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Let X be a smooth projective variety, let L be a very ample
invertible sheaf on X and assume N +1 = dim(H0(X, L)), the
dimension of the space of global sections of L. Let P1, . . . , Pt

be general points on X and consider the blowing-up π : Y →
X of X at those points. Let Ei = π−1(Pi) be the excep-
tional divisors of this blowing-up. Consider the invertible
sheaf M := π∗(L) ⊗ OY (−E1 − . . . − Et) on Y . In case
t ≤ N +1, the space of global section H0(Y, M) has dimension
N + 1 − t. In case this dimension N + 1 − t is at least equal
to 2 dim(X) + 2, hence t ≤ N − 2 dim(X) − 1, it is natural
to ask for conditions implying M is very ample on Y (this
bound comes from the fact that “most” smooth varieties of
dimension n cannot be embedded in a projective space of di-
mension at most 2n). For the projective plane P2 this problem
is solved by J. d‘Almeida and A. Hirschowitz. The main theo-
rem of this paper is a generalization of their result to the case
of arbitrary smooth projective varieties under the following
condition. Assume L = L′⊗k for some k ≥ 3 dim(X) + 1 with
L′ a very ample invertible sheaf on X: If t ≤ N −2 dim(X)−1
then M is very ample on Y . Using the same method of proof
we obtain very sharp result for K3-surface and let L be a very
ample invertible sheaf on X satisfying Cliff (L) ≥ 3 (“most”
invertible sheaves on X satisfy that property on the Clifford
index), then M is very ample if t ≤ N − 5. Examples show
that the condition on the Clifford index cannot be omitted.

0. Introduction.

0.1. . Let X ⊂ PN be a smooth projective variety of dimension n defined
over an algebraically closed field of characteristic 0 and assume N ≥ 2n+2.
Let Λ be a general linear subspace of dimension N − (2n + 2) in PN . The
projection with center Λ induces an embedding X ⊂ P2n+1. In general
this is the best one can hope for (i.e., projecting X to P2n in general one
expects that the image of X is not isomorphic to X). This embedding of X
in P2n+1 is described by a linear system associated to the same invertible
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sheaf as the original embedding X ⊂ PN . In particular the linear system
is not complete, i.e., the embedding X ⊂ P2n+1 is not linearly normal. An
embedding is called linearly normal if its hyperplane sections give rise to a
complete linear system.

0.2. . Starting with a linearly normal embedding X ⊂ PN one can try
to find some linearly normal embedding in P 2n+1 using projections from
general points P1; . . . ;PN−(2n+1) on X. However, in order to define this
morphism to P2n+1 one has to blow-up X at P1; . . . ;PN−(2n+1). Let Y be
the blowing-up. One can hope to obtain an embedding Y ⊂ P2n+1 in this
way. This would be linearly normal.

It is easy to find examples showing that this morphism Y → P2n+1 is
not always an embedding. As an example, let X be a ruled subvariety of
PN . At the end of the paper, using embeddings of some special types of
K3-surfaces, we obtain some less trivial examples.

The obstruction for the morphism Y → P2n+1 to be an embedding occurs
in the following situation. A general set of N − (2n + 1) points of X is
contained in a 0-dimensional subscheme Z of X of length N − 2n + 1 such
that Z is a subscheme of a linear subspace V of PN of dimension N −2n−1
(hence Z imposes at most N − 2n conditions on hyperplanes in PN ). In
that case we say that V is a (N − 2n + 1)-secant (N − 2n − 1)-space for
X ⊂ PN . So, the obstruction can be the existence of many such secant
spaces. The main results of this paper (in particular their proofs) indicate
that limited knowledge of postulation of points on curve sections of X (i.e., 1-
dimensional intersections of X with hyperplanes of codimension n−1 in PN )
gives strong information on this question. (The meaning of “limited” is the
following. In principle we need knowledge on 0-dimensional subschemes of
length N−2n+1. It turns out that knowledge on 0-dimensional subschemes
of length 3n + 2 is sufficient.)

0.3. . The problem considered in this paper can also be described as follows.
Let L be the invertible sheaf associated to some linearly normal embedding
X ⊂ PN . Let P1; . . . ;PN−(2n+1) be general points on X. Let π : Y → X

be the blowing-up of X at those points Pi and let Ei = π−1(Pi). We study
very ampleness of M := π∗(L)⊗OY (−E1 − . . .− EN−(2n+1)) on Y .

0.4. . The main result of this paper is the following.

Theorem 1. Let X be a smooth projective variety of dimension n; let L′ be
a very ample invertible sheaf on X and let L = L′⊗t for some t ≥ 3n + 1.
Let N + 1 = dim(Γ(X;L)) and let P1; . . . ;PN−(2n+1) be general points on
X. Let π : Y → X be the blowing-up at P1; . . . ;PN−(2n+1) and for 1 ≤ i ≤
N−(2n+1) let Ei = π−1(Pi). Then M := π∗(L)⊗OY (−E1−. . .−EN−(2n+1))
is very ample on Y ; i.e., it defines a linearly normal embedding Y ⊂ P2n+1.
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This theorem solves Conjecture 2 of my paper [7]. In case X = Pn and
L′ = OP n(1) it also gives information on Conjecture 1 of that paper. For
sure, using more involved arguments, the lower bound on t can be made
better. Finding the best bound (or a better bound) on t is interesting; in
this paper I prefered to restrict to the development of a general method to
prove very ampliness for the type of situation considered in this paper.

0.5. . For special types of varieties the method of the proof of Theorem 1
can be used to give much better results. As an example we discuss the case
of K3-surfaces. Let X be a smooth K3-surface and let L be a very ample
invertible sheaf of X. As explained in the first part of part 2 of this paper
we have a notion of the Clifford index Cliff (L) of L. We prove the following
theorem.

Theorem 2. Let X be a smooth K3-surface and let L be a very ample
invertible sheaf of Clifford index Cliff (L) ≥ 3. Let g + 1 = dim(Γ(X;L))
and let P1; . . . ;Pg−5 be general points on X; let π : Y → X be the blowing-
up of X at P1; . . . ;Pg−5; let Ei = π−1(Pi) and let M := π∗(L)⊗OY (−E1−
. . .−Eg−5). Then M is a very ample invertible sheaf on Y, in particular we
obtain a linearly normal embedding Y ⊂ P5.

Examples show that the condition on Cliff (L) in the statement cannot
be omitted. Lazarsfeld proved that, in case Pic (X) ∼= Z and L is the ample
generator of Pic (X), then the curve C corresponding to a general section
of L satisfies the results from Brill-Noether theory for linear systems on C
(see [15]). Hence in this case, if g ≥ 7, one has Cliff (L) ≥ 3 and Theorem 2
can be applied. For each value of g there exist such K3-surfaces and they
are “general”, this follows from the description of the moduli space of K3-
surfaces using the Torelli map (see e.g., [3]).

0.6. . Very ample linear systems on blowings-up of the projective plane are
intensively studied, see e.g., [13]. In particular, the problem considered in
this paper started with the paper of d’Almeida and Hirschowitz (see [9])
solving the problem for P2. Recently, De Volder and Chauvin considered
similar problems on blowings-up of P2 admitting multiplicities for the excep-
tional divisors (see [4]). Also recently, T. Szemberg and H. Tutaj-Gasinski
studied very ampleness of blowings-up of surfaces using Seshadri constants
(see [20]).

Notations and conventions.
In this paper all varieties are defined over a fixed algebraically closed field

of characteristic 0; see (1.4) for a discussion with respect to the proof of
Theorem 1. A 0-dimensional subscheme Z of a smooth variety X is called
curvilinear if there exists a smooth curve C ⊂ X with Z ⊂ C. This is
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equivalent to dim(TP (Z)) ≤ 1 for all P ∈ Z. Let X ⊂ PN be a smooth
n-dimensional projective variety. The embedding is called linearly normal if
its hyperplane sections give rise to a complete linear system. A curve section
(resp. surface section) of X is the scheme-theoretic intersection of X with a
linear subspace Λ of codimension n − 1 (resp. n − 2) such that X ∩ Λ has
dimension 1 (resp. 2).

V e−f
e (h): Set of e-secant (e − f − 1)-space divisors of a linear system h on

a smooth curve (see (1.1.2)).

P: Set of general points on X ⊂ PN .

P : Linear span of P.

TP (X);TP (Z); . . . : Zariski tangent space.

〈Z〉: Linear span of some subscheme Z ⊂ PN ; this is the intersection of all
hyperplanes in PN containing Z (and it is PN if Z is not contained in some
hyperplane of PN ).

Hilb k(X): Hilbert scheme of 0-dimensional subschemes of length k on X.

G(k, N): Grassmannian of k-planes in PN .

(PN )∗: The dual projective space (hence it is G(N − 1, N)).

Ds: Divisor on Y associated to s ∈ Γ(X;L⊗ IP) (see (1.4)).

Cliff (L) (resp. g(L)): Clifford index (resp. genus) of a very ample invertible
sheaf L on a K3-surface X (see (2.1)).

W r
d (C): Subspace of the Jacobian of a smooth curve C parametrizing in-

vertible sheaves L on C of degree d satisfying h0(L) ≥ r + 1.

1. Part 1: Proof of Theorem 1.

1.1.1. . Let X be a smooth projective variety defined over an algebraically
closed field of characteristic 0 and embedded in some projective space PN .
Let P1, . . . , Pk be k general points on X. In case there exist two more
different points Q1, Q2 on X such that the k + 2 points P1, . . . , Pk, Q1, Q2

belong to some (k + 2)-secant k-space for X ⊂ PN then the projection
to PN−k with center P1, . . . , Pk does not give rise to an embedding into
PN−k of the blowing-up of X at those points. In that case there exists a
family of (k+2)-secant k-spaces for X ⊂ PN of large dimension. Classifying
varieties according to the existence of such family of secant spaces is a very
hard problem in general. Some papers related to similar types of questions
are [18] and [19]. The benefit of using the t-th Veronese embeddings of
some original embedding of X is as follows: For the new embedding of X
every 0-dimensional subscheme of X of length t + 1 imposes independent
conditions on hyperplanes (this can be easily seen using hyperplanes in the
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original embedding). However the dimension of the ambient projective space
grows by taking such a Veronese embedding, hence for our purpose this
does not look very suitable. The main ingredient in the proof of Theorem 1
solves this problem This ingredient is Proposition 1.2 in my paper [7], which
is an application of the results from my paper [8]. Before restating that
proposition (see (1.1.3)) let me recall some notations and definitions.

1.1.2. . Let C be a smooth complete connected curve of genus g. Let h be
a linear system on C, let E be an effective divisor of degree e on C. We say
that E is an e-secant (e−f−1)-space divisor for C if dim({D ∈ h|D contains
E}) ≥ dim(h) − e + f . In order to understand this notion, assume h is a
very ample linear system on C, hence it corresponds to some embedding of
C in Pr. Then the linear span of E, i.e., the intersection of the hyperplanes
in Pr containing E (as a scheme) has dimension at most e− f − 1.

We use the following notation: V e−f
e (h) is the set of e-secant (e− f − 1)-

space divisors for h. It is a closed subset of the e-th symmetric product of
C.

1.1.3. .

Proposition (see [7], Proposition 1.2). Let e ≤ dim(h) and let V be an
irreducible component of V e−f

e (h). Assume that for a general point E of V ,
if Q ∈ E, then E −Q /∈ V e−f−1

e−1 (h). Then:
a) 3 dim(V ) ≤ 2e− 1 if 2 dim(V ) ≤ dim(h) + 1,
b) dim(V ) ≤ 2e− 2− dim(h) if 2 dim(V ) ≥ dim(h) + 1.

This proposition will be used in the proof as follows: In case there exists,
for some large value of k, a lot of (k + 2)-secant k-planes such that the
projections do not give rise to an embedding of the blowing-up of X (as
explained in (1.1.1)), then this already occurs for small values of k. Then
the benefit of the Veronese embedding as explained in (1.1.1) becomes clear.

1.2. .

Main lemma. Consider X ⊂ PN as in the statement of Theorem 1. Let
a ≥ 0 be an integer at most N − (2n + 1). For general points P1, . . . , Pa

on X there exists no curvilinear subscheme Z of X of length a + 2 con-
taining P1, . . . , Pa such that dim(Γ(X, L ⊗ IZ)) ≥ N − a. (The inequalitiy
dim(Γ(X, L⊗IZ)) ≥ N−a would imply that Z is contained in some (a+2)-
secant a-space.)

For the reader’s convenience first I give a small survey of the proof of the
main lemma. We use induction on a. Assume for general points P1, . . . , Pa

on X there exists a curvilinear subscheme Z of length a+2 containing those
points with dim(〈Z〉) = a. We consider the intersection 〈Z〉 ∩X.
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First in (1.2.1) we prove that, a general curve section containing 〈Z〉 ∩X
is not a smooth curve on X. Then in (1.2.3) we prove that this implies that
〈Z〉 ∩X contains a curve Λ on X. We explain that Λ has to be a rational
normal curve, hence X contains many rational normal curves. In case X is a
surface then the arguments in (1.2.4.2) give a contradiction. In (1.2.4.1) we
prove that there exist suitable surface sections for X, reducing the general
case to the surface case.

Proof. We are going to use induction on a. Since L is very ample on X the
case a = 0 is trivial. During the proof, we also point out that the case a = 1
is proved without using the induction hypothesis. We write P to denote the
set of points {P1, . . . , Pa} (we also consider it as a reduced scheme). Assume
that there exists a curvilinear subscheme Z of X of length a + 2 containing
P such that dim(Γ(X, L ∩ IZ)) ≥ N − a. This means, dim(〈Z〉) ≤ a. Let P
be the linear span of P. Since a ≤ N − (2n + 1) and the points P1, . . . , Pa

are general on X, the dimension of P is a− 1 and P ∩X = P as a scheme.
This can be seen using the general position lemma (see e.g., [1], p. 109)
using a general curve section of X containing P (we need a ≤ deg(X) but
this inequality holds because deg(X) ≥ N−n+1 (see e.g., [11], Proposition
0) and we assumed a ≤ N − 2n− 1). In particular dim(〈Z〉) cannot be less
than a, hence dim(〈Z〉) = a.

Let T ′ ⊂ Hilba+2(X)×Xa be the closure of the set of points (Z;P1, ..., Pa)
with Z a curvilinear subscheme of X of length a+2 satisfying dim(Γ(X, L⊗
IZ)) ≥ N − a and containing the points P1, . . . , Pa with Pi 6= Pj for i 6= j.
Let T be an irreducible component of T ′ dominating Xa (such a component
exists, that’s the assumption). Then dim(T ) ≥ an. Consider I ⊂ T ×
G(N − n + 1, N) with (Z;P1, . . . , Pa; Λ) ∈ I if and only if 〈Z〉 ⊂ Λ. The
fibers of the projection I → T have dimension (n − 1)(N − n + 1 − a),
hence dim(I) ≥ an + (n − 1)(N − n + 1 − a). Consider the projection
τ : I → G(N − n + 1, N).

1.2.1. .

Subclaim. For Λ ∈ τ(I) general the intersection Λ ∩ X (as a scheme) is
not a smooth curve. (Notice that dim(Λ ∩X) ≥ 1.)

Assume for some Λ ∈ τ(I) the intersection Λ ∩X is a smooth curve (call
it C). The embedding C ⊂ Λ corresponds to a linear system g on C of
dimension N −n+1. Elements of τ−1(Λ) correspond to effective divisors Z
on C of degree a + 2 such that {D ∈ g : D − Z ≥ 0} has dimension at least
N − n− a, i.e., Z ∈ V a+1

a+2 (g).
Since dim[G(N −n + 1, N)] = (N −n + 2)(n− 1) one has dim(τ−1(Λ)) ≥

an + (n − 1)(N − n + 1 − a) − (n − 1)(N − n + 2) = (a + 2) − n − 1. Let
e ≤ a+2 ≤ N−2n+1 be the integer defined as follows. For a general element
of τ−1(Λ) the divisor Z contains a subdivisor E of degree e not imposing
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independent conditions on the linear system g (hence E ∈ V e−1
e (g)) while

each subdivisor E′ of degree e−1 imposes independent conditons on g. This
implies Z = E + P1 + · · · + Pa+2−e for some points P1, . . . , Pa+2−e on C.
Since Z is general in a subvariety of dimension at least (a + 2) − n − 1 of
V a+1

a+2 (g), the subdivisor E is general in a subvariety of V e−1
e (g) of dimension

at least e − n − 1. So, for some e ≤ a + 2 ≤ N − 2n + 1 there exists some
component V of V e−1

e (g) with dim(V ) = e−n− 1+ t for some integer t ≥ 0
and for E ∈ V general and P ∈ E one has E − P /∈ V e−2

e−1 (g).
Now we use Proposition (1.1.3). The condition e ≤ dim(g) = N − n + 1

holds. In case 2 dim(V ) ≥ N−n+2 we find e−n−1+t ≤ 2e−2−(N−n+1)
hence e ≥ N − 2n + 2, a contradiction. (Notice: Here we use the condition
a ≤ N − (2n + 1); we should use that condition because in general the
statement of Theorem 1 is sharp with respect to the upper bound on a.) So
we are in case 2 dim(V ) ≤ N − n + 2 and we find 3(e− n− 1 + t) ≤ 2e− 1,
i.e., e ≤ 3n+2−3t ≤ 3n+2, hence dim(V 3n+1

3n+2 (g)) ≥ 3n+2−n−1 = 2n+1.
But, because L = L′⊗t we find that g contains all sums of t divisors from
another very ample linear system on C. Since t ≥ 3n + 1, all effective
divisors on C of degree 3n + 2 impose independent conditions on g. This
gives a contradiction, proving the subclaim.

1.2.2. .

Remark. We only used the assumpion L = L′⊗t at the end of the proof of
Subclaim (1.2.1). In general we proved the following lemma.

Lemma. Let X ⊂ PN be a smooth n-dimensional variety. Let a ≤ N −
2n − 1 be an integer. Assume for P = {P1; . . . ;Pa} a set of general points
on X there exists a curvilinear subscheme Z ⊂ X of length a+2 containing
P such that dim(〈Z〉) = a. Let Λ ⊂ PN be a general linear subspace of
dimension N − n + 1 containing 〈Z〉 and assume Λ ∩X is a smooth curve
C on X. Let g be the linear system on C corresponding to the embedding
C ⊂ Λ. Then V 3n+1

3n+2 (g) has an irreducible component of dimension at least
2n + 1.

1.2.3. .

Subclaim. For (Z;P1, . . . , Pa) ∈ T general the intersection 〈Z〉 ∩X is not
finite.

Take (Z;P1, . . . , Pa) ∈ T general and assume 〈Z〉 ∩X is finite. We know
that Z contains P, a set of a general points on X. Since P ∩ X = P as a
scheme and dim(〈Z〉) = a, we know that P is a hyperplane in 〈Z〉.
1.2.3.1. Assume 〈Z〉 ∩ X would be curvilinear. Consider a general Λ ∈
G(N − n + 1, N) containing 〈Z〉. Because of Bertini’s Theorem, singular
points of Λ∩X belong to 〈Z〉∩X. For all z ∈ 〈Z〉∩X and Λ ⊃ 〈Z〉 general
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one has dim(Λ ∩ Tz(X)) ≤ 1. Indeed: dim(Tz(X)(〈Z〉)) ≤ 1 because we
assume X ∩ 〈Z〉 is curvilinear and dim(Tz(X)) = n, hence {Λ ∈ G(N −
n + 1, N) with Λ ⊃ 〈Z〉 and dim(Tz(X) ∩ Λ) ≥ 2} has dimension at most
(N − n + 1− a)(n− 1)− 1, while {Λ ∈ G(N − n + 1, N) with Λ ⊃ 〈Z〉} has
dimension (N−n+1−a)(n−1). Since 〈Z〉∩X is finite it follows that Λ∩X
is smooth for Λ ∈ G(N − n + 1, N) general and Λ ⊃ 〈Z〉. This contradicts
Subclaim (1.2.1).
1.2.3.2. So there exists some point Q ∈ 〈Z〉 ∩ X such that dim(〈Z〉 ∩
TQ(X)) ≥ 2. Notice that this cannot happen if a = 1. Since P is a hy-
perplane in 〈Z〉 also dim(P ∩ TQ(X)) ≥ 1. In particular since P ∩ X is
reduced, one finds Q /∈ P. Let P ′ = 〈P1; . . . ;Pa−1〉. Since P ′ is a hyper-
plane in P one also finds P ′∩TQ(X) 6= ∅. Let W = {P1; . . . ;Pa−1;Q}, then
dim(〈W 〉∩TQ(X)) ≥ 1, hence 〈W 〉∩X contains some length 2 subscheme ZQ

with support at Q; its union with {P1; . . . ;Pa−1} is a curvilinear subscheme
Z ′ of X of length a + 1. Since 〈Z ′〉 = 〈W 〉 we find that dim(〈Z ′〉) = a− 1.
Now we use the induction hypothesis of the main lemma, this gives a con-
tradiction. This finishes the proof of Subclaim (1.2.3).
1.2.4. . So we find dim(〈Z〉 ∩X) ≥ 1. Since P is a hyperplane in 〈Z〉 and
dim(P ∩ X) = 0 we find that, for (Z;P1, . . . , Pa) ∈ T general, dim(〈Z〉 ∩
X) = 1. Let Γ be a 1-dimensional irreducible component of 〈Z〉 ∩X. Then
Γ ∩ P is a hyperplane section of Γ ⊂ 〈Γ〉 and it consists of b points of
{P1; . . . ;Pa}. Those points are independent (say they are P1; . . . ;Pb) hence
dim(〈Γ∩P 〉) = b− 1, so dim(〈Γ〉) = b and Γ has degree b. So Γ is a rational
normal curve of degree b. But Γ is embedded by a linear system that contains
all sums of t divisors from another linear system on Γ, hence b ≥ t ≥ 3n+1.
Since a ≥ b we find a contradiction if a = 1; hence the main lemma is
proved in case a = 1. So we find: For b ≥ 3n + 1 general points P1; . . . ;Pb

on X there is a rational normal curve Γ of degree b on X ⊂ PN containing
those points. In case b < a then for any b general points P1, . . . , Pb on X
we find a curvilinear subscheme Z ′ of length b + 2 containing {P1, . . . , Pb}
with dim(〈Z ′〉) = b, a contradiction to the induction hypothesis of the main
lemma, hence b = a. Let C be the space parametrizing such curves Γ and
let I ′1 ⊂ C ×Xa be the set of points (Γ; P1, . . . , Pa) with Pi ∈ Γ. Let I1 be
an irreducible component of I ′1 dominating Xa. We obtain dim(I1) ≥ na.
Also the projection I1 → C has fibers of dimension a. Let U ⊂ C be the
image of I1 then dim(U) ≥ a(n− 1).
1.2.4.1.

Subclaim. Let Γ be a curve corresponding to a general element of U . There
exists Λ ∈ G(N − n + 2; N) such that X ∩Λ is a smooth surface containing
Γ.

Proof. Of course, in case n = 2, there is nothing to prove, so assume n > 2.
Let G(Γ) = {Λ ∈ G(N − n + 2, N) : Λ ⊂ 〈Γ〉}. Since dim(〈Γ〉) = a, we find
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dim(G(Γ)) = (N − n + 2 − a)(n − 2). Assume there exists Q ∈ 〈Γ〉 ∩ X
with dim(TQ(X)∩〈Γ〉) ≥ 2. Then one finds a contradiction to the induction
hypothesis of the main lemma as in (1.2.3.2). So for each Q ∈ 〈Γ〉∩X we find
dim(TQ(X)∩ 〈Γ〉) ≤ 1. Because of Bertini’s Theorem, for Λ ∈ G(Γ) general
we find Sing (Λ∩X) ⊂ 〈Γ〉∩X. If Λ∩X would be singular at Q ∈ 〈Γ〉∩X then
dim(Λ∩TQ(X)) ≥ 3. Consider G(Γ;Q) = {Λ ∈ G(Γ) : dim(Λ∩TQ(X)) ≥ 3}.
Then dim[G(Γ;Q)] ≤ (n−2)(N −n−a+2)−2 since dim(〈Γ〉∩TQ(X)) ≤ 1.
It follows that the union of G(Γ;Q) for all Q ∈ 〈Γ〉 ∩ X has dimension at
most (n− 2)(N − n− a + 2)− 1 < dim(G(Γ)). Hence for Λ ∈ G(Γ) general
Λ∩X = S is a smooth surface. This finishes the proof of Subclaim (1.2.4.1).
1.2.4.2. Now, consider I2 ⊂ G(N − n + 2, N) × U defined by (Λ; Γ) ∈ I2

if and only if Λ ⊃ 〈Γ〉. The fiber of the projection morphism I2 → U for a
general Γ ∈ U is G(Γ), hence dim(I2) ≥ a(n− 1) + (n− 2)(N − n + 2− a).
Consider the projection morphism ν : I2 → G(N−n+2;N). Take Λ general
in the image of ν. We just proved that Λ ∩ X is a smooth surface S. We
find dim(ν−1(Λ)) ≥ a(n−1)+(n−2)(N −n+2−a)− (N −n+3)(n−2) =
a−n+2 ≥ 2n+3. Hence S is smooth surface containing a family of rational
curves of dimension at least 2n+3, in particular each 2 points on S contain
a rational curve. This implies h1(OS) = 0, hence those rational curves are
linearly equivalent.

Take a general hyperplane section C of S ⊂ Λ; it is a smooth curve not
containing any of those rational curves. Hence those rational curves induce
a linear system h on C of dimension at least a − n + 2. On the other
hand the degree of that linear system is a (a general hyperplane section
intersects such rational normal curve at a points). Since a− 2(a− n + 2) =
2n − a − 4 ≤ 2n − 3n − 1 − 4 = −n − 5 < 0, we find that the linear
system h is non-special on C (Clifford’s Theorem, see e.g., [1], p. 107).
So g(C) ≤ n − 2. The linear system on S defining the embedding S ⊂ Λ
contains the sum of t divisors from another very ample linear system on S,
hence C is linearly equivalent to the sum of t mutually intersecting smooth
curves on S. Such a sum has arithmetic genus at least (t − 1)(t − 2)/2,
hence g(C) ≥ (t− 1)(t− 2)/2 ≥ 3n(3n− 1)/2. This can be proved using the
adjunciton formula: (C + KS .C) = g(C) − 2 while C is linearly equivalent
to C1 + · · · + Ct with (Ci.Cj) > 0 and (Ci + KS .Ci) ≥ −2. So, we find
2n − 4 ≥ 9n2 − 3n, hence 0 ≥ 9n2 − 5n + 4. This is a contradiction. This
finally finishes the proof of the main lemma.

1.3. Proof of Theorem 1. We continue to use the notation P and P
introduced in the proof of the Main Lemma with a = N − (2n + 1). A
section s ∈ Γ(X, L ⊗ IP) will be identified with s ∈ Γ(Y, M). We write Ds

to denote the divisor on Y . We write E for the union of the exceptional
divisors E1, . . . , EN−(2n+1) and we identify a point Q on Y \E with the
corresponding point Q on X\P.
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1.3.1. . First we prove base-point freeness. Let Q ∈ Y . If Q /∈ E, choose
H ∈ (PN )∗ with H ⊃ P and Q /∈ H. (Remember P ∩X = P as a scheme.)
This hyperplane H defines s ∈ Γ(X, L⊗ IP) with Q /∈ Ds.

Assume Q ∈ E1. This corresponds to a tangent line TQ to X at P1 in
PN . Since TQ is not contained in P we can find H ∈ (PN )∗ with P ⊂ H
but TQ 6⊂ H. Then H corresponds to s ∈ Γ(X, L⊗ IP) with Q /∈ Ds.

1.3.2. . Next we prove separation of points. Take Q1;Q2, two different
points on Y . First assume Q1 and Q2 are outside of E. Then Z = P ∪
{Q1;Q2} is a curvilinear subscheme of length N − 2n + 1 containing P.
Because of the main lemma we find dim(〈Z〉) = dim P + 2, hence there
exists H ∈ (PN )∗ with P ∪ {Q1} ⊂ H but Q2 /∈ H. Then H defines
s ∈ Γ(X, L⊗ IP) with Q1 ∈ Ds but Q2 /∈ Ds.

Assume Q1 ∈ E1, but Q2 /∈ E. The point Q1 defines a tangent direction
to X at P1, hence it defines a 0-dimensional subscheme ZQ1 of X of length
2 with support P1. Let Z = P ∪ ZQ1 ∪ {Q2}. It is a curvilinear subscheme
of X of length N −2n+1 containing P, hence dim(〈Z〉) = dim(P )+2. This
implies that there exists H ∈ (PN )∗ with H ⊃ P ∪ ZQ1 but Q2 /∈ H. Then
H defines s ∈ Γ(X, L⊗ IP) with Q1 ∈ Ds but Q2 /∈ Ds.

Next assume Q1 and Q2 both belong to E1. Let T1 and T2 be the corre-
sponding tangent lines to X ⊂ PN . Since P ∩X = P as a scheme, one finds
dim(〈P ∪ T1 ∪ T2〉) = dim P + 2. Hence there exists H ∈ (PN )∗ such that
H ⊃ P with T1 ⊂ H and T2 6⊂ H. Then H defines s ∈ Γ(X, L ⊗ IP) with
Q1 ∈ Ds but Q2 /∈ Ds.

Finally assume Q1 ∈ E1 and Q2 ∈ E2. Let Z1 and Z2 be the curvilinear
subschemes of length 2 on X with support at P1 and P2 corresponding to
those points. Consider Z = Z1 ∪ Z2 ∪ P. It is a curvilinear subscheme
of X of length N − 2n + 1 containing P hence the main lemma implies
dim(〈Z〉) = dim(P ) + 2. So there exists H ∈ (PN )∗ with P ∪ Z1 ⊂ H but
Z2 6⊂ H. Then H defines s ∈ Γ(X, L⊗ IP) with Q1 ∈ Ds but Q2 /∈ Ds.

1.3.3. . Finally we prove separation of tangent directions. Let Q ∈ Y and
let v ∈ TQ(Y ). First assume Q /∈ E. Then v corresponds to a subscheme
Zv of length 2 of X with support Q. Let Z = Zv ∪ P. It is a curvilinear
subscheme of X of length N−2n+1 containing P. The main lemma implies
that dim(〈Z〉) = dim P +2. Hence there exists H ∈ (PN )∗ with P∪{Q} ⊂ H
but Zv 6⊂ H. Then H defines s ∈ Γ(X, L⊗IP) with Q ∈ Ds but v /∈ TQ(Ds).

Assume that Q ∈ E1. First assume v ∈ TQ(E1). Identifying E1 with
Pn−1, the direction defined by v corresponds to a line Lv containing Q.
Let Q′ be another point on that line. We already know that there exists
s ∈ Γ(X, L ⊗ IP) with Q ∈ Ds but Q′ /∈ Ds. In particular Lv 6⊂ Ds, hence
under the identification of E1 and Pn−1 the intersection of Ds and E1 is a
hyperplane intersecting Lv transversally at Q. It follows that v /∈ TQ(Ds).
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So assume v /∈ TQ(E1). Then Q corresponds to a subscheme ZQ of length 2
of X and v corresponds to a curvilinear subscheme Zv of length 3 of X with
support P1 and containing ZQ. Then Z = Zv ∪P is a subscheme of length
N−2n+1 containing P hence the main lemma implies dim(〈Z〉) = dim P +2.
Hence we find H ∈ (PN )∗ with ZQ ∪P ⊂ H but Zv 6⊂ H. Then H defines
s ∈ Γ(X, L⊗ IP) with Q ∈ Ds but v /∈ TQ(Ds).

1.3.4. . In this proof we only used the fact that P is a set of a points on X
such that for each curvilinear subscheme Z of length a + 2 of X containing
P one has dim(〈Z〉) = dim(P ) + 2. So we obtain:

Proposition. Let X ⊂ PN be a smooth projective variety and let P be a
set of a points on X. Let P be the span of P. Assume for all curvilinear
subschemes Z ⊂ X of length a + 2 and containing P one has dim(〈Z〉) =
dim(P ) + 2. Let Y be the blowing-up of X at P. Then the projection of X
with center P induces an embedding of Y .

1.4. . In the proof of Theorem 1 we use the characteristic zero assumption
in two arguments. First of all there is the use of Bertini’s Theorem. There
exist Bertini Theorems for positive characteristic. Maybe they can be used
causing a more involved proof and maybe a worse assumption on t. Next
there is the use of Proposition (1.1.3). See [8], Remark 1.7 for a discussion
of it. The main problem is: The linear system g on the curve C in the proof
of Subclaim (1.2.1) need not be complete.

2. Part 2: Proof of Theorem 2.

2.1. . For the convenience of the reader we recall the definition of the Clif-
ford index of a smooth curve C. Let L be an invertible sheaf on C. The
Clifford index of L is Cliff (L) = deg(L)−2h0(L)+2. Let KC be the canon-
ical sheaf on C. The invertible sheaf L is very special if h0(L) > 1 and
h0(KC ⊗L−1) > 1. The Clifford index of C is Cliff (C) = min({Cliff (L) : L
is a very special invertible sheaf on C}). From the Riemann-Roch Theorem
it follows that in the definition of Cliff (C) we can restrict to line bundles
with deg(L) ≤ g−1. In the proof of Theorem 2 we will use that Cliff (C) ≤ 2
if and only if there exist integers r ≥ 1; d ≤ g− 1 with d− 2r ≤ 2 such that
W r

d (C) is not empty.
Let X be a K3-surface and let L be a very ample invertible sheaf on X.

Let C be a smooth curve on X associated to a global section of L. It is
proved in [12] that Cliff (C) is independent of the curve, so we call it the
Clifford index of L, denoted by Cliff (L). Also remember that the dimension
of the complete linear system defined by L is equal to the genus of C. We
denote it by g = g(L) and we consider X ⊂ Pg defined by L.
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2.2. Proof of Theorem 2. In case g ≤ 6 it follows from the existence of
special divisors (see e.g., [1], p. 206 (1.1)) that W 1

4 (C) is not empty for a
smooth curve section of X, hence Cliff (L) ≤ 2. So, we can assume g ≥ 7.

2.2.1. . Using (1.3.4), it is enough to prove the main lemma (1.2) in this
situation. Let t ≤ g − 5 and assume for general points P1; . . . ;Pt on X
there exists a curvilinear subscheme Z on X of length t+2 containing those
points such that dim(〈Z〉) ≤ t and so dim(〈Z〉) = t follows from the general
position lemma as explained in the first lines of the proof of (1.2). Since L
is very ample on X this is not possible for t = 0. So we use induction on t
and we assume t > 0 and it is not possible to find such a subscheme Z for
a smaller number of general points on X.

2.2.2. . Let T ⊂ Xt×Hilbt+2(X) be the closure of the set of points (P1, . . . ,
Pt;Z) with Pi 6= Pj for i 6= j and Z a curvilinear subscheme of length t + 2
containing the points P1, . . . , Pt and imposing at most t + 1 independent
conditions on Γ(X;L). The assumption implies that T dominates Xt, let
T ′ be a component dominating Xt. Let I ⊂ T ′ × (Pg)∗ be the closure of
the set of points (P1, . . . , Pt;Z;H) such that 〈Z〉 ⊂ H. Since dim(〈Z〉) ≤ t,
the fiber of I over (P1, . . . , Pt;Z) has dimension at least g − 1 − t, hence
dim(I) ≥ t + g − 1. Assume H ∈ (Pg)∗ belongs to the image of I, then
the fiber of H over I has dimension at least t − 1. Take (P1, . . . , Pt;Z;H)
general on I.

2.2.3. . Assume H ∩ X is a smooth curve C. The curve section C ⊂ H
is embedded by means of the canonical linear system on C. In that case
secant space divisors correspond to special divisors. So, in this part of the
proof, we are going to make use of the notations W r

d (C) for the subsets
of the Jacobian J(C) parametrizing special invertible sheaves on C (see [1],
Chapter IV). We find dim(V t+1

t+2 (|KC |)) ≥ t−1. (Here we use |KC | to denote
the canonical linear system on C, i.e., the complete linear system associated
to the canonical sheaf KC .) Let E be a general element of a component
of V t+1

t+2 (|KC |). Define the integer ε ≥ 0 such that E ∈ V t+1−ε
t+2 (|KC |) but

E /∈ V t−ε
t+2 (|KC |). Since t + 2 ≤ g it follows from the geometric Riemann-

Roch Theorem (see e.g., [1], p. 12) that dim(|E|) = ε. Choose a subdivisor
P1+· · ·+Pε−1 of E such that dim(|E−P1−· · ·−Pε−1|) = 1. For Q1; . . . ;Qε−1

general on C one has dim(|E−P1−· · ·−Pε−1+Q1+· · ·+Qε−1|) = 1 and using
the geometric Riemann-Roch Theorem one finds E−P1−· · ·−Pε−1 +Q1 +
· · ·+Qε−1 ∈ V t+1

t+2 (|KC |) but E−P1−· · ·−Pε−1+Q1+· · ·+Qε−1 /∈ V t
t+2(|KC |).

Since E is a specialisation of E − P1 − · · · − Pε−1 + Q1 + · · · + Qε−1 one
finds a contradiction unless ε = 0. So, dim(|E|) = 1 and |E| is a one-
dimensional subspace of V t+1

t+2 (|KC|). Mapping divisors to their associated
invertible sheaf we find OC(E) ∈ W 1

t+2(C), hence dim(W 1
t+2(C)) ≥ t− 2. In
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case g = 7 we have t ≤ 2 and we find that C has a linear system g1
4, hence

Cliff (C) ≤ 2. Now, assume g ≥ 8. We are going to use some dimension
theorems on the varieties W r

d .
First of all, if g ≥ 11, the following is proved in [14], Theorem 2.1.

Let d and r be integers satisfying d ≤ g + r − 4 and r ≥ 1 and assume
dim(W r

d (C)) ≥ d−2r−2 ≥ 0. Then W 1
4 (C) is not empty, hence Cliff (C) ≤ 2

(in [14] there is a list of possibilities for those curves, in all cases it is easy to
find elements in W 1

4 (C)). In our case, we find dim(W 1
t+2(C)) ≥ (t+2)−2−2

and t + 2 ≤ g − 3 = g − 1 − 2, hence we find Cliff (C) ≤ 2 if g ≥ 11. In
case g = 8 we find dim(W 1

5 (C)) ≥ 1. In case g = 9 (resp. g = 10) we can
use [6], Proposition 12: From dim(W 1

6 (C)) ≥ 2 (resp. dim(W 1
7 (C)) ≥ 3) it

follows that dim(W 1
5 (C)) ≥ 1. Hence in the cases g = 8; 9; 10 we find the

existence of a component of W 1
5 (C) of dimension at least 1. In case a general

element of it is of the type L = L′(P ) for some P ∈ C with h0(L′) ≥ 1, we
find L′ ∈ W 1

4 (C) hence Cliff (C) ≤ 2. So we assume for a general such L
such a point P does not exist (in terms of linear systems: We obtain a base
point free linear system g1

5). In those cases C is birationally equivalent to
a plane curve of degree 6 (for g = 10 see [16]; for g = 11 see [5]; for g = 8
see [2]). The associated map from C to P2 with image that plane curve of
degree 6 defines an invertible sheaf L belonging to W 2

6 (C) and again we find
Cliff (C) ≤ 2. So we conclude that H ∩X is not a smooth curve C.
2.2.4. . Assume 〈Z〉 ∩ X is a 0-dimensional subscheme of X. In case it is
curvilinear then for a general hyperplane H containing 〈Z〉 the intersection
H ∩X is a smooth curve. This can be proved as in (1.2.3.1) using Bertini’s
Theorem. So 〈Z〉 ∩X can not be curvilinear. As explained in (1.2.3.2) we
obtain a contradiction to the induction hypothesis on t.
2.2.5. . So we conclude that dim(〈Z〉 ∩ X) ≥ 1. As in (1.2.4) this implies
the intersection contains a rational normal curve Γ. Since Γ ⊂ 〈Z〉 and P
is a hyperplane in 〈Z〉, it follows that Γ intersects P . Hence Γ contains at
least one of the points P1; . . . ;Pt. Since those points are general points on
X it follows that a general point on X is contained in a smooth rational
curve on X. But X is a K3-surface, hence each smooth rational curve on X
is a linear system on its own. Also Pic (X) is discrete and finitely generated,
hence X cannot have a one-dimensional family of smooth rational curves.
This implies a contradiction.
2.3. . The condition Cliff (L) ≥ 3 cannot be omitted in general.
2.3.1. . In case a general curve C in the linear system associated to L is
trigonal (hence Cliff (L) = 1) then for a general point P on X and a general
curve C through P we find two more points P1 and P2 on C, such that
P + P1 + P2 belongs to the g1

3 on C. Hence P ;P1;P2 are three points on a
line. Projecting with center P does not give an embedding of the blowing-up
Y of X at P in Pg−1.
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2.3.2. . As a second example consider the so-called Donagi-example (see
[10], 2.2). Let f : X → P2 be the double covering branched along a smooth
plane sextic. Let L = f∗(OP2(3)), then dim(Γ(X;L)) = 11 and for X ⊂ P10

using L there exists Q ∈ P10\X such that the projection π : X → P9

with center Q is the composition of f and the 3-Veronese embedding of P2.
Taking P1;P2 general on X one finds P ′

1;P
′
2 with Pi + P ′

i a fiber of f and
〈Pi;P ′

i 〉 ⊂ P10 a line containing Q, hence 〈P1;P ′
1〉 and 〈P2;P ′

2〉 intersect.
So projection with center 〈P1;P2〉 does not give rise to an embedding of
the blowing-up of X at P1 and P2 in P8. A general section of X ⊂ P10 is
isomorphic to a smooth plane curve of degree 6 (see [10]), hence Cliff (C) =
2.

2.3.3. . One more example can be found in [17], 4.2. Let f : X → P1×P1

be a double covering branched along a smooth curve of bidegree (4;4) on
P1 ×P1. Let L = f∗(O(2; 2)), then dim(Γ(X;L)) = 10 and one obtains an
embedding X ⊂ P9 using L. There exists Q ∈ P9\X such that projection
π : X → P8 with center Q is the composition of f and the embedding of
P1 ×P1 using O(2; 2). We conclude as in the previous example finding no
embedding for the blowing-up of X at two general points using a projection
in P7. In this example a general section of X ⊂ P9 has gonality 4 (see [17]);
hence Cliff (L) = 2.
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