ∈ E, ϕ ∈ E′n. Let ε > 0. By Proposition 4.5 we can choose
δ > 0 such that |〈TE(r)f, ϕ〉 − 〈f, ϕ〉| ≤ ε if |r| ≤ δ. Then

lim sup
t↓0

|〈VE(t)f, ϕ〉 − 〈f, ϕ〉|

= lim sup
t↓0

(4πt)−1/2

∣∣∣∣∣∣
∫
R

e−r2/4t(〈TE(r)f, ϕ〉 − 〈f, ϕ〉)dr

∣∣∣∣∣∣
≤ ε+ lim sup

t↓0
(4πt)−1/2

∫
|r|≥δ

e−r2/4t|〈TE(r)f, ϕ〉 − 〈f, ϕ〉|dr

= ε.

This implies the claim. �

Now we obtain the following final result on existence and uniqueness for
the Black & Scholes partial differential equation.

Theorem 5.8. Let E be an exact (L1, L∞)-interpolation space with Köthe
dual E′n. Let f ∈ E, u(t) = VE(t)f . Then u is the unique solution of the
Cauchy problem

u ∈ C1((0,∞);E), u(t) ∈ D(BE) (t > 0);
u̇(t) = BEu(t) (t > 0)
lim
t↓0

u(t) = f for σ(E,E′n).
(CP)

Moreover, if we put u(t, x) = (VE(t)f)(x) = u(t)(x), then u ∈ C∞(0,∞) ×
(0,∞) and

(BS) ut = x2uxx + xux (t > 0, x > 0).
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Proof. We know that u is a solution of (CP ). In order to prove uniqueness
let u be a solution of (CP ) with f = 0. Let t > 0, v(s) = VE(t−s)u(s), s ∈
(0, t). Since VE is holomorphic and d

dtVE(t) = BEVE(t) (t > 0) we have

v̇(s) = −BEVE(t− s)u(s) + VE(t− s)u̇(s) = 0.

Thus v is constant on (0, t). Moreover, VE(t− s) → VE(t) as s ↓ 0 in L(E).
Let ϕ ∈ E′n. Then

〈v(s), ϕ〉 = 〈(VE(t− s)− VE(t))u(s), ϕ〉
+〈u(s), VE(t)′ϕ〉

→ 0 (s ↓ 0).

Here we use that VE(t)′ϕ ∈ E′n which follows from (5.10). Thus v(s) ≡ 0
on (0, t). Since u(s) → u(t) in norm as s ↑ t and VE(t − s)u(t) → u(t) for
σ(E,E′n) as s ↑ t, it follows that v(s) = VE(t − s)(u(s) − u(t)) + VE(t −
s)u(t) → u(t) as s ↑ t for σ(E,E′n). Thus u(t) = 0.

It remains to show the regularity result. For f ∈ D(AE) we have f ∈
L1

loc(0,∞) and xf ′ ∈ E ⊂ L1
loc(0,∞). Hence f ∈ C(0,∞). From this one

obtains by induction that D(Ak+1
E ) ⊂ Ck(0,∞) for all k ∈ N. Now we know

that VE(·)f ∈ C∞((0,∞), D(Bk
E)) = C∞((0,∞);D(A2k

E )) for all f ∈ E. It
is not difficult to see that this implies that u ∈ C∞(0,∞)× (0,∞). �

6. Perturbation.

Let B be an operator on a Banach space X. An operator Q : D(B) → X is
called a small perturbation of B if for all ε > 0 there exists b ≥ 0 such
that

‖Qx‖ ≤ ε‖Bx‖+ b‖x‖ (x ∈ D(B)).(6.1)

The following is well-known.

Proposition 6.1. Let B be the generator of a (generalized) holomorphic
semigroup and let Q be a small perturbation of B. Then B +Q generates a
(generalized) holomorphic semigroup.

Example 6.2. Let E be an (L1, L∞)-interpolation space. Then AE is a
small perturbation of BE .

Proof. We have for λ > 1,

R(λ2, BE) =
1
2λ

(R(λ,AE) +R(λ,−AE))
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(see the proof of Proposition 5.6). Hence

‖AER(λ2, BE)‖ =
1
2λ
‖AER(λ,AE) +AER(λ,−AE)‖

=
1
2λ
‖λR(λ,AE)− λR(λ,−AE)‖

≤ 1
2
(‖R(λ,AE)‖+ ‖R(λ,−AE)‖)

→ 0 (λ→∞).

Let ε > 0. Choose λ > 1 such that ‖AER(λ,B2
E)‖ ≤ ε. Let f ∈ D(BE).

Then ‖AEf‖ = ‖AER(λ2, BE)(λ2 − BE)f‖ ≤ ε‖(λ2 − BE)f‖ ≤ ε‖BEf‖ +
λ2‖f‖. �

It remains to show that σ(E,E′n)-continuity is preserved by small pertur-
bations. For this we establish a Tauberian theorem (Proposition 6.4) which
is valid for Laplace transforms of functions having a holomorphic extension
to a sector. They can be characterized as follows (see Prüß [P, Theorem
0.1]).

Proposition 6.3. Let X be a Banach space and let 0 < θ0 ≤ π/2.
a) Let r : Σ(θ0 + π/2) → X be a holomorphic function such that

sup
λ∈Σ(θ+π/2)

‖λr(λ)‖ <∞(6.2)

for all 0 < θ < θ0. Then there exists a holomorphic function f :
Σ(θ0) → X satisfying

sup
z∈Σ(θ)

‖f(z)‖ <∞(6.3)

for all 0 < θ < θ0 such that r(λ) = f̂(λ) :=
∫∞
0 e−λtf(t)dt for Reλ >

0.
b) Conversely, assume that f : R+ → X has a holomorphic extension to

Σ(θ0) satisfying (6.3); then the Laplace transform f̂ of f has a holo-
morphic extension r to Σ(θ0 + π/2) satisfying (6.2).

Now we describe the asymptotic behaviour of f(t) for t ↓ 0 in terms of
the behaviour of r(λ) as λ→∞.

Proposition 6.4. Assume that f and r are as in Proposition 6.3. Let c ∈
X. Then limt↓0 f(t) = c if and only if limλ→∞ λr(λ) = c.

Proof. 1. Assume that limλ→∞ λr(λ) = c. Choose 0 < θ < θ0. It follows
from [HP, Theorem 3.14.3] that

lim
|λ|→∞

λ∈Σ(θ+π/2)

λr(λ) = c.
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Let ε > 0. Choose %0 > 0 such that ‖λr(λ)− c‖ ≤ ε for all λ ∈ Σ(θ + π/2)
with |λ| ≥ %0. Let t ≥ 1/%0. Choose a contour Γ consisting of the lines
{%e±i(θ+π/2) : % ≥ 1/t} and the arc {1/t · eiα : −θ ≤ α ≤ θ}. Then by the
proof of [P, Theorem 0.1],

f(t) =
1

2πi

∫
Γ
eλtr(λ)dλ.

Since 1
2πi

∫
Γ e

λt dλ
λ = 1,

‖f(t)− c‖ =
∥∥∥∥ 1
2πi

∫
γ
eλt(λr(λ)− c)

dλ

λ

∥∥∥∥
≤ ε

2π

2

∞∫
1/t

e−tr cos θ dr

r
+

θ∫
−θ

ecos αdα


≤ ε

2π

{
2 · 1

| cos θ|
+
∫ θ

−θ
ecos αdα

}
.

This proves the claim.

2. The converse is a classical Abelian theorem. �

Proposition 6.5. Let A be the generator of a generalized holomorphic semi-
group T on a Banach space X and let B be a small perturbation of A. De-
note by S the generalized holomorphic semigroup generated by A + B. Let
x ∈ X, ϕ ∈ X ′, such that lim

t↓0
〈T (t)x, ϕ〉 = 〈x, ϕ〉. Then limt↓0〈S(t)x, ϕ〉 =

〈x, ϕ〉.

Proof. Replacing A by A−w if necessary, we can assume that A and A+B
satisfy (5.2) with w = 0. So we are in the situation of Proposition 6.4. Thus
we know that limλ→∞〈λR(λ,A)x, ϕ〉 = 〈x, ϕ〉, and it suffices to show that
limλ→∞〈λR(λ,A+B)x, ϕ〉 = 〈x, ϕ〉. For this it suffices to show that

‖λR(λ,A+B)− λR(λ,A)‖ → 0 (λ→∞).

Let M ≥ 0 such that ‖λR(λ,A)‖ ≤ M (λ > 0). Let ε > 0. There exists
b ≥ 0 such that

‖BR(λ,A)‖ ≤ ε‖AR(λ,A)‖+ b‖R(λ,A)‖
≤ ε‖λR(λ,A)− I‖+ b‖R(λ,A)‖
≤ ε(M + 1) + bM/λ.

Thus limλ→∞ ‖BR(λ,A)‖ ≤ ε(M + 1). �

As a result we now know the following. Let E be an (L1, L∞)-interpolation
space. Let Q be a small perturbation of BE . Then BE + Q generates a
generalized holomorphic semigroup on E which is σ(E,E′n) continuous. In
particular, we obtain the following result.
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Theorem 6.6. Let E be an (L1, L∞)-interpolation space. Let α > 0 be a
constant, and let β, γ ∈ L∞(0,∞). Consider the operator G on E given by

Gf = αx2f ′′ + βxf ′ + γf

D(G) = D(BE).

Then G generates a generalized holomorphic semigroup which is σ(E,E′n)-
continuous.

Proof. By Example 6.2, the operator AE is a small perturbation of BE . Thus
BE −AE generates a generalized holomorphic semigroup. Since β defines a
bounded multiplication operator on E, βAE + γ is a small perturbation of
α(BE −AE). Note that G = α(BE −AE) + βAE + γ. �
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