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In one of their early works, Miranda and Persson have clas-
sified all possible configurations of singular fibers for semistable
extremal elliptic fibrations on K3 surfaces. They also ob-
tained the Mordell-Weil groups in terms of the singular fibers
except for 17 cases where the determination and the unique-
ness of the groups were not settled. In this paper, we set-
tle these problems completely. We also show that for all
cases with ‘larger’ Mordell-Weil groups, this group, together
with the singular fibre type, determines uniquely the fibration
structure of the K3 surface (up to based fibre-space isomor-
phisms).

0. Introduction.

Let f : X → C be an elliptic surface over a smooth projective curve C with
a section O, i.e., a Jacobian elliptic fibration over C. Throughout this paper,
we always assume that

(∗) f has at least one singular fiber.

Let MW (f) be the Mordell-Weil group of f : X → C, i.e., the group
of sections, O being the zero. Under the assumption (∗), it is known that
MW (f) is a finitely generated Abelian group (the Mordell-Weil theorem).
More precisely, if we let R be the subgroup of the Néron-Severi group NS(X)
ofX generated byO and all the irreducible components in fibers of f , then (i)
NS(X) is torsion-free, and (ii) MW (f) ∼= NS(X)/R (see [S], for instance).
Note that the Shioda-Tate formula rankMW (f) = ρ(X) − rankR easily
follows from the second statement.

We call f : X → C extremal if
(i) the Picard number ρ(X) of X is equal to h1,1 and
(ii) rankMW (f) = 0.
If f : X → C is extremal, then the Shioda-Tate formula implies rankR =

ρ(X). Hence, in other words, f : X → C is extremal if and only if ρ(X) =
rankR = h1,1(X). Also, taking the isomorphism MW (f) ∼= NS(X)/R into
account, it seems that we can say a lot about MW (f) only from the data
of types of singular fibers.
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In [MP1], Miranda and Persson studied extremal rational elliptic sur-
faces. They gave a complete classification and proved the uniqueness of
such surfaces.

Suppose that f : X → C is a semi-stable elliptic K3 surface, i.e., f has
only In type singular fibers with Kodaira’s notation [Ko]. In this case,
C = P1, NS(X) = PicX, and f is extremal if and only if f has exactly six
singular fibers. For a semi-stable elliptic K3 surface, the configuration of
singular fibers is said to be [n1, . . . , ns] (n1 ≤ n2 ≤ · · · ≤ ns) if it has singular
fibers In1 , . . . , Ins . In [MP2], Miranda and Persson gave a complete list
for realizable s-tuples [n1, . . . , ns]; and their list shows that there are 112
extremal cases. In [MP3], they go on to study MW (f) for those extremal
elliptic K3 surfaces.

We say that f : X → P1 is of type m if the corresponding [n1, n2, . . . , n6]
appears as the No. m case in the table of [MP3]. Suppose that f is of type
m. What Miranda and Persson did in [MP3] are that

(i) if m 6= 2, 4, 9, 11, 13, 27, 31, 32, 35, 37, 38, 44, 48, 53, 55, 69 and 92,
MW (f) is determined by the 6-tuples [n1, n2, . . . , n6], and

(ii) if MW (f) ⊇ Z/2Z×Z/2Z, then the corresponding elliptic K3 surface
is unique.

The main purpose of this paper is

(i) to determine MW (f) for the remaining cases, and
(ii) to consider the uniqueness problem for other kinds of MW (f); more

precisely, this problem may be formulated as follows:

Question 0.1. Let f1 : X1 → P1 and f2 : X2 → P1 be semi-stable extremal
elliptic K3 surfaces such that

(i) both X1 and X2 have the same configuration of singular fibers, and
(ii) their Mordell-Weil groups are isomorphic.

Then is it true that there exists an isomorphism ϕ : X1 → X2 such that

(a) ϕ preserves the fibrations, and
(b) the zero section of f1 maps to that of f2 with ϕ?

Now let us state our result concerning the first problem.

Theorem 0.2. Let f : X → P1 be of type m, m being one of the 17 excep-
tional cases as above. Then we have the following table:
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m the 6-tuple MW (f) m the 6-tuple MW (f)

2 [1, 1, 1, 1, 2, 18] (0), Z/3Z 4 [1, 1, 1, 1, 4, 16] Z/4Z

9 [1, 1, 1, 1, 10, 10] (0), Z/5Z 11 [1, 1, 1, 2, 3, 16] (0), Z/2Z

13 [1, 1, 1, 2, 5, 14] (0), Z/2Z 27 [1, 1, 1, 5, 6, 10] (0), Z/2Z

31 [1, 1, 2, 2, 2, 16] Z/4Z 32 [1, 1, 2, 2, 3, 15] (0), Z/3Z

35 [1, 1, 2, 2, 6, 12] Z/2Z, Z/6Z 37 [1, 1, 2, 2, 9, 9] (0), Z/3Z

38 [1, 1, 2, 3, 3, 14] (0), Z/2Z 44 [1, 1, 2, 4, 4, 12] Z/4Z

48 [1, 1, 2, 4, 8, 8] Z/8Z 53 [1, 1, 3, 3, 4, 12] Z/3Z, Z/6Z

55 [1, 1, 3, 3, 8, 8] (0), Z/2Z 69 [1, 2, 2, 3, 4, 12] Z/2Z, Z/4Z

92 [1, 3, 4, 4, 4, 8] Z/4Z

Moreover, all the above possibilities for MW (f) in each of these 17 types
are realizable.

Once we have settled the problem on MW (f), we next consider Ques-
tion 0.1. Our result is the following:

Theorem 0.3. Let f : X → P1 be an extremal semi-stable elliptic K3
surface. If ] (MW (f)) ≥ 4, then Question 0.1 has a positive answer except
for m = 49.

Remark 0.4. Let φ be the homomorphism from MW (f) to Z/n1Z× · · ·×
Z/n6Z given in [MP3, §2], i.e., φ(s) = (a1, . . . , a6), where ai is the compo-
nent number of the irreducible component that s hits at the corresponding
singular fiber. Since φ is injective, we can identify MW (f) with its image
by φ. Then we have:

(1) Let gm : Ym → P1 be any Jacobian elliptic fibration of type m with
MW (gm) = (0) and fitting one of the nine cases in Theorem 0.2. Let
{In1 , In2 , . . . , Ink

, Ink+1
, . . . , In6} be the set of types of singular fibers

of gm so that 1 = n1 = n2 = · · · = nk−1 < nk ≤ nk+1 ≤ · · · ≤ n6.
Then the Picard lattice PicYm is identical to U ⊕Ank−1⊕ · · ·⊕An6−1

with the Q/2Z-valued discriminant quadratic form qPic Ym equal to
(cf. [Mo]):

(−(nk − 1)/nk)⊕ · · · ⊕ (−(n6 − 1)/n6).

Here U =
(

0 1
1 0

)
, and the dual (PicYm)∨ = HomZ(PicYm,Z) natu-

rally contains PicYm as a sublattice with Z/nkZ⊕ · · · ⊕Z/n6Z as the
factor group (see §1 for definitions).
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An easy case-by-case check, using the fact that q(TYm ) = −q(Pic Ym),
shows that the intersection matrix of the transcendental lattice TYm

is, modulo the action of SL2(Z), uniquely determined by the data
[n1, . . . , n6] (see [Ni, Prop. 1.6.1] or [Mo, Lemma 2.4]). So the inter-
section matrix of TYm is equal to the corresponding one in the proof
of Lemma (3.3). Thus, for each of these 9 of type m, there is exactly
one K3 surface (modulo isomorphisms of abstract surfaces without the
fibered structure being taken into consideration) which has a Jacobian
elliptic fibration of type m with trivial Mordell-Weil group.

Also, for both (m,Gm) = (35,Z/2Z), (53,Z/3Z), there is a unique
K3 surface Xm, which has a Jacobian elliptic fibration fm of type m
and MW (fm) = Gm, because we can prove that the transcendental
lattice TXm is unique in each pair case and identical to the correspond-
ing one in the proof of Lemma (3.3).

The authors suspect that if (fm)i : (Xm)i → P1 are two Jaco-
bian elliptic surfaces of the same type m and with MW ((fm)1) ∼=
MW ((fm)2) then (Xm)1 ∼= (Xm)2, though there may not be any
fibered surface isomorphism between ((Xm)i, (fm)i) (i = 1, 2); see
the fourth remark below and our Proposition (4.9). The importance
of Lemma (3.3) is that its proof can be used, we guess, to lattice-
theoretically show the existence of all cases of m and possibly to give
an affirmative answer to this question. See [SZ] and [Y] for the non-
semistable cases.

(2) When m = 49, we have MW (f) = Z/5Z with s1 = (0, 0, 0, 2, 2, 2) or
s2 = (0, 0, 0, 1, 1, 4) as its generator (cf. the Table in [MP3]). However,
we have 2s2 = (0, 0, 0, 2, 2, 10 − 2). So we may assume that MW (f)
always has s1 as its generator after suitable relabeling of fiber compo-
nents if necessary.

(3) When m = 110, we have MW (f) = Z/3Z× Z/3Z with

G1 = {s1 = (0, 0, 1, 1, 2, 2), s2 = (1, 1, 2, 2, 0, 2)}

or
G2 = {s1 = (0, 0, 1, 1, 2, 2), s3 = (1, 1, 1, 1, 0, 4)}

as its set of generators (cf. the Table in [MP3]). Note that G2 can
be replaced by the new generating set G′2 := {s1, 2s3 = (3 − 1, 3 −
1, 2, 2, 0, 2)}. So we may assume that MW (f) always has G1 as its set
of generators after suitable relabeling of fiber components if necessary.

(4) When m = 46, we have MW (f) = Z/2Z with s1 = (0, 0, 0, 0, 3, 5) or
s2 = (0, 0, 1, 2, 0, 5) as its generator (cf. the Table in [MP3]). As in
the proof of Lemma (3.8), one can show that there are pairs (Xi, fi)
(i = 1, 2) of the same type m = 46 with MW (fi) = {O, si}. Moreover,
the minimal resolution Yi of Xi/〈si〉 for i = 1 (resp. i = 2) has an



MIRANDA-PERSSON’S PROBLEM 41

elliptic fibration gi : Yi → P1, induced from fi, of type m = 101
(resp. m = 66). Hence there is no isomorphism between the pairs
(Xi, fi).

(5) For m = 69, we have either MW (f) = Z/2Z with s = (0, 1, 1, 0, 0, 6)
as its generator, or MW (f) = Z/4Z with s = (0, 1, 1, 0, 1, 3) as its
generator (cf. Lemma (3.7)).

The contents of this article are as follows: In §1, we explain our technique
and we give a brief summary of the facts we need. In §2, we give a method
to construct (or show the nonexistence) of elliptic fibrations and give several
examples of extremal elliptic K3 surfaces with trivial Mordell-Weil groups.
§3 and §4 are devoted to proving Theorems 0.2 and 0.3, respectively.

Acknowledgment. Part of this work was done during the second author’s
visit to National University of Singapore (NUS) under the exchange program
between NUS and the Japan Society of Promotion of Science (JSPS). Deep
appreciation goes to both NUS and JSPS. The authors would like to thank
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Conventions. In this article, the ground field is always the complex num-
bers field C.

To describe the type of simple singularities of plane curves, we use bold
capital letters, A, D and E.

We use capital italic letters A, D and E to describe the type of lattices,
but we always multiply the value of intersection form by −1 for such lattices.

1. Preliminaries.

1.1. Cremona transformations and its applications.
We fix notation about Cremona transformations related with two-dimens-

ional families of conics.
Let V be the vector space of homogeneous polynomials of degree 2 in three

variables. Let P,Q,R ∈ P2 be three different points in general position and
let VP,Q,R be the subspace of elements of V vanishing at P , Q and R; it is a
3-dimensional vector space. It is classical to define a rational map CRP,Q,R :
P2 99K P̌(VP,Q,R) where if P0 ∈ P2, its image is the hyperplane of elements
of VP,Q,R which also vanish at P0. By a suitable choice of coordinates and
the identification of P̌(VP,Q,R) with P2 this map may be written as:

P2 99K P2

[x : y : z] 7→ [yz : xz : xy] .

The map CRP,Q,R is not defined at P,Q,R, which are called the centers of
the Cremona transformation. Outside the lines joining P,Q,R, this map is
an isomorphism.
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Let us consider now P,Q ∈ P2 and a line L through P such that Q /∈ L.
In the same way we define VP,L,Q as the space of equation of conics passing
through P and Q and tangent to L at P . We define in the same way
CRP,L,Q. We can choose coordinates such that we have:

P2 99K P2

[x : y : z] 7→
[
y2 : xy : xz

]
.

This map is not defined at P and Q and it is an isomorphism outside L and
the line joining P and Q. We say that the centers are Q and the two first
infinitely near points of L at P ; sometimes we will replace in the notation
L by any curve through P whose only tangent at P is L.

There is a third type of Cremona transformation associated to a conic.
Let C be a smooth conic passing through a point P ; we denote VP,C as the
space of equations of conics C ′ such that (C · C ′)P = 3. We denote CRP,C

the associated Cremona transformation. It is not defined at P and is an
isomorphism outside the tangent line to C at P . We say that the centers
at P are the three first infinitely near points of C at P ; sometimes we will
replace in the notation Q by any curve through P such that Q is the only
conic with highest contact at P . We can choose equations to write it down
as:

P2 99K P2

[x : y : z] 7→
[
x2 : xy : y2 − xz

]
.

1.2. Some lattice theory.
We here briefly review Nikulin’s lattice theory. Details are found in [Ni].

Let L be a lattice, i.e.,
(i) L is a free finite Z-module and
(ii) L is equipped with a nondegenerate bilinear symmetric pairing 〈 , 〉.
For a given lattice L, discL is the determinant of the intersection matrix.

Note that it is independent of the choice of a basis. We call L unimodular
if discL = ±1. Let J be a sublattice of L. We denote its orthogonal
complement with respect to 〈 , 〉 by J⊥.

For a lattice L, we denote its dual lattice by L∨. Note that, by using the
pairing, L is embedded in L∨ as a sublattice with same rank. Hence the
quotient group L∨/L is a finite Abelian group, which we denote by GL.
L is called even if 〈x, x〉 is even for all x ∈ L. For an even lattice L, we

define a quadratic form qL with values in Q/2Z as follows:

qL(x mod L) = 〈x, x〉 mod 2Z.

Then we have the following lemma:

Lemma 1.1. Let L be an even unimodular lattice. Let J1 and J2 be sublat-
tices of L such that J⊥1 = J2 and J⊥2 = J1. Then
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(i) GJ1
∼= GJ2 and

(ii) qJ1 = −qJ2.

For a proof, see [Ni].
A sublattice M of L is called primitive if L/M is torsion-free.

Example 1.2. For a K3 surface X, H2(X,Z) is an even unimodular lattice
with respect to the intersection pairing. The Picard group, PicX, is a primi-
tive sublattice of H2(X,Z), and TX := (PicX)⊥ is called the transcendental
lattice of X.

We shall end this subsection with the following lemma.

Lemma 1.3. For j = 1, 2, let ∆j = ∆(1)j ⊕ · · · ⊕∆(rj)j be a lattice where
each ∆(i)j is of Dynkin type Aa, Dd or Ee.

(1) Suppose that Φ : ∆1 → ∆2 is a lattice-isometry. Then r1 = r2 and
Φ(∆(i)1) = ∆(i)2 after relabeling.

(2) Let A = Am1 ⊕ · · · ⊕ Amk
be a direct sum of lattices of Dynkin type

Ami. Suppose that A is an index-n (n > 1) sublattice of ∆ := ∆2 and
that (m1, . . . ,mk) = (1, 1, 5, 11), (2, 2, 3, 11). Then one of the following
three cases occurs (the first two are quite unlikely but the authors do
not have a proof yet) :

(2-1) A = A1⊕(A1⊕A5⊕A11),∆ = A1⊕D17, and (A1⊕A5⊕A11) ⊆ D17

is an index-6 extension.
(2-2) A = A2⊕(A2⊕A3⊕A11),∆ = A2⊕D16, and (A2⊕A3⊕A11) ⊆ D16

is an index-6 extension.
(2-3) A = A1⊕A11⊕ (A1⊕A5),∆ = A1⊕A11⊕E6, and (A1⊕A5) ⊆ E6

is an index-2 extension.

Proof. We observe that

|det(An)| = n+ 1, |det(Dn)| = 4, |det(E6)| = 3,

|det(E7)| = 2, |det(E8)| = 1.

We also note that for an index n lattice extension L ⊆M one has |det(L)| =
n2|det(M)|.

(1) is true when r1 = r2 = 1. In general, for a generating root e in
∆(1)1 with e2 = −2, one has (Φ(e))2 = −2 and hence Φ(e) ∈ ∆(1)2 say,
because ∆2 is even and negative definite. Now the connectedness of ∆(1)1
implies that Φ(∆(1)1) ⊆ ∆(1)2. Thus to prove (1), we may assume that
r2 = 1,∆2 = ∆(1)2. The same argument applied to Φ−1 shows that r1 = 1.

(2) The argument in (1) applied to the inclusion A ↪→ ∆2, implies that
each ∆(i)1 contains a finite-index sublattice which is a sum of a few sum-
mands of A. Now it follows from the observations at the beginning of the
proof of this lemma, that either (2) is true or one of the following two cases
occurs:
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Case (2-4) A = A11⊕(A2⊕A2⊕A3),∆ = A11⊕D7, and (A2⊕A2⊕A3) ⊆
D7 is an index-3 extension.

Case (2-5) A = A2⊕A3⊕(A2⊕A11),∆ = A2⊕A3⊕D13, and (A2⊕A11) ⊆
D13 is an index-3 extension.

In the following, if ei’s form a canonical Z-basis of An we let hn = (1/(n+
1))
∑n

i=1 iei (mod An) be the generator of (An)∨/An
∼= Z/(n + 1)Z. Note

that (hn)2 = −n/(n+ 1).
Suppose the contrary that Case (2-4) occurs. Set B = A2 ⊕ A2 ⊕ A3.

Then D7 ⊆ B∨ := HomZ(B,Z). and the latter is generated by h2, h
′
2, h3

with (h2)2 = −2/3 = (h′2)
2, (h3)2 = −3/4. Since D7 is generated by roots

and contains an index-3 sublattice B, there is a root t ∈ D7 − B, and we
can write t = ah2 + bh′2 + A where a, b ∈ Z, A ∈ B. Then −2 = t2 =
(−2/3)(a2 + b2) + A2 − 2s1 for some s1 ∈ Z. Since B is even and negative
definite, A2 = −2s2 for some s2 ∈ Z. Denote by s = s1 + s2. Then
3 = a2 + b2 + 3s, 3|(a2 + b2). Hence a = 3a1, b = 3b1 for some a1, b1 ∈ Z.
This leads to that t = a1(3h2) + b1(3h′2) +A ∈ B, a contradiction.

Suppose the contrary that Case (2-5) occurs. Set B = A2 ⊕ A11. Then
D13 ⊆ B∨ and the latter is generated by h2, h11. As in Case (2-4), there
is a root t ∈ D13 − B, and we can write t = ah2 + 4bh11 + A where a, b ∈
Z, A ∈ B. Then −2 = t2 = (−2/3)(a2 + 22b2) − 2s for some s ∈ Z. Hence
3 = a2 + 22b2 + 3s, 3|(a2 + b2) and a = 3a1, b = 3b1 for some a1, b1 ∈ Z.
This leads to that t ∈ B, a contradiction. �

1.3. Review on elliptic surfaces with large torsion group.
We here give a brief summary on the results in [CP] and [C]. Let f : X →

C be an elliptic surface over a curve C with a section O. Let MW (f) be
its Mordell-Weil group, the group of sections, O being the zero element. We
denote its torsion part by MW (f)tor. Suppose that MW (f)tor ⊃ Z/mZ ⊕
Z/nZ, m|n, mn ≥ 3, and the j-invariant of X is not constant. Then it is
known that one obtains f : X → C in a certain universal way, which we
describe below. For that purpose, we need some notations.

Set

Γm(n) =
{(

a b
c d

)
∈ SL(2,Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
mod n, b ≡ 0 mod m

}
.

Let Xm(n) = Γm(n)\H∗, where H is the upper halfplane in C, and let
Em(n) be the elliptic modular surface of Γm(n). By definition, Em(n) is an
elliptic surface over Xm(n); and we denote the morphism from Em(n) to
Xm(n) by ψm,n.
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Suppose that MW (f)tor ⊃ Z/mZ⊕ Z/nZ, m|n, mn ≥ 3. Then we have
a commutative diagram

C
g→ X1(N)

j ↘ ↓ jm,n

P1

where j and jm,n are the j-invariants of f and ψm,n, respectively. Moreover,
this diagram essentially gives f : X → C, i.e., X is obtained as the pull-back
surface by g, in the sense of relatively minimal smooth model.

Thus f is determined by g. Hence the uniqueness of X is reduced to that
of g, which we consider in §4.

1.4. Comments on pencil of plane curves and nodal cubics.
Let C = {f = 0} and D = {g = 0} two projective plane curves of degree d

without common components. They define a pencil of curves by considering
{C[t:s]}[t:s]∈P1 , where C[t:s] is the curve of equation sf − tg = 0. Let us
denote B := C ∩ D; it is the set of base points of the pencils; these base
points are the intersection points of any couple of elements of the pencil. A
base point P is multiple if (C ·D)P > 1 (we may replace C and D by any
couple of different elements of the pencil). A pencil defines a rational map
P2 99K P1 which is well-defined outside the base points. Let Z ⊂ P2 be an
irreducible curve of degree e which is not a component of any element in the
pencil. Let C[t:s] a generic element of the pencil. Then the pencil defines a
map φ : Z → P1 of degree

dZ := de−
∑
P∈B

(Z · C[t:s])P ;

if a base point P is in Z its image is the unique value φ(P ) such that
(Z · Cφ(P ))P is greater than the generic intersection number. The critical
points of the map are the points Q ∈ Z such that:

– If Q is not a base point, then Cφ(Q) is either singular at Q or not
transversal to Z at Q, i.e., (Z · Cφ(Q))Q > 1.

– If Q ∈ B, then (Z · Cφ(Q))Q > 1 + (Z · C[t:s])P , for [t : s] 6= φ(Q).

Let us consider a nodal cubic N in P2. We will apply later the following
well-known result.

Proposition 1.4. There exists a homogeneous coordinate system [x : y : z]
in P2 such that the equation of N is xyz + x3 − y3 = 0. The subgroup G
of PGL(3,C) fixing N is isomorphic to the dihedral group of order 6. Let
ϕ : C∗ → Reg(N) be the mapping defining by ϕ(t) := [t : t2 : t3 − 1]. Let us
consider on N the geometrical group structure with zero element [1 : 1 : 0] =
ϕ(1). Then ϕ is a group isomorphism. Each element of G is determined by
its action on Reg(N); the induced action on C∗ is generated by t 7→ t−1 and
t 7→ ζt where ζ3 = 1.
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2. Some extremal elliptic K3 surfaces with trivial Mordell-Weil
group.

2.1. Elliptic fibrations and sextic curves.
Relationship between extremal elliptic fibrations and maximizing sextic

curves was intensively studied in Persson’s paper [P]. We explain in this
section how to apply this method to construct or discard extremal elliptic
fibrations. Let (X, f) be a pair such that X is a K3 surface and f : X → P1

is a relatively minimal elliptic fibration with a fixed section O.

Step 1. Fix O as the zero element of the Mordell-Weil group MW (f). It
determines a group law on each regular fiber and it extends to a group law
in the regular part of any fiber. For a fiber F of type In, there is a short
exact sequence

0 → C∗ → Reg (F ) → Z/nZ → 0
where the kernel corresponds to the part of Reg (F ) in the irreducible com-
ponent which intersects O.

Step 2. On the regular part of any fiber F we can consider the map P 7→
−P , (where F ∩ O is the zero element). These maps are the restriction
of a morphism σ : X → X, which is clearly an involution. By definition
f ◦ σ = f . Then, there is a natural map ρ̃ : X/σ → P1; if F is an elliptic
fiber of π, F/σ is the quotient of an elliptic curve by an involution with four
fixed points (the 2-torsion), i.e., a smooth rational curve.

Then ρ̃ : X/σ → P1 is a morphism from a smooth (rational) surface onto
P1 whose generic fiber is P1. If F is a fiber of type I2n+1 (resp. I2n), F/σ is
a curve with normal crossings and n + 1 irreducible components which are
smooth and rational.

Step 3. For any singular fiber F , we contract all of the irreducible compo-
nents of ρ̃(F ) but the one which intersects ρ̃(O). We obtain a holomorphic
fiber bundle ρ : Σ → P1 with fiber isomorphic to P1 (Σ smooth) and a map
τ : X → Σ such that ρ ◦ τ = π. This map is generically 2 : 1.

The map τ is a 2-fold covering ramified on the image of the fixed points
of σ, i.e., on the image of the 2-torsion. We can write this curve as E ∪ R
where E := τ(O), R ∩ E = ∅ and R has intersection number three with
the fibers of ρ. The number of irreducible components of R depends on
the 2-torsion T2(MW (f)) of the Mordell-Weil group of X (one irreducible
component if T2(MW (f)) = 0, two if T2(MW (f)) = Z/2Z and three if
T2(MW (f)) = Z/2Z⊕ Z/2Z).

If the configuration of π is [1, . . . , n1, . . . , nr], 1 < n1 ≤ · · · ≤ nr, then R
has exactly r singular points of type An1−1, . . . ,Anr−1.

Remark 2.1. Let us suppose that nr > 7, and let us call F the fiber of ρ
containing this point Anr−1; R intersects also F at another point P . Then
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we can perform three Nagata elementary transformations on the first three
infinitely near points of R at Anr−1. We call Σ′ the result of this operation
and we do not change the notation for the strict transforms; it induces a new
fibration ρ′ : Σ′ → P1 where E is a section of self-intersection −1. The curve
R has a singular point Anr−7 and (R ·E)P = 3, and R is smooth at P . We
can contract E and we obtain a projective plane where the contraction of R
is a curve of degree 6 (also denoted by R) which has r + 1 singular points
of type An1−1,An2−1, . . . ,Anr−7 and E6; the image of F is the tangent
line to R at E6 and passes through An1−7. The pencil which induces the
elliptic fibration (the preferred pencil) is the pencil of lines through E6.
This fibration is called the standard fibration in [P] and in this case E6 is
its center.

We can consider some kind of converse of this construction. Let R ⊂ P2

be a reduced curve (maybe reducible) of degree six such that its singular
points are simple. Let P be a singular point of R. Then if X is the minimal
resolution of the ramified double covering of P2 ramified on R and π : X →
P1 is the mapping induced by the pencil of lines through P , then π is a
relatively minimal elliptic fibration of the K3-surface X. We call (X,π) the
elliptic fibration associated to (R,P ) and we will call the pencil of lines at
P the preferred pencil; we will denote σ : X → P2 the double covering. The
following result is easy and useful.

Proposition 2.2. Let π : X → P1 be the elliptic fibration associated to
(R,P ) as above. Let E be a section of X; let C := σ(E). Then either C is
an irreducible component of R, either the intersection number of C and E
at any point in C ∩R is an even number.

In both cases C is a curve of degree d having at P a singular point of
multiplicity d − 1. In the first case there is exactly one section over C and
in the second case there are exactly two such sections.

We study now the existence of elliptic fibrations with trivial Mordell-Weil
group in the cases of ambiguity which appear in the list of Miranda and
Persson. In fact, we have applied this method to all cases of ambiguity in
the list. As it is very long, we present only a few cases, where interesting
phenomena occur.

2.2. Type m = 9.

Proposition 2.3. There exist elliptic K3 surfaces of type 9, i.e., with con-
figuration [1, 1, 1, 1, 10, 10], and trivial Mordell-Weil group.

This proposition gives one ambiguity case as such a fibration with Mordell-
Weil group of order 5 appears in [MP3].

We look for an irreducible curve R of degree 6 having three singular points
of type E6,A3,A9 and such that the tangent line to R at E6 passes through
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A3. As in the case above the line through A3 and A9 intersects R at two
other points.

Step 1. First Cremona transformation.

We consider CRE6,A3,A9 . We denote R1 the strict transform of R; R1 is
a quintic curve. We have a smooth point Q such that the tangent line T to
R1 at Q verifies that (R1 ·Q)Q = 4. We denote Q′ the other point in R1∩T .

The other singular points of R1 are A7 (coming from A9), P1 (an ordinary
double point coming from A3) and another ordinary double point denote P2.
The preferred pencil of lines has its center at P1. The line joining P1 and
P2 intersects R1 at Q. The line joining P1 and A7 passes through Q′. The
ramification locus is R1 ∪ T .

E6

P
1

9
A

A3

A 7

P
2

Q

Q’

Figure 1.

Step 2. Second and third Cremona transformations.

We perform CRP1,P2,A7 . We obtain a quartic curve R2 with one singular
point A5 (coming from A7). The line T becomes a conic T2 and R2 ∩ T2 =
{Q,Q′, Q′′} where (R2 · T2)Q = 5, (R2 · T2)Q′ = 2, (R2 · T2)Q′′ = 1, and
A5, Q

′, Q′′ are aligned. The center of the preferred pencil is Q′′.
We perform the third Cremona transformation CRA5,L,Q′′ , L being the

tangent line at A5. We obtain two cubics R3 and T3. The cubic R3 has
an ordinary double point A1 and T3 has also a double point denoted S
(which is the center of the preferred pencil). The curves R3 and T3 have
two intersection points Q and Q′, with intersection numbers 5 and 4, and
the points Q′, S and A1 are aligned.

Question 2.4. Does there exist an irreducible nodal cubic R3 (with node
A1), an irreducible cubic T3 with a double point S in P2 such that R3∩T3 =
{Q,Q′}, Q,Q′ 6= S,A1, with (R3 · T3)Q = 5, (R3 · T3)Q′ = 4 and Q′, S,A1

aligned?

Proposition 2.5. The answer to Question 2.4 is yes.
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Proof. We proceed by applying Proposition 1.4 to R3. We suppose that
Q = p(s−4) and Q′ = p(s5). In this situation the equation of the line joining
Q′ and A1 is y = s5x. Let f(x, y, z) = 0 an equation for T3 such that the
coefficient of z3 in f is 1. Then f(t, t2, t3 − 1) = (t − s5)4(t − s−4)5. We
impose that T3 intersects the line y = s2x at one point outside Q′ (with
multiplicity 2). We force this point to be singular and we get the conditions
on s (again with Maple-V). We obtain that

(s6 − 1)(s6 + 3s3 + 1)(s12 + 4s9 + s6 + 4s3 + 1) = 0.

We consider the action of the dihedral group; in the first term it is enough
to retain the cases s = ±1; the positive case is too degenerate so it remains
only s = −1. The equation of T3 in this case is:

13 y3 + 9 y2x− 5 y2z − 9 yx2 − 6 yxz − yz2 − 13x3 − 5x2z + xz2 + z3 = 0.

For the second term, one can see that we force S = A1 which is also too
degenerate. The last factor gives two different cases (the twelve roots give
two orbits by the action of the dihedral group). The equation is:(

−1265 s9

2
− 60 s3 − 4671

2
− 2170 s6

)
x3

+
(
1205 s8 + 320 s11 + 1285 s2

)
zx2

+
(
10080 s+ 135 s4 + 9480 s7 + 2466 s10

)
yx2

+
(
60 s+ 60 s7 + 16 s10 + 5 s4

)
z2x

+
(
15255 s2 + 216 s5 + 14325 s8 + 3780 s11

)
y2x

+
(

495 s9

2
+

2103
2

+ 990 s6
)
yzx

+
(
−1735 s9

2
− 60 s3 − 6609

2
− 3110 s6

)
y3

−
(
640 s+ 620 s7 + 160 s10 + 5 s4

)
zy2

+
(
−75 s2 − 75 s8 − 20 s11 − 4 s5

)
z2y + z3 = 0.

�

We deduce that there are essentially three different answers to Ques-
tion 2.4. The main feature of the first answer is that the tangent line L to
R3 at Q′ passes through Q. The elliptic surface is obtained from the double
covering of P2 ramified along R3 + T3, and the elliptic fibration comes from
the pencil of lines with center at S. One of the singular fibers is produced
by the line joining S, A1 and Q′.
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The other singular fiber is produced by the line joining S and Q.
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Proposition 2.6. The solution for s = −1 produces the elliptic fibration
such that MW is cyclic of order 5. The solutions s12 +4s9 +s6 +4s3 +1 = 0
produce elliptic fibrations with trivial Mordell-Weil group; this case was not
previously known.

Proof. We note that the exceptional curve of the blowing-up of S never
produces a section. In both cases the strict preimage of T3 produces a
section.

In the case s = −1, the intersection numbers of the line T with the curve
R3+T3 are always even; then the preimage of L is reducible and produces two
sections. We note also that Q is in this case an inflection point for both R3

and T3; the common tangent line has also even intersection numbers with
R3 + T3 and then it produces two sections. We have found five different
sections, then all of them.

Let us consider now the second case. We know already a section. By
Proposition 2.2, any other section should come from a section to the pencil
of lines through S having always even intersection numbers with the rami-
fication curve R3 + T3. Then the problem is as follows:
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Is there a curve D of degree d having a point of multiplicity d− 1 at
S and such that (S ·R3)P ≡ (S · T3)P mod 2 for any P ∈ P2 and any
branch of D at S has even intersection number with T3?
Let us suppose that such a curve exists. It gives two different sections D0

and D1 in the elliptic surface. From [MP3], D0 and D1 are torsion sections,
and then they must be disjoint. In particular, D cannot intersect R3 ∪ T3

outside S,A1, Q,Q
′ and no branch of D at S is tangent to any branch of T3

at S.

D0 and D1 belong to the 5-torsion, so by the structure of the singular
fibers, we have:

– A1 /∈ D;
– (T3 ·D)Q′ = (R3 ·D)Q′ = a = 0, 2, 4;
– (T3 ·D)Q′ = (R3 ·D)Q = b = 1, 3, 5.

Then, putting all these conditions together, we obtain that S /∈ D and
so D is a line; then 3 = a+ b. The two possibilities appear in the previous
case, but not in this one. �

2.3. Case m = 11.
The method to find or discard the fibrations in the other cases is the

same one. As the answers are positive, we will give the results that may be
verified by the reader. Let us consider the polynomial

p1(x, y, z)

:=
(

11593
95004009

− 4027 v
190008018

)
y4x2 +

(
4705

10556001
− 2183 v

10556001

)
zxy4

+
(
− 1493 v

4691556
+

803
2345778

)
z2y4 +

(
− 48226

5000211
+

1475 v
5000211

)
zy3x2

+
(

1174 v
185193

− 4736
185193

)
z2xy3 +

(
635 v

123462
− 755

61731

)
z3y3

+
(

20153
87723

+
1081 v
175446

)
z2y2x2 +

(
854
3249

− 187 v
3249

)
z3y2x

+
(
− 427

6498
+

187 v
12996

)
z4y2 +

(
−22612

13851
+

386 v
13851

)
z3yx2

+
(

1412
1539

+
20 v
1539

)
z4xy + x3z3 +

(
−11 v

729
− 485

729

)
z4x2

where v2 + 2 = 0.

Proposition 2.7. The curve p1(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [1 : 0 : 0] and tangent line z = 0), A1 (at [0 : 0 : 1]),
A9 (at [0 : 1 : 0]) and A2 (at [1 : 1 : 1]). The pencil of lines through the
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triple point determine after a double covering an elliptic K3 fibration of type
[1, 1, 1, 2, 3, 16] with trivial Mordell-Weil group.

Proof. The computations have been performed with Maple-V. We note that
the curve is irreducible as the line x = 0 joining A9 and A1 is not a compo-
nent. The Miranda-Persson classification finishes the result. �

2.4. Case m = 13.

Proposition 2.8. The curve p2(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [1 : 0 : 0] and tangent line y = 0), A7 (at
[0 : 0 : 1]), A4 (at [0 : 1 : 0]) and A1 (at [1 : 1 : 1]). The pencil of lines
through the triple point determine after a double covering an elliptic K3
fibration of type [1, 1, 1, 2, 5, 14] with trivial Mordell-Weil group.

Proof. As before, computations have been performed with Maple-V. We
note that the curve is irreducible as the line x = y joining A7 and A1 is not
a component. The Miranda-Persson classification finishes the result. �

We have:

p2(x, y, z)

:= y3x3 +
(
− 24284

130321
+

10287 v
260642

+
144295 v2

1824494

)
y4x2

+
(
−6071515 v2

130321
− 2851308 v

130321
+

13668817
130321

)
zx2y3

+
(

38660279 v
260642

+
161684215 v2

521284
− 179634441

260642

)
z2x2y2

+
(
−252208635 v2

521284
− 60782001 v

260642
+

277127879
260642

)
z3x2y

+
(

55758423 v
521284

+
460287135 v2

2085136
− 125694751

260642

)
z4x2

+
(
−10473

6859
+

2326 v
6859

+
32860 v2

48013

)
zxy4

+
(
−361050 v2

6859
− 176895 v

6859
+

1579285
13718

)
z2xy3

+
(

725753 v
13718

+
1458065 v2

13718
− 1564472

6859

)
z3xy2

+
(

1625477
13718

− 191737 v
6859

− 3045105 v2

54872

)
z4xy

+
(
−268

361
+

141 v
722

+
3495 v2

10108

)
z2y4 +

(
825
722

− 255 v
361

− 1175 v2

1444

)
z3y3
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+
(
−686

361
+

1099 v
1444

+
6055 v2

5776

)
z4y2,

where 5 v3 − 4 v2 − 14 v + 14 = 0.

Let us remark that this condition has exactly one real solution.

2.5. Case m = 27.
In this cases we only state the result concerning the existence and unicity

of curves and we give the equation of the polynomial. The proofs and
methods of computations are very similar to the previous ones.

Proposition 2.9. The curve p3(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A3 (at
[1 : 0 : 0]), A5 (at [0 : 1 : 0]) and A4 (at [1 : 1 : 1]). The pencil of lines
through the triple point determine after a double covering an elliptic K3
fibration of type [1, 1, 1, 5, 6, 10] with trivial Mordell-Weil group.

We have

p3(x, y, z)

:=
(
−200 v2

297
− 425

297
− 110 v

27

)
y4x2 +

(
125
396

+
5 v
9
− 13 v2

396

)
zy4x

+
(

5 z2

528
− 5

264
+

5 v
48

)
z2y4 +

(
115 v2

81
+

220
81

+
875 v
81

)
y3x3

+
(

655
108

+
493 v
54

+
133 v2

108

)
zy3x2 +

(
5 v2

36
− 115

36
− 5 v

9

)
z2y3x+ z3y3

+
(
−2225

972
− 3275 v

486
− 725 v2

972

)
y2x4 +

(
−2831

324
− 2032 v

81
− 797 v2

324

)
zy2x3

+
(
−37 v2

72
− 35

36
− 215 v

72

)
z2y2x2 +

(
1225 z2

972
+

5215
972

+
7495 v
486

)
zyx4

+
(

1105
324

+
788 v
81

+
193 v2

324

)
z2yx3 +

(
−893 v2

3888
− 4333

1944
− 24499 v

3888

)
z2x4

where 25 + 75 v + 15 v2 + v3 = 0.

2.6. Case m = 32.
Let us consider the polynomial

p4(x, y, z)

:= y3z3 +
(

5625 v
668168

− 33625
334084

)
z2x4 +

(
3475 v
58956

+
39275
29478

)
yz2x3

+
(
−1465 v

1734
− 1775

867

)
y2x2z2 +

(
173 v
204

− 299
102

)
y3xz2
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+
(
− v

40
+

17
20

)
y4z2 +

(
19675 v
501126

− 188825
501126

)
yzx4

+
(

350 v
4913

+
23110
4913

)
y2x3z +

(
−1580 v

867
− 5900

867

)
y3x2z

+
(

11 v
15

− 5/3
)
y4xz +

(
29555 v
668168

− 232705
668168

)
y2x4

+
(
−1885 v

29478
+

116975
29478

)
y3x3 +

(
−1205 v

1734
− 33517

8670

)
y4x2

where v2 − v + 34 = 0.

Proposition 2.10. The curve p4(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A8 (at [1 : 0 : 0]),
A2 (at [0 : 1 : 0]) and two points of type A1 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 2, 2, 3, 15] with trivial Mordell-Weil group.

2.7. Case m = 37.

Proposition 2.11. The curve p5(x, y, z) = 0 (see below) is an irreducible
curve with singularities E6 (at [0 : 0 : 1] and tangent line x = 0), A2

(at [0 : 1 : 0]), A8 (at [1 : 0 : 0]) and two points of type A1 in the line
x + y + z = 0. The pencil of lines through the triple point determine after
a double covering an elliptic K3 fibration of type [1, 1, 2, 2, 9, 9] with trivial
Mordell-Weil group.

We have:

p5(x, y, z)

:=
(

3970803 v
130438

− 345557847 v2

65219
+

8058927
130438

)
y4x2

+
(
−82574784 v2

5929
+

37159110 v
5929

− 3105297
5929

)
zy4x

+
(
−653967

2156
+

3545235 v
1078

− 5380479 v2

1078

)
z2y4

+
(

5894214 v
9317

− 295704 v2

9317
− 650011

9317

)
y3x3

+
(
−278076 v2

847
+

808926 v
847

− 86286
847

)
zy3x2

+
(
−105723 v2

77
+

80505 v
77

− 15255
154

)
z2xy3
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+
(

14286
1331

− 136113 v
1331

+
65742 v2

1331

)
y2x4

+
(
−24048 v

121
+

30018 v2

121
+

4599
242

)
zy2x3

+
(
−2199 v

11
+

3966 v2

11
+

195
11

)
z2y2x2

+
(
−309

121
+

3711 v
121

− 8358 v2

121

)
zyx4

+
(

471 v
11

− 903 v2

11
− 87

22

)
z2yx3 +

(
−42 v2

11
+

159 v
44

− 15
44

)
z2x4 + z3x3

where 28 v3 − 30 v2 + 12 v − 1 = 0.

2.8. Case m = 38.
Let us consider the polynomial

p6(x, y, z)

:=
1404x2y4

1445
− 9xy4z

85
+

17 z2y4

60
+

10800x3y3

4913
+

1980x2y3z

289

− 37 z2y3x

102
+ y3z3 +

105840x4y2

83521
+

4410x3y2z

289
+

13965 z2y2x2

1156

+
720300x4yz

83521
+

780325 z2yx3

29478
+

14706125 z2x4

1002252
.

Proposition 2.12. The curve p6(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line y = 0), A7 (at [1 : 0 : 0]),
A1 (at [0 : 1 : 0]) and two points of type A2 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 2, 3, 3, 14] with trivial Mordell-Weil group.

2.9. Case m = 55.
Let us consider the polynomial

p7(x, y, z)

:=
(

139
176

+
175 v
176

)
y4z2 + .

(
−837 v

242
+

7101
968

)
y4zx

+
(

30537
10648

− 29565 v
10648

)
y4x2 +

(
−151 v

44
+

155
44

)
y3z2x

+
(

675
242

+
837 v
242

)
y3zx2 +

(
−669 v

2662
+

2765
1331

)
y3x3

+
(
−81 v

22
+

243
44

)
y2z2x2 +

(
441 v
242

− 183
242

)
y2zx3
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+
(
−1107

1331
+

2025 v
1331

)
y2x4 +

(
−17

11
+

107 v
22

)
yz2x3

+
(

153 v
121

+
18
121

)
yzx4 + z3x3 +

(
13
22
− 5 v

22

)
z2x4

where 3v2 − 4v + 2 = 0.

Proposition 2.13. The curve p7(x, y, z) = 0 is an irreducible curve with
singularities E6 (at [0 : 0 : 1] and tangent line x = 0), A1 (at [0 : 1 : 0]),
A7 (at [1 : 0 : 0]) and two points of type A2 in the line x+ y + z = 0. The
pencil of lines through the triple point determine after a double covering an
elliptic K3 fibration of type [1, 1, 3, 3, 8, 8] with trivial Mordell-Weil group.

3. The complete determination of the Mordell-Weil group for
each type of semi-stable extremal fibrations.

In this section, we shall show Theorem 0.2 which will follow from the Table
in [MP3], and the Lemmas below. We recall Lemma 1.3 and Shioda-Inose’s
result that the isomorphism class of a K3 surface X of Picard number 20 is
uniquely determined by the transcendental lattice TX , modulo the action of
SL2(Z) [SI].

Lemma 3.1. Let S be an even symmetric lattice of rank 20 and signature
(1, 19) and T a positive definite even symmetric lattice of rank 2. Assume
that ϕ : T∨/T → S∨/S is an isomorphism which induces the following
equality involving Q/2Z-valued discriminant (quadratic) forms: qS = −qT .

Let X be the unique K3 surface (up to isomorphisms) with the transcen-
dental lattice TX = T . Then the Picard lattice PicX is isometric to S.

Proof. Consider the overlattice L of S ⊕ T obtained by adding all elements
ϕ(x) + x, x ∈ T∨, where ϕ(x) ∈ S∨ denotes one representative of ϕ(x +
T ) ∈ S∨/S. The (even) intersection form on S ⊕ T is naturally extended
to a Q-valued one on S∨ ⊕ T∨. For each x ∈ T∨, we have, modulo 2Z,
(ϕ(x)+x, ϕ(x)+x) = −qT (x)+qT (x) = 0, i.e., (ϕ(x)+x, ϕ(x)+x) ∈ 2Z. Also
for xi ∈ T∨, combining (ϕ(x1 + x2), ϕ(x1 + x2)) = −(x1 + x2, x1 + x2) (mod
2Z) and (ϕ(xi), ϕ(xi)) = −(xi, xi) (mod 2Z), we see that (ϕ(x1), ϕ(x2)) =
−(x1, x2) (mod Z), whence mod Z we have (ϕ(x1) + x1, ϕ(x2) + x2) = 0.
Thus L is an even (integral) symmetric lattice of rank 22 and signature
(1 + 2, 19 + 0). Clearly, L/(S ⊕ T ) ∼= T∨/T and hence |det(L)| = |det(S ⊕
T )|/|T∨/T |2 = 1. Now by the classification of indefinite unimodular even
symmetric lattices, L is isometric to the K3 lattice (cf. [Se]).

On the other hand, by [SI], there is a unique K3 surface X (modulo
isomorphisms) with the intersection form of the transcendental lattice TX

equal to T (modulo SL2(Z)). We identify L with H2(X,Z) and T with
TX . Note that there are two embeddings ιk : TX → H2(X,Z): ι1 : TX ↪→
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H2(X,Z) as the transcendental sublattice, and ι2 : TX = T ↪→ S ⊕ T ↪→
L = H2(X,Z).

The embedding ι1 (resp. ι2) is primitive by the definition of TX (resp. of
L). Now Nikulin’s uniqueness theorem of primitive embedding implies that
there is an isometry Ψ of H2(X,Z) such that ι1 = Ψ ◦ ι2 [Mo, Cor. 2.10].
Note that the Picard lattice PicX = (ι1(TX))⊥ = (Ψ(ι2(TX)))⊥ = Ψ(T⊥) =
Ψ(S) ∼= S. �

Lemma 3.2. Let f : X → P1 be of type m = 4 as in Theorem 0.2. Then
MW (f) 6= (0).

Proof. Suppose the contrary that f : X → P1 is of type m = 4 with
MW (f) = (0). Then Pic X is a direct sum U ⊕A3 ⊕A15 of lattices, where
U = (aij) satisfies aii = 0, a12 = a21 = 1. Let (bij) be the intersection
matrix of the transcendental lattice T = TX . Then bii > 0 and det(bij) =
|det(PicX)| = 64 (cf. [BPV]). After conjugation by SL(2,Z), we may
assume that −b11 < 2|b12| ≤ b11 ≤ b22, and that b12 ≥ 0 when b11 = b22. An
easy calculation shows that one of the following cases occurs:

(1) (bij) = diag [2, 32],
(2) (bij) = diag [4, 16],
(3) (bij) = diag [8, 8], and
(4) b11 = 8, b22 = 10, b12 = 4.

Embed T , as a sublattice, naturally into T∨ = HomZ(T,Z). Then T∨/T
∼= (PicX)∨/ (PicX) ∼= Z/4Z⊕Z/16Z. Note that (PicX)∨/(PicX) is gener-
ated by ε1 = (1/4)

∑3
i=1 ivi and ε2 = (1/16)

∑18
i=4(i − 3)vi, modulo Pic X,

where vi’s form a canonical basis of A3⊕A15 ⊆ Pic X. So the discriminantal
quadratic form qT : T∨/T → Q/2Z is equal to −qPic X = (−ε21)⊕ (−ε22) =
(3/4)⊕ (15/16).

On the other hand, in Case (4), T∨ has a Z-basis (e1 e2)(bij)−1 = (g1 g2),
where e1, e2 form a canonical basis of T , where g1 = (1/32)(5e1− 2e2), g2 =
(1/16)(−e1 + 2e2). This leads to that ord(g1) is equal to 32 in T∨/T , a
contradiction.

In Cases (1)-(3) where T = diag [s, t], with (s, t) = (2, 32), (4, 16) or (8, 8),
the discriminantal quadratic form qT is equal to (1/s) ⊕ (1/t). This leads
to that (1/s) ⊕ (1/t) ∼= (3/4) ⊕ (15/16), which is impossible by an easy
check. �

Lemma 3.3. Consider the pairs below:

(m,Gm) = (2, 〈0〉), (9, 〈0〉), (11, 〈0〉), (13, 〈0〉), (27, 〈0〉), (32, 〈0〉),
(37, 〈0〉), (38, 〈0〉), (55, 〈0〉), (35,Z/2Z), (53, 〈Z/3Z〉).

For each of these eleven pairs (m,Gm), there is a Jacobian elliptic K3 sur-
face fm : Xm → P1 of type m as in Theorem 0.2 such that (m,MW (fm)) =
(m,Gm).
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Proof. The existence of the pairs where m = 2, 35 is proved constructively
in [AT]. The rest is also constructively proved in §2. In the paragraphs
below, we will give an independent lattice-theoretical proof.

Let Tm, m = 2, 9, 11, 13, 27, 32, 37, 38, 55, 35, 53, be the positive definite
even symmetric lattice of rank 2 with the following intersection form, re-
spectively:(

4 2
2 10

)
,

(
10 0
0 10

)
,

(
10 2
2 10

)
,

(
2 0
0 70

)
,

(
10 0
0 30

)
,

(
12 6
6 18

)
,

(
18 0
0 18

)
,

(
6 0
0 42

)
,

(
24 0
0 24

)
,

(
6 0
0 12

)
,

(
4 0
0 12

)
.

For the first nine m above, let Sm be the even lattice of rank 20 and
signature (1,19) with the following intersection form, respectively

U ⊕A1 ⊕A17, U ⊕A9 ⊕A9, U ⊕A1 ⊕A2 ⊕A15,

U ⊕A1 ⊕A4 ⊕A13, U ⊕A4 ⊕A5 ⊕A9, U ⊕A1 ⊕A1 ⊕A2 ⊕A14,

U ⊕A1 ⊕A1 ⊕A8 ⊕A8, U ⊕A1 ⊕A2 ⊕A2 ⊕A13, U ⊕A2 ⊕A2 ⊕A7 ⊕A7.

We now define Sm for m = 35, 53. Let Γ35 be the lattice U ⊕ A1 ⊕ A1 ⊕
A5 ⊕ A11, with G,H, Ji(1 ≤ i ≤ 5), θi(1 ≤ i ≤ 11) as the canonical basis of
A1 ⊕ A1 ⊕ A5 ⊕ A11, and O, F as a basis of U such that O2 = −2, F 2 =
0,O · F = 1.

We extend Γ35 to an index-2 integral over lattice S35 = Γ35 +Zs35, where

s35 = O + 2F −G/2−H/2− (1/2)

(
6∑

i=1

iθi +
11∑
i=7

(12− i)θi

)
.

It is easy to see that the intersection form on Γ35 can be extended to an
integral even symmetric lattice of signature (1, 19). Indeed, setting s = s35,
we have

s2 = −2, s ·F = s ·G = s ·H = s ·θ6 = 1, s ·O = s ·Ji = s ·θj = 0 (∀i; j 6= 6).

Moreover, |det(S35)| = |det(Γ35)|/22 = 72.
Note that Γ∨35 = HomZ(Γ35,Z) contains naturally Γ35 as a sublattice with

Z/2Z⊕Z/2Z⊕Z/6Z⊕Z/12Z as the factor group, and is generated by the
following, modulo Γ35:

h1 = G/2, h2 = H/2, h3 = (1/6)
5∑

i=1

iJi, h4 = (1/12)
11∑
i=1

iθi.

Since (S35)∨ is an (index-2) sublattice of (Γ35)∨, an element x is in (S35)∨

if and only if x =
∑4

i=1 aihi (mod Γ35) such that x is integral on S35, i.e.,



MIRANDA-PERSSON’S PROBLEM 59

x · s = (a1 + a2 + a4)/2 is an integer. Hence (S35)∨ is generated by the
following, modulo Γ35:

h3, 2hi, h1 + h2, h1 + h4, h2 + h4.

Noting that 2h1, 2h2 ∈ S35 and (h1 + h2) + 6h4 is equal to s (mod Γ35)
and hence contained in S35, we can see easily that (S35)∨ is generated by
the following, modulo S35:

ε1 := h3, ε2 := h1 − h4.

Now the fact that |(S35)∨/S35| = 72 and that 6ε1, 12ε2 ∈ S35 imply that
(S35)∨/S35 is a direct sum of its cyclic subgroups which are of order 6, 12,
and generated by ε1, ε2, modulo S35.

We note that the negative of the discriminant form

−q(S35) = (−(ε1)2)⊕(−(ε2)2) = (5/6)⊕((1/2)+(11/12)) = (5/6)⊕(−7/12).

Next we define S53. Let Γ53 be the lattice U ⊕A2 ⊕A2 ⊕A3 ⊕A11, with
Gi(i = 1, 2),Hi(i = 1, 2), Ji(i = 1, 2, 3), θi(1 ≤ i ≤ 11) as the canonical basis
of A2 ⊕A2 ⊕A3 ⊕A11, and O, F as a basis of U as in the case of S35.

Extend Γ53 to an index-3 integral over lattice S53 = Γ53 + Zs53, where

s53 = O + 2F− (1/3)(2G1 +G2 + 2H1 +H2)− (2/3)
11∑
i=1

iθi +
11∑
i=5

(i− 4)θi,

(set s = s53) s2 = −2, s · F = s ·G1 = s ·H1 = s · θ4 = 1,

s · O = s ·G2 = s ·H2 = s · Ji = s · θj = 0 (∀i; j 6= 4).

Moreover, |det(S53)| = |det(Γ53)|/32 = 48.
Note that Γ∨53 is generated by the following, modulo Γ53:

h1 = (1/3)
2∑

i=1

iGi, h2 = (1/3)
2∑

i=1

iHi,

h3 = (1/4)
3∑

i=1

iJi, h4 = (1/12)
11∑
i=1

iθi.

(S53)∨ is generated by the following, modulo Γ53:

h3, 3hi, h1 + h2 + h4, h1 − h2, h1 − h4, h2 − h4.

Noting that 3h1, 3h2 ∈ S53 and 3h4 + (h1 + h2 + h4) is equal to s (mod
Γ53) and hence contained in S53, we see that (S53)∨ is generated by ε1 :=
h3, ε2 := h1 − h4, modulo S53. As in the case of S35, (S53)∨/S53 is a direct
sum of its cyclic subgroups, which are of order 4, 12, and generated by ε1, ε2,
modulo S53.
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The negative of the discriminant form

−q(S53) = (−(ε1)2)⊕ (−(ε2)2)

= (3/4)⊕ ((2/3) + (11/12)) = (3/4)⊕ (−5/12).

Claim 3.4. The pair (Sm, Tm) satisfies the conditions of Lemma (3.1) and
hence if we let Xm be the unique K3 surface with TXm = Tm then PicXm =
Sm (both two equalities here are modulo isometries).

Proof of the claim. We need to show that qTm = −qSm . Note that A∨n/An =
Z/(n + 1)Z and q(An) = (−n/(n + 1)). For the first nine m, if we write
Sm = U ⊕An1−1 ⊕ · · ·Ank−1, then

qSm = (−(n1 − 1)/n1)⊕ · · · ⊕ (−(nk − 1)/nk);

moreover, S∨m/Sm is generated by two elements εi (i = 1, 2) (εi is a simple
sum of the natural generators of S∨m/Sm) such that for every a, b ∈ Z one
has −q(Sm)(aε1+aε2) = −a2(ε1)2−b2(ε22). For all eleven m, εi can be chosen
such that (−ε21,−ε22) is respectively given as follows:

(1/2, 17/18), (9/10, 9/10), (1/2,−19/48), (1/2, 121/70),

(9/10, 49/30), (−5/6,−17/30), (25/18, 25/18), (−5/6,−17/42),
(−11/24,−11/24), (5/6,−7/12), (3/4,−5/12).

On the other hand, T∨m is generated by (g1 g2) = (e1 e2)T−1
m , where e1, e2

form a canonical basis of Tm which gives rise to the intersection matrix of
Tm shown before this claim. Now, the claim follows from the existence of
the following isomorphism, which induces qTm = −qSm :

ϕ : T∨m/Tm → S∨m/Sm; (g1 g2) 7→ (ε1 ε2)Bm.

Here Bm is respectively given as:(
1 1
2 5

)
,

(
7 0
0 7

)
,

(
0 1
11 17

)
,

(
1 0
0 51

)
,

(
7 0
0 17

)
,

(
−2 1
1 3

)
,(

7 0
0 7

)
,

(
2 3
21 10

)
,

(
2 3
3 −2

)
,

(
3 2
4 3

)
,

(
0 1
3 4

)
.

Write Sm (resp. Γm) as U ⊕A(m) with A(m) = An1−1⊕ · · · ⊕Ank−1, for
the first nine m (resp. m = 35, 53) as in the definitions of them. Let O, F be
a Z-basis of U for all m, as in the definition of S35. By [PSS, p. 573, Th. 1],
after an (isometric) action of reflections on Sm = PicXm, we may assume at
the beginning that F is a fiber of an elliptic fibration fm : Xm → P1. Since
O2 = −2, Riemann-Roch Theorem implies that O is an effective divisor
because O ·F > 0. Moreover, O ·F = 1 implies that O = O1 +F ′ where O1

is a cross-section of fm and F ′ is an effective divisor contained in fibers. So
fm is a Jacobian elliptic fibration and we can choose O1 as the zero element
of MW (fm).
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Let Λm be the lattice generated by all fiber components of fm. Clearly,
Λm = ZF ⊕∆,∆ = ∆(1)⊕· · ·⊕∆(r) (depending on m), where each ∆(i) is
a negative definite even lattice of Dynkin type Ap, Dq, or Er, contained in a
single reducible singular fiber Fi of fm and spanned by smooth components
of Fi disjoint from O1.

Claim 3.5. We have:
(1) SpanZ{x ∈ Sm|x ·F = 0, x2 = −2} = Λm = ZF ⊕A(m); in particular,

r = k, and there are lattice-isometries: ∆ ∼= A(m) and ∆(i) ∼= Ani

(i = 1, 2, . . . , k), after relabeling.
(2) There are k singular fibers Fi of type Ãni−1 (1 ≤ i ≤ k) of fm, and

any fiber other than Fi is irreducible.
(3) MW (fm) = (0) (resp. Z/2Z, Z/3Z) for the first nine m (resp. m =

35, 53).

Proof. The assertion (2) follows from (1) (see also [K, Lemma 2.2]).

The first equality in (1) is clear from Kodaira’s classification of elliptic
fibers and the Riemann Roch Theorem as used prior to this claim to deduce
O ≥ 0. The second equality is clear for the cases of the first nine m because
then PicXm = Sm = (ZO + ZF )⊕A(m).

Let m = 35, 53. We now show the second equality using Lemma 1.3.
Clearly, ZF⊕A(m) is contained in the first term of (1) and hence in Λm. One
notes that 19 = rank Sm − 1 ≥ rank Λm = 1+ rank ∆ ≥ 1+ rank A(m) =
1 +

∑k
i=1(ni − 1) = 19. Hence ∆ = ∆(1)⊕ · · · ⊕∆(r) ∼= Λm/ZF contains a

finite-index sublattice (ZF ⊕A(m))/ZF ∼= A(m) = An1−1 ⊕ · · · ⊕Ank−1.
Suppose the contrary that the second equality in (1) is not true. Then

A(m) is an index-n (n > 1) sublattice of ∆. By Lemma 1.3, one of Cases
(2-1) - (2-3) there occurs.

Case (2-1). Then m = 35, fm has reducible singular fibers of types
Ã1, I

∗
13 and no other reducible fibers. This leads to that 72 = |PicXm| =

(2× 4)/|MW (fm)|2, a contradiction (cf. [S]).
Case (2-2). Then m = 53, fm has reducible singular fibers of types

Ã2, I
∗
12 and no other reducible fibers. This leads to that 48 = |PicXm| =

(3× 4)/|MW (fm)|2, a contradiction.
Case (2-3). Then m = 35, fm has reducible singular fibers of types

Ã1, I12, IV
∗ and no other reducible fibers. Since 72 = |PicXm| = (2× 12×

3)/|MW (fm)|2, we have MW (fm) = (0) and Sm = PicXm = ZO1 + Λm =
ZO1 + ( ZF ⊕∆) = ZO1 + ( ZF ⊕A1 ⊕A11 ⊕ E6).

By the Riemann-Roch theorem and the fact that (sm)2 = −2, sm.F = 1
and MW (fm) = (0), we see that sm = O1 (mod Λm). This, together with
the fact that O = O1 (mod Λm) and the definition of sm, implies that
(1/2)(G+H +D) ∈ Λm, where D =

∑6
i=1 iθi +

∑11
i=7(12− i)θi.
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Consider the index-2 extension

A1 ⊕A11 ⊕ (A1 ⊕A5) = A(m) ∼= (ZF ⊕A(m))/ZF ⊆ (ZF ⊕∆)/ZF
∼= ∆ = A1 ⊕A11 ⊕ E6.

The proof of Lemma 1.3 shows that (the first summand A1 in this rearranged
A(m)) ⊕ZF = (the summand A1 in ∆) ⊕ZF , (the summand A11 in A(m))
⊕ZF = (the summand A11 in ∆) ⊕ZF , and (the summand (A1 ⊕ A5) in
A(m)) ⊕ZF ⊆ (the summand E6 in ∆) ⊕ZF . So we may assume that, mod
ZF , G is the Z-generator of the first summand A1 in ∆, θi (1 ≤ i ≤ 11) form
a Z-basis of the summand A11 in ∆, and H is contained in the summand
E6 in ∆.

In particular, for (G+H+D)/2 ∈ Λm = ZF ⊕∆ = ZF ⊕(A1⊕A11⊕E6),
we have, mod ZF , G/2 ∈ A1, H/2 ∈ E6, and D/2 ∈ A11. We reach a
contradiction to the above observation that the A1 in ∆ is generated by G
over Z.

Therefore, the second equality of (1) is true. So there is an isometry
Φ : ∆ ∼= Λm/ZF ∼= A(m). Now the rest of (1) follows from Lemma 1.3.

The assertion (3) follows from the fact in [S, Th. 1.3], that MW (fm) is
isomorphic to the factor group of PicXm modulo (ZO1 + ZF ) ⊕∆, where
the latter is equal to (ZO + ZF ) + ∆ = (ZO + ZF )⊕A(m) = U ⊕A(m).
This proves the claim.

The existence of singular fibers Fi (i = 1, 2, . . . , k) of type Ini , the fact that
the sum of Euler numbers of singular fibers of fm is 24, the fact that each
fiber other than Fi is irreducible, and [MP3, Lemma 3.1 and Proposition
3.4] imply that fm is semi-stable. Hence Fi (i = 1, 2, . . . , k) is of type Ini ,
there are χ(Xm) −

∑
i(ni − 1) − k = 6 − k fibers of type I1, and fm is of

type [1, 1, . . . , 1, n1, . . . , nk], i.e., of type m after an easy case-by-case check.
Moreover, (m,MW (fm)) = (m,Gm) for all eleven m by the last claim. �

Remark 3.6. We note that S35 = U ⊕ A1 ⊕ A11 ⊕ E6. This is because
the lattices T35 and the one on the right hand side satisfy all conditions of
Lemma 3.1 by an easy check. In particular, using [MP3, Lemma 3.1 and
Proposition 3.4] as in the proof of Lemma 3.3, we can show that there is
a Jacobian elliptic fibration τm : Xm → P1 (m = 35) with singular fibers
I1, I1, I2, I12, IV

∗ and with MW (τm) = (0).

Lemma 3.7. Let f : X → P1 be of type m as in Theorem 0.2. Then we
have:

(1) If m = 48, then MW (f) 6= Z/2Z, or Z/4Z.
(2) If m = 4, then MW (f) 6= Z/2Z.
(3) If m = 31, then MW (f) 6= Z/2Z.
(4) If m = 44, then MW (f) 6= Z/2Z.
(5) If m = 69, then it is impossible that MW (f) is Z/2Z with s =

(0, 0, 0, 0, 2, 6) as its generator (see Remark 0.4).
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(6) If m = 92, then MW (f) 6= Z/2Z.

Proof. Let f : X → P1 be of type m as in Theorem 0.2.
(1) Assume that f is of type m = 48 and MW (f) ⊇ Z/2Z. We will show

that MW (f) ⊇ Z/8Z which will imply (1).
m = 48 means that the singular fiber type of f is I1, I1, I2, I4, I8, I8. Using

the height pairing in [S] or the Table in [MP3], we may assume thatMW (f)
contains s = (0, 0, 0, 0, 4, 4) as a 2-torsion section after suitable labeling of
fiber components.

Let Y , a K3 surface again, be the minimal resolution of the quotient
surface X/〈s〉. f on X induces a Jacobian semi-stable elliptic fibration
g : Y → P1 of singular fiber type I2, I2, I4, I8, I4, I4 where these 6 ordered
singular fibers are respectively “images” of ordered singular fibers on X.

To be precise, let σ : X̃ → X be the blowing-up of all 8 intersections in
the first 4 singular fibers of f of types I1, I1, I2, I4. Then Y = X̃/〈s〉 and the
Z/2Z-covering π : X̃ → Y is branched along 4 disjoint curves θ(i)

j , where
(i, j) = (1, 1), (2, 1), (3, 1), (3, 3), (4, 1), (4, 3), (4, 5), (4, 7). Here we choose
the common image of the zero section and the 2-torsion section s of f , as
the zero section O1 of g, and label clock or anti-clockwise the i-th singular
fiber of g of type Ini as

∑ni−1
j=0 θ

(i)
j so that O1 passes through θ

(i)
0 , where

[n1, . . . , n6] = [2, 2, 4, 8, 4, 4].
Note that (Y, g) is of type m = 103 in the Table of [MP3] and hence

there is a 4-torsion section t of g equal to (0, 0, 2, 2, 1, 1) or (0, 0, 1, 2, 1, 2) or
(0, 0, 1, 2, 2, 1), after choosing either clockwise or counterclockwise labeling
of fiber components, where for orders of six fibers of g we use the current
indexing inherited from that of f .

If t = (0, 0, 1, 2, 1, 2) or (0, 0, 1, 2, 2, 1), then t meets the branch locus of π
transversally at one point only so that π−1(t) is a smooth irreducible curve
and π : π−1(t) → t is a double cover with exactly one ramification point, a
contradiction to Hurwitz’s genus formula applied to the covering map π.

Thus t = (0, 0, 2, 2, 1, 1). A check using height pairing shows that π−1(t)
is a disjoint union of two 8-torsion sections of f . Hence MW (f) ⊇ Z/8Z.
Indeed, MW (f) = Z/8Z by [MP3]. This proves (1).

Now assume that f is of type m = 4 (resp. m = 31, m = 44, m = 69 with
MW (f) = 〈s = (0, 0, 0, 0, 2, 6)〉, or m = 92) and MW (f) ⊇ Z/2Z. Then
MW (f) contains a unique 2-torsion section s = (0, 0, 0, 0, 0, 8) (resp. s =
(0, 0, 0, 0, 0, 8), s = (0, 0, 0, 0, 2, 6), s = (0, 0, 0, 0, 2, 6), s = (0, 0, 0, 2, 2, 4))
(cf. [MP3]). As in (1) we can show that f induces a Jacobian semi-stable
elliptic fibration g on the minimal resolution Y of X/〈s〉. The singular
fiber type of g is In1 + · · ·+ In6 where [n1, . . . , n6] is equal to [2, 2, 2, 2, 8, 8]
(resp. [2, 2, 4, 4, 4, 8], [2, 2, 4, 8, 2, 6], [2, 4, 4, 6, 2, 6], [2, 6, 8, 2, 2, 4]) and hence



64 E. ARTAL, H. TOKUNAGA, AND D.-Q. ZHANG

is of type m = 94 (resp. m = 103, m = 97, m = 104, or m = 97) in the Table
of [MP3]. Now the inverse on X of the 2-torsion section t = (0, 0, 0, 0, 4, 4)
(resp. t = (0, 0, 0, 2, 2, 4), t = (0, 0, 0, 4, 1, 3), t is one of (0, 2, 2, 0, 1, 3) and
(1, 2, 2, 3, 0, 0), or t = (0, 0, 0, 4, 1, 2)) on Y is a disjoint union of two 4-torsion
sections of f . Hence MW (f) ⊇ Z/4Z. Indeed, MW (f) = Z/4Z by [MP3].
This proves (2)-(6). The proof of the lemma is completed. �

Lemma 3.8. Let f : X → P1 be of type m as in Theorem 0.2. Then each
of the following pairs (m,MW (f)) occurs:

(69,Z/2Z = 〈(0, 1, 1, 0, 0, 6)〉), (69,Z/4Z), (92,Z/4Z),

(32,Z/3Z), (37,Z/3Z), (44,Z/4Z), (55,Z/2Z).

Proof. The idea of the proof for the existence of the pair (m,MW (f)) =
(69,Z/4Z) is as follows. By [MP3], s = (0, 1, 1, 0, 1, 3) is the generator of
MW (f) = Z/4Z. As in the proof of Lemma 3.7, the minimal resolution Y
of X/〈2s〉 is of type m = 104. The detailed proof of the existence is given
below.

Let g : Y → P1 be of type m = 104. By the Table in [MP3], MW (g) =
Z/2Z × Z/2Z and we may assume that g has singular fibres

∑ni−1
j=0 θ(i)j

(i = 1, . . . , 6) of type Ini , and two 2-torsion sections t1 = (0, 2, 2, 0, 1, 3), t2 =
(1, 2, 2, 3, 0, 0), after suitably indexing singular fibers so that [n1, . . . , n6] =
[2, 4, 4, 6, 2, 6]. It is easy to check the following relation (cf. [S, Lemma 8.1]
or [M, Formula (2.5)]), where O1, F are the zero section and a general fiber
of g,

2t2 ∼ 2(O1 +2F )− (θ(1)1 + θ(2)1 +2θ(2)2 + θ(2)3 + θ(3)1 +2θ(3)2 + θ(3)3+

θ(4)1 + 2θ(4)2 + 3θ(4)3 + 2θ(4)4 + θ(4)5).
Hence we get a relation

D = θ(1)1 + θ(2)1 + θ(2)3 + θ(3)1 + θ(3)3 + θ(4)1 + θ(4)3 + +θ(4)5 ∼ 2L

for some integral divisor L. Let π : X̃ → Y be the Z/2Z-cover, branched
along D and induced from the above relation. Then g induces an elliptic
fibration f : X̃ → P1 so that the relatively minimal model (X, f) of (X̃, f)
is of type m = 69. The inverse on X of O1 is a disjoint union of two sections,
one of which will be fixed as O of f . Now the inverse on X of the 2-torsion
section t1 on Y is a disjoint union of two 4-torsion sections of f . Hence
MW (f) = Z/4Z by the Table in [MP3]. This proves the existence of the
pair (m,MW (f)) = (69,Z/4Z).

The existence of other pairs is similar. Here we just show which Y, t1, t2
we should choose. To be precise, we let g : Y → P1 be of type m = 52
(resp. m = 97; m = 91; m = 110; m = 97; m = 104) with singular fibers of
type In1 + · · · + In6 with [n1, . . . , n6] = [2, 1, 1, 6, 8, 6] (resp. [2, 6, 8, 2, 2, 4];
[3, 3, 6, 6, 1, 5]; [3, 3, 6, 6, 3, 3]; [2, 2, 4, 8, 2, 6]; [2, 2, 6, 6, 4, 4]) and we let
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t1 = O1 be the zero section and t2 = (1, 0, 0, 3, 4, 0) the 2-torsion section
(resp. t1 = (0, 0, 4, 1, 1, 2) and t2 = (1, 3, 4, 0, 0, 0) two 2-torsion sections;
t1 = O1 and t2 = (1, 1, 2, 2, 0, 0) a 3-torsion section; t1 = O1 and t2 =
(1, 1, 2, 2, 0, 0) a 3-torsion section; t1 = (0, 0, 0, 4, 1, 3) and t2 = (1, 1, 2, 4, 0, 0)
two 2-torsion sections; t1 = O1 and t2 = (1, 1, 3, 3, 0, 0) a 2-torsion section).
Then as in the above paragraph, the minimal model X of a Z/nZ-cover with
n = 2 (resp. n = 2; n = 3; n = 3; n = 2; n = 2) of Y has an elliptic fibration
f : X → P1, induced from g, of type m = 69 (resp. m = 92; m = 32;
m = 37; m = 44; m = 55) such that the inverse on X of t1 is a disjoint
union of O and s = (0, 1, 1, 0, 0, 6) (resp. a disjoint union of two 4-torsion
sections; a disjoint union of O and two 3-torsion sections; a disjoint union
of O and two 3-torsion sections; a disjoint union of two 4-torsion sections;
a disjoint union of O and a 2-torsion section), whence MW (f) is equal to
Z/2Z = {O, s} (resp. Z/4Z; Z/3Z; Z/3Z; Z/4Z; Z/2Z) by the Table in
[MP3].

This completes the proof of the lemma and also that of Theorem 0.2. �

4. Uniqueness for extremal elliptic K3 surfaces with large torsion
groups.

The goal of this section is to prove Theorem 0.3.
In the case where MW (f) ⊇ Z/2Z × Z/2Z, namely, m = 94, 97, 98, 103,

104, 112, the uniqueness problem has already been considered in §7 [MP3]
by using double sextics, and they are all unique. Hence we need to prove
the cases when MW (f) ∼= Z/4Z, Z/5Z, Z/6Z,Z/7Z, Z/3Z× Z/3Z.

As we have seen in §1, if MW (f) has an element of order N ≥ 3, then
f : X → P1 is obtained as the pull-back surface of the elliptic surface,
ψ1,N : E1(N) → X1(N), by some morphism g : P1 → X1(N). Since X1(N)
should be isomorphic to P1 and X is a K3 surface in our case, N ≤ 8 by
[C]. Thus our proof of Theorem 0.3 is reduced to showing the uniqueness
of g up to Aut(P1) for each case. Hence it is enough to prove the following:

Proposition 4.1. Let g : P1 → X1(N) be the morphism as above. Then g
is unique except m = 49.

By comparing the degree of the j-functions, we can easily check the fol-
lowing table:
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MW (f) deg g m

Z/4Z 4 4, 31, 44, 69, 92

Z/5Z 2 9, 49, 105

Z/6Z 2 35, 53, 63, 95, 108

Z/7Z 1 30

Z/3Z× Z/3Z 2 110

Table 4.2.

One can see that the uniqueness for the case MW (f) ∼= Z/7Z (m = 30)
immediately from the table.

Let us consider the cases of deg g = 2. Our goal is to show that g is
unique up to Aut(X1(N))(∼= Aut(P1)) except m = 49.

Case m = 9. f : X → P1 has two I10 fibers. This means that the branch
points of g are 2 points over which ψ1,5 has I5 fibers. The choice of such
two points is unique and g is determined by the branch points. Hence g is
unique.

For cases m = 35, 53, 63, 95, 105, 108, we can prove the uniqueness in a
similar way to that for m = 9. Hence we omit it.

Case m = 110. In this case, f : X → P1 is obtained as the pull-back
surface of ψ3,3 : E3(3) → X3(3) by a degree 2 map g : P1 → X3(3). ψ3,3 has
4 singular fibers, all of which are of type I3. By [MP1, Table 5.3], E3(3) is
given by the Weierstrass equation as follows:

y2 = x3 + (−3s2 + 24s)x+ (2s6 + 40s3 − 16),

where s is an inhomogeneous coordinate of X3(3) ∼= P1. The four I3 fibers
are over −1,−ω, ω2 and ∞, where ω = exp(2π

√
−1/3).

Consider two fiber preserving automorphisms of E3(3):

τ1 : (x, y, s) 7→
(

−3
(s+ 1)2

x,
3
√
−3

(s+ 1)3
y,
−s+ 2
s+ 1

)
,

and
τ2 : (x, y, s) 7→ (ωx, y, ωs).

These automorphisms induce permutations of the I3 fibers. Since X is a
double covering of E3(3), it is uniquely determined by the branch locus which
is two I3 fibers. Therefore, using τ1 and τ2, we can show that f : X → P1

is unique.
Putting the case m = 49 the aside, we consider the cases of deg g = 4.

There are 5 cases: m = 4, 31, 44, 69, 92.
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The degree of the j-invariant of E1(4) is 6, as it has three singular fibers
I∗1 , I4 and I1. With a suitable affine coordinate of X1(4), we may assume
that these singular fibers are over 0, 1 and ∞, respectively. Since the degree
of the j-invariant of f : X → P1 is 24, the degree of g is 4, and is branched
only at 0, 1 and ∞. By [MP1, Table 7.1] and the Riemann-Hurwitz formula
for g : P1 → X1(4), we have the following table on the ramification types
over each branch point.

m The ramification types over 0, 1 and ∞
4 (4), (4), (1, 1, 1, 1)

31 (2, 2), (4), (2, 1, 1)

44 (4), (3, 1), (2, 1, 1)

69 (2, 2), (3, 1), (3, 1)

92 (4), (2, 1, 1), (3, 1)

Table 4.3.

Here the notation (e1, . . . , ek) means that g−1(p) (p ∈ {0, 1,∞}) consists
of k points, q1, . . . ,qk, and the ramification index at qj is ej .

To show the uniqueness, it is enough to show that g assigned with the ram-
ification types as above is unique up to covering isomorphisms over X1(4).
Let us start with the following lemma.

Lemma 4.4. Let g : P1 → X1(4) be one of the degree 4 maps in Table 4.3.
Let α : C → P1 be the Galois closure, and put ĝ = g ◦ α. Then we have the
following:

m = 4: g = ĝ and g is a 4-fold cyclic covering.
m = 31: deg ĝ = 8, C ∼= P1 and Gal(ĝ) ∼= D8.
m = 44, 92: deg ĝ = 24, C ∼= P1 and Gal(ĝ) ∼= S4.
m = 69: deg ĝ = 12, C ∼= P1 and Gal(ĝ) ∼= A4.

Proof. The monodromy around the branch points gives a permutation rep-
resentation of π1(P1 \ {0, 1,∞}) to S4; the basic loops γ0, γ1 and γ∞ about
0, 1 and ∞, respectively map to permutations σ0, σ1 and σ∞. The cycle
structure of each permutation is the same as the ramification type over the
corresponding point. These permutations satisfy the identity σ0σ1σ∞ = 1 in
S4 and generate a transitive subgroup, G, in S4. Note that this G is nothing
but the Galois group of ĝ : C → X1(4). We apply this argument to each
case, and obtain the following table:
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m The cycle structure of σ0, σ1 and σ∞ G

4 (4), (4), (1, 1, 1, 1) Z/4Z

31 (2, 2), (4), (2, 1, 1) D8

44 (4), (3, 1), (2, 1, 1) S4

69 (2, 2), (3, 1), (3, 1) A4

92 (4), (2, 1, 1), (3, 1) S4

Table 4.5.

Now all we need to show Is: C ∼= P1. Our argument is based on the
following elementary fact:

Fact 4.6. Let x be a point on C, and put Gx = {τ ∈ G|τ(x) = x}. Then

G The order of Gx

Z/4Z 1, 2, 3

S4 1, 2, 3, 4

A4 1, 2, 3

D8 1, 2, 4

We prove C ∼= P1 case by case.

Case m = 4. As G = Z/4Z, deg ĝ = deg g, and α is the identity.

Case m = 31. Since G = D8, degα = 2. Let ι be an element of order 2
such that C/〈ι〉 ∼= P1. As g is not Galois, ι is not contained in the center of
D8. If α is branched over g−1(0), then ĝ−1(0) consists of two points, each of
which has the ramification index 4. This means that ι belongs to the center
of D8, which leads us to a contradiction. Hence the branch points of α are
two points in g−1(∞) which are unramified points of g. Hence C ∼= P1.

Cases m = 44, 92. By Fact 4.6 and Gal(C/P1) ∼= S4, points over 0, 1 and
∞ have the ramification indices 4, 3 and 2, respectively. By the Riemann-
Hurwitz formula, we have C ∼= P1.
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Case m = 69. By Fact 4.6, points over 0, 1 and ∞ have the ramification
indices 2, 3 and 3, respectively. By the Riemann-Hurwitz formula, C ∼= P1.

This completes our proof for Lemma 4.4. �

The following classical fact is a key to prove Theorem 0.3 in the case
where MW (f) ∼= Z/4Z.

Fact 4.7 ([Na, pp. 31-32]). For a suitable choice of an affine coordinate, w
and z, of X1(4) and P1, respectively, the map in Table 4.5 can be given by
the rational functions as follows:

w = z4 m = 4

w = −(z4 − 1)2

4z2
m = 31

w =

(
z4 + 2

√
3z2 − 1

z4 − 2
√

3z2 − 1

)3

m = 69

w =
(z8 + 14z4 + 1)3

108z4(z4 − 1)4
m = 44, 92.

Fact 4.7 implies that the Galois coverings described in Lemma 4.4 are es-
sentially unique up to isomorphisms over P1. The morphisms g in Lemma 4.4
are corresponding to a subgroup of index 4 of G, and for each case, such
subgroups are conjugate to each other. This shows that the pull-back mor-
phisms, g, are unique up to covering isomorphisms over X1(4). Therefore
we have Proposition 4.1 in the case where MW (f) ∼= Z/4Z.

Remark 4.8. We can prove the uniqueness for m = 94, 98, 103, 112 in a
similar way to the case MW (f) ∼= Z/4Z.

We now go on to show that the uniqueness does not hold for m = 49.
For the case m = 49, as we have seen before, f :→ P1 is obtained as the

pull-back surface of ψ1,5 : E1(5) → X1(5) by a degree 2 map g : P1 → X1(5).
ψ1,5 has 4 singular fibers. By [MP1, Table 5.3], E1(5) is given by the
following Weierstrass equation:

y2 = x3−3(s4−12s3 +14s2 +12s+1)x+2(s6−18s5 +75s4 +75s2 +18s+1),

where s is an inhomogeneous coordinate of X1(5) ∼= P1. The two I5 fibers
are over s = 1 and s = ∞, and the two I1 fibers are over s = (11± 5

√
5)/2.

For m = 49, There are 4 possible cases for the pull-back morphism de-
pending on the branch points as follows:
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The branch points of g

(1) 0 and (11 + 5
√

5)/2

(2) 0 and (11− 5
√

5)/2

(3) ∞ and (11 + 5
√

5)/2

(4) ∞ and (11− 5
√

5)/2

We denote the pull-back morphisms by gi (i = 1, 2, 3, 4) corresponding
to the cases as above, and let fi :→ P1 denote the pull-back surface by gi.
Then we have:

Proposition 4.9. There exists ϕ in Question 0.1 between either X1 and X4

or X2 and X3, while there is no such ϕ between the two pull-back surfaces
for other combinations.

Proof. Consider an automorphism, τ , of E1(5) → X1(5) given by

τ : (x, y, s) 7→
(

1
s2
x,

1
s3
y,−1

s

)
.

With τ , the points 0 and (11+5
√

5)/2 map to ∞ and (11−5
√

5)/2, respec-
tively. Our first assertion follows from this fact. For the second, by using τ ,
it is enough to show that there is no ϕ in Question 0.1 between the pull-back
surfaces X1 and X2.

Suppose that there exists ϕ : X1 → X2 as Question 0.1. Then we have:

Claim 4.10. ϕ induces an automorphism ϕ̂ : X1(5) → X1(5) such that 0 7→
∞, ∞ 7→ 0, (11+5

√
5)/2 7→ (11−5

√
5)/2, and (11−5

√
5)/2 7→ (11+5

√
5)/2.

Since there is no fractional linear transformation as above, the second
assertion follows.

Proof of the Claim. Let ιi (i = 1, 2) be fiber preserving involutions on Xi

(i = 1, 2) determined by the pull-back morphisms gi. Let ϕ and ιi (i = 1, 2)
be the restrictions of each morphism to the zero sections of X1 and X2.
ϕ−1 ◦ ι2 ◦ ϕ gives rise to another fiber preserving involution on X1. Under
ϕ−1 ◦ ι2 ◦ ϕ, I10, I5, I2 fibers map to I10, I5, I2 fibers, respectively. Hence
ϕ−1 ◦ ι2 ◦ϕ = ι1 or id, but the latter case does not occur since ι2 6= id. Thus
we have an isomorphism ϕ̂ : X1(5) → X1(5), and it is easy to see that ϕ̃ has
the desired property.

This finishes the proof of Proposition 4.1.
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