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It is known that there is no nonconstant bounded harmonic
map from the Euclidean space Rn to the hyperbolic space Hm.
This is a particular case of a result of S.-Y. Cheng. However,
there are many polynomial growth harmonic maps from R2

to H2 by the results of Z. Han, L.-F. Tam, A. Treibergs and
T. Wan. One of the purposes of this paper is to construct
harmonic maps from Rn to Hm by prescribing boundary data
at infinity. The boundary data is assumed to satisfy some
symmetric properties. On the other hand, it was proved by
Han-Tam-Treibergs-Wan that under some reasonable assump-
tions, the image of a harmonic diffeomorphism from R2 into
H2 is an ideal polygon with n + 2 vertices on the geometric
boundary of H2 if and only if its Hopf differential is of the
form φdz2 where φ is a polynomial of degree n. It is unclear
whether one can find explicit relation between the coefficients
of φ and the vertices of the image of the harmonic map. The
second purpose of this paper is to investigate this problem.
We will explicitly demonstrate some families of polynomial
holomorphic quadratic differentials, such that the harmonic
maps from R2 into H2 with Hopf differentials in the same fam-
ily will have the same image. In proving this, we first study
the asymptotic behaviors of harmonic maps from R2 into H2

with polynomial Hopf differentials φdz2. The result may have
independent interest.

0. Introduction.

Let Rn be the Euclidean space, and Hn be the hyperbolic space. In
[HTTW], it was proved that under some reasonable assumptions, the image
of a harmonic diffeomorphism from R2 into H2 is an ideal polygon with n+2
vertices on the geometric boundary of H2 if and only if its Hopf differential
is of the form φdz2 where φ is a polynomial of degree n. Note that φ is
a polynomial of degree n if and only if the harmonic map is of polynomial
growth of order n

2 + 1, see [TW] for example. In [LW], it is shown that the
closure of the image of a harmonic map from Rn into Hm with polynomial
growth of order l will intersect the geometric boundary of Hm at no more
than Cln−1 points, where C is a constant independent of l. Moreover, the
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image lies in the convex hull of these points. In higher dimensions, unlike
harmonic maps from hyperbolic space to hyperbolic space, there are very
few examples of nontrivial harmonic maps from Rn into Hm. In fact, if the
image of a harmonic map from Rn to Hm is bounded, then the harmonic
map must be constant [Cg]. Also, there is no rotationally symmetric har-
monic map from Rn into Hn [T]. On the other hand, in [WA], (see also
[TW]), it was shown that orientation preserving harmonic diffeomorphisms
from R2 into H2 can be parametrized by their Hopf differentials, provided
that the harmonic diffeomorphisms satisfy some natural conditions. In par-
ticular, one can construct harmonic diffeomorphisms from R2 to H2 with
prescribed Hopf differentials. In [HTTW], harmonic diffeomorphisms with
prescribed images had been constructed via the Gauss maps of constant
mean curvature cuts in Minkowski three space. Both methods of construc-
tions cannot be applied to higher dimensions. In this paper, we will use a
more direct method to construct harmonic maps from Rn to Hm with pre-
scribed boundary data at infinity. The boundary data is assumed to satisfy
some symmetric properties. It should be remarked that if u is a harmonic
map from R2 into Hm−1 then u can be considered as a harmonic map from
R2 into Hm by embedding Hm−1 into Hm. Also if u is a harmonic map from
Rn−1 into Hm, then the map v from Rn = Rn−1 × R into Hm defined by
v(x, t) = u(x) for (x, t) ∈ Rn−1×R is harmonic. The harmonic maps we are
going to construct are not in these categories, and are said to be nontrivial.
Each of the constructed harmonic maps has polynomial growth, and the
closure of its image in Hm ∪ ∂Hm intersects ∂Hm at finitely many points,
where ∂Hm is the geometric boundary of Hm. This can be considered as the
first step to understand boundary value problem for harmonic maps from
Rn into Hm. The idea of construction is to find an approximate initial map
with symmetry. Using the symmetry of the initial map, one can construct
a harmonic map by compact exhaustion. The resulting harmonic map will
be of bounded distance from the initial map.

In [HTTW], it was proved that if u is a harmonic diffeomorphism from
R2 onto an ideal polygon with m vertices on ∂H2, then its Hopf differential
is φdz2 with φ to be a polynomial of degree m − 2. However, it is unclear
whether it is possible to find explicit relation between the coefficients of
φ and these m points. The second purpose of this paper is to investigate
this problem. We will explicitly demonstrate some families of polynomial
holomorphic quadratic differentials, such that the harmonic maps from R2

into H2 with Hopf differentials in the same family will have the same image.
In proving this, one needs to study asymptotic behaviors of harmonic maps
from R2 into H2 with polynomial Hopf differentials. Some results in this
direction had been obtained in [HTTW], using the techniques introduced
in [Wf] and [My]. We will prove that if φ is of degree n, then there are
n + 2 rays, with equal angle between them, so that if u is a an orientation
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preserving harmonic map from R2 into H2 with Hopf differential φdz2, then
u(z) will tend to infinity as z →∞ at the same rate along these rays. The
result has its own interest and may be useful in the construction of harmonic
maps R2 into H2 with prescribed data at infinity.

The structure of the paper is as follows. In §1, we will construct harmonic
maps with symmetry from R2 to H2. In §2, we will use induction to construct
nontrivial harmonic maps from R2 to Hm, m ≥ 3, and in §3, we will construct
nontrivial harmonic maps from Rm to Hm. In §4, we will study asymptotic
behaviors of harmonic maps. In §5, we obtain some partial results on the
explicit relation between the Hopf differential and the image of a harmonic
map.

1. Harmonic maps from R2 to H2.

It was proved in [WA] (see also [TW]) that given a holomorphic quadratic
differential φ(z)dz2 on C, one can find a harmonic diffeomorphism from C
into H2 such that the Hopf differential of the harmonic map is φ(z)dz2.
Under certain conditions, the harmonic map is essentially unique. In partic-
ular, if φ(z) = zm, m ≥ 1, using the result in [HTTW], one should be able
to prove that up to an isometry of H2, the image is a regular ideal polygon
of m+2 sides, see §5 for details. However, the method cannot be applied to
higher dimensions. In this section, we will use another method to construct
such harmonic maps. Using similar methods we will construct nontrivial
harmonic maps with symmetry from R2 into Hm, and Rm into Hm, with
m ≥ 2 in the next two sections.

Let n ≥ 3 be an integer. In R2, using polar coordinates the harmonic
function

f(z) = f(re
√
−1θ) = r

n
2 sin

(n

2
θ
)

is zero on the rays θ = θk, where 0 ≤ k ≤ n− 1, where θk = 2kπ
n , and |f | is

positive on θk < θ < θk+1. Note that the ray θ = θ0 is the same as the ray
θ = θn. For each k, let Wk be the wedge defined by θk ≤ θ ≤ θk+1.

Let us use the Poincaré disk model for H2. Let ak = e
(2k+1)π

√
−1

n , k =
0, ..., n− 1, which are identified as points on the geometric boundary of H2.
Let o be the origin of the unit disk D, and let γk be the geodesic from o to
ak in H2, parametrized by arc length. Define a map g : R2 → H2 as follows.
In the wedge θk ≤ θ ≤ θk+1, let

g(z) = γk(|f(z)|).
Since f = 0 on each ray {θ = θk}, g is well-defined. g satisfies the following
properties:

(i) g is a Lipschitz map, which is smooth and harmonic in the interior of
each wedge Wk.
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(ii) For any z ∈ C, g(e2
√
−1θkz) = e2

√
−1θkg(z).

(iii) g(e
√
−1θ1z) = e

√
−1θ1g(z).

Lemma 1.1. For any R > 0, let uR be the harmonic map from B(R) into
H2, where B(R) is the disk of radius R with center at the origin in R2, such
that uR = g on ∂B(R). Then there is a constant C1 which is independent
of R, such that

d(uR(z), g(z)) ≤ C1

for all R and for all z ∈ B(R).

Proof. By (iii) and the uniqueness of harmonic maps, we have

uR(e
√
−1θ1z) = e

√
−1θ1uR(z).

Hence it is sufficient to prove that

d(uR(z), g(z)) ≤ C1

for all z ∈ B(R)∩W0, where W0 is the wedge defined above. By the definition
of uR,

(1.1) uR(z) = g(z)

for z ∈ ∂B(R) ∩ W0. We want to show that d(uR(z), g(z)) is bounded on
∂W0 ∩ B(R) by a constant independent of R. Since W0 is bounded by two
rays θ = θ0, θ = θ1, by symmetry it is sufficient to prove that d(uR(z), g(z))
is uniformly bounded on {θ = θ0} ∩ B(R). By (ii), g(z) = g(z). Hence by
the uniqueness theorem on harmonic maps, we have uR(z) = uR(z). This
implies that uR(z) lies on the real axis, for all z ∈ {θ = θ0}∩B(R). Observe
that the image of uR lies inside the convex hull A of the ideal boundary
points ak, 0 ≤ k ≤ n − 1, and the closure of A in H2 ∪ ∂H2 intersects ∂H2

at the points ak. Suppose n is even, then no ak is on the real axis. Hence
there is a constant C2 independent of R, such that

d(uR(z), g(z)) = d(uR(z), o)(1.2)
≤ C2

for all z ∈ {θ = θ0}∩B(R), see Figure 1. Suppose n is odd, we want to show
that uR(z) lies on the positive real axis, for all z ∈ {θ = θ0} ∩ B(R). This
will imply that (1.2) is still true in this case, because no ak is on the positive
real axis. By the definition of g, we see that g maps the upper half space
into the that part of D2 which lies on the upper half space. Since uR(z) lies
on the real axis if z is real, uR also maps the upper half space into the that
part of D2 which lies on the upper half space. One can prove similarly that
uR maps the half space bounded by the rays θ = 2π

n and θ = π + 2π
n which

containing the positive real axis into the same half space, see Figure 2. In
particular, uR(z) lies on the positive real axis, for all z ∈ {θ = θ0}∩B(R). So
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(1.2) is true for all z ∈ ∂(B(R) ∩W0). Since d(uR(z), g(z)) is subharmonic,
the lemma follows from the maximum principle.

By Lemma 1.1, passing to a subsequence if necessary, uR will converge to
a harmonic map u such that d(u(z), g(z)) is uniformly bounded. In fact, u
is a diffeomorphism. We can prove this fact as follows. For each R > 0, let
us construct a harmonic map vR from B(R) into H2 in the following way.
Let bk = γk(R

n
2 ) and let βk be the minimal geodesic joining bk to bk−1. Let

αk be the minimal geodesic joining ak to ak−1. It is easy to see that the
distance from a point on γk or γk−1 to αk is bounded by a constant C3 which
is independent of R. Define a map Πk from γk|[0, bk] and γk−1|[0, bk−1] into
the line containing βk, by nearest point projection. Then

(1.3) d(γk(s),Πk(γk(s))) ≤ C1.

Πk is surjective and is continuous. Let vR be the harmonic map from B(R)
into H2, such that on the ∂B(R) ∩ Wk vR(z) = Πk(g(z)). Note that the
boundary map is a homeomorphism from ∂B(R) onto the boundary of the
geodesic polygon with boundary ∪kβk. Here are some properties of vR. By
[SY], we have:

Lemma 1.2. vR is a diffeomorphism onto its image.

By Lemma 1.1, and (1.3), there is a constant C4 which is independent of
R such that

sup
x∈B(R)

d(vR(z), g(z)) ≤ C4.

Hence, passing to a subsequence, vR converge to a harmonic map v, such
that

(1.4) d(v(z), g(z)) ≤ C4.

Lemma 1.3. Let φdz2 be the Hopf differential of v. Then φ is a polynomial
of degree n− 2.

Proof. By the construction,

d(o, g(z)) ≤ |z|
n
2 .

By (1.4), we see that
d(o, v(z)) ≤ C4 + |z|

n
2 .

By the energy density estimate [Cg], there is a constant C5 independent of
z such that

e(u)(z) ≤ C5(|z|n−2 + 1).
Since |φ|(z) ≤ e(v), we conclude that φ is a polynomial of degree at most
n− 2. Suppose the degree of φ is less than or equal to n− 3. Let φRdz2 be
the Hopf differential of vR. Then given any R0 > 0 there is R1 such that if
R > R1, then

|φR(z)| ≤ C6(|z|n−3 + 1),
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in B(R0) for some constant C6 which is independent of R0, where φR is the
Hopf differential of vR. Using an argument of [TW], we conclude that in
B(R0

2 ),
e(vR)(z) ≤ C7(|z|n−3 + 1)

for some constant C7 independent of R0, if R is large enough. Let R →∞,
and then let R0 →∞, we have

e(v)(z) ≤ C7(|z|n−3 + 1).

This would imply
d(o, v(z)) ≤ C8(|z|(n−1)/2 + 1)

for some constant C8. By (1.4), and the definition of g, this is impossible.
Hence the degree of φ must be n− 2.

Lemma 1.4. v is a diffeomorphism onto its image.

Proof. Since the Jacobian JR of vR is positive in B(R), the Jacobian J of
v satisfies J ≥ 0. First we want to show that J > 0 somewhere. Suppose
not, then J ≡ 0. Since J = ||∂v||2 − ||∂v||2, where ||∂v|| = σ|∂v

∂z |, and
||∂v|| = σ| ∂v

∂z |, σ2|dv|2 is the metric on H2. we have

||∂v||2 ≡ ||∂v||2.
On the other hand,

|φ|2 = ||∂v||2 · ||∂v||2.
We have

|φ| = ||∂v||2.
Since φ is a polynomial of degree n−2, there is R0 > 0 such that all the zeros
of φ lies inside B(R0

2 ). For each R, ||∂vR|| > 0, and let wR = log ||∂vR||.
Then

∆wR = JR(uR).
We have ∫

∂B(R0)

∂wR

∂r
=
∫

B(R0)
∆wR

=
∫

B(R0)
JR.

Since on ∂B(R0), ||∂v||2 = |φ| > 0, let R →∞, we have∫
∂B(R0)

∂w

∂r
=
∫

B(R0)
J.

However, w = 1
2 log |φ|, and the degree of φ is at least 1, moreover, all zeros

of φ lie inside B(R0), we conclude that

(1.5)
∫

B(R0)
J > 0.
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Hence J > 0 somewhere, and (1.5) is true for some R0 > 0. This implies
that there is δ > 0 such that if R is large then

(1.6)
∫

B(R0)
JR ≥ δ.

Apply Theorem 7.1 in [J] to each map vR, we conclude that for any R1,
there is ε > 0, such that

JR(v) ≥ ε > 0

in B(R1) provided R is large enough. This implies J(v) > 0 everywhere and
v is a diffeomorphism onto its image.

Since d(v(z), u(z)) is uniformly bounded and subharmonic, d(v(z), u(z))
is a constant function. It is easy to see that v(0) = u(0), and so u ≡ v.
On the other hand, since ||∂u||2 ≥ |φ| and φ is a polynomial, we see that
||∂u||2dz2 is complete. By the result of [HTTW], the image of u is a ideal
polygon of n sides and so the image of u is the polygon spanned by the a′ks,
and we have the following:

Theorem 1.5. Let n ≥ 3, and let ak = e
(2k+1)π

√
−1

n , k = 0, . . . , n− 1. Then
there is a harmonic diffeomorphism u from R2 into H2 whose image is the
ideal polygon spanned by the ak’s. Moreover, u satisfies

u(e2
√
−1θkz) = e2

√
−1θku(z)

and

u(eiθ1z) = e
√
−1θ1u(z).

In case of n = 4, we can do more. Let ak, 1 ≤ k ≤ 4 be four points on the
unit circle, such that they are the vertices of a rectangle which is symmetric
with respect to the real and imaginary axes.

Proposition 1.6. There is a harmonic diffeomorphism from R2 into H2

whose image is the ideal polygon spanned by the ak’s. Moreover, u satisfies

u(z) = u(z),

and

u(−z) = −u(z).

The proof is similar to the proof of Theorem 1.5. We should remark that
for any four points on the unit circle, there is a conformal map of the unit
disk, which carries these four points to some ak’s satisfying the condition of
Proposition 1.6.
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2. Harmonic maps from R2 into Hm.

In this section, we will use the harmonic maps constructed in §1 to obtain
harmonic maps from R2 = C into Hm, which are nontrivial in the sense
that the image of each of the maps is not contained in any nontrivial totally
geodesic submanifold in Hm. We always use the Poincaré unit ball model
for Hm. Namely, Hm is identified with the unit ball Bm in Rm with the
Poincaré metric, and the geometric boundary ∂Hm is identified with the
unit sphere Sm−1. For any set A in Hm ∪ ∂Hm, we denote A to be the
closure of A in Hm ∪ ∂Hm, and denote the convex hull of A by Con (A).
We will use the following fact: Suppose A is a close set in Hm ∪ ∂Hm, then
Con (A) ∩ ∂Hm = A ∩ ∂Hm.

Let n ≥ 4 be an even number. Let θk = 2kπ
n and let Wk be the wedge in

R2 defined by θk ≤ θ ≤ θk+1 in polar coordinates. Note that θk = kθ1. By
Theorem 1.5, we can find a harmonic diffeomorphism u from C = R2 into
H2, such that:

(a) In the Poincaré disk model of H2, if we write

u(z) = (u1(z), u2(z)),

then u1(z) = 0 on =(z) = 0, where =(z) is the imaginary part of z;
(b) u(R2) ∩ ∂H2 does not contain the points (0,±1).

From (a) and (b), we have
(c) supz∈R2, =(z)=0 d(u(z), 0) < ∞.

From (b), we also have:

(b′) If (a1, a2) ∈ u(R2) ∩ ∂H2, then a1 6= 0.
We are going to use u to construct a harmonic map from R2 into H3.

Identify H2 with {(v1, v2, v3) ∈ H3| v2 = 0}. Then u : R2 → H2 ⊂ H3 is also
harmonic, and

(2.1) u(z) = (u1(z), 0, u2(z)).

Define a harmonic map v from W0 into H3 in the following way, see Figure 3.
Let

Ψ : {z ∈ C| =(z) > 0} → interior of W0,

be a conformal diffeomorphism, Ψ({=(z) = 0}) = ∂W0 and Ψ is homeo-
morphism between =(z) ≥ 0 and W0 . Let v(z) = u ◦ Ψ−1(z). Then v is a
harmonic map from W0 into H3, such that:

(i) v(z) = (v1(z), 0, v3(z));
(ii) v(z) = (0, 0, v3(z)) for z ∈ ∂W0;
(iii) supz∈∂W0

d(v(z), 0) < ∞;
(iv) v is continuous up to the boundary of W0

(v) suppose (a1, a2, a3) ∈ v(W0) ∩ ∂H3, a1 6= 0.
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Property (v) follows from property (b′) of u and the fact that if (a1, a2, a3) ∈
v(W0) ∩ ∂H3 then a2 = 0 and (a1, a3) ∈ u(R2) ∩ ∂H2.

Define g as follows, see Figure 4. Let us write any point v = (v1, v2, v3)
of H3 in the form (v1 +

√
−1v2, v3). Let g(z) = v(z) for z ∈ W0. Suppose

we have defined g = (g1, g2, g3) = (g1 +
√
−1g2, g3) on Wk, 0 ≤ k < n − 1,

then for z ∈ Wk+1, let

g(z) =
(
e2
√
−1(θk+1−π

n
)(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
(2.2)

=
(
e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
here ẑ = e2

√
−1θk+1z which is in Wk. Here we simply ‘reflect’ g along the ray

θ = θk+1 in the domain, and θ = θk+1 − π
n = (k + 1

2)θ1 in the target. Then
g is harmonic on the interior of each Wk. Suppose n is even, then g3 is a
well-defined and continuous function on R2, and since g = (0, 0, g3) on ∂Wk

for all k, g is well-defined and continuous.

Lemma 2.1. Suppose n is even, and n is not a multiple of 4. Then the
map g defined above satisfies:

(i) g(z) = (e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)), where ẑ = e2

√
−1θkz, for

all z and 0 ≤ k ≤ n− 1;
(ii) supz∈∂Wk

d(g(z), 0) < ∞, for 0 ≤ k ≤ n− 1; and
(iii) suppose (a1, a2, a3) ∈ g(R2)∩∂H3, then a1 6= 0, and arg(a1+

√
−1a2) =

θk or θk + π, for some 0 ≤ k ≤ n− 1.

Proof. Let z0 ∈ W0, define zs inductively by

zs+1 = e2
√
−1(s+1)θ1zs,

for s = 0, . . . , n− 1. Then zs ∈ Ws. Suppose s = 2l, then

(2.3) zs = e2
√
−1lθ1z0

and

g(zs) = (e2
√
−1lθ1(g1 +

√
−1g2)(z0), g3(z0))(2.4)

= (e
√
−1sθ1(g1 +

√
−1g2)(z0), g3(z0)).

If s = 2l + 1, then

zs = ẑ2l

= e2
√
−1sθ1z2l(2.5)

= e2
√
−1(l+1)θ1z0,
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and

g(zs) = g(ẑ2l)(2.6)

=
(
e2
√
−1(s− 1

2
)θ1(g1 −

√
−1g2)(z2l), g3(z2l)

)
=
(
e2
√
−1(l+ 1

2
)θ1(g1 −

√
−1g2)(z0), g3(z0)

)
=
(
e
√
−1sθ1(g1 −

√
−1g2)(z0), g3(z0)

)
.

Hence zn = z0, and zn−1 = z0, because n is even, and

(2.7) g(z0) = (e−
√
−1θ1(g1 −

√
−1g2)(z0), g3(z0)).

Now suppose z = ρeiα where θm ≤ α < θm+1 for some 0 ≤ m ≤ n−1. Then
there exists z0 = ρeiα0 with 0 ≤ α0 < θ1, such that zm = z. If m = 2p, then

ẑ = e2
√
−1θkz

= e2
√
−1(k−p)θ1z0.

Without loss of generality, we may assume that 0 ≤ 2(k − p) ≤ n − 1. If
k − p = 0, then, apply (2.4) to g(z0) = g(ẑ) and (2.7) to g(ẑ), we have

g(z) =
(
e2
√
−1pθ1(g1 +

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1kθ1(g1 +

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(z0), g3(z0)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ)

)
.

So (i) is true in this case. Suppose k − p = l + 1, with l ≥ 0, then we can
apply (2.5) and (2.6)

g(z) =
(
e2
√
−1pθ1(g1(z0) +

√
−1g2(z0)), g3(z0)

)
=
(
e2
√
−1(p+k−p−1+ 1

2
)θ1(g1(ẑ)−

√
−1g2(ẑ)), g3(ẑ)

)
=
(
e2
√
−1(k− 1

2
)θ1(g1(ẑ)−

√
−1g2(ẑ)), g3(ẑ)

)
.

Then (i) is still true. The case that m = 2p + 1 can be proved similarly.
The proof of (i) is completed. (ii) can be derived from the definition of g

and property (iii) of v. To prove (iii), let (a1, a2, a3) ∈ g(R2) ∩ ∂H3, then
(a1, a2, a3) ∈ g(Wk) ∩ ∂H3, for some 0 ≤ k ≤ n− 1. Since g = v on W0, by
the definition of v and property (v) of v, if (a1, a2, a3) ∈ g(W0) ∩ ∂H3, then
a2 = 0, and a1 6= 0. In particular, arg(a1 +

√
−1a2) = θ0 = 0 or π. Now
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suppose (a1, a2, a3) ∈ g(Wk) ∩ ∂H3, for 1 ≤ k ≤ n − 1, then by (2.4), and
(2.6), there is (b1, 0, b3) ∈ g(W0) ∩ ∂H3, such that

a1 +
√
−1a2 = e

√
−1θkb1.

Since n is not a multiple of 4, e
√
−1θk 6= ±i, and since b1 6= 0 and is real, we

have a1 6= 0. Moreover, arg(a1 +
√
−1a2) = θk or θk + π .

Theorem 2.2. Let n and g(z) be as Lemma 2.1. There exists a harmonic
map h from R2 into H3, such that

sup
z∈C

d(h(z), g(z)) < ∞.

Moreover:
(a) In the Poincaré ball model of H3, if =(z) = 0 and if we let

h(z) = (h1(z), h2(z), h3(z)),

then arg(h1 +
√
−1h2)(z) = −1

2θ1 or π − 1
2θ1;

(b) suppose (a1, a2, a3) ∈ h(R2) ∩ ∂H3, then a1 6= 0; and
(c) supz∈R2, =(z)=0 d(h(z), 0) < ∞.

If, in addition, u({=(z) ≥ 0})∩ ∂H2 is not contained in any straight line in
the plane, then h({=(z) ≥ 0}) ∩ ∂H3 is not contained in any hyperplane in
R3. In particular, the image of h is not contained in any totally geodesic
submanifold of dimension 2 in H3.

Proof. For any R > 0, let BR be the disk of radius R with center at the
origin in R2. Let hR be the harmonic map from BR into H3, such that
hR = g on ∂BR. If we write hR = (h1

R, h2
R, h3

R) = (h1
R +

√
−1h2

R, h3
R), then

by the uniqueness of harmonic maps and Lemma 2.1, we have

(2.8) hR(z) =
(
e2
√
−1(k− 1

2
)θ1(h1

R −
√
−1h2

R)(ẑ), h3
R(ẑ)

)
for any z ∈ BR, where ẑ =e2

√
−1θkz, 0 ≤ k ≤ n− 1. We want to show that

there exists a constant C1 independent of R such that

(2.9) d(hR(z), g(z)) ≤ C1

for all z ∈ BR. Obviously, we only have to prove that (2.9) is true for all
z ∈ Wk ∩ BR, for all 0 ≤ k ≤ n − 1. Let us consider W0 for example.
∂(W0 ∩ BR) is the union of W0 ∩ ∂BR, {θ = 0} ∩ BR, and {θ = θ1} ∩ BR.
On W0 ∩ ∂BR, hR = g. On the other hand, for z ∈ {θ = 0} ∩ BR, we have
z = z, and so by (2.8) with k = 0,

hR(z) = (e−
√
−1θ1(h1

R −
√
−1h2

R)(z), h3
R(z))

= (e−
√
−1θ1(h1

R −
√
−1h2

R)(z), h3
R(z)).
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Hence hR(z) ∈ Π where Π is the plane (v1, v,2 , v3) ∈ H3, such that arg(v1 +√
−1v2) = −1

2θ1 or π− 1
2θ1. Similarly, if z is in {θ = π}∩BR, then hR(z) is

also in Π. On the other hand, it is well-known that uR(BR) is contained in
the convex hull of uR(∂BR), which in turn is contained in the convex hull
of g(R2). Since Con (g(R2)) ∩ ∂H3 = g(R2) ∩ ∂H3, by Lemma 2.1 (iii) we
conclude that if (a1, a2, a3) ∈ Con (g(R2))∩∂H3, then arg(a1+

√
−1a2) = θk

for some k, and a1 6= 0. However, by the definition of Π, if (a1, a2, a3) is
also in Π, then arg(a1 +

√
−1a2) = −1

2θ1 or π− 1
2θ1, which are not equal to

θk modulo a multiple of 2π, because n is even. So

Π ∩ Con (g(R2)) ∩ ∂H3 = ∅.
Since hR(z) ∈ Π for z ∈ {θ = 0}∩BR, there exists a constant C2 independent
of R such that

(2.10) d(hR(z), 0) ≤ C2

for z ∈ {θ = 0}∩BR. By Lemma 2.1, there exists a constant C3 independent
of R such that for all z ∈ {θ = 0} ∩BR

d(g(z), 0) ≤ C3.

Combine this with (2.10), we have

d(hR(z), g(z)) ≤ C2 + C3

for all z ∈ {θ = 0} ∩BR. Similarly, one can prove that

d(hR(z), g(z)) ≤ C4

for some constant C4 independent of R, for all z ∈ {θ = θ1} ∩ BR. Since g
is harmonic on W0, d(hR(z), g(z)) is subharmonic on W0. By the maximum
principle, (2.9) is true on W0. Similarly, (2.9) is true on Wk, for all k. By
(2.9), passing to a subsequence if necessary, let R → ∞, hR converge to a
harmonic map h from R2 to H3, such that

sup
z∈R2

d(h(z), g(z)) ≤ C1

for some constant C1. In particular, h(R2)∩ ∂H3 = g(R2)∩ ∂H3. From this
and Lemma 2.1, (b) follows. (c) follows from (2.9) and the property (ii) of g
in Lemma 2.1. Since each hR satisfies (a), so does h. It is well-known that
a totally geodesic submanifold M is contained in a sphere or a hyperplane
which intersects S2 orthogonally, see [Sk] for example. This implies that
M ∩ ∂H3 is contained in a hyperplane. Hence, to prove the last statement,
let us suppose u({=(z) ≥ 0})∩∂H2 is not contained in any straight line in the
plane, then it is sufficient to prove that the intersection of the closure of the
image of h with ∂H3 is not contained in a hyperplane. By the construction
of g, g(W0) consists of those points (u1(z), 0, u2(z)) with =(z) > 0. So

g(W0) ∩ ∂H3 =
{

(v1, 0, v3)| (v1, v3) ∈ u({=(z) ≥ 0}) ∩ ∂H2
}

,
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and the smallest affine subspace of R3 which contains g(W0) ∩ ∂H3 is the
subspace defined by v2 = 0. By the definition of g,

g(W1) ∩ ∂H3 =
{

(e
√
−1θ1(v1 −

√
−1v2), v3)| (v1, v2, v3) ∈ g(W0) ∩ ∂H3

}
.

Since θ1 = 2π
n , g(W1) ∩ ∂H3 is not contained in the subspace v2 = 0. Since

W0 ∪W1 is contained in =(z) ≥ 0, we conclude that g({=(z) ≥ 0})∩ ∂H3 is
not contained in any hyperplane of R3. Using the fact that d(h(z), g(z)) is
uniformly bounded from above, the same is true for h. From this, the last
statement of the theorem follows.

By composing h with the isometry

(v1 +
√
−1v2, v3) →

(
e
√
−1
2

(θ1+π)(v1 +
√
−1v2), v3

)
on H3, we obtain a harmonic map u. Obviously, u also satisfies (c) of
Theorem 2.2, (with h replaced by u). Also u1(z) = 0 on =(z) = 0. Suppose

(a1, a2, a3) ∈ u(R2) ∩ ∂H3, then a1 +
√
−1a2 = e

√
−1
2

(θ1+π)(b1 +
√
−1b2) for

some (b1, b2, b3) ∈ h(R2) ∩ ∂H3. From the proof we see that b1 +
√
−1b2 =

e
√
−1θkc for some c 6= 0, and for some 0 ≤ k ≤ n− 1. From this we conclude

that a1 6= 0. Here we use the fact that n is even again.
We can proceed as before to use u to construct a harmonic map from R2

into H4. More precisely and more generally, suppose u is a harmonic map
from R2 → Hm for some m ≥ 2, such that:

(a) In the Poincaré ball model of Hm, if we write

u(z) = (u1(z), u2(z), . . . , um(z)),

then u1(z) = 0 on =(z) = 0;
(b) if (a1, . . . , am) ∈ u(R2) ∩ ∂Hm then a1 6= 0;
(c) supz∈R2, =(z)=0 d(u(z), 0) < ∞.

Let n be even, not divisible by 4, and defined θk, Wk, Ψ as before. Let
v(z) =u ◦ Ψ−1(z), for any z ∈ W0. Define g(z) = v(z) for any z ∈ W0.
Suppose we have already defined g(z) on Wk, 0 ≤ k ≤ n − 1, then for any
z ∈ Wk+1 define:

g(z) =
(
e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(ẑ), g3(ẑ), . . . , gm+1(ẑ)

)
here ẑ = e2

√
−1θk+1z ∈ Wk. Using similar methods as in Theorem 2.2, we

can prove:

Theorem 2.2′. Let g(z) be as above. There exists a harmonic map h from
R2 into Hm+1, such that

sup
z∈C

d(h(z), g(z)) < ∞.

Moreover:
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(a) In the Poincaré ball model of Hm+1, if =(z) = 0, and if

h(z) = (h1(z), h2(z), . . . , hm+1(z))

then arg(h1 +
√
−1h2)(z) = −1

2θ1 or π − 1
2θ1;

(b) if (a1, . . . , am+1) ∈ h(R2) ∩ ∂Hm+1, then a1 6= 0; and
(c) supz∈R2, =(z)=0 d(h(z), 0) < ∞.

If, in addition, u({=(z) ≥ 0}) ∩ ∂Hm is not contained in any hyperplane
in Rm, then h({=(z) ≥ 0}) ∩ ∂Hm+1 is not contained in any hyperplane in
Rm+1. In particular, the image of h is not contained in any totally geodesic
submanifold of dimension m in Hm+1.

Again by composing h with the isometry

(v1 +
√
−1v2, v3, . . . , vm+1) → (e

√
−1
2

(θ1+π)(v1 +
√
−1v2), v3, . . . , vm+1),

we obtain a harmonic map from R2 into Hm+1 satisfying required properties
for the induction on construction.

Remark 2.1. (i) By the result in §1, it is easy to see that there are
many harmonic maps u from R2 into H2, which satisfy the conditions
in Theorem 2.2.

(ii) If we begin with a harmonic map u constructed in §1, and obtain
harmonic maps inductively using Theorem 2.2, and 2.2′, then the har-
monic maps will be of polynomial growth, and the closure of the image
of each of the maps intersects the geometric boundary of the hyper-
bolic space at finitely many points. This is related to the results in
[LW].

3. Harmonic maps from Rm into Hm.

In this section, we will use methods similar to those in §1 and §2 to construct
nontrivial harmonic maps from Rm into Hm, m ≥ 3. First let us write
Rm = R2 × Rm−2. As in the previous section, let n ≥ 4 be an even integer,
θk = 2kπ

n , 0 ≤ k ≤ n − 1, and let Wk be the wedge in R2 defined by
θk ≤ θ ≤ θk+1 in polar coordinates. Let Ωk = Wk×[0,∞)m−2 which consists
of points (x1, x2, . . . , xm) with (x1, x2) ∈ Wk and xj ≥ 0, for 3 ≤ j ≤ m.
We use the Poincaré unit ball model for Hm as before. Define a harmonic
function f by

f(x1, x2, x3, . . . , xm) = r
n
2 sin

(n

2
θ
)

x3 · · ·xm,

on Ωk, k = 0, 1, . . . , n−1, where x1+
√
−1x2 = re

√
−1θ. Let γ : [0,∞) 7→ Hm

be the geodesic parametrized by arc length, such that γ(0) = 0,

γ(t) = (γ1(t), 0, γ3(t), . . . , γm(t))



HARMONIC MAPS FROM Rn TO Hm WITH SYMMETRY 241

γi(t) ≥ 0, and limt→∞ γm(t) = ((m − 1)−
1
2 , 0, (m − 1)−

1
2 , . . . , (m − 1)−

1
2 ).

Define v : Ω0 7→ Hm by

v(x1, . . . , xm) = γ(f(x1, . . . , xm)).

By the definition of f , we see that v maps the boundary of Ω0 to the origin
0 in Hm. Let us write v = (v1, v2, v3, . . . , vm) as (v1 +

√
−1v2, v3, . . . , vm).

Suppose we have already defined v on Ωk for any 0 ≤ k < n − 1, then, as
before, for any (x1, x2, . . . , xm) in Ωk+1, we set:

v(x1, x2, x3, . . . , xm) = (e2θ1
√
−1(k+1/2)(v1 −

√
−1v2)(x̂), v3(x̂), . . . , vm(x̂)),

where x̂ = (e2
√
−1θk+1(x1−

√
−1x2), x3, . . . , xm) which is in Wk× [0,∞)m−2.

Thus, we have defined v on R2×[0,∞)m−2. Now, we can define g : Rm → Hm

by setting:

g(x1, x2, x3, . . . , xm) = (v1(x̃), v2(x̃), ε3v3(x̃), . . . , εmvm(x̃)),

for any x ∈ Rm, where x̃ = (x1, x2, |x3|, . . . , |xm|), and εi = sign(xi), 3 ≤
i ≤ m, see Figure 5.

Lemma 3.1. g is Lipschitz on Rm, and is harmonic on the set arg(x1 +√
−1x2) 6= θk, 0 ≤ k ≤ n− 1, τ3 · · · τm 6= 0. Moreover, if we write

g = (g1, g2, g3, . . . , gm) = (g1 +
√
−1g2, g3, . . . , gm)

then:
(i)

g(x1, x2, . . . , xm) = (e2
√
−1(k+ 1

2
)θ1(g1 −

√
−1g2)(x̂), g3(x̂), . . . , gm(x̂))

where x̂ = (e2
√
−1θk+1(x1 −

√
−1x2), x3 . . . , xm);

(ii) for i ≥ 3

gi(x1, x2, x3, . . . ,−xi, . . . , xm) = −gi(x1, x2, x3, . . . , xi, . . . , xm);

and
(iii) if j 6= i with i ≥ 3, then

gj(x1, x2, x3, . . . ,−xi, . . . , xm) = gj(x1, x2, x3, . . . , xi, . . . , xm).

Proof. The first statement of the lemma follows immediately from the def-
inition of g, the fact that f is harmonic and that γ is a geodesic. The
proof of (i) is similar to the proof of Lemma 2.1(i). (ii) and (iii) also follow
immediately from the definition of g.

Theorem 3.2. Let g be the map as above. Then there exists a harmonic
map u : Rm 7→ Hm such that

sup
x∈Rm

d(u(x), g(x)) < ∞.

Moreover, u is nontrivial in the sense that:
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(i) The image of u is not contained in any totally geodesic submanifold of
dimension m− 1 in of Hm; and

(ii) u cannot be decomposed as u = F ◦ G, such that F is an isometry
of Rm, and G = G(y1, . . . , ym−1) which is independent of the last
coordinate.

Proof. Let BR be the ball of radius R in Rm with center at the origin, and
let uR be the harmonic map from BR to Hm with uR = g on ∂BR. By
Lemma 3.1, and the uniqueness of harmonic maps, if we write

uR = (u1
R, u2

R, u3
R, . . . , um

R ) = (u1
R +

√
−1u2

R, u3
R, . . . , um

R )

then
(3.1)
uR(x1, x2, . . . , xm) =

(
e2
√
−1(k+ 1

2
)θ1(u1

R −
√
−1u2

R)(x̂), u3
R(x̂), . . . , um

R (x̂)
)

where x̂ = (e2
√
−1θk+1(x1 −

√
−1x2), x3 . . . , xm); for i ≥ 3

(3.2) ui
R(x1, x2, x3, . . . ,−xi, . . . , xm) = −ui

R(x1, x2, x3, . . . , xi, . . . , xm),

and if j 6= i, with i ≥ 3,

(3.3) uj
R(x1, x2, x3, . . . ,−xi, . . . , xm) = uj

R(x1, x2, x3, . . . , xi, . . . , xm).

We want to prove that there is a constant C which is independent of R such
that

(3.4) sup
x∈BR∩Ω0

d(uR(x), g(x)) ≤ C.

Note that ∂(BR ∩ Ω0) = (∂BR ∩ Ω0) ∪ (∂Ω0 ∩ BR). On ∂BR ∩ Ω0, uR = g.
∂Ω0 ∩BR consists of those points (x1, x2, . . . , xm) ∈ BR such that arg(x1 +√
−1x2) = θ0 or θ1. By (3.1), if arg(x1 +

√
−1x2) = 0, then as in the proof

of Theorem 2.2, we have arg(u1
R(x) +

√
−1u2

R(x)) = −1
2θ1 or π − 1

2θ1. By
the definition of g, it is easy to see that if (a1, a2, . . . , am) ∈ g(Rm) ∩ ∂Hm,
then there exists k, such that

a1 +
√
−1a2 =

eiθk

√
m− 1

6= 0.

As in the proof of Theorem 2.2, we conclude that

Π ∩ g(Rm) ∩ ∂Hm = ∅
where Π is the hyperplane (v1, v,2 , . . . , vm), such that arg(v1 +

√
−1v2) =

−1
2θ1 or π − 1

2θ1. Hence there is a constant C1 which is independent of R
such that

d(uR(x), 0) ≤ C1

for all x ∈ ∂Ω0 ∩BR with arg(x1 +
√
−1x2) = θ0 = 0. Note that for such x,

g(x) = 0. Hence

(3.5) d(uR(x), g(x)) ≤ C1
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for all x ∈ ∂Ω0 ∩ BR with arg(x1 +
√
−1x2) = θ0 = 0. Similarly, one can

show that (3.5) is true for x ∈ ∂Ω0 ∩ BR with arg(x1 +
√
−1x2) = θ1. By

the maximum principle, we conclude that (3.4) is true. By Lemma 3.1 of g
and (3.1)–(3.3), we see that

sup
x∈Rm

d(uR(x), g(x)) ≤ C1

for some constant C1 which is independent of R. Passing to a subsequence
if necessary, we can find a harmonic map u from Rm into Hm such that

(3.6) sup
x∈Rm

d(u(x), g(x)) ≤ C1.

From this we have

u(Rm) ∩ ∂Hm = g(Rm) ∩ ∂Hm.

The set on the right hand side contains all points of the form
1√

m− 1
(cos θk, sin θk, a

3, . . . , am)

for some k, where aj is either +1 or −1, for 3 ≤ j ≤ m. Hence the set
cannot be contained in any hyperplane in Rm. We conclude that u(Rm) is
not contained in any totally geodesic submanifold of dimension m − 1 in
of Hm. This proves (i). To prove (ii), we may assume that F is a linear
isomorphism and it is sufficient to show that for any (m − 1) dimensional
subspace P of Rm, u(P) ∩ ∂Hm 6= u(Rm) ∩ ∂Hm. By (3.6), it is sufficient to
show that

(3.7) g(P) ∩ ∂Hm 6= g(Rm) ∩ ∂Hm.

Since P is a proper subspace, there is some fixed εi which is either +1 or−1,
3 ≤ i ≤ m, and there is some k such that if

Ω = {(x1, . . . , xm)| (x1, x2, ε3x
3, . . . , ε3x

m) ∈ Ωk}
then P will not intersect the interior of Ω. By the definition of g, we see
that (3.7) is true.

Again the harmonic map u in the theorem is of polynomial growth, and
the closure of its image intersects the geometric boundary at n×2m−2 points.

4. Asymptotic behaviors of harmonic diffeomorphisms from R2

into H2.

In this section, we will discuss the asymptotic behavior of a harmonic dif-
feomorphism u from R2 into H2 with Hopf differential φdz2 such that φ is a
polynomial. It was proved in [HTTW] that the image of such a map is an
ideal polygon. However, it is unclear how to determine the exact positions
of the vertices of the polygon in terms of φ. On the other hand, it is also
proved that each horizontal ray of φdz2 is mapped under u into a curve
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which is asymptotically a geodesic ray in H2. In this section we want to
show that the behavior of a harmonic diffeomorphism with Hopf differential
zndz2 is rather typical, in the sense that the image of the harmonic map
along each ray in certain directions will tend to infinity at a rate depending
only on n and the direction of the ray. While the results may have interest in
their own right, they will be applied in the next section to study the relation
between the Hopf differential and the image of a harmonic map from R2 to
H2.

To fix notations, let u be an orientation preserving harmonic diffeomor-
phism from R2 into H2, so that its Hopf differential is of the form φdz2

where

φ(z) = zn +
n∑

j=1

ajz
n−j = zn(1 + h)

and

h(z) =
n∑

j=1

ajz
−j .

Lemma 4.1. Let θ be such that cos((n
2 + 1)θ) 6= 0, and let L(T, θ) be the

length of u(teiθ), 0 ≤ t ≤ T . We have:
(a) If n = 2m, then as T →∞

1
2
L(T, θ) =

∣∣∣∣ Tm+1

m + 1
cos
((n

2
+ 1
)

θ
)

+
m∑

j=1

Tm−j+1

m− j + 1

(
1
2
j

)
<
(
e
√
−1(m+1−j)θcj

)
+
(

1
2

m + 1

)
log T · <(cm+1)

∣∣∣∣+ O(1).

(b) If n = 2m + 1, then as T →∞

1
2
L(T, θ) =

∣∣∣∣Tm+ 3
2

m + 3
2

cos
((n

2
+ 1
)

θ
)

+
m+1∑
j=1

Tm−j+ 3
2

m− j + 3
2

(
1
2
j

)
<
(
e
√
−1(m−j+ 3

2
)θcj

) ∣∣∣∣+ O(1).

Here for each 1 ≤ j ≤ n, cj are functions of a1, . . . , aj. <(z) is the real part
of the complex number z.

Proof. Since there exists R > 0 such that φ(z) 6= 0 outside |z| < R, by
deleting a half line, we can choose a branch of

√
φ on |z| > R. We may

assume that te
√
−1θ is not on the deleted half line. Let ξ + iη = w =
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φ(ζ)dζ. Then locally, w is a complex coordinates of R2. The pull-back

metric of H2 under u is

(e + 2)dξ2 + (e− 2)dη2,

where e is energy density of u with respect to the metric |dw|2 = |φ||dz|2.
Let z = teiθ, then

(4.1)
dw

dt
=

dw

dz

dz

dt
= eiθ

√
φ(te

√
−1θ).

By [Hn], there is a constant C1 > 0 such that

(4.2) 0 ≤ e(z)− 2 ≤ exp(−C1|z|).
Also |h| < 1 when |z| is large,∣∣∣∣dξ

dt

∣∣∣∣ = ∣∣∣∣<{e
√
−1θ
√

φ(te
√
−1θ)

}∣∣∣∣(4.3)

=

∣∣∣∣∣∣<
t

n
2 e
√
−1(n

2
+1)θ

1 +
∞∑

j=1

(
1
2
j

)
hj


∣∣∣∣∣∣

= t
n
2

∣∣∣∣∣
(

cos
((n

2
+ 1
)

θ
)

+
n∑

j=1

t−j

(
1
2
j

)
<
(
e
√
−1(n

2
+1−j)θcj

)

+ O(t−n−1)

)∣∣∣∣∣
as t →∞. Since cos((n

2 + 1)θ) 6= 0, we have

(e + 2)
∣∣∣∣dξ

dt

∣∣∣∣2 + (e− 2)
∣∣∣∣dη

dt

∣∣∣∣2 = 4
∣∣∣∣dξ

dt

∣∣∣∣2 + (e− 2)
∣∣∣∣dw

dt

∣∣∣∣2
= 4

∣∣∣∣dξ

dt

∣∣∣∣2 + O(exp(−C2t)).

Hence there exists t0 > 0 such that if t > t0,

L(t, θ) =

∣∣∣∣∣∣
∫ t

t0

√
(e + 2)

∣∣∣∣dξ

dt

∣∣∣∣2 + (e− 2)
∣∣∣∣dη

dt

∣∣∣∣2
∣∣∣∣∣∣+ O(1)

=
∫ t

t0

2
∣∣∣∣dξ

dt

∣∣∣∣+ O(1).

Using (4.3), the lemma follows.

Remark 4.1. As one can see from the proof, even if cos((n
2 + 1)θ) = 0, we

still have limt→∞ L(t, θ) = ∞, provided that one of the coefficients of the
term Tm−j+1 or log T is not zero for the case n = 2m. The situation for
n = 2m + 1 is similar.
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Proposition 4.2. With the notations and assumptions as in Lemma 4.1,
we have

lim
t→∞

d(o, u(te
√
−1θ))

L(t, θ)
= lim

t→∞

(n
2 + 1)d(o, u(te

√
−1θ))

t
n
2
+1 cos((n

2 + 1)θ)
= 1

where o is a fixed point in H2.

Proof. Let γ(t) = u(te
√
−1θ), and let w = ξ + iη be as in the proof of

Lemma 4.1. In these coordinates, the geodesic curvature of γ(t) is

κ(t) = (ṫ)3
√

e2 − 4
[
Γ2

11(ξ
′)3 + (2Γ2

12 − Γ1
11)(ξ

′)2η′ − (2Γ1
12 − Γ2

22)ξ
′(η′)2

(4.4)

− Γ1
22(η

′)3 + ξ′η′′ − ξ′′η′
]

where

Γ1
11 =

1
2
(e + 2)−1 ∂e

∂ξ
, Γ1

12 =
1
2
(e + 2)−1 ∂e

∂η
, Γ1

22 =
1
2
(e + 2)−1 ∂e

∂ξ
,

Γ2
11 = −1

2
(e− 2)−1 ∂e

∂η
, Γ2

12 =
1
2
(e− 2)−1 ∂e

∂ξ
, Γ2

22 =
1
2
(e + 2)−1 ∂e

∂η
,

ṫ = dt
ds , s is the arc length of γ(t) and e is the energy density of u with

respect to the metric |dw|2 = |φ| |dz|2. As in [Hn], we have

(4.5) (e− 2)−
1
2 |∇e| ≤ C1 exp(−C2|z|)

for z large enough, and∇ is the gradient with respect to the metric |φ||dz|2 =
|dw|2. Since cos((n

2 + 1)θ) 6= 0, by (4.3)

(4.6)
ds

dt
=

√
(e + 2)

∣∣∣∣dξ

dt

∣∣∣∣2 + (e− 2)
∣∣∣∣dη

dt

∣∣∣∣2 = 2
∣∣∣∣dξ

dt

∣∣∣∣+ O(exp(−Ct)).

Note that we also have

(4.7)
∣∣∣∣dw

dt

∣∣∣∣ ≤ C2t
n/2,

(4.8) t−
n
2

∣∣∣∣dξ

dt

∣∣∣∣ = ∣∣∣cos
((n

2
+ 1
)

θ
)∣∣∣+ o(1).

(4.9)
∣∣∣∣d2w

dt2

∣∣∣∣ ≤ C2t
n/2−1

for some constants C2, C3. By (4.4)–(4.9), we have

(4.10) |κ(t)| ≤ C4 exp(−C5t)
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for some positive constants C4 and C5. By (4.10) and Lemma 3.1 in
[HTTW], given ε > 0, there is t0 > 0, and a geodesic line α passing
through γ(t0) such that

(4.11) d(γ(t), α) ≤ ε

for all t > t0. Let f2dρ2 + dτ2 be the Fermi coordinates with respect to α,
so that τ = 0 is the geodesic α, where f = cosh τ . Under this coordinates,
γ(t) = (ρ(t), τ(t)). By (4.10), we have at γ(t)

|τ̈ − ffτ (ρ̇)2| ≤ C4 exp(−C5t),

and so

|τ̈ | ≤ C4 exp(−C5t) + |ffτ (ρ̇)2|
≤ C4 exp(−C5t) + C6ε|f(ρ̇)2|
≤ C4 exp(−C5t) + C6ε|f2(ρ̇)2|
≤ C7ε

for some constants C6, C7, provided t0 is large enough, where we have used
the fact that |τ | ≤ ε, f = cosh τ and the fact that f2(ρ̇)2 ≤ 1. Here and
below, “ ˙ ” means differentiation with respect to arc length s and where “ ′ ”
means differentiation with respect to t. Hence

(4.12)
∣∣∣∣ d

dt
(τ̇)
∣∣∣∣ = ∣∣∣∣τ̈ ds

dt

∣∣∣∣ ≤ C7ε

∣∣∣∣ds

dt

∣∣∣∣ .
Since |γ̇| = 1, we have

f2(ρ̇)2 + (τ̇)2 = 1.

For any T > t0, suppose τ ′(T ) = 0, then

f2(ρ̇)2 = 1,

at T . Suppose τ ′(T ) 6= 0, let us we assume τ ′(T ) > 0, the case that τ ′(T ) < 0
is similar. Let b be the supremum of c such that τ ′ > 0 on [T, T +c). Suppose
b < ∞, then τ ′(T + b) = 0. By (4.12),∣∣∣∣ d

dt
[(τ̇)2]

∣∣∣∣ = 2|τ̇ |
∣∣∣∣ d

dt
(τ̇)
∣∣∣∣ ≤ C7ε|τ̇ |

∣∣∣∣ds

dt

∣∣∣∣ = C7ε
dτ

dt

in (T, T + b). Hence

(τ̇)2(T )− (τ̇)2(T + b) ≤
∫ T+b

T

∣∣∣∣ d

dt
[(τ̇)2]

∣∣∣∣ dt

≤ C7ε

∫ T+b

T

dτ

dt

≤ C7ε
2
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where we have used the fact that |τ | ≤ ε. Since (τ̇)2(T + b) = 0, we have

(τ̇)2(T ) ≤ C7ε
2

and so
f2(ρ̇)2 ≥ 1− C7ε

2

at T . If b = ∞, then we can choose ti →∞ with τ ′(ti) → 0, and we obtain
the same inequality. In particular, f2(ρ̇)2(T ) is not 0 for all T > t0, provided
t0 is large enough. Without loss of generality, we may assume that fρ̇ > 0
on [t0,∞). For any T > t0,

ρ(T )− ρ(t0) =
∫ T

t0

dρ

dt
dt

=
∫ T

t0

ρ̇
ds

dt
dt

=
∫ T

t0

f−1fρ̇
ds

dt
dt

≥ (1− C8ε)(s(T )− s(t0))

for some constant C8. So

d(o, u(Teiθ)) ≥ ρ(T )− τ(T ) ≥ (1− C8ε)(s(T )− s(t0))− ε.

It is obvious that,
d(o, u(Teiθ)) ≤ s(T ).

Note that s(T ) = L(T, θ) in our previous notation and the lemma follows
easily.

5. Hopf differentials and images of harmonic maps.

In [HTTW], it was proved that if u is a harmonic diffeomorphism from
R2 into H2 with polynomial Hopf differential, then its image is an ideal
polygon. In this section, we will use the analysis in §4 to study explicit
relation in some special cases between the Hopf differential and the position
of the vertices of the image of u.

Theorem 5.1. Let φ(z) = z2m +azm−1, where a is a real number. Suppose
u is an orientation preserving harmonic diffeomorphism from R2 to H2 with
Hopf differential φdz2. Then by composing an isometry of H2 if necessary,
the image of u is a regular ideal polygon.

Proof. Let w = log ||∂u||, where ||∂u|| = σ|∂u
∂z | and σ2|du|2 is the metric on

H2. Then w is the unique solution of

(5.1) ∆0w = e2w − |φ|2e−2w
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such that e2w|dz|2 is a complete metric on R2, see [WA]. Here ∆0 is the
Laplacian on R2 with respect to the standard metric |dz|2. Observe that φ
satisfies {

φ(z) = φ(z), and
φ(e2

√
−1θz) = e4m

√
−1θφ(z)

(5.2)

where θ = π
m+1 . Identify H2 with the unit disk {u| |u| < 1} in C with

Poincaré metric σ2|du|2. Without loss of generality, we may assume that
u(0) = 0. By Proposition 4.2, we know that if t is real, then d(u(t), 0) →∞,
as t → ∞. We may also assume that u(tk) tends to the point 1 on the
boundary of H2 for some tk →∞, with tk to be real. Let v(z) = u(z). It is
easy to see that v is also an orientation preserving harmonic diffeomorphism.
Moreover, let ζ = z

σ(v(z))
∣∣∣∣∂v

∂z

∣∣∣∣ (z) = σ(u(z))
∣∣∣∣∂u

∂ζ

∣∣∣∣ (ζ)

= σ(u(ζ))
∣∣∣∣∂u

∂ζ

∣∣∣∣ (ζ)

= ew(z).

Hence if we let

w̃(z) = log
(

σ(v(z))
∣∣∣∣∂v

∂z

∣∣∣∣ (z)
)

then w̃(z) = w(z). By (5.2), it is easy to see that w̃(z) also satisfies (5.1),
such that e2 ew|dz|2 is complete. By uniqueness, we have

(5.3) w(z) = w̃(z) = w(z).

On the other hand,

σ2(v(z))
∂v

∂z
(z)

∂v

∂z
(z) = σ2(u(z))

∂u(ζ)
∂ζ

∂u(ζ)
∂ζ

(5.4)

= σ2(u(ζ))
∂u(ζ)

∂ζ

∂u(ζ)
∂ζ

= φ(ζ)

= φ(z)

= φ(z).

By (5.3), (5.4) and the result in [TW], v = ι ◦ u for some orientation
preserving isometry ι of H2. Note that v(0) = u(0) = 0, and for real number
t, v(t) = u(t). Since we have normalized u so that u(tk) → 1 as t →∞, we
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also have v(tk) → 1. So ι must be the identity map, and v ≡ u. That is to
say

(5.5) u(z) = u(z).

In particular, u(t) is real if t is real. Hence there is 0 < c < 1 such that the
set consisting of those real ξ with c < ξ < 1 is in the image of the positive
real axis under the harmonic map u. Let v1(z) = e2

√
−1θu(e2

√
−1θz). Using

similar method and (5.2), one can show that v1(z) = ι1 ◦ u(z) for some
isometry of H2. Since v1(0) = 0 = u(0), we have v1(z) = e

√
−1αu(z) for

some real number α. Hence

(5.6) u(e2
√
−1θz) = e2

√
−1βu(z)

where 2β = 2θ − α. We want to prove that e
√
−1sβ , 0 ≤ s ≤ 2m + 1 are

distinct (2m + 2)th roots of unity. Moreover the image of u is the ideal
polygon spanned by the e

√
−1sβ , 0 ≤ s ≤ 2m + 1. This will conclude the

proof of the theorem. First, we claim that for any real number t,

(5.7) u(e
√
−1(s+2)θt) = e2

√
−1βu(e

√
−1sθt)

for all integer 0 ≤ s ≤ 2m + 1. For s = 0, (5.7) follows from (5.6) and (5.5)
by letting z = t. Suppose (5.7) is true for 0 ≤ s < 2m + 1. By (5.6) and
(5.5)

u(e
√
−1(s+3)θt) = e2

√
−1βu(e−

√
−1(s+1)θt)

= e2
√
−1βu(e i(s+1)θt).

Hence (5.7) is true. By (5.7), we have

(5.8) u(e2
√
−1sθt) = e2

√
−1sβu(t)

for any integer s. Take s = m + 1, we have

e2
√
−1(m+1)β = 1.

By Proposition 4.2, for any 0 ≤ s ≤ 2m+1, d(u(te
√
−1sθ), 0) →∞ as t →∞,

t is real. Hence there exists tk →∞, and real number bs such that

u(tke
√
−1sθ) → e

√
−1bs ,

for 0 ≤ s ≤ 2m + 1. Obviously, b0 = 0, bs =
√
−1sβ for s even by (5.8). On

the other hand, by (5.6)

u(te
√
−1θ) = u(e2

√
−1θ · te−

√
−1θ)(5.9)

= e2
√
−1βu(te

√
−1θ).

So we have
e
√
−1b1 = e2

√
−1(β−b1),
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and we may assume b1 = β be adding a multiple of 2π to 2β, which does
not affect the previous arguments. By (5.7), we again have bs =

√
−1sβ if s

is odd. Hence e
√
−1sβ , 0 ≤ s ≤ 2m + 1, are in the closure of the image of u

in H2∪∂H2. It remains to prove the e
√
−1sβ are distinct. Suppose not, then

e
√
−1sβ = 1 for some 0 < s ≤ 2m + 1. If s is even, then by (5.8), we have a

contradiction, because u is one to one and e
√
−1sθ 6= 1. Suppose, s is odd.

By (5.9), we have u(te
√
−1θ) = ρ(t)e

√
−1β where ρ(t) > 0. By (5.7),

u(te
√
−1sθ) = ρ(t)e

√
−1sβ = ρ(t).

Since ρ(tk) → 1 and c < ξ < 1 is in the image of the positive real axis under
u, this contradicts the fact the u is one to one. The theorem follows from
the fact that the image of u is a ideal polygon of 2m + 2 sides [HTTW].

Next we will discuss the Hopf differentials of the harmonic diffeormor-
phisms constructed in Proposition 1.6.

Proposition 5.2. Let u(z) be the harmonic diffeomorphism constructed in
Proposition 1.6. Then there is a conformal map z = z(ζ) such that the Hopf
differential of u with respect to ζ is of the form (ζ2 +

√
−1α)dζ2 where α is

a real number.

Proof. Let u(z) be the harmonic diffeomorphism constructed in Proposi-
tion 1.6. Then u(z) = u(z) and u(−z) = −u(z). Let φ(z)dz2 be the Hopf
differential of u, then

φ(z) = σ2(u(z))
∂u

∂z

∂u

∂z
.

It is easy to see that φ(z) = φ(z) and φ(−z) = φ(z). By the result of
[HTTW], φ is a polynomial of degree 2, that is φ(z) = az2 + bz + c. Now
φ(z) = φ(z) implies that a, b and c are real. φ(−z) = φ(z) implies that
b = 0. Hence φ(z) = az2 + c, where a and c are real. Let β be any one of
the fourth root of a, and let ζ = βz, then

φ(z)dz2 = (az2 + c)dz2

= (aβ−2ζ + c)β−2dζ2

= (ζ2 +
√
−1α)dζ2

where
√
−1α = cβ−2. Suppose a > 0, then we may choose β to be a positive

real number. Hence
√
−1α is real. By Remark 4.1, the length of the image

under u of the half line ζ > 0 is infinite. On the other hand, β > 0, ζ > 0
implies z = β−1ζ is real and positive. However, by the construction of u
in Proposition 1.6, the image of z > 0 under u has finite length. This is a
contradiction. So a < 0, and we may choose β = |a|

1
4 e

π
4

√
−1. Then

√
−1α = cβ−2 = c|a|

1
2 e

π
2

√
−1 =

√
−1c|a|

1
2 .
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This implies that α is real, because c is real.

n = 4

R2 H2

R2 H2
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n = 6

R2 H2

H3
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R2 H3

R3 H3
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