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It is shown that if A and B are operators on a separable
complex Hilbert space and if ||| - ||| is any unitarily invariant
norm, then

2| AP+ BI” (Il < Il |[A+ B|” +|A — B|” |||
<2771 |[ |AP + |BI” |||
for 2 < p < o0, and
27| AP+ |BP ||| < || [A+ B[P + |[A — BIP |||
< 2[[| |A]" +|B” ||

for 0 < p < 2. These inequalities are natural generalizations
of some of the classical Clarkson inequalities for the Schatten
p-norms. Generalizations of these inequalities to larger classes
of functions including the power functions are also obtained.

1. Introduction.

The classical Clarkson inequalities for the Schatten p-norms of Hilbert space
operators assert that

(1) 2(AIE+BIE) < A+ BIE+[A - BIE < 2271 (JA|1Z + || B|12)
for 2 < p < 0,

2) 227V (JAIE+ |BIE) < [|A+ BJE + A - B|Z < 2 (JJAIL + | BI2)
for 0 < p <2,

(3) 2 (JAIE+||B[2)"” < | A+ Bl + | A - BJg

for 2 < p < o0; %—i—%:l,and

(4) |4+ Bl + 14— Blg <2 (A5 + | BIIE)"”

forl<p<2l+1=1

These inequalities, which can be found in [11], are non-commutative ver-
sions of the celebrated Clarkson inequalities for the classical sequence spaces.
These inequalities have useful applications in operator theory and in math-
ematical physics (see, e.g., [2], [5], [7], [10], [12], and references therein). In
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particular, the uniform convexity of the Schatten p-classes, for 1 < p < oo,
is an immediate consequence of the inequalities (1) and (4). For a com-
prehensive account of the Clarkson inequalities, the reader is referred to
[8].

Extensions, with proof simplification, of the inequalities (1) and (2) (for
1 < p < 2) to wider classes of unitarily invariant norms including the Schat-
ten p-norms have been given in [4]. This has been achieved by formulating
these inequalities in terms of direct sums of operators.

In this paper we give pretty natural generalizations of the inequalities (1)
and (2) to all unitarily invariant norms. In fact, our new inequalities seem
natural enough and applicable to be widely useful.

Let B(H) denote the C*-algebra of all bounded linear operators on a
separable complex Hilbert space H. If A is a compact operator in B(H),
then the singular values of A are, by definition, the eigenvalues of the positive
operator |A| = (A*A)Y/? enumerated as s1(A) > s9(A) > --- > 0.

Recall that, with the exception of the usual operator norm, which is
defined on all of B(H), each unitarily invariant norm is a symmetric gauge
function of the singular values and is defined on a norm ideal contained in
the ideal of compact operators. For the sake of brevity, we will make no
explicit mention of this norm ideal. Thus, when we talk of |||A|||, we are
assuming that A belongs to the norm ideal associated with ||| -]|.

If A is a compact operator in B(H), let

o 1/p
1A, = [ D s5(A) = (tr|A[P)H/?

J=1

for 0 < p < oo, where tr is the usual trace functional. This defines the Schat-
ten p-norm (quasinorm) for 1 < p < oo (0 < p < 1), where by convention
|Al|co = s1(A) is the usual operator norm of A.

Since [|A|) = || |AJP Hl = tr|AP for 0 < p < oo, our generalizations of
the inequalities (1) and (2) will be much appreciated if we rewrite them as

() 2A[ AP +[BIP|[, <[[[A+ B + A= BP ||, <2 || [AP + B ||,
for 2 < p < o0, and

©) 2 AP+ [BI ||, < [[1A+BIP + |4 = BP ||, < 2| |AP +[BI”[|,

for 0 < p <2
In Section 2 of this paper, we will show that the trace norm || - [|; in
(5) and (6) can be replaced by any unitarily invariant norm ||| |||, and that

the power functions f(¢) = tP can be replaced by more general classes of
functions.
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2. Main results.

To achieve our goal of generalizing the inequalities (1) and (2), we need
the following two lemmas. The first lemma is a well-known result that
can be proved by using the spectral theorem and Jensen’s inequality. The
inequalities in this lemma are of the Peierls-Bogoliubov type (see, e.g., [3,
p. 281] or [12, pp. 101-102]).

Lemma 1. Let A be a positive operator in B(H).

(a) If g is a convex function on [0,00), then

(7) 9({Az, z)) < {g(A)z,z)

for every unit vector x in H.
(b) If h is a concave function on [0,00), then

(8) (h(A)z, ) < h({Az,z))
for every unit vector x in H.

The second lemma, which is due to Ando and Zhan [1], contains norm
inequalities comparing f(A + B) and f(A) + f(B) for certain functions f
(see, also [6]).

In this lemma and in the sequel, ||| - ||| designates any unitarily invariant
norm.

Lemma 2. Let A and B be positive operators in B(H).

(a) If g is an increasing function on [0, 00) such that g(0) = 0, limy_. g(%)
= 00, and g_1 i an operator monotone function, then

(9) llg(A) +9(B)II| <Illg(A+ B)II| -
(b) If h is a nonnegative operator monotone function on [0,00), then
(10) [[A(A+ B)[[| < [[[n(A) + h(BII -

Now we are in a position to present our main results. The first result is
a considerable generalization of the inequalities (1).

Theorem 1. Let A and B be operators in B(H) and let f be an increasing
function on [0,00) such that f(0) = 0, lim;_.oo f(t) = 00, and the inverse
function of g(t) = f(\/t) is operator monotone. Then

a1 200QAD + FABDII < IIF1A+ B + 714 - B
< 3 llFc2lAD) + FelBI.

! is operator monotone, it follows that it is concave (see,

Limplies that g

Proof. Since g~
e.g., [3, p. 120]). Since g is increasing, the concavity of g~
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is convex. Now for any unit vector x in H, we have
((f(JA+ Bl) + f(|A = Bl)z, z)
= (9(|A+ BP*)z,z) + (9(|A - Bf*)z,z)
> g((|A+ Bz, 2)) + g({|A = B[>z,z)) (by Lemma 1(a))

5 (by the convexity of g)

= 29(((|AP + [B*)z, 2)).

Using the min-max principle (see, e.g., [3, p. 58] or [9, p. 25]) and the fact
that g is increasing, we see that

si(f([A+ Bl) + f(|A— Bl)) = 29(s; (| A" + |B[*))
= 2sj(g(|A* + |B*))

for y =1,2,.... Since unitarily invariant norms are increasing with respect
to singular values (see, e.g., [3, p. 52] or [9, p. 71]), it follows that

£ (1A + BJ) + f(lA = BJ)|

> 2|[[g(| AP + |BI)]]

> 2|||9(1AP") + g(1BP)[||  (by Lemma 2(a))
= 2{[l7(AD + F(BDII

which proves the first inequality in (11). The second inequality in (11)
follows from the first one by replacing A and B by A + B and A — B,
respectively.

Based on Lemmas 1(b) and 2(b), one can employ an argument similar to
that used in the proof of Theorem 1 to derive the following generalization
of the inequality (2).

Theorem 2. Let A and B be operators in B(H) and let f be a nonnegative
function on [0,00) such that h(t) = f(\/t) is operator monotone. Then

(12) %II\f(ZIAI) +@BDI < |llf 1A+ Bl) + f(1A = Bl
< 2[l[(AD + FABDII -

Specializing Theorems 1 and 2 to the functions f(¢) = t? (2 < p < 0)
and f(t) = t? (0 < p < 2), respectively, we obtain our promised natural
generalizations of the inequalities (1) and (2).

Corollary 1. Let A and B be operators in B(H). Then
(13) 2lIHAP + [BIP || < 1A+ BIP +[A = BIP ||| < 2"~ ||| AP + | B ||
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for 2 <p< oo, and
(14) 27 H|[JAP + BP ||| < [[[|A+ BIP +[A = BIP[[| < 2||[[A]" + B[ ||
for0<p<2.

It should be observed here that the inequalities (5) and (6) (and so the
inequalities (1) and (2)) follow from the inequalities (13) and (14) specialized
to the trace norm.

It has been remarked in [4] that, although the inequalities (1) and (2) are
usually proved separately, they follow from (3) and (4), respectively, simply
by the convexity of the function f(t) = t?/¢ (2 < p < o0; % —i—% = 1) and the
concavity of the function f(t) = t#/9 (1 < p < 2; % + % =1). Thus, it would
be desirable to find natural generalizations (perhaps along the lines of our
generalizations of (1) and (2)) of the inequalities (3) and (4) to all unitarily
invariant norms.

Let f(t) = e —1. Then f is increasing on [0,00), f(0) =0, lim; . f(t) =
oo, and the inverse of g(t) = f(v/t) = €' — 1 is the operator monotone
function g~1(¢) = log(t + 1).

Applying Theorem 1 to this special function, we have the following corol-
lary.

Corollary 2. Let A and B be operators in B(H). Then
0l o et oot

|

Now let f(t) = log(t + 1). Then h(t) = f(v/t) = log(y/t + 1) is operator
monotone on [0,00). So applying Theorem 2 to this function, we have the
following corollary.

Corollary 3. Let A and B be operators in B(H). Then
1
(16) 5 [llog(2|A] + I) + log(2|B| + D]

< [[llog(|A + B| + 1) +log(|A — B| + I)]|
< 2|[[log(|A] + I) + log(|B[ + D] -

The most basic unitarily invariant norms are the Ky Fan norms || - ||
defined as .
1Al ey =D 55(A)
j=1
for k =1,2,.... The Ky Fan dominance principle says that |||Al|| < ||| B|||

for all unitarily invariant norms if and only if ||Al|x) < [|B||x) for all k =
1,2,... (see, e.g., [3, p. 93] or [9, p. 72]).
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Utilizing the Ky Fan dominance principle, enables us to conclude the
following finite-dimensional consequence of Corollary 2.

Corollary 4. Let A and B be operators in B(H), where H is an n-dimen-
stonal Hilbert space. Then

(17) 2 H‘e‘AF +elBP

IN

’He‘“B‘Q 1 elA-BI 21‘ H

IN

3 o4 7 et
Proof. Applying Corollary 2 to the Ky Fan norms, we have
o[ M 4 o] < [oeB 4 a5 o]
(k) (k)
<L H64|A\2 4 ABP QIH
2 (k)
for k=1,2,... ,n. Thus,

4k < HelA+Bl2 4 elA-BP 21” — 4k
(k) (k)

<! H&W 4 tBe? +6]H 4k
2 (k)
for k=1,2,... ,n, from which we get

2 He|‘4|2 +elBP

< [fel4+ B 4 ela=B 121|
(k) (k)

<L He4\A\2 4 MBP GIH
2 (k)

for k =1,2,... ,n. Now the desired inequalities (17) follow by the Ky Fan
dominance principle.
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