Pacific Journal of Mathematics

EGGERT'S CONJECTURE ON THE DIMENSIONS OF NILPOTENT ALGEBRAS

Lakhdar Hammoudi

Volume 202 No. 1

January 2002

EGGERT'S CONJECTURE ON THE DIMENSIONS OF NILPOTENT ALGEBRAS

Lakhdar Hammoudi

In this paper we prove that for a finite dimensional commutative nilpotent algebra A over a field of prime characteristic p > 0, dim $A \ge p \dim A^{(p)}$, where $A^{(p)}$ is the subalgebra of A generated by the elements x^p . In particular, this solves Eggert's conjecture.

1. Introduction.

In 1971, Eggert [2] conjectured that for a finite commutative nilpotent algebra A over a field \mathbb{K} of prime characteristic p > 0, dim $A \ge p \dim A^{(p)}$, where $A^{(p)}$ is the subalgebra of A generated by all the elements $x^p, x \in A$ and dimA, dim $A^{(p)}$ denote the dimensions of A and $A^{(p)}$ as vector spaces over \mathbb{K} .

In [3], Stack conjectures that $\dim A \ge p \dim A^{(p)}$ is true for every finite dimensional nilpotent algebra A over \mathbb{K} . We point out that some particular cases of Eggert's conjecture have been proved in [1, 2, 3, 4].

Here we prove the conjecture for finite dimensional commutative nilpotent algebras. This combined with the results of [2] completely describe the group of units of A and the problem set in [1]: "When a finite abelian group is isomorphic to the group of units of some finite commutative nilpotent algebras?" is solved. Recall that the group of units of A is the set A with the following operation: $x \cdot y = x + y + xy$, $\forall x, y \in A$.

The author would like to thank the referee and Prof. B. Magurn along with the Algebra Seminar team at Miami university for valuable suggestions and comments.

2. Results.

Our main result is the following:

Theorem. Let A be a finite dimensional commutative nilpotent algebra over a field \mathbb{K} of characteristic p > 0 and let $A^{(p)}$ be the subalgebra of A generated by all the elements x^p , $x \in A$. Then dim $A \ge p \dim A^{(p)}$.

To prove the theorem we need an easy lemma on the partition of some sets in $\mathbb{Z}_{\geq 0}^d$ of *d*-tuples (d > 0) of nonnegative integers. Let $\alpha = (\alpha_1, \ldots, \alpha_d)$ and $\beta = (\beta_1, \ldots, \beta_d)$ be in $\mathbb{Z}_{\geq 0}^d$. Define $\alpha > \beta$ if in the difference $\alpha - \beta = (\alpha_1 - \beta_1, \ldots, \alpha_d - \beta_d)$, the left-most nonzero entry is positive and all other entries to the right are nonnegative. It is easy to prove that > is in fact a partial order on $\mathbb{Z}_{\geq 0}^d$, which is compatible with the addition.

Lemma 1. Let $(n_1, n_2, ..., n_d) = n \in \mathbb{Z}_{\geq 0}^d$ be a fixed d-tuple such that $(0, ..., 0, 0) \neq n$ and consider the following subsets of $\mathbb{Z}_{\geq 0}^d$:

$$\mathbb{Z}_{\geq 0}^d(n) = \{\alpha, (0, \dots, 0, 0) \neq \alpha \le n\},\$$

 $\mathbb{Z}_{\geq 0}^{d}(i_{1},\ldots,i_{d-1}) = \{(i_{1},i_{2},\ldots,i_{d-1},j), 1 \leq j \leq n_{d}\}, \quad 0 \leq i_{k} \leq n_{k}, 1 \leq k \leq d-1,$

$$\mathbb{Z}_{\geq 0}^d(0) = \{ (i_1, i_2, \dots, i_{d-1}, 0), (i_1, i_2, \dots, i_{d-1}, 0) \in \mathbb{Z}_{\geq 0}^d(n) \}.$$

Then the sets $\mathbb{Z}_{\geq 0}^d(i_1,\ldots,i_{d-1})$, and $\mathbb{Z}_{\geq 0}^d(0)$ form a partition of $\mathbb{Z}_{\geq 0}^d(n)$.

The proof of the theorem requires also the following lemma due to Bautista [1, Proposition 2.1, p. 15]. For completness, we will give a sketch of a proof of this result.

Lemma 2. Let A be a commutative nilpotent algebra over a field \mathbb{K} generated by X_1, \ldots, X_d . Let $(\alpha_1, \ldots, \alpha_d)$ be an element of $\mathbb{Z}_{\geq 0}^d$ such that $X_1^{\alpha_1} \cdots X_d^{\alpha_d} \neq 0$ but $\forall (\beta_1, \ldots, \beta_d) \in \mathbb{Z}_{\geq 0}^d$, $(\beta_1, \ldots, \beta_d) > (\alpha_1, \ldots, \alpha_d)$, $X_1^{\beta_1} \cdots X_d^{\beta_d} = 0$. Then for the set of ordered d-tuples

$$S = \left\{ (i_1, \ldots, i_d) \in \mathbb{Z}_{\geq 0}^d; (\alpha_1, \ldots, \alpha_d) - (i_1, \ldots, i_d) \in \mathbb{Z}_{\geq 0}^d \right\},\$$

 $\{X_1^{i_1}\cdots X_d^{i_d}; (i_1,\ldots,i_d)\in S\}$ is linearly independent.

Sketch of Proof. Suppose that the family

$$\left\{X_1^{i_1}\cdots X_d^{i_d}; \, (i_1,\ldots,i_d) \in \mathbb{Z}_{\geq 0}^d; \, (\alpha_1,\ldots,\alpha_d) - (i_1,\ldots,i_d) \in \mathbb{Z}_{\geq 0}^d\right\}$$

is linearly dependent. Then there exists a set of nonzero elements $\lambda_{i_1,\ldots,i_d} \in \mathbb{K}$ such that $\sum_{\alpha-I \in \mathbb{Z}_{\geq 0}^d} \lambda_{i_1,\ldots,i_d} X_1^{i_1} \cdots X_d^{i_d} = 0, \ \alpha = (\alpha_1,\ldots,\alpha_d), \ I = (i_1,\ldots,i_d).$

Let $L = (l_1, \ldots, l_d)$ be a minimal element such that $\lambda_{l_1, \ldots, l_d} \neq 0$. Then

$$\lambda_{l_1,\dots,l_d} X_1^{l_1} \cdots X_d^{l_d} + \sum_{I>L} \lambda_{i_1,\dots,i_d} X_1^{i_1} \cdots X_d^{i_d} = 0.$$

By multiplying on the right by $X_1^{(\alpha_1-l_1)}\cdots X_d^{(\alpha_d-l_d)}$ and using the commutativity of A, we obtain:

$$\lambda_{l_1,\dots,l_d} X_1^{\alpha_1} \cdots X_d^{\alpha_d} + \sum_{I>L} \lambda_{i_1,\dots,i_d} X_1^{i_1 + (\alpha_1 - l_1)} \cdots X_d^{i_d + (\alpha_d - l_d)} = 0.$$

However, it is easy to see that $(i_1 + \alpha_1 - l_1, \dots, i_d + \alpha_d - l_d) > (\alpha_1, \dots, \alpha_d)$.

Thus,

$$\sum_{I>L} \lambda_{i_1,\ldots,i_d} X_1^{i_1+(\alpha_1-l_1)} \cdots X_d^{i_d+(\alpha_d-l_d)} = 0.$$

So, $\lambda_{l_1,\ldots,l_d} X_1^{\alpha_1} \cdots X_d^{\alpha_d} = 0$. But, $\lambda_{l_1,\ldots,l_d} \neq 0$. Thus, $X_1^{\alpha_1} \cdots X_d^{\alpha_d} = 0$. This contradicts our hypothesis and proves the lemma.

Lemma 3. Let A be a commutative nilpotent algebra over a field \mathbb{K} generated by d elements X_1, \ldots, X_d . Suppose that A cannot be generated by d-1 elements. Let $\mathcal{B} = \{X_1^{i_1} \cdots X_d^{i_d}, (i_1, i_2, \ldots, i_d) \in \mathbb{Z}_{\geq 0}^d$, with the convention $X_k^0 = 1, 1 \leq k \leq d\}$ be a basis of A as a vector space over \mathbb{K} . Then $X_d \in \mathcal{B}$ and some of the basis \mathcal{B} are such that, if for some $(j_1, \ldots, j_d), j_d \geq 2, X_1^{j_1} \cdots X_d^{j_d} \in \mathcal{B}$ then $X_1^{j_1} \cdots X_{d-1}^{j_d-1} X_d^{j_d-1} \in \mathcal{B}$.

Proof. Suppose that $X_d \notin \mathcal{B}$ and let us write it as a linear combination of elements of \mathcal{B} , $X_d = \sum_{i_1,\ldots,i_d} \lambda_{i_1,\ldots,i_d} X_1^{i_1} \cdots X_d^{i_d}$, $\lambda_{i_1,\ldots,i_d} \in \mathbb{K}$. Since A is not generated by d-1 elements, for some i_d we have $i_d \geq 1$. So, one can write

$$X_d = \left(\sum_{i_1,\dots,i_d} \lambda_{i_1,\dots,i_d} X_1^{i_1} \cdots X_d^{i_d-1}\right) \left(\sum_{i_1,\dots,i_d} \lambda_{i_1,\dots,i_d} X_1^{i_1} \cdots X_d^{i_d}\right).$$

Since A is commutative and nilpotent, by repeating the above process we can write X_d as a linear combination of monomials in X_1, \ldots, X_{d-1} . Thus A is generated by d-1 elements. This contradiction proves our assertion, $X_d \in \mathcal{B}$.

We prove now our second assertion. It is easy to see that $X_1^{j_1} \cdots X_d^{j_d} \in \mathcal{B}$ implies that there exists $(\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_{\geq 0}^d$ satisfying the hypothesis of Lemma 2 such that

 $(\alpha_1,\ldots,\alpha_d) > (j_1,\ldots,j_d)$ and $(\alpha_1-j_1,\ldots,\alpha_d-j_d) \in \mathbb{Z}_{\geq 0}^d$.

But $(j_1, \ldots, j_d) > (j_1, \ldots, j_{d-1}, j_d - 1)$. So, $(\alpha_1 - j_1, \ldots, \alpha_{d-1} - j_{d-1}, \alpha_d - j_d - 1) \in \mathbb{Z}_{>0}^d$. Thus, Lemma 2 applies here.

Suppose now that $X_1^{j_1} \cdots X_{d-1}^{j_{d-1}} X_d^{j_d-1} \notin \mathcal{B}$. Then $\{X_1^{j_1} \cdots X_{d-1}^{j_{d-1}} X_d^{j_d-1}, \mathcal{B}\}$ is linearly dependent which contradicts the preceeding lemma.

Proof of the Theorem. We prove our theorem by induction on the number l of generators of the algebra A.

We first prove the conjecture for l = 1. Let X be a generator of A and m+1 be the degree of nilpotency of X. Then $\{X, X^2, \ldots, X^m\}$ is a basis for the vector space A and since A is commutative over a field of characteristic $p, \{X^p, \ldots, X^{pk}\}$ is a basis of $A^{(p)}$. But the fact that m+1 is the degree of nilpotency of X yields to $m \ge pk$. So, dim $A = m \ge pk = p \dim A^{(p)}$.

Suppose that the theorem is proved for every algebra generated by l elements, $l \leq d-1$ and consider a finite dimensional commutative nilpotent

algebra A over \mathbb{K} generated by d elements, X_1, \ldots, X_d . Since A is nilpotent, there exists a d-tuple $(n_1, n_2, \ldots, n_d) = n \in \mathbb{Z}_{\geq 0}^d$ such that $n_1 + 1, \ldots, n_d + 1$ are the degrees of nilpotency of X_1, \ldots, X_d respectively. Since A is commutative over a field of characteristic p, as vector spaces over \mathbb{K} , A and $A^{(p)}$ are generated by the monomials of the form $\{X_1^{\beta_1} \cdots X_d^{\beta_d}, (\beta_1, \ldots, \beta_d) \in \mathbb{Z}_{\geq 0}^d$, where $X_i^0 = 1\}$ and $X_1^{p\beta_1} \cdots X_d^{p\beta_d}$ respectively. So, one can extract a basis \mathcal{B} of $A^{(p)}$ from the last cited monomials. Let $\overline{\mathcal{B}}$ be a basis of A obtained by completing \mathcal{B} . Let $\mathbb{Z}_{\geq 0}^d(\overline{\mathcal{B}})$ be the set of all d-tuples $(\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_{\geq 0}^d$ such that $X_1^{\alpha_1} \cdots X_d^{\alpha_d} \in \overline{\mathcal{B}}$ and denote by $\mathbb{Z}_{\geq 0}^d(\mathcal{B})$ the set of all d-tuples $(\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_{\geq 0}^d$ such that $X_1^{\alpha_1} \cdots X_d^{\alpha_d} \in \mathcal{B}$.

With these notations, dim $A \geq p \dim A^{(p)}$ is the same as $\#\mathbb{Z}^d_{\geq 0}(\overline{\mathcal{B}}) \geq p\#\mathbb{Z}^d_{\geq 0}(\mathcal{B})$, where #Y is the number of the elements of the set Y.

Let R be the subalgebra of A generated by $\{X_1, \ldots, X_{d-1}\}$. Then by the hypothesis of induction, $\dim R \geq p \dim R^{(p)}$. But, $\dim R = \#(\mathbb{Z}_{\geq 0}^d(\overline{\mathcal{B}}) \cap \mathbb{Z}_{\geq 0}^d(0))$ and $\dim R^{(p)} = \#(\mathbb{Z}_{\geq 0}^d(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^d(0))$. On the other hand, since $\mathbb{Z}_{\geq 0}^d(\overline{\mathcal{B}})$ and $\mathbb{Z}_{\geq 0}^d(\mathcal{B})$ are included in $\mathbb{Z}_{\geq 0}^d(n)$, by Lemma 1 we have:

$$\mathbb{Z}_{\geq 0}^{d}(\overline{\mathcal{B}}) = \left(\bigcup_{i_{1},\dots,i_{d-1}} \mathbb{Z}_{\geq 0}^{d}(\overline{\mathcal{B}}) \cap \mathbb{Z}_{\geq 0}^{d}(i_{1},\dots,i_{d-1})\right) \bigcup \left(\mathbb{Z}_{\geq 0}^{d}(\overline{\mathcal{B}}) \cap \mathbb{Z}_{\geq 0}^{d}(0)\right)$$
$$\mathbb{Z}_{\geq 0}^{d}(\mathcal{B}) = \left(\bigcup_{i_{1},\dots,i_{d-1}} \mathbb{Z}_{\geq 0}^{d}(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^{d}(i_{1},\dots,i_{d-1})\right) \bigcup \left(\mathbb{Z}_{\geq 0}^{d}(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^{d}(0)\right).$$

Also, by Lemma 1 we have partitions of $\mathbb{Z}_{\geq 0}^d(\bar{\mathcal{B}})$ and $\mathbb{Z}_{\geq 0}^d(\mathcal{B})$. Thus, we only need to prove that

$$\# \bigcup_{i_1,\ldots,i_{d-1}} \left(\mathbb{Z}^d_{\geq 0}(\overline{\mathcal{B}}) \cap \mathbb{Z}^d_{\geq 0}(i_1,\ldots,i_{d-1}) \right) \\
\geq p \# \bigcup_{i_1,\ldots,i_{d-1}} \left(\mathbb{Z}^d_{\geq 0}(\mathcal{B}) \cap \mathbb{Z}^d_{\geq 0}(i_1,\ldots,i_{d-1}) \right).$$

Moreover, since we have a disjoint union of sets, we prove that

$$\#\left(\mathbb{Z}_{\geq 0}^d(\overline{\mathcal{B}}) \cap \mathbb{Z}_{\geq 0}^d(i_1, \dots, i_{d-1})\right) \geq p\#\left(\mathbb{Z}_{\geq 0}^d(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^d(i_1, \dots, i_{d-1})\right).$$

Fix (i_1, \ldots, i_{d-1}) and let j be the greatest integer such that: $X_1^{i_1} \cdots X_{d-1}^{i_{d-1}} X_d^j \in \overline{\mathcal{B}}$ (i.e., $(i_1, \ldots, i_{d-1}, j) \in \mathbb{Z}_{\geq 0}^d(\overline{\mathcal{B}})$).

If j = 0 or j = 1 then $\mathbb{Z}_{\geq 0}^{d}(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^{d}(i_1, \dots, i_{d-1}) = \emptyset$ and our claim is obvious.

If $j \geq 2$ then by Lemma 3, $(i_1, \ldots, i_{d-1}, k) \in \mathbb{Z}^d_{\geq 0}(\overline{\mathcal{B}}), \forall k, 1 \leq k \leq j$ and so, by the choice of the integer j,

$$\#\left(\mathbb{Z}_{\geq 0}^d(\bar{\mathcal{B}}) \cap \mathbb{Z}_{\geq 0}^d(i_1, \dots, i_{d-1})\right) = j.$$

On the other hand

$$\mathbb{Z}_{\geq 0}^{d}(\mathcal{B}) \cap \mathbb{Z}_{\geq 0}^{d}(i_1, \dots, i_{d-1}) = \begin{cases} \emptyset \\ \text{or} \\ \{(i_1, \dots, i_{d-1}, pk), 1 \leq pk \leq j\}. \end{cases}$$

The first case is obvious and in the second as for an algebra generated by one element, we have

$$p\#\left(\mathbb{Z}_{\geq 0}^d(\mathcal{B})\cap\mathbb{Z}_{\geq 0}^d(i_1,\ldots,i_{d-1})\right)=pt\leq j.$$

This ends the proof of the theorem.

References

- R. Bautista, Units of finite algebras, An. Inst. Mat. Univ. Nac. Autónoma, México, 16(2) (1976), 1-78 (in Spanish), MR 58 #11011, Zbl 402.16029.
- [2] N. Eggert, Quasi regular groups of finite commutative nilpotent algebras, Pacific J. Math., 36 (1971), 631-634, MR 44 #262, Zbl 213.32004.
- C. Stack, Dimensions of nilpotent algebras over fields of prime characteristic, Pacific J. Math., 176 (1996), 263-266, MR 97m:16037, Zbl 876.16013.
- [4] _____, Some results on the structure of finite nilpotent algebras over fields of prime characteristic, J. Combin. Math. Combin. Comput., 28 (1998), 327-335, MR 2000a:13031, Zbl 922.16012.

Received July 30, 1998 and revised April 19, 2000.

DEPARTMENT OF MATHEMATICS AND STATISTICS MIAMI UNIVERSITY OXFORD, OHIO 45056 *E-mail address:* hammoul@muohio.edu