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The purpose of this paper is to study the relations between
quasiregular mappings on Riemannian manifolds and differ-
ential forms. Four classes of differential forms are introduced
and it is shown that some differential expressions connected
in a natural way to quasiregular mappings are members in
these classes.

1. Introduction.

Let Ω be a domain in Rn, n ≥ 2. A mapping f : Ω → Rn is called a
quasiregular mapping, if f = (f1, f2, . . . , fn) ∈W 1

n,loc(Ω) and if there exists
a constant K ∈ [1,∞) such that

|f ′(x)|n ≤ K det f ′(x), for a.e. x ∈ Ω.

The following result is well-known in [Re] and [HKM].
Each of the functions

u = fi(x) (i = 1, 2, . . . , n), u = log |f(x)|,
is a generalized solution of a quasilinear elliptic equation

divA(x,∇u) = 0, A = (A1, A2, . . . , An),(1.1)

where

Ai(x, ξ) =
∂

∂ξi

 n∑
i,j=1

θi,j(x)ξiξj

n/2

,(1.2)

and θi,j are some functions, which can be expressed in terms of the derivative
f ′(x), and satisfy

c1(K)|ξ|2 ≤
n∑
i,j

θi,j(x)ξiξj ≤ c2(K)|ξ|2,(1.3)

for some constants c1(K), c2(K) > 0.
This important proposition connects two large sections of analysis namely,

quasiregular mapping theory and the theory of partial differential equations.
Much progress in quasiregular mapping theory has resulted from the study

73

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2002.202-1


74 FRANKE, MARTIO, MIKLYUKOV, VUORINEN, AND WISK

of Equations (1.1)-(1.3). On the other hand many investigations of solu-
tions of quasilinear equations in the form (1.1)-(1.3) were stimulated by this
connection with quasiregular mapping theory.

However, many theorems about quasiregular mappings, obtained in this
way for example, in the monograph [HKM] do not make use of the special
form (1.2) of functions Ai(x, ξ). In fact, what is important is the divergence
form of the Equation (1.1) and the existence of constants c1(K), c2(K) –
the values of these constants are not significant.

We do not know who was the first turning attention to this fact. Possibly,
it was first observed in the paper [Mi], where the following fact was recorded
and used.

Proposition. The function u ∈W 1
n,loc(Ω) is the solution of some equation

of the form (1.1) with Condition (1.3) if and only if there exists a differential
(n− 1)-form

θ(x) =
n∑

i=1

θi(x) dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∈ Ln/(n−1)
loc (Ω),

with the properties:
α) For every function φ ∈W 1

n(Ω) with compact support we have∫
Ω

dφ ∧ θ = 0 ,

β) almost everywhere on Ω the following inequalities are true

ν1|du(x)|n ≤ ∗(du(x) ∧ θ(x))

where ∗ denotes the orthogonal complement of a form and

|θ(x)| ≤ ν2|du(x)|n−1,

with constants ν1, ν2 > 0.

The proof for this proposition is obvious. The above statement concerning
the coordinate functions of a quasiregular mapping f also follows from this
proposition. For the case u = f1(x) we put

θ = df2 ∧ df3 ∧ . . . ∧ dfn .

In order to show that u = log |f(x)| satisfies (1.1) it suffices to choose

θ =
1

|f(x)|n
n∑

i=1

df1 ∧ . . . ∧ d̂fi ∧ . . . ∧ dfn.

Looking carefully at Conditions α) and β) on the function u we see that
these conditions are on the 1-form w = du and the (n − 1)-form θ. Some
simple differential forms w, 1 ≤ degw ≤ n, satisfying Conditions α) and β)
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in domains Ω ⊂ Rn were studied in [Zh1] and [Zh2]. Similar results have
been given in [Iw], [FW], [MMV1], [MMV2] and [Sc].

The purpose of this paper is to study the relations between quasiregular
mappings on Riemannian manifolds and differential forms suggested by the
aforementioned proposition. We introduce four classes of differential forms
and prove membership in these classes of some differential expressions con-
nected in a natural way to quasiregular mappings.

2. Preliminaries.

2.1. Euclidean space. Let X be a topological space. We denote by A the
closure of a set A ⊂ X, by intA the interior of A, and by ∂A = A \ intA the
boundary of A.

By Rn we denote the Euclidean vector space consisting of elements of the
form x = (x1, . . . , xn), xi ∈ R, the field of real numbers. In Rn we use

the standard inner product 〈x, y〉 =
n∑

i=1
xiyi and the norm |x| =

√
〈x, x〉 =( n∑

i=1
x2

i

)1/2
.

The boundary of the n-dimensional ball with center at x and radius r

B(x, r) = {y ∈ Rn : |y − x| < r}
is the sphere

S(x, r) = {y ∈ Rn : |y − x| = r}.
For E ⊂ Rn and for an integer k = 1, 2, . . . , n we denote by Hk(E) the

k-dimensional Hausdorff measure of E.

2.2. Differential forms on Rn. The mutually dual spaces
∧

k(R
n) and∧k(Rn) of k-vectors and k-forms (k-covectors) are associated with the Eu-

clidean space Rn. Here one has
∧0(Rn) = R =

∧
0(R

n), and
∧

k(R
n) =

{0} =
∧k(Rn) in the case k > n or k < 0. The direct sums∧

∗(R
n) = ⊕k

∧
k(R

n),
∧∗(Rn) = ⊕k

∧k(Rn)

generate contravariant and covariant Grassmann algebras on Rn with the
exterior multiplication operator ∧.

Let ω ∈
∧k(Rn) be a covector. We denote by Λ(k, n) the set of ordered

multi–indices I = (i1, i2, . . . , ik), of integers 1 ≤ i1 < . . . < ik ≤ n. The
form ω can be written in a unique way as the linear combination

ω =
∑

I∈Λ(k,n)

ωI dxI .

Here ωI are the coefficients of ω with respect to the standard basis of
∧k(Rn)

dxI = dxi1 ∧ . . . ∧ dxik , I = (i1, i2, . . . , ik) ∈ Λ(k, n).
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Let I = (i1, . . . , ik) be a multi–index from Λ(k, n). The complement I∗

of the multi–index I is the multi-index I∗ = (j1, . . . , jn−k) in Λ(n − k, n)
where the components jp are in {1, . . . , n} \ {i1, . . . , ik}. We have

dxI ∧ dxI∗ = σdx1 ∧ . . . ∧ dxn(2.3)

where σ = σ(I) is the signature of the permutation (i1, . . . , ik, j1, . . . , jn−k)
in the set {1, 2, . . . , n}. Note that σ(I∗) = (−1)k(n−k)σ(I).

Let dxI = dxi1 ∧ . . . ∧ dxik be a differential form of the standard basis of∧k(Rn). We set

? dxI = σ(I)dxI∗ .(2.4)

For ω ∈
∧k(Rn) with ω =

∑
I∈Λ(k,n) ωI dxI , we set

? ω =
∑

I∈Λ(k,n)

ωI ? dxI .(2.5)

Then ?ω belongs to
∧n−k(Rn). The differential form ?ω is called the or-

thogonal complement of the differential form ω.
The operator ? :

∧∗(Rn) →
∧∗(Rn), also called Hodge star operator, has

the following properties:
If α, β ∈

∧k(Rn) and a, b ∈ R, then

? (aα+ bβ) = a ? α+ b ? β.(2.6)

For every ω with degω = k we have

? (?ω) = (−1)k(n−k)ω.(2.7)

We introduce the following notation. Let ω be a differential form of degree
k. We set

?−1 ω = (−1)k(n−k) ? ω.(2.8)

The operator ?−1 is an inverse to ? in the sense that ?−1(?ω) = ?(?−1ω) = ω.
The inner or scalar product of the differential forms α and β of the same

degree is defined as

〈α, β〉 = ?−1(α ∧ ?β) = ?(α ∧ ?β).(2.9)

The scalar product of differential forms has the usual properties of the scalar
product. We set

|ω| =
√
〈ω, ω〉.

A differential form ω of degree k is called simple if there are differential
forms α1, . . . , αk of degree 1 such that

ω = α1 ∧ . . . ∧ αk.

We note the following useful property of the Euclidean norm: If α, β ∈∧∗(Rn), then
|α ∧ β| ≤ |α||β|,
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if at least one of the differential forms α, β is simple. If α and β are simple
and nonzero, then equality holds if and only if the subspaces associated with
α and β are orthogonal. More generally, if degα = p, deg β = q, then

|α ∧ β| ≤ (Cp
p+q)

1/2|α||β|,(2.10)

see [Fe] §1.7.
The linear isomorphism Hom

(∧
k(R

n), R
)
'
∧k(Rn), that defines the

duality of the spaces
∧

k(R
n) and

∧k(Rn), associates a k-vector with a
differential form. A vector a = (a1, . . . , an) ∈ Rn defines a differential form
of degree 1

ω = a1dx
1 + a2dx

2 + . . .+ andx
n.(2.11)

We denote it by Ωa. Let u = (u1, . . . , uk), ui ∈
∧

1(R
n), be a nondegenerated

frame. The set of all k-dimensional frames is identified with the set of simple
k-vectors. One can prove that the differential form

Ωu = Ωu1 ∧ . . . ∧ Ωuk

does not depend on the choice of the particular frame from the class of
frames equivalent with u. This fact produces a one-to-one correspondence
u 7→ Ωu of the set of simple polyvectors onto the set of simple differential
forms.

3. Differential forms on Riemannian manifolds.

3.1. Riemannian manifolds. Let M be an n-dimensional Riemannian
manifold with boundary or without boundary. Throughout the sequel we
will assume that the manifold M is orientable and of class Cp where p is
at least 3. By T (M) we denote the tangent bundle and by Tm(M) the
tangent space at the point m ∈ M. For each pair of vectors x, y ∈ Tm(M)
the symbol 〈 , 〉 denotes their scalar product. The Riemannian connection
on Tm(M) gives the natural connection for tensors of every type. This
connection preserves the scalar product mentioned above.

Below we shall use standard notation for function classes on manifolds.
Thus, for example, the symbol Lp

loc(D) stands for the set of all Lebesgue
measurable functions on an open set D ⊂ M, locally integrable to the
power p, 1 ≤ p ≤ ∞, on D. The symbol W 1

p,loc(D) stands for the set of
functions that have generalized partial derivatives in the sense of Sobolev of
class Lp

loc(D) and Lip (D) denotes the class of all Lipschitz functions on D.
Let M and N be Riemannian manifolds of class Ck, k ≥ 3, and F : D →

N , D ⊂ M, a mapping. We shall say that F ∈ Lp
loc(D) if for an arbitrary

function φ ∈ C0(N ) we have φ◦F ∈ Lp
loc(D). The mapping F is in the class

W 1
p,loc(D), if φ ◦ F ∈W 1

p,loc(D) for every φ ∈ C1(N ).
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Let V (M) be a vector bundle on M. Let in the elements of this bun-
dle be given a Euclidean scalar product and let the linear connection on
V (M) preserve this scalar product. In this case we may say that V (M) is
a Riemannian vector bundle over M.

By
∧

k(M) and
∧

k(M) we denote Riemannian vector bundles
∧k(Tm(M))

and
∧

k(Tm(M)). The sections of these bundles are the fields of k-covectors
(k-forms) and k-vectors, which we shall discuss now in some detail.

3.2. Basic properties of differential forms. Let x1, . . . , xn be local co-
ordinates in the neighborhood of a point m ∈ M. The square of a line
element on M has the following expression in terms of the local coordinates
x1, . . . , xn

ds2 =
n∑

i,j=1

gijdx
i dxj .

By the symbol gij we shall denote the contravariant tensor defined by the
equality

(gik)(gkj) = (δi
j), i, j = 1, . . . , n,

where δj
i is the Kronecker symbol.

Each section α of the bundle
∧k(M) (that is a differential form) can be

written in terms of the local coordinates x1, . . . , xn as the linear combina-
tion

α =
∑

I∈Λ(k,n)

αI dxI =
∑

1≤i1<...<ik≤n

αi1...ikdx
i1 ∧ . . . ∧ dxik .(3.3)

Let α be a differential form defined on an open set D ⊂ M. If F(D) is
a class of functions defined on D then we say that the differential form α is
in this class provided that αI ∈ F(D). For instance, the differential form α
is in the class Lp(D) if all its coefficients are in this class.

The orthogonal complement of a differential form α on a Riemannian
manifold M will be denoted by ?α. If degα = 1 then in the local orthonor-
mal system of coordinates x1, . . . , xn at m we can write

?α(m) = ?

n∑
i=1

αi(m) dxi =
n∑

i=1

(−1)i−1αi(m) dx1 ∧ . . . d̂xi . . . ∧ dxn ,

where the sign ̂ means that the expression under ̂ is omitted. We remark
that the differential form dv is the volume element on M.

If α, degα = k, 0 ≤ k ≤ n, is a differential form whose coefficients are in
C1(M) then dα, deg(dα) = k + 1, denotes its differential defined by

dα =
∑

I∈Λ(k,n)

dαI ∧ dxI .
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The differentiation is a linear operation for which the following properties
hold:

If α and β are arbitrary differential form that are differentiable in a do-
main U ⊂M then

(i) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,
(ii) d(dα) = 0,

where k is the degree of the differential form α.
The operator ? and the exterior differentiation d define the codifferential

operator δ by the formula

δα = (−1)k ?−1 d ? α(3.4)

for a differential form α of degree k. Clearly, δα is a differential form of
degree k − 1.

Let M be a compact n-dimensional orientable Riemannian manifold with
nonempty piecewise smooth boundary ∂M. The following Stokes formula
holds ∫

∂M

α =
∫
M

dα,

for an arbitrary form α ∈ C1(M), degα = n− 1.

3.5. . A differential form α of degree k on the manifold M with coefficients
αi1...ik ∈ Lp

loc(M) is called weakly closed if for each differential form β,
deg β = k + 1, with

suppβ ∩ ∂M = ∅, suppβ = {m ∈M : β 6= 0} ⊂ M,

and with coefficients in the class W 1
q,loc(M), 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞, we

have ∫
M

〈α, δβ〉dv = 0.(3.6)

For smooth differential forms α Condition (3.6) agrees with the traditional
condition of closedness dα = 0. In fact, if α, β ∈ C1(M), suppβ ∩ ∂M = ∅,
then we have∫

M

dα ∧ ?β =
∫
M

d(α ∧ ?β) + (−1)k+1

∫
M

α ∧ d ? β.

Because the differential form β has compact support on the orientable mani-
fold M the first integral on the right hand side is zero by the Stokes formula.
Thus we get∫

M

dα ∧ ?β = (−1)k+1

∫
M

α ∧ ? ?−1 d ? β =
∫
M

α ∧ ?δβ =
∫
M

〈α, δβ〉dv.
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We fix an arbitrary point m ∈ M and pass to the local coordinates on
M in a neighborhood of this point. Using Condition (3.6) and the funda-
mental lemma of the variational calculus, the du Bois-Reymond Lemma, we
conclude that everywhere in this neighborhood of m the coefficients of the
differential form dα are zero. Thus the validity of (3.6) under the given
conditions on β is equivalent to the requirement dα = 0 understood in the
classical sense.

We next introduce the following very useful theorem.

Theorem 3.7. Let α and β be differential forms, β ∈W 1
q (M) with a com-

pact support, and α ∈ W 1
p,loc(M), 1 ≤ p, q ≤ ∞, degα + deg β = n − 1,

1/p+ 1/q = 1. Then∫
M

dα ∧ β = (−1)deg α+1

∫
M

α ∧ dβ.(3.8)

In particular, the differential form α is weakly closed if and only if dα = 0
a.e. on M.

Proof. Fix α and β with the stated properties. Because the coefficients of
the differential form α are in the class W 1

p,loc(M) there exists a sequence
{αn}∞n=1 of differential forms with coefficients of class C1(M) converging in
the W 1

p -norm to the coefficients of the differential form α on every compact
set K ⊂ intM.

Let {βn}∞n=1 be a sequence of differential forms of degree deg βn = deg β
in the class C1(M) having compact supports and converging in the norm of
W 1

q to the form β. We may assume that there exists a smooth submanifold
U ⊂⊂M such that suppβn ⊂ U for all integers n.

The differential forms αn ∧ βn have compact supports contained in U .
The Stokes formula yields∫

M

d(αn ∧ βn) =
∫
U

d(αn ∧ βn) = 0,

and hence ∫
U

dαn ∧ βn + (−1)deg α

∫
U

αn ∧ dβn = 0.

We have∫
U

dα ∧ β −
∫
U

dαn ∧ βn =
∫
U

(dα− dαn) ∧ β +
∫
U

dαn ∧ (β − βn).
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Therefore, using inequality (2.10) we obtain∣∣∣∣∣∣
∫
U

dα ∧ β −
∫
U

dαn ∧ βn

∣∣∣∣∣∣
≤
∫
U

|d(α− αn) ∧ β|dv +
∫
U

|dαn ∧ (β − βn)|dv

≤ C

∫
U

|d(α− αn)| |β|dv + C

∫
U

|dαn| |β − βn|dv

≤ C||d(α− αn)||Lp(U) ||β||Lq(U) + C||dαn||Lp(U) ||β − βn||Lq(U),

where C = max(Ck+1
n )1/2 and k = degα.

Similarly we obtain∣∣∣∣∣∣
∫
U

α ∧ dβ −
∫
U

αn ∧ dβn

∣∣∣∣∣∣
≤ C1||α||Lp(U) ||d(β − βn)||Lq(U) + C1||α− αn||Lp(U) ||dβ||Lq(U),

where C1 = (Ck
n)1/2.

These inequalities easily yield (3.8).
If dα = 0 a.e. on M then by (3.8)∫

M

α ∧ dβ = 0(3.9)

for an arbitrary differential form β ∈ W 1
q with compact support. This,

obviously, implies (3.6).
On the other hand, if we take a weakly closed differential form α ∈

W 1
p,loc(M) then by (3.8) one has∫

M

dα ∧ β = 0 for all β ∈W 1
q (M) with suppβ ⊂M.

We fix an arbitrary point m ∈ M, pass again to the local coordinates on
M in a neighborhood of m and use again the du Bois-Reymond Lemma
to conclude that almost everywhere in this neighborhood the form dα is
zero. �

4. The WT -classes of differential forms.

In this section we introduce several classes of differential forms with gen-
eralized derivatives which first were presented in [MMV1] and [MMV2].
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These classes are used to study the associated classes of quasilinear elliptic
partial differential equations.

Let M be a Riemannian manifold of class C3, dimM = n, with a bound-
ary or without boundary and let

w ∈ Lp
loc(M), degw = k, 0 ≤ k ≤ n, p > 1,(4.1)

be a weakly closed differential form on M.

Definition 4.2. A differential form w (4.1) is said to be of the class WT1

on M if there exists a weakly closed differential form

θ ∈ Lq
loc(M), deg θ = n− k,

1
p

+
1
q

= 1,(4.3)

such that almost everywhere on M we have

ν0 |θ|q ≤ 〈w, ?θ〉,(4.4)

where ν0 is a constant.

Definition 4.5. The differential form (4.1) is said to be of the class WT2

on M if there exists a differential form (4.3) such that almost everywhere
on M the conditions

ν1 |w|p ≤ 〈w, ?θ〉(4.6)

and

|θ| ≤ ν2 |w|p−1(4.7)

are satisfied, with constants ν1, ν2 > 0.

For an arbitrary simple differential form of degree k

w = w1 ∧ . . . ∧ wk

we set

‖w‖ =

(
k∑

i=1

|wi|2
)1/2

.

For a simple differential form w we have Hadamard’s inequality

|w| ≤
k∏

i=1

|wi|.

Taking these and using the inequality between geometric and arithmetic
means (

k∏
i=1

|wi|

)1/k

≤ 1
k

k∑
i=1

|wi| ≤

(
1
k

k∑
i=1

|wi|2
)1/2

we obtain

|w| ≤ k−
k
2 ‖w‖k.(4.8)
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Definition 4.9. A simple differential form of degree k

w = w1 ∧ . . . ∧ wk, wi ∈ Lp
loc(M), 1 ≤ i ≤ k,

is said to be of the class WT3 on M if there is a differential form (4.3) such
that almost everywhere on M the inequality (4.7) holds and

ν3 ‖w‖kp ≤ k
kp
2 〈w, ?θ〉.(4.10)

Definition 4.11. A simple differential form of degree k

w = w1 ∧ . . . ∧ wk, wi ∈ Lp
loc(M), 1 ≤ i ≤ k,

is said to be of the class WT4 on M, if there exists a simple differential form
(4.3) such that the inequality (4.10) holds almost everywhere on M and

(n− k)
−(n−k)

2 ‖θ‖n−k ≤ ν4 |w|p−1.(4.12)

Remark 4.13. Because every differential form of degree 1 is simple, for
k = 1 the class WT2 coincides with the class WT3 while for k = n − 1 the
class WT3 coincides with WT4.

Theorem 4.14. The following inclusions hold between these WT -classes

WT4 ⊂ WT3 ⊂ WT2 ⊂ WT1.

Proof. The first two relations follow in an obvious way from (4.8). For the
proof of the last one it is enough to observe that

|θ|q = |θ|
p

p−1 ≤
(
ν

1
p−1

2 |w|
)p

≤ ν
p

p−1

2 ν−1
1 〈w, ?θ〉.

�

Example 4.15. Let v be a differential form of the class L2
loc(M) with

deg v = k, 1 ≤ k ≤ n. Following Hodge [Ho] we shall say that the dif-
ferential form v is harmonic if it is simultaneously weakly closed and weakly
coclosed, that is

dv = δv = 0.(4.16)

In particular, if f ∈ C2(M) then the differential form df of degree 1 is
harmonic if and only if ∆f = 0.

Theorem 4.17. Let v be a differential form of L2
loc(M), deg v = k. If v is

a harmonic differential form then v is of the class WT2 on M with structure
constants p = 2, ν1 = ν2 = 1.

Proof. Setting θ = ?−1v ∈ L2
loc(M) we have

〈v, ?θ〉 = 〈v, v〉 = |v|2

and |θ| = |v|. The differential form ?−1v is weakly closed because ?−1v =
(−1)k(n−k) ? v. Therefore Conditions (4.6) and (4.7) indeed hold with the
constants p = 2, ν2 = ν3 = 1. �
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5. Quasilinear elliptic equations.

Let M be a Riemannian manifold and let

A :
∧k(T (M)) →

∧k(T (M))

be a mapping defined almost everywhere on the k-vector tangent bundle∧k(T (M)). We assume that for almost every m ∈ M the mapping A is
defined on the k-vector tangent space

∧k(Tm(M)), that is for almost every
m ∈M the mapping

A(m, . ) : ξ ∈
∧k(Tm(M)) →

∧k(Tm(M))

is defined and continuous. We assume that the mapping m 7→ Am(X) is
measurable for all measurable k-vector fields X. Suppose that for almost
every m ∈M and for all ξ ∈

∧k(Tm(M)) we have

ν0 |A(m, ξ)|p ≤ 〈ξ, A(m, ξ)〉(5.1)

with the constants p > 1 and ν0 > 0.

Definition 5.2. A differential form w ∈W 1,p
loc (M) is said to be A-harmonic

if it is a solution of the A-harmonic equation

δA(m, dw) = 0,(5.3)

understood in the weak sense, that is∫
M

〈dΦ, A(m, dw)〉 dv = 0(5.4)

for all differential forms Φ ∈W 1,q
loc (M), 1/p+1/q = 1, with suppΦ∩∂M = ∅.

Theorem 5.5. If the differential form w ∈ W 1
p,loc(M) is A-harmonic with

the property (5.1) then the differential form dw is in the class WT1 on M.

Proof. Let w, degw = k be a solution of (5.3) understood in the weak sense.
Let the differential form α(m) be associated with the vector field A(m, dw)
at the point m and set θ = ?α. The differential form w is weakly closed
because of (5.4) and the weak closedness of θ follows from

(−1)nk+1

∫
M

〈θ, δψ〉 dv =
∫
M

〈?α, ? d ? ψ〉 dv

=
∫
M

〈α, d ? ψ〉 dv =
∫
M

〈A(m, dw), dφ〉 dv = 0

for all ψ = ?−1φ ∈ W 1,q(M) with suppψ ∩ ∂M = ∅. Further, by (5.1) we
get

ν0|θ|q = ν0|A(m, dw)|q ≤ 〈dw,A(m, dw)〉 = 〈dw, ?θ〉,
which guarantees (4.4). �
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From now on we assume that the vector field A(m, ξ) satisfies the condi-
tions

ν1 |ξ|p ≤ 〈ξ, A(m, ξ)〉,(5.6)

and

|A(m, ξ)| ≤ ν2 |ξ|p−1(5.7)

with p > 1 and for some constants ν1, ν2 > 0. It is clear that we have
ν1 ≤ ν2.

Theorem 5.8. A differential form ω ∈W 1,p
loc (M) is A-harmonic with prop-

erties (5.6) and (5.7) if and only if dω ∈ WT2.

Proof. As is the proof of Theorem 5.5 we define θ. The weak closedness of
w and θ follows as above. From (5.6) it follows that

ν1|dw|p ≤ 〈dw,A(m, dw)〉 = 〈dw, ? θ〉
and from (5.7)

|θ| = | ? α| = |A(m, dw)| ≤ ν2|dw|p−1.

Conversely, if dw ∈ WT2, then there exists a weakly closed differential
form θ (see (4.3)) such that (4.6) and (4.7) are satisfied. With the vector
field a : M→ Λk(R) associated to the differential form α = ? θ we define

A(m, ξ) =

{
a(m), for ξ = dw(m),
ξ|ξ|p−2, for ξ 6= dw(m).

(5.9)

The weak closedness of θ ensures that w is a solution of (5.3) understood
in the weak sense. Conditions (5.6) and (5.7) for A are satisfied with (4.6)
and (4.7). �

6. Quasiregular mappings.

Let M and N be Riemannian manifolds of dimension n. A mapping F :
M→N of the classW 1

n,loc(M) is called a quasiregular mapping if F satisfies

|F ′(m)|n ≤ KJF (m)(6.1)

almost everywhere on M. Here F ′(m) : Tm(M) → TF (m)(N ) is the formal
derivative of F (m), further, |F ′(m)| = max|h|=1 |F ′(m)h|. We denote by
JF (m) the Jacobian of F at the point m ∈ M, i.e., the determinant of
F ′(m).

The best constant K ≥ 1 in the inequality (6.1) is called the outer di-
latation of F and denoted by KO(F ). If F is quasiregular then the least
constant K ≥ 1 for which we have

JF (m) ≤ Kl(F ′(m))n
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almost everywhere on M is called the inner dilatation of the mapping F :
M→N and denoted by KI(F ). Here

l(F ′(m)) = min
|h|=1

|F ′(m)h|.

The quantity
K(F ) = max{KO(F ),KI(F )}

is called the maximal dilatation of F and if K(F ) ≤ K then the mapping F
is called K-quasiregular.

If F : M → N is a quasiregular homeomorphism then the mapping
F is called quasiconformal. In this case the inverse mapping F−1 is also
quasiconformal in the domain F (M) ⊂ N and K(F−1) = K(F ).

Example 6.2. Some basic examples of quasiregular mappings are provided
by mappings F : M → N that distort lengths of curves by a bounded
factor. Indeed, following [HKM], we shall say that a mapping F : M→N ,
F ∈ W 1

1,loc(M), is an L–BLD mapping if JF (m) ≥ 0 almost everywhere on
M and for some constant L ≥ 1 and for all h ∈ Tm(M) and almost every
m ∈M we have

|h|/L ≤ |F ′(m)h| ≤ L|h|.(6.3)

It is readily shown that every L–BLD map is K-quasiregular with K =
L2(n−1) ([HKM], Lemma 14.80).

Let A and B be Riemannian manifolds of dimensions dimA = k, dimB =
n − k, 1 ≤ k < n, and with scalar products 〈 , 〉A, 〈 , 〉B, respectively. On
the Cartesian product N = A × B we introduce the natural structure of a
Riemannian manifold with the scalar product

〈 , 〉 = 〈 , 〉A + 〈 , 〉B.

We denote by π : A×B → A and η : A×B → B the natural projections of
the manifold N onto submanifolds.

If wA and wB are volume forms on A and B, respectively, then the differ-
ential form wN = π∗wA ∧ η∗wB is a volume form on N .

Theorem 6.4. Let F : M→N be a quasiregular mapping and let f = π ◦
F : M→A. Then the differential form f∗wA is of the class WT2 on M with
the structure constants p = n/k, ν1 = ν1(n, k,KO) and ν2 = ν2(n, k,KO).

Remark 6.5. From the proof of the theorem it will be clear that the struc-
ture constants can be chosen to be

ν−1
1 =

(
k +

n− k

c2

)−n/2

nn/2KO, ν−1
2 = cn−k ,
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where c = c(k, n,KO) and c = c(k, n,KO) are, respectively, the greatest and
least positive roots of the equation

(kξ2 + (n− k))n/2 − nn/2KO ξ
k = 0.(6.6)

Proof. Setting g = η ◦ F : M→ B we choose θ = g∗wB. The volume form
wB is weakly closed.

In fact, if the mapping g is sufficiently regular then

dθ = dg∗wB = g∗dwB = 0.

In the general case for the verification of Condition (3.6) we approximate
the mapping g : M→ B in the norm of W 1

n by smooth maps gl, l = 1, 2, . . . .
Because Condition (3.6) holds for each of the differential forms g∗l wB, it must
hold also for the differential form g∗wB.

The weak closedness of the differential form f∗wA follows similarly.
Fix a point m ∈ M, at which the relation (6.1) holds. Set a = f(m),

b = g(m). Then
TF (m)(N ) = Ta(A)× Tb(B).

The computations can be conveniently carried out as follows. We first
rewrite Condition (6.1) in the form

|F ′(m)|n ≤ KO|F ∗wN |,(6.7)

where wN is a volume form on N .
For the points a ∈ A, b ∈ B we choose neighborhoods and local sys-

tems of coordinates y1, . . . , yk, and yk+1, . . . , yn, orthonormal at a and b,
respectively. We have

f∗wA = f∗(dy1 ∧ . . . ∧ dyk) = f∗dy1 ∧ . . . ∧ f∗dyk

= df1 ∧ . . . ∧ dfk, f i = yi ◦ f, i = 1, . . . , k.

Because the differential form wA is simple we obtain by the inequality be-
tween the geometric and arithmetic means

|df1 ∧ . . . ∧ dfk|1/k ≤

(
k∏

i=1

|df i|

)1/k

(6.8)

≤ 1
k

k∑
i=1

|df i| ≤

(
1
k

k∑
i=1

|df i|2
)1/2

.

Similarly

|dgk+1 ∧ . . . ∧ dgn|1/(n−k) ≤

(
1

n− k

n∑
i=k+1

|dgi|2
)1/2

.(6.9)

It is not difficult to see that

F ∗wN = F ∗(π∗wA ∧ η∗wB) = f∗wA ∧ g∗wB = f∗wA ∧ θ
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and further that

|F ∗wN | = |f∗wA ∧ g∗wB| ≤ |df1 ∧ . . . ∧ dfk||dgk+1 ∧ . . . ∧ dgn|.

We have

|dF |2 =
k∑

i=1

|df i|2 +
n∑

i=k+1

|dgi|2 ≤ n |F ′|2.

Therefore we get from (6.7), (6.8) and (6.9)(
k|f∗wA|2/k + (n− k)|g∗wB|2/(n−k)

)n/2

≤ nn/2KO〈f∗wA, ?θ〉 ≤ nn/2KO|f∗wA||g∗wB|.

Set

ξ =
|f∗wA|1/k

|g∗wB|1/(n−k)
.

The preceding relation takes the form(
kξ2 + (n− k)

)n/2 ≤ nn/2KOξ
k.

Using the notations c and c for the least and greatest positive roots of
Equation (6.6) we have c ≤ ξ ≤ c and

c|g∗wB|1/(n−k) ≤ |f∗wA|1/k ≤ c|g∗wB|1/(n−k).(6.10)

As above, from (6.10) it follows that

|f∗wA|n/k ≤
(
k +

n− k

c2

)−n/2
nn/2KO〈f∗wA, ?θ〉.

Thus Condition (4.6) for the membership of the differential form f∗wA of
degree k in the class WT2 is indeed satisfied.

To verify Condition (4.7) it is enough to observe that from (6.10) it follows
that

cn−k|θ| ≤ |f∗wA|
n−k

k .

�

Let y1, y2, . . . , yk be an orthonormal system of coordinates in Rk, 1 ≤
k ≤ n. Let A be a domain in Rk and let B be an (n − k)-dimensional
Riemannian manifold. We consider the manifold N = A× B.

Let F = (f1, f2, . . . , fk, g) : M→N be a mapping of the classW 1
n,loc(M)

and g = η ◦ F as defined above. We have f∗wA = df1 ∧ . . . ∧ dfk.

Theorem 6.11. If the mapping F is quasiregular then the differential form
f∗wA is in the class WT3 on M with the structure constants p = n/k,
ν3 = ν3(k, n,KO), ν2 = ν2(k, n,KO).
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Remark 6.12. We can choose the constants ν2, ν3 to be

ν2 = ck−n
1 , ν3 =

(
1 +

1
c21

)n/2

n−n/2kn/2K−1
O

where c1 is the least and c1 the greatest positive root of the equation

(ξ2 + 1)n/2 − nn/2k−k/2(n− k)−(n−k)/2KO ξ
k = 0.(6.13)

Proof. In contrast to the previous case the k-form f∗wA has now a global
coordinate representation. Because the earlier arguments had local character
they are applicable to the present case, too. As in the previous case we can
choose θ = g∗wB. Condition (4.7) holds with the same constant. We now
proceed to verify Condition (4.10).

Combining (6.7), (6.8) and (6.9) we get(
k∑

i=1

|df i|2 +
n∑

i=k+1

|dgi|2
)n/2

≤ k−k/2(n− k)−(n−k)/2nn/2KO

(
k∑

i=1

|df i|2
)k/2( n∑

i=k+1

|dgi|2
)(n−k)/2

.

Here we set

ξ =


k∑

i=1
|df i|2

n∑
i=k+1

|dgi|2


1/2

.

We then get

(ξ2 + 1)n/2 ≤ k−k/2(n− k)−(n−k)/2nn/2KOξ
k.

If c1, c1 are, respectively, the least and greatest of the positive roots of
(6.13) then

c1

(
n∑

i=k+1

|dgi|2
)1/2

≤

(
k∑

i=1

|df i|2
)1/2

≤ c1

(
n∑

i=k+1

|dgi|2
)1/2

.(6.14)

From the relations (6.7) and (6.14) it follows that(
1
c21

+ 1
)n/2

(
k∑

i=1

|df i|2
)n/2

≤ nn/2KO〈f∗wA, ?θ〉,

which guarantees the truth of (4.10). �
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Theorem 6.15. If the mapping F : M→ Rn is quasiregular then the dif-
ferential form f∗wA = df1 ∧ . . . ∧ dfk is of the class WT4 on M with the
structure constants p = n/k, ν3 = ν3(k, n,KO), ν4 = ν4(k, n,KO).

Proof. As above we set θ = dgk+1 ∧ . . .∧ dgn . Condition (4.10) has already
been proved. By (6.7), (6.9) and (6.14) we have

(1 + c21)
n/2

(
n∑

i=k+1

|dgi|2
)n/2

≤ (n− k)−(n−k)/2nn/2KO|f∗wA|

(
n∑

i=k+1

|dgi|2
)(n−k)/2

.

Therefore(
n∑

i=k+1

|dgi|2
)k/2

≤ (n− k)−(n−k)/2(1 + c21)
−n/2nn/2KO|f∗wA|,

which easily yields the desired conclusion. �

Remark 6.16. For the constant ν3 we can choose the constant of Theo-
rem 6.11 and

ν4 =
(
(n− k)−n/2(1 + c21)

−n/2nn/2KO

)(n−k)/k
.

Theorem 6.17. Let f = (f1, f2, . . . , fn−1) : M → Rn−1 be a mapping of
the class W 1

n,loc(M) and let the fundamental group π1 of the manifold M be
trivial. The mapping f can be extended to a quasiregular mapping

F = (f, fn) = (f1, . . . , fn−1, fn) : M→ Rn

if and only if the differential form w = df1 ∧ . . . ∧ dfn−1 of degree n − 1 is
in the class WT4 on M with p = n/(n− 1).

Proof. We assume that F = (f, fn) is quasiregular. By Theorem 6.15 the
differential form w is in the class WT4 on M.

Conversely, let w be a differential form of the classWT4. Then there exists
a weakly closed differential form θ, deg θ = 1, satisfying Conditions (4.10)
and (4.12). Because π1 = {e} there exists an injective function fn : M→ R1

such that dfn = θ. From (4.10) we get

ν3

(
n−1∑
i=1

|df i|2
)n/2

≤ (n− 1)n/2|df1 ∧ . . . ∧ dfn|.
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Condition (4.12) implies

ν−1
4 |dfn| ≤ |df1 ∧ . . . dfn−1|1/(n−1) ≤

(
1

n− 1

n−1∑
i=1

|df i|2
)1/2

.

Thus we get(
n∑

i=1

|df i|2
)n/2

≤

(
n−1∑
i=1

|df i|2 +
ν2
4

n− 1

n−1∑
i=1

|df i|2
)n/2

≤
(

1 +
ν2
4

n− 1

)n/2 1
ν3

(n− 1)n/2|df1 ∧ . . . ∧ dfn|,

which implies (6.1) with the constant

KO = (n− 1 + ν2
4)n/2n−n/2ν−1

3 .

�
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