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This paper has two parts. In the first one we study the max-
imum number of zeros of a function of the form f(k)K(k) +
g(k)E(k), where k ∈ (−1, 1), f and g are polynomials, and
K(k) =

∫ π/2

0
dθ√

1−k2 sin2 θ
and E(k) =

∫ π/2

0

√
1 − k2 sin2 θdθ

are the complete normal elliptic integrals of the first and sec-
ond kinds, respectively. In the second part we apply the first
one to obtain an upper bound for the number of limit cycles
which appear from a small polynomial perturbation of the
planar isochronous differential equation ż = iz + z3, where
z = x + iy ∈ C.

1. Introduction and statement of the main results.

In the qualitative theory of real planar differential systems the main open
problem is the determination of limit cycles. A classical way to obtain
limit cycles is perturbing the periodic orbits of a center. There are several
methods for studying the bifurcated limit cycles from a center. The major
part of the methods are based either on the Poincaré return map, or on the
Poincaré-Melnikov integral or Abelian integral which are equivalent in the
plane (see for instance [1]). Recently some other methods are presented,
ones based on the inverse integrating factor (see [7]), others are based in
the reduction of the problem to a one dimensional differential equation (see
[10] and [13]). In general these methods are difficult to apply for studying
the limit cycles that bifurcate from the periodic orbits of a center when the
system is integrable but not Hamiltonian. As far as we know few papers
study the non–Hamiltonian centers, see for instance [3], [5], [8], [9], [10],
[11] and [13].

By definition a polynomial system is a differential system of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y),(1)

where P and Q are polynomials with real coefficients. We say that n =
max{deg P,deg Q} is the degree of the polynomial system.
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In [11] we studied the limit cycles that bifurcate from the periodic orbits
of quadratic isochronous centers when we perturb these centers inside the
class of all polynomial systems of degree n. The case n = 2 was studied by
Chicone and Jacobs [3].

The number of zeros of Abelian integrals for reversible isochronous cubic
centers whose all orbits are conic were studied in [12].

The technique for studying the limit cycles that bifurcate from the pe-
riodic orbits of a integrable non-Hamiltonian center when we perturb the
center is classical, see for instance [17]. If the perturbed system is

ẋ = f(x, y) + εP (x, y),

ẏ = g(x, y) + εQ(x, y),

and 1/R(x, y) is an integrating factor when ε = 0, then the number of zeros
of the following Abelian integral

M(h) :=
∫
{H(x,y)=h}

P (x, y)dx + Q(x, y)dy

R(x, y)
,(2)

where H(x, y) is such that ∂H(x,y)
∂x = g(x,y)

R(x,y) , −
∂H(x,y)

∂y = g(x,y)
R(x,y) , and {H(x, y)

= h} are periodic orbits of the unperturbed system, controls the number of
limit cycles of the perturbed system for ε small enough.

When we calculate an Abelian integral we often meet elliptic integrals
which can be expressed as the following complete normal elliptic integrals
of the first and second kinds:

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

, E(k) =
∫ π/2

0

√
1− k2 sin2 θdθ.

Therefore to estimate the number of zeros of a function of the form

f(k)K(k) + g(k)E(k),(3)

where f , g are real polynomials of k, is important. In order to get a good
estimation we need to prove a kind of Chebyshev property for (3). This is
the goal of the first part of this paper.

We denote by Pn the set of all real polynomials in one variable of degree
at most n. The next two theorems are the main results of this paper.

Theorem 1. For f ∈ Pn, g ∈ Pm and k ∈ (−1, 1) an upper bound for the
number of zeros of the function M(k) = f(k)K(k) + g(k)E(k), taking into
account their multiplicities, is n + m + 2. Moreover:

(a) For arbitrary ki ∈ (−1, 1) with i = 1, 2, . . . , n + m + 1 there exist
f ∈ Pn and g ∈ Pm such that M(k) 6≡ 0 and M(ki) = 0 for i =
1, 2, . . . , n + m + 1.

(b) There exist values of n and m (for instance, both values even) for which
the upper bound n + m + 2 is attained.
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(c) There exist values of n and m (for instance, n < m + 2 and n + m
odd) for which the upper bound is n + m + 1.

Theorem 1 will be proved in Section 2 by using the Argument Principle.
As far as we know this method to estimate the number of zeros of Abelian
integrals was introduced by Petrov in [14, 15, 16].

As an application of Theorem 1, in the second part of this paper we
study the number of limit cycles which bifurcate from the closed curves
surrounding the origin of the planar holomorphic isochronous center, ż =
iz+z3. In other words, we study the number of zeros of the Abelian integral
associated to the system

ż = iz + z3 + εP (z, z),(4)

where P is a polynomial of degree n.

Theorem 2. An upper bound for the number of zeros (taking into account
their multiplicitis) of the Abelian integral associated to system (4) for n ≥ 9
is 3n− 1.

Theorem 2 will be proved in Section 3. The cases n < 9 also would follow
from a more accurate analysis of the computations made in this paper, but
we are just interested into obtaining an asymptotic bound.

Note that, as in most known examples, the upper bound for the number
of zeros of the Abelian integrals associated to the perturbed system depends
linearly on the degree of the polynomial perturbation.

2. Elliptic functions.

Before starting the proof we need several preliminary results on the elliptic
functions K(k) and E(k) and their extensions to the complex plane.

Lemma 3 ([2, formulas 118.02-710.00]). The functions K and E satisfy the
following Picard-Fuchs equation:

dK

dk
=

E − (1− k2)K
k(1− k2)

,
dE

dk
=

E −K

k
,(5)

and the following linear differential equations of order two:

k(1− k2)
d2K

dk2
+ (1− 3k2)

dK

dk
− kK = 0,(6)

k(1− k2)
d2E

dk2
+ (1− k2)

dE

dk
+ kE = 0.

From (5) and since K and E are clearly analytic at k = 0, the elliptic
integrals E and K can be continuously extended to single-valued analytic
functions on the region

D = C \ {z ∈ R, |z| ≥ 1}.
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Denote the upper and lower banks of the cut {z ∈ R , z ≥ 1} by L1
+ and L2

+

respectively; and the upper and lower banks of the cut {z ∈ R , z ≤ −1}
by L1

− and L2
−, respectively. Next lemma collects several properties of these

extended functions.

Lemma 4. Consider the extensions of K and E to D ⊂ C. As usual,we
denote by log the principal determination of the logarithm function. They
satisfy the following properties:

(a) The asymptotic expansions of K and E near ±1 are given by

K = log 4− 1
2

log(1− k2) + O
(∣∣(log(1− k2))(1− k2)

∣∣) ,

E = 1 +
1
2

[
log 4− 1

2
log(1− k2)− 1

2

]
(1− k2)

+ O
(∣∣(log(1− k2))(1− k2)2

∣∣) .

(b) The asymptotic expansions of K and E near ∞ are given by

K ∼ k−1 log k, E ∼ k.

(c) For k ∈ Li
±, i = 1, 2 the following hold

KE 6= 0 , Im
(

K

E

)
6= 0, Im

(
E

K

)
6= 0.

(d) For k ∈ Li
±, i = 1, 2 the following holds

(Im K)(Im E) 6= 0.

Proof. (a). These expressions are given in formulas 900.05 and 900.10 of [2].

(b). By introducing the new variable t = 1/k, the differential equation for
K in (6) is changed into

t2
d2K

dt2
+ t

t2 + 1
t2 − 1

dK

dt
+

1
1− t2

K = 0.(7)

The indicial equation associated with (7) is λ(λ− 1)− λ + 1 = 0, which has
the double root λ = 1. By applying the Frobenius method (see for instance
[4, pp. 132-135]), we know that Equation (7) has two independent solutions
of the form

ϕ1(t) = t
∞∑

j=0

cjt
j , c0 = 1,

and

ϕ2(t) = ϕ1(t) log t +
∞∑

j=2

djt
j .
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Therefore

K(k) = a1ϕ1(k−1) + a2

−ϕ1(k−1) log k +
∞∑

j=2

djk
−j

 ,

for some constants a1 and a2. Now we prove that a2 6= 0. Consider k =
is, s ∈ R+. Then note that

|kK(k)| =

∣∣∣∣∣i
∫ π/2

0

s√
1 + s2 sin2 θ

dθ

∣∣∣∣∣
=
∫ π/2

0

s√
1 + s2 sin2 θ

dθ ≥
∫ π/2

0

s√
1 + s2θ2

dθ

=
∫ sπ/2

0

dt√
1 + t2

s→∞−→ ∞.

Hence a2 6= 0 and we have proved that K(k) ∼ k−1 log k.
The proof that E(k) ∼ k follows the same steps.

(c). All the results of this statement will follow if we prove that

f(k) := (Re K)(Im E)− (Re E)(Im K)

does not vanish on k ∈ Li
±, i = 1, 2. In fact we will prove that

f(k) = ±(−1)i π

2
6= 0, k ∈ Li

±, i = 1, 2.

Note that for k ∈ Li
±, the vector (Re K, Re E) and (Im K, Im E) are the

solutions of (5). Hence by Liouville’s Formula

df

dk
= tr

(
− 1

k
1

k(1−k2)

− 1
k

1
k

)
f = 0,

which implies that f is a constant. On the other hand, by statement (a),
we have

f(k) =
(

log 4− 1
2

log |1− k2|+ o
(
|1− k2|

1
2

))
(O(|1− k2|))

−
(
1 + o

(
|1− k2|

1
2

))(
∓(−1)i π

2
+ o(|1− k2|)

)
, k ∈ Li

±.

Let k → ±1, we get f = ±(−1)i π
2 , k ∈ Li

±, i = 1, 2, so statement (c) is
proved.
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Figure 1. Phase portrait of differential equation (8) near O+ = (1, 0).

(d). Remember that on the banks Li
±, the vector (Im K, Im E) is a solu-

tion of (1). Therefore the function P = Im E/ Im K satisfies the following
Ricatti equation:

dP

dk
=
−P 2 + 2(1− k2)P + k2 − 1

k(1− k2)
,

or its equivalent system
dk

dt
= k(1− k2),(8)

dP

dt
= −P 2 + 2(1− k2)P + k2 − 1.

We will only prove the result when k ∈ Li
+, the case k ∈ Li

− can be proved
in a similar way.

The phase portrait of (8) is given in Figure 1. Note that by Lemma 4.(a),
limk→1 P (k) = 0, so P (k) belongs to the stable set of the saddle-node O+ =
(1, 0). All orbits except the stable separatrix γ in the stable set of O+ tend to
O+ in the tangential direction along the half line k = 1, P ≥ 0. On the other
hand, again by Lemma 4.(a), |Im E/Im K| ∼ 1−k, at k = 1. Therefore P (k)
must be the stable manifold of O+, which is located between the horizontal
isocline Γ and x-axis, as shown in Figure 1. Hence (Im E)(Im K) never
vanishes and the proof of statement (d) is complete. �
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Let G = GR,ε ⊂ D be a simple connected region with ∂G = C, where
C = CR,ε := C1

ε ∪ C2
ε ∪ CR ∪ L1

±(R, ε) ∪ L2
±(R, ε); C1

ε := {|k − 1| = ε � 1};
C2

ε := {|k + 1| = ε � 1}; CR := {|k| = R � 1}; and Li
±(R, ε) = Li

± ∩ {ε ≤
|k| ≤ R}, see Figure 2.

C
+

R

C

G

C
1
" L

1
+

L
1
¡

C
¡

R

L
2
¡

L
2
+

C
2
"

Figure 2. Domain GR,ε = G ⊂ D.

Lemma 5. The elliptic functions K and E have no zeros in the domain
D ⊂ C.

Proof. In order to see that E and K do not vanish in D we apply the
Argument Principle to G = GR,ε for R and 1/ε positive and big enough.

We shall prove that the rotation number of E, when k turns around the
boundary of G is less than 4.

By Lemma 4.(b) the number of complete turns around CR is at most
1 + µ(R), where µ(R) tends to zero as R goes to infinity. By Lemma 4.(c),
since Im E 6= 0 on Li

±, the number of complete turns on L1
±(R, ε)∪L2

±(R, ε)
is less than 2 (in fact less than one half turn in each bank). Finally, by
Lemma 4.(a), the number of complete turns of E on C1

ε ∪ C2
ε when ε goes

to 0 tends to zero. Therefore, all together gives that the rotation number of
E when k turns one time around the boundary of G is less than 4.

The study of K is similar and gives the same result.
On the other hand,

E(ik), K(ik) > 0, for k ∈ R, E(k), K(k) > 0, for k ∈ (−1, 1),
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and

E(−k) = E(k), E(k) = E(k), K(−k) = K(k), K(k) = K(k).

So if E (or K) has a zero z in D it must have at least 4 zeros ±z, ±z in D,
which is in contradiction with the Argument Principle. Hence the proof of
this lemma is ended. �

In the sequel we will use the notation #{k ∈ A f(k) = 0} = #{k ∈
A f = 0} to indicate the number of zeros of the function f in the set A

taking into account their multiplicities.

Proof of Theorem 1. We begin by proving that n + m + 2 is an upper
bound for the number of zeros of fK + gE. As a first step we show how the
case in which f and g have a non-constant common factor can be reduced
to the case gcd(f, g) = 1. Assume that h = gcd(f, g), and that it has degree
d. Then the equality

fK + gE = h

(
f

h
K +

g

h
E

)
implies that

#{k ∈ D fK + gE = 0}

≤ #{k ∈ D h(k) = 0}+ #
{

k ∈ D
f

h
K +

g

h
E = 0

}
.

Since gcd(f/h, g/h) = 1, by assuming the theorem to be true in this case,
we have

#{k ∈ D fK + gE = 0} ≤ d + ((n− d) + (m− d) + 2) ≤ n + m + 2,

as we wanted to prove.
So from now on we just consider the case gcd(f, g) = 1.
In our proof we consider two cases: n ≥ m + 2 and n < m + 2.
Case n ≥ m + 2. By Lemma 5,

#{k ∈ D M(k) = 0} = #
{

k ∈ D P (k) = f + g
E

K
= 0
}

.

As in the proof of Lemma 5 we apply the Argument Principle to P in
G = GR,ε for R and 1/ε big enough.

By Lemma 4.(b) the number of complete turns around CR is at most
n + µ(R), where µ(R) tends to 0 as R goes to infinity.

By Lemma 4.(c)

#{k ∈ Li
± Im P (k) = 0} = #

{
k ∈ Li

± g Im
E

K
= 0
}

= #{k ∈ Li
± g = 0},
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and hence the number of complete turns on L1
±(R, ε)∪L2(R, ε) is less than

m + 2. Note that we have used that gcd(f, g) = 1 to ensure that P is not
zero on the banks.

Finally, by Lemma 4.(a) the number of complete turns of P on C1
ε ∪ C2

ε

when ε goes to 0 tends to zero.
Therefore the rotation number of P (k) on ∂G is at most n + m + 2 and

by the Argument Principle,

#{k ∈ D P (k) = 0} ≤ m + n + 2,

as we wanted to see.
The case n < m + 2 follows by similar considerations by taking g + f K

E

instead of f + g E
K . Hence the first part of Theorem 1 is proved.

Next we prove the remaining three statements in the theorem.

(a). For any given ki ∈ (−1, 1), i = 1, 2, . . . , n + m + 1, consider the system
of linear equations

n∑
j=0

ajk
j
i K(ki) +

m∑
j=0

bjk
j
i E(ki) = 0, i = 1, 2, . . . , n + m + 1.(9)

Since the number of unknown variables {aj}, {bj} is greater than the number
of equations, there exists a solution of (9)

{aj}j=0,1,... ,n, {bj}j=0,1,... ,m with
n∑

j=0

a2
j +

m∑
j=0

b2
j > 0.

On the other hand, since by Lemma 4.(a), K/E is not a rational function,
we have that

M(k) =

(
n∑

i=0

aik
i

)
K +

(
m∑

i=0

bik
i

)
E 6≡ 0,

and

M(ki) = 0, i = 1, 2, . . . , n + m + 1,

as we wanted to see.

(b). By arguing as in statement (a) but with the function f(k)K(
√

k) +
g(k)E(

√
k) and taking ki values in (0, 1), i = 1, 2 . . . , n + m + 1, we have a

function with f and g of degrees n and m respectively, and n+m+1 positive
zeros. Hence the function f(k2)K(k) + g(k2)E(k) is an even function with
2n + 2m + 2 zeros (the values ±

√
ki) and f(k2) and g(k2) polynomials of

degrees 2n and 2m, respectively. Therefore the upper bound n + m + 2 is
attained as we wanted to see.

(c). Our proof is divided in two cases:
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(c.1) If f has zeros in [−1, 1], then arguing as in the proof of the general
upper bound we have that the complete turns of P on L1

±(R, ε) ∪ L2
±(R, ε)

is at most n + 1 (one less than if we have no information about f) and the
result follows.

(c.2) If f has no zeros in [−1, 1], then when k → ±1 with k ∈ (−1, 1), the
function g+f K

E is real and tends to infinity with the same sign in both cases.
Therefore the difference between the argument of g + f K

E for |k| < 1 near
+1 and near −1 tends to be 2Lπ for some integer number L. On the other
hand arguing also as in the proof of the general upper bound but just taking
the upper half part of the boundary of G we obtain that this difference is
smaller or equal than (n+m+2)π. Since n+m is odd, in fact this difference
has to be smaller than (n+m+1)π. By applying the same reasoning to the
lower half boundary the result follows. �

3. Perturbation of an isochronous center.

We need some preliminary results. In all this section Pi, Qi denote polyno-
mials of degree i.

Lemma 6. Let f be a continuous function and let i, j ≥ 0 be integers. Then
the following hold:

(a) If i + j is odd, then∫ 2π

0
f(sin 2θ) cosi θ sinj θ dθ = 0.

(b) If i+j = 2N even, then there exist real constants C0, C1, . . . , CN , such
that∫ 2π

0
f(sin 2θ) cosi θ sinj θ dθ =

N∑
s=0

Cs

∫ π

−π
f(cos θ) coss θ dθ

=
N∑

s=0

Cs

∫ π

−π
f(sin θ) sins θ dθ.

Proof. (a) Suppose that i + j is odd. Then

I =
∫ 2π

0
f(sin 2θ) cosi θ sinj θ dθ (θ = π + ϕ)

= −
∫ 2π

0
f(sin 2ϕ) cosi ϕ sinj ϕ dϕ

= −I,

which implies I = 0.
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(b) Assume i + j = 2N even. Then

I =
∫ 2π

0
f(sin 2θ) cosi θ sinj θ dθ

(
θ =

π

4
− ϕ

)
=
∫ 2π

0
f(cos 2ϕ)

(
1√
2

cos ϕ +
1√
2

sinϕ

)i( 1√
2

cos ϕ− 1√
2

sinϕ

)j

dϕ

=
i+j∑
s=0

ds

∫ π

−π
f(cos 2ϕ)(cos ϕ)i+j−s(sinϕ)s dϕ

=
N∑

s=0

d2s

∫ π

−π
f(cos 2ϕ)(cos ϕ)2N−2s(sinϕ)2s dϕ

=
N∑

s=0

d2s

∫ π

−π
f(cos 2ϕ)

(
1 + cos 2ϕ

2

)N−s(1− cos 2ϕ

2

)s

dϕ

=
N∑

s=0

Cs

∫ π

−π
f(cos 2ϕ)(cos 2ϕ)s dϕ (2ϕ = θ)

=
N∑

s=0

Cs

∫ π

−π
f(cos θ)(cos θ)s dθ

(
θ =

π

2
− ϕ

)
=

N∑
s=0

Cs

∫ π

−π
f(sinϕ)(sinϕ)s dϕ,

where the value of the constants might vary from one expression to the
other. Hence the proof of the lemma is complete. �

Lemma 7. Consider

Jm = Jm(h) :=
∫ π

−π
(sin θ)2m

√
h2 sin2 θ + h dθ,

where m is zero, or a natural number. Then there exist polynomials Pm and
Qm of degree m, such that

Jm =
k1−2m

1− k2

(
Pm(k2)K + Qm(k2)E

)
,

where k2 = h/(1 + h).
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Proof. We consider

Jm =
∫ π

−π
(sin θ)2m

√
h2 sin2 θ + h dθ

(10)

=
∫ π

−π
(cos θ)2m

√
h2 cos2 θ + h dθ

=
∫ π

−π
(1− sin2 θ)m

√
h2 + h− h2 sin2 θ dθ

=
√

h2 + h

∫ π

−π
(1− sin2 θ)m

√
1− h

h + 1
sin2 θ dθ

(
k2 =

h

1 + h

)
=

k

1− k2

∫ π

−π

m∑
i=0

(−1)iCm−i
m (sin θ)2i

√
1− k2 sin2 θ dθ

=
k

1− k2

m∑
i=0

(−1)iCm−i
m Bi,

where

Bi =
∫ π

−π
(sin θ)2i

√
1− k2 sin2 θ dθ.

If sin θ = t, then

Bi = 4
∫ 1

0
t2i

√
1− k2t2

1− t2
dt

= 4(O2i − k2O2i+2),

where

O2i =
∫ 1

0

t2i√
(1− t2)(1− k2t2)

dt.

By formula 320.05 of [2] , O2i satisfy the following recurrence formula:

O2i+2 =
2i(1 + k2)O2i + (1− 2i)O2i−2

(2i + 1)k2
,

and

O0 = K, O2 =
1
k2

(K − E).

Thus, by induction we get

Bi = Pi

(
1
k2

)
K + Qi

(
1
k2

)
E,(11)
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and hence substituting (11) into (10), we get

Jm =
k

1− k2

(
Pm

(
1
k2

)
K + Qm

(
1
k2

)
E

)
.(12)

From the above expression the lemma follows easily. �

We also need the following result which has a straightforward proof.

Lemma 8. Consider

Ws = Ws(h) :=
∫ π

−π
log(h sin θ +

√
h2 sin2 θ + h)(sin θ)s dθ,

where s is zero, or a natural number. Then

∂Ws(h)
∂h

=


1
2h

∫ π
−π sins(θ) dθ, if s is even,

1
h

(
J s+1

2
(h)− h

∂J s+1
2

(h)

∂h

)
, if s is odd,

where Jm are defined in Lemma 7.

Lemma 9. Let f(x), g(x) be analytic functions on (a, b) ⊂ R, then

#{x ∈ (a, b) | f(x) + g(x) = 0}
≤ #{x ∈ (a, b) | f(x) = 0}+ #{x ∈ (a, b) | fg′ − gf ′ = 0}+ 1.

Proof. Set F = f + g. Then

F ′f − Ff ′ = fg′ − gf ′.

We just make the proof for the case of simple zeros of F. The case of multiple
zeros follows in a similar way. Let x1 < x2 be two consecutive simple zeros
of F. If f does not vanish in [x1, x2] then F ′f has different signs in x1 and x2.
Therefore the above expression implies that fg′− gf ′ has a zero in (x1, x2).
Hence the lemma follows. �

Proof of Theorem 2. Consider the polynomial perturbation the iso-
chronous system ż = iz + z3:

ẋ = −y + x3 − 3xy2 + εP (x, y),(13)

ẏ = x + 3x2y − y3 + εQ(x, y),

where P , Q are real polynomials of degree n. For ε = 0, (13) has a first
integral (1 + 4xy)(x2 + y2)−2 with integrating factor (x2 + y2)−3/4.

Denote by Γh : H = h−1 (h > 0) all periodic orbits surrounding the center
(0, 0). In polar coordinates x = r cos θ, y = r sin θ,

Γh : r = rh(θ) = r(θ) =
√

h sin 2θ +
√

h2 sin2 2θ + h.
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By using (2) we know that the Abelian integral associated to (13) is defined
as

M(h) =
∫

Γh

P

4(x2 + y2)3
dy − Q

4(x2 + y2)3
dx.

Denote by Dh the simple connected region enclosed by Γh and Dh,δ = Dh \
{r ≤ δ}.

By Green’s formula

M(h) =
∫∫

Dh,δ

[
∂P/∂x + ∂Q/∂y

4(x2 + y2)3
− 3xP + 3yQ

2(x2 + y2)4

]
dx dy − Tδ,

where

Tδ =
∫

r=δ

P

(x2 + y2)3
dy − Q

(x2 + y2)3
dx.

Let 1
4

[
(x2 + y2)(∂P/∂x + ∂Q/∂y)− 6xP − 6yQ

]
=
∑

1≤i+j≤n+1 Ci,jx
iyj .

Then

M(h) =
∑

1≤i+j≤n+1

Ci,j

∫∫
Dh,δ

xiyj

(x2 + y2)4
dx dy − Tδ

(x = r cos θ, y = r sin θ)

=
∑

1≤i+j≤n+1

Ci,j

∫ 2π

0

∫ r(θ)

δ
ri+j−7 cosi θ sinj θ drdθ − Tδ

=
∑

i+j 6=6
1≤i+j≤n+1

Ci,j

∫ 2π

0

1
i + j − 6

r(θ)i+j−6 cosi θ sinj θ dθ

+
∑

i+j=6

Ci,j

∫ 2π

0
log(r(θ)) cosi θ sinj θdθ − Cδ,

where

Cδ =
∑

i+j 6=6
1≤i+j≤n+1

Ci,jδ
i+j−6

i + j − 6

∫ 2π

0
cosi θ sinj θ dθ

+
∑

i+j=6

Ci,j log δ

∫ 2π

0
cosi θ sinj θdθ + Tδ.

We want to control the number of positive zeros of M(h). In fact, in the
final step we will study ∂M(h)/∂h. Since Cδ does not depend on h we do
not take care of this constant.
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From the above formulas

M(h) =
∑

1≤i+j≤n+1

Ci,jIi,j − Cδ,(14)

where

Ii,j =
1

i + j − 6

∫ 2π

0
r(θ)i+j−6 cosi θ sinj θ dθ, i + j 6= 6,

Ii,j =
∫ 2π

0
log(r(θ)) cosi θ sinj θ dθ, i + j = 6.

By Lemma 6, we have that

Ii,j = 0, if i + j odd,(15)

and that there exist constants Cs = Cs(i, j), s = 0, 1, . . . , N , such that Ii,j

is equal to

{∑N
s=0 Cs

∫ π
−π(sin θ)s(h sin θ +

√
h2 sin2 θ + h)N−3dθ, if i + j = 2N 6= 6,∑3

s=0 Cs

∫ π
−π(sin θ)s log

(
h sin θ +

√
h2 sin2 θ + h

)
dθ, if i + j = 6.

(16)

Thus,

M(h) =
[n+1

2
]∑

N=1

IN − Cδ,

where

IN =
∑

i+j=2N

Ci,jIi,j .

We calculate some compact expressions for IN , for N < 3, N = 3 and
N > 3, separately.
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For i + j = 2N < 6, by Lemma 6, we have

Ii,j =
N∑

s=0

Cs

∫ π

−π
(sin θ)s

(
1√

h2 sin2 θ + h + h sin θ

)3−N

dθ(17)

=
N∑

s=0

Cs

∫ π

−π
(sin θ)s

(√
h2 sin2 θ + h− h sin θ

h

)3−N

dθ

= hN−3
N∑

s=0

Cs

∫ π

−π
(sin θ)s

3−N∑
m=0

Cm
3−N (−h)m(sin θ)m

· (h2 sin2 θ + h)
3−N−m

2 dθ

=

2πC0(1 + 1
h)− 2C1

h J1, if N = 1,

−C1π + C0
h J0 + C2

h J1, if N = 2.

Next we study Ii,j for i + j = 6. By (16),

Ii,j =
3∑

s=0

CsWs, Ws =
∫ π

−π
log(h sin θ +

√
h2 sin2 θ + h)(sin θ)s dθ.

By Lemma 8,

∂W0

∂h
=

π

h
,

∂W1

∂h
=

1
h

(
J1 − h

∂J1

∂h

)
,

∂W2

∂h
=

π

2h
,

∂W3

∂h
=

1
h

(
J2 − h

∂J2

∂h

)
.

Hence, we have

∂I3

∂h
=

d0

h
+ d1

J1

h
+ d2

J2

h
+ d3

∂J1

∂h
+ d4

∂J2

∂h
,(18)

where di are constants.
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For i + j = 2N > 6,

Ii,j =
N∑

s=0

Cs

∫ π

−π
(sin θ)s

N−3∑
m=0

Cm
N−3h

m(sin θ)m(h2 sin2 θ + h)
N−3−m

2 dθ

(19)

=



h
N−3

2
∑N

s=0 Cs

∫ π
−π(sin θ)s

(∑N−3
2

m=0 pm(sin θ)2mhm

+
∑N−5

2
m=0 qm(sin θ)2m+1hm

√
h2 sin2 θ + h

)
dθ, if N odd,

h
N
2
−2∑N

s=0 Cs

∫ π
−π(sin θ)s

(∑N−4
2

m=0 pm(sin θ)2m+1hm+1

+
∑N−4

2
m=0 qm(sin θ)2mhm

√
h2 sin2 θ + h

)
dθ, if N even,

where pm, qm are constants and we just have separated the odd and even
values of m.

Remember that

Jm =
∫ π

−π
(sin θ)2m

√
h2 sin2 θ + h dθ.

From (19), we have

Ii,j =


h

N−3
2

(
PN−3

2
(h) +

∑N−2
m=1 Um(h)Jm

)
, if N odd,

h
N
2
−2
(
PN−2

2
(h) +

∑N−2
m=0 Vm(h)Jm

)
, if N even,

(20)

where PN−3
2

, PN−2
2

, Um, Vm are polynomials of h with

deg PN−3
2
≤ N − 3

2
, deg PN−2

2
≤ N − 2

2
,(21)

deg Um ≤ min
{

m− 1,
N − 5

2

}
, deg Vm ≤ min

{
m,

N − 4
2

}
.

From now on we introduce the variable k, as k2 = h/(1+h). By Lemma 7,
equality (17) writes as

I1 =
1
k2

(
P0 + kP1

(
1
k2

)
K + kQ1

(
1
k2

)
E

)
,

I2 = P0 +
1
k

(
P1

(
1
k2

)
K + Q1

(
1
k2

)
E

)
.
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By using again Lemma 7, equality (20) writes as

IN =



PN−3(k2)
(1−k2)N−3 + 1

kN−2(1−k2)N−3

[
P 3

2
N− 9

2
(k2)K + Q 3

2
N− 9

2
(k2)E

]
if N ≥ 5 odd,

PN−3(k2)
(1−k2)N−3 + 1

kN−1(1−k2)N−3

[
P 3

2
N−4(k

2)K + Q 3
2
N−4(k

2)E
]

if N ≥ 4 even.

(22)

Let N =
[

n+1
2

]
, then for n ≥ 7, we have that

M(h) =
N∑

i=1

Ii − Cδ

=



P1(k2)
k2 + I3 − Cδ + PN−3(k2)

(1−k2)N−3

+ 1
kN−2(1−k2)N−3

[
P 3

2
N− 9

2
(k2)K + Q 3

2
N− 9

2
(k2)E

]
,

if N ≥ 5 odd,

P1(k2)
k2 + I3 − Cδ + PN−3(k2)

(1−k2)N−3

+ 1
kN−1(1−k2)N−3

[
P 3

2
N−4(k

2)K + Q 3
2
N−4(k

2)E
]
,

if N ≥ 4 even.

By (5), (18), taking into account that dI3/dk = 2k(1 − k2)−2(dI3/dh) and
direct computations give that

dM

dk
=

k1−N (1− k2)2−N (R0 + R1), if N ≥ 5 odd,

k−N (1− k2)2−N (R0 + R1), if N ≥ 4 even,

where

R0 =

kN−4PN−1(k2) , if N ≥ 5 odd,

kN−3PN−1(k2) , if N ≥ 4 even,

R1 =

P 3
2
N− 7

2
(k2)K + Q 3

2
N− 7

2
(k2)E, if N ≥ 5 odd,

P 3
2
N−3(k

2)K + Q 3
2
N−3(k

2)E, if N ≥ 4 even.
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Next we estimate the number of zeros of dM/dk by applying Lemma 9 to
R0 + R1. Straightforward computations show that

R0R
′
1 −R′

0R1 =


kN−5

1−k2 R, if N ≥ 5 odd,

kN−4

1−k2 R, if N ≥ 4 even,

where

R =

P 5
2
N− 7

2
(k2)K + Q 5

2
N− 7

2
(k2)E , if N ≥ 5 odd,

P 5
2
N−3(k

2)K + Q 5
2
N−3(k

2)E, if N ≥ 4 even.

By Theorem 1, we obtain

#{−1 < k < 1 |R = 0} ≤

{
2(5N − 7) + 2 = 10N − 12, if N ≥ 5 odd,
2(5N − 6) + 2 = 10N − 10, if N ≥ 4 even.

Note that R is an even function. Therefore we have

#{0 < k < 1 |R = 0} ≤

5N − 6, if N ≥ 5 odd,

5N − 5, if N ≥ 4 even.

By Lemma 9 we obtain

#
{

0 < k < 1
dM

dk
= 0
}

≤

N − 1 + 5N − 6 + 1 = 6N − 6, if N ≥ 5 odd,

N − 1 + 5N − 5 + 1 = 6N − 5, if N ≥ 4 even.

From Rolle’s Theorem, it follows that

#{h > 0 |M(h) = 0} = #{0 < k < 1 |M(k) = 0}

≤


6N − 5 = 6

[
n+1

2

]
− 5, if

[
n+1

2

]
≥ 5 odd,

6N − 4 = 6
[

n+1
2

]
− 4, if

[
n+1

2

]
≥ 4 even,

≤ 3n− 1.

From the above inequality the theorem follows. �
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