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We construct examples having remarkable properties of co-
homological dimension.

1. Introduction.

It is well-known that dimX ≤ n if and only if every map of a closed subspace
of X into the n-dimensional sphere Sn can be extended over X. It is also
well-known that for the cohomological dimension dimGX of X with respect
to an abelian coefficient group G, dimGX ≤ n if and only if every map of a
closed subspace of X into the Eilenberg-Mac Lane complex K(G,n) extends
over X. These properties give rise to the notion of extensional dimension
[3]. Let K be a CW complex. The extensional dimension of X does not
exceed K, written e-dimX ≤ K, if every map of a closed subset of X into
K extends over X. Here e-dimX > K means that e-dimX ≤ K does not
hold. We write e-dimX > n if e-dimX > K for every CW-complex K which
is not n-connected. Thus e-dim> n implies both dim> n and dimG > n for
every group G 6= 0.

Below are listed some remarkable examples in cohomological dimension.

Theorem 1.1 (Dranishnikov [1]). There is a locally compact separable met-
ric space X such that dimZX ≤ 4 and dimZ βX = ∞ where βX is the
Stone-Čech compactification of X.

Theorem 1.2 (Dydak [5], cf. [6]). For each abelian group G there is a sep-
arable metric space X such that dimGX ≤ 3 and every Hausdorff compact-
ification of X is of dimG > 3.

Theorem 1.3 (Dranishnikov-Repovš [4], cf. [11]). There is a compactum
X such that dimZ2 X ≤ 1 and e-dimX > RPm for all integers m > 0.

The goal of this note is to improve these results with a simpler construc-
tion. Namely we will prove the following theorems.

Theorem 1.4. There is a locally compact separable metric space X such
that for every abelian group G and every non-contractible CW-complex P ,
dim GX ≤ 2 and e-dimβX > P .
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Theorem 1.5. There is a separable metric space X such that for every
abelian group G and every Hausdorff compactification X ′ of X, dimGX ≤ 2
and e-dimX ′ > 2.

Theorem 1.6. There is a compactum X such that for every cyclic finite
CW-complex P and every abelian group G, e-dimX > P, dimGX ≤ 2 and
dimGX ≤ 1 if G is finite.

A space is called cyclic if at least one of its (reduced integral) homology
groups does not vanish. We call a map homologically essential if it induces
a nontrivial homomorphism of at least one of the homology groups.

The main tool for constructing our examples is the following theorem
which was proved in [8]. We will formulate this theorem without using
notations of truncated cohomology (note that no algebraic properties of
truncated cohomology were used in [8]).

For a CW-complex K and a space L, [K,L] denotes the set of pointed ho-
motopy classes of maps from K to L. Let map (K,L) stand for the space of
pointed maps from K to L. By map (K,L) ∼= 0 we mean that map (K,L) is
weakly homotopy equivalent to a point, that is πn(map (K,L)) = [ΣnK,L] =
[K,ΩnL] = 0 for every n ≥ 0. Clearly map (K,L) ∼= 0 implies both
map (ΣnK,L) ∼= 0 and map (K,ΩnL) ∼= 0 for all n ≥ 0. A space L and
CW-complexes in Theorems 1.7-1.10 are assumed to be pointed. Maps be-
tween pointed spaces are also assumed to be pointed.

Theorem 1.7 ([8]). Let K and P be countable CW-complexes and let a
space L have finite homotopy groups. If map (K,L) ∼= 0 and [P,L] 6= 0 then
there exists a compactum X such that P < e− dimX ≤ K.

Theorem 1.7 was formulated in [8] in a slightly different form. First, it was
assumed in [8] that K and P are countable simplicial complexes. Since each
countable CW-complex is homotopy equivalent to a countable simplicial
complex we can replace simplicial complexes by CW-complexes. Secondly,
it was assumed in [8] that map (K,L) ∼= 0 and |πi(L)| <∞, i = 0, 1, . . . for
any base point in L. This restriction can be omitted. Indeed, this is obvious
if L is path connected. Let a pointed map f : P −→ L be essential. If P is
mapped by f into the path component of the base point of L then replace L
by the path component of the base point and we are done. So the only case
one needs to consider is when both P and L are not path connected. Then
the condition [K,L] = 0 (derived from map(K,L) ∼= 0) implies that K is
connected. In this case one can define X = [0, 1] which obviously satisfies
P <e-dimX ≤ K.

We will need a more precise version of Theorem 1.7 (which was actually
proved in [8]).
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Theorem 1.8. Let K, P = P0 be countable CW-complexes, let a space L
have finite homotopy groups and let map (K,L) ∼= 0. Let P1, . . . ,Pn be CW-
complexes and let maps fi : Pi −→ Pi+1, i = 0, 1, . . . , n−1 and fn : Pn −→ L
be such that f = fn ◦ · · · ◦ f0 : P −→ L is essential. Then there are a
compactum X, a closed subset X ′ of X and a map g : X ′ −→ P such that
e-dimX ≤ K and the maps g0 = g and gi = fi−1 ◦ · · · ◦ f0 ◦ g : X ′ −→ Pi,
i = 1, 2, . . . , n do not extend over X. In particular e-dimX > Pi for every
i = 0, 1, . . . , n.

Theorem 1.8 was proved in [8] for the case n = 0, see the proof of Theorem
1.2(b) in [8]. The general case can easily be derived from the case n =
0. We recall that X and X ′ were constructed in [8] as the inverse limit
(X,X ′) = lim← ((Mj , Nj), p

j
j−1) of a sequence of pairs of finite complexes

(Mj , Nj), j = 0, 1, . . . with bonding maps pj
j−1 : (Mj , Nj) −→ (Mj−1, Nj−1)

such that N0 is a finite subcomplex of P , Nj = (pj
j−1)

−1(Nj−1) and the map
pj
0 = p1

0 ◦ · · · ◦ p
j−1
j−2 ◦ p

j
j−1 : (Mj , Nj) −→ (M0, N0) has the property that

f ◦ pj
0|Nj : Nj −→ L does not extend over Mj where pj

0|Nj : Nj −→ N0 is
considered as a map to P . Let p : (X,X ′) −→ (M0, N0) be the projection.
Consider g0 = p|X′ : X ′ −→ N0 as a map to P and let gi = fi−1◦· · ·◦f0◦g0 :
X ′ −→ Pi, i = 1, 2, . . . , n. Then for every i the map gi does not extend over
X since otherwise for a sufficiently large j the map (fi−1 ◦ · · · ◦ f0) ◦ pj

0|Nj :
Nj −→ Pi if i ≥ 1 or the map pj

0|Nj : Nj −→ P if i = 0 would extend over
Mj and this would imply that f ◦ pj

0|Nj : Nj −→ L also extends over Mj .
This contradiction proves Theorem 1.8.

Note that if L is a CW-complex (or a space homotopy equivalent to a
CW-complex) then we can assume Pn+1 = L and get that gn+1 = fn ◦ gn :
X ′ −→ L does not extend over X and hence e-dimX > L (cf. the remark
at the end of [8]).

The following two theorems provide us with a very important class of
CW-complexes to which Theorems 1.7 and 1.8 apply.

Theorem 1.9 (Miller’s theorem (the Sullivan conjecture) [10]). Let G be a
finite group and L a finite CW-complex. Then map (K(G, 1), L) ∼= 0.

Theorem 1.10 (Dydak-Walsh [7]). Let L have finite homotopy groups.
Then map (K(Q, 1), L) ∼= 0.

The Dranishnikov-Repovš example (Theorem 1.3) can be obtained as an
application of Theorem 1.7 and Miller’s theorem. Indeed, fix m > 0 and let
k ≥ m be even. The homology groups of RP k are finite and hence so are the
homology groups of ΣRP k. Since ΣRP k is simply connected the Hurewicz
isomorphism theorem modulo the class of finite abelian groups ([12], Sec.
9.6) implies that the homotopy groups of ΣRP k are finite and hence so are
the homotopy groups of ΩΣRP k. The inclusion i : RPm −→ RP k induces



374 MICHAEL LEVIN

the nontrivial homomorphism i∗ : H1(RPm) −→ H1(RP k) and hence Σi :
ΣRPm −→ ΣRP k is essential. Thus [RPm,ΩΣRP k] = [ΣRPm,ΣRP k] 6= 0.
By the Sullivan conjecture (Theorem 1.9) map (K(Z2, 1), ΣRP k) ∼= 0 and
hence map (K(Z2, 1), ΩΣRP k) ∼= 0. Then Theorem 1.7 applied to K =
K(Z2, 1), P = RPm and L = ΩΣRP k produces a compactum Xm with
dimZ2Xm ≤ 1 and e-dimXm > RPm. Let X be the one point compactifica-
tion of the disjoint union of Xm, m = 1, 2, . . . and we have constructed the
Dranishnikov-Repovš example (Theorem 1.3).

More or less the same strategy is applied for proving Theorems 1.4, 1.5
and 1.6 but this time instead of a specific structure of the real projective
spaces RPm we need Lemma 2.1 which plays a key role in our proofs.

2. Proofs.

Lemma 2.1. Let m ≥ 2 and let A be a finite CW-complex with Hm(A) 6= 0.
Then there exists a finite CW-complex B with finite homotopy groups such
that [A,B] 6= 0. Moreover, if 0 6= α ∈ Hm(A) then B can be constructed
such that there is a map φ : A −→ B with φ∗(α) 6= 0.

Proof. By adjoining to A finitely many cells of dim≤ m we can kill the
homotopy groups πi(A) for i = 0, 1, . . . ,m−1. Clearly α will remain nonzero
in this enlarged complex and hence without loss of generality we may assume
that πi(A) = 0 for i = 0, 1, . . . ,m− 1.

Assume that α is of infinite order. By Hurewicz’s isomorphism theorem
we can adjoin an (m + 1)-cell to A to kill the element 2α, leaving α 6= 0.
Thus we may assume that α is of finite order.

Let z1, . . . , zk ∈ Hm(A) be a maximal collection of elements of infinite
order such that t1z1 + · · ·+ tkzk, ti ∈ Z is of finite order if and only if ti = 0
for all 1 ≤ i ≤ k. By Hurewicz’s isomorphism theorem attach to A k cells
of dim = m+ 1 to kill zi, 1 ≤ i ≤ k. Then the elements of Hm(A) of finite
order, and α in particular, will remain untouched and Hm(A) will become
a finite group. Thus we may assume that Hm(A) is finite.

Let n = dimA > m. If m + 1 < n adjoin to A finitely many cells of
m + 2 ≤dim≤ n to kill the homotopy groups πi(A) for m + 1 ≤ i ≤ n − 1.
Then Hm(A) remains unchanged and by the Hurewicz isomorphism theorem
modulo the class of finite abelian groups we may assume thatHi(A) are finite
for i < n.

Now once again take a maximal collection z1, . . . , zk ∈ Hn(A) of elements
of infinite order such that t1z1 + · · · + tkzk, ti ∈ Z is of finite order only if
ti = 0 for all 1 ≤ i ≤ k. Let ψ : πn(A) −→ Hn(A) be the Hurewicz
homomorphism. By the Hurewicz isomorphism theorem modulo the class of
finite abelian groups, cokerψ is finite and hence there are ti 6= 0, 1 ≤ i ≤ k
such that tizi ∈ ψ(πn(A)). Attach to A cells C1, . . . , Ck of dim = n + 1
to kill t1z1, . . . , tkzk respectively. Then Hn(A) will become a finite group.
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Let C = n1C1 + · · ·+ nkCk, ni ∈ Z be an (n+ 1)-dimensional chain. Then
∂C = t1n1z1 + · · ·+ tknkzk if zi’s are considered as cycles. Therefore ∂C = 0
only if C = 0 and hence Hn+1(A) = 0.

Thus after all the enlargements of A we get a simply connected finite
CW-complex B with finite homology groups such that for the inclusion
φ : A −→ B, φ∗(α) 6= 0. Then the homotopy groups of B are finite and the
lemma follows. �

Proof of Theorem 1.6. Fix a cyclic finite CW-complex P . Then Σ2P is
simply connected and cyclic and hence by Lemma 2.1 there exists a fi-
nite CW-complex B with finite homotopy groups such that [Σ2P,B] 6= 0.
Then [P,Ω2B] = [Σ2P,B] 6= 0 and Ω2B also has finite homotopy groups.
Let K = K(Q, 1)

∨
(
∨
{K(G, 1) : G is finite}) be the wedge of K(Q, 1)

and K(G, 1)’s over all possible (up to isomorphism) finite abelian groups
G. Since there are only countably many non-isomorphic finite groups, K
is a countable CW-complex. By the Sullivan conjecture and Theorem 1.10
map (K,Ω2B) ∼= 0. Apply Theorem 1.7 to K,P and L = Ω2B and construct
a compactum XP such that e-dimXP > P , dim QXP ≤ 1 and dim GXP ≤ 1
for every finite abelian group G. e-dim≤ K implies dim Q ≤ 1 and dim G ≤ 1
for every finite abelian group G. Hence by Bockstein’s theorem and inequal-
ities dim GXP ≤ 2 for every abelian group G. Since there are only countably
many finite CW-complexes of different homotopy types define X as the one
point compactification of the disjoint union of XP ’s over all possible (up to
homotopy equivalence) cyclic finite CW-complexes P . Then X is the desired
compactum. �

Proof of Theorem 1.5. By a couple (f, F ) we mean a finite CW-complex F
and a map f : S2 −→ F such that f∗ : H2(S2) −→ H2(F ) is nontrivial.
Two couples (f, F ) and (f ′, F ′) are said to be of the same homotopy type or
homotopy equivalent if there is a homotopy equivalence h : F −→ F ′ such
that h ◦ f ∼= f ′.

Let K = K(Q, 1)
∨

(
∨
{K(Zp, 1) : p prime }) and let T = (f, F ) be a

couple. By Lemma 2.1 and Theorems 1.8, 1.9, 1.10 there are a compactum
XT

1 , a closed subset XT
s of XT

1 and a map gT
s : XT

s −→ S2 such that e-
dimXT

1 ≤ K and gT
1 = f ◦gT

s : XT
s −→ F does not extend over XT

1 . Let XT

be the quotient space of XT
1 obtained by replacing XT

s by S2 according to
the map gT

s . Then S2 can be considered as a subspace S2 ⊂ XT of XT such
that the map f : S2 −→ F does not extend over XT . e-dim≤ K implies
dimQ ≤ 1 and dimZp ≤ 1 for every prime p. Hence by Bockstein’s theorem
and inequalities dimGX

T
1 ≤ 2 for every G and clearly the latter property

also holds for XT .
Let T be a countable family of couples which includes all possible homo-

topy types of couples. Let X be the set obtained from the disjoint union of
XT , T ∈ T by identifying all the spheres S2, that is X = ∪{XT : T ∈ T }
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with S2 = ∩{XT : T ∈ T }. Endow X with a separable metric topology
which agrees with the topology of XT for each XT . Then dimGX ≤ 2 for
every G.

We are going to show that X has the required properties. Let X ′ be a
Hausdorff compactification of X. Since S2 ⊂ X ⊂ X ′, e-dimX ′ > P for
every CW-complex P which is not simply connected. Now assume that P
is simply connected but not 2-connected. Take f ′ : S2 −→ P such that
f ′∗(H2(S2)) 6= 0. Assume that f ′ extends to f ′′ : X ′ −→ P and take a finite
subcomplex F ′ of P such that f ′′(X ′) ⊂ F ′. Consider f ′ and f ′′ as maps to
F ′. Then T ′ = (f ′, F ′) is a couple and hence there is a couple T = (f, F ) ∈ T
which is homotopy equivalent to T ′, that is there is a homotopy equivalence
h : F ′ −→ F such that f ∼= h ◦ f ′. By our construction f does not extend
over XT and hence neither does h ◦ f ′. On the other hand h ◦ f ′′|XT is an
extension of h ◦ f ′. This contradiction proves the theorem. �

Proof of Theorem 1.4. By a pair T = (P1, P0) we mean a pair of finite CW-
complexes P0 ⊂ P1 such that such that the inclusion f0 : P0 −→ P1 is
homologically essential. By Lemma 2.1 there are a finite CW-complex B
with finite homotopy groups and a map φ : Σ2P1 −→ B such that φ◦(Σ2f0) :
Σ2P0 −→ B is essential. Let f1 : P1 −→ Ω2B be the adjoint of φ. Then
f = f1 ◦ f0 : P0 −→ Ω2B is the adjoint of φ ◦ (Σ2f0) and hence f is also
essential. Define K = K(Q, 1)

∨
(
∨
{K(Zp, 1) : p prime }), L = Ω2B and

apply Theorems 1.8, 1.9 and 1.10 to construct a compactum XT , a closed
subset XT

0 of XT and a map gT : XT
0 −→ P0 such that e-dimXT ≤ K and

gT does not extend over XT as a map to P1.
Let T = (P1, P0) be a pair. One can find a countable collection QT of

maps from P0 to P0 such that each map from P0 to P0 is homotopic to some
element of QT . Consider QT as a discrete space. Let T be a countable
collection of pairs which includes all possible homotopy types of pairs and
define X as the disjoint union of XT ×QT , T ∈ T . Clearly X is separable
metrizable and locally compact and e-dimX ≤ K. By the Bockstein theorem
and inequalities dimGX ≤ 2 for every abelian G.

Let us show that e-dimβX > P for every non-contractible simply con-
nected CW-complex P . Take a finite subcomplex P ′ of P supporting a
nontrivial homology cycle in P . Then for any finite subcomplex P ′′ of P
containing P ′ the inclusion of P ′ into P ′′ is homologically essential. Let
T ′ = {T : T = (P0, P1) ∈ T such that P ′ ∼= P0} and let X ′ = ∪{XT

0 ×QT :
T ∈ T ′}. Then X ′ is a closed subset of X. For each T = (P1, P0) ∈ T ′ fix a
homotopy equivalence qT : P0 −→ P ′.

Define f ′ : X ′ −→ P ′ by f ′(x, q) = qT (q(gT (x))) for (x, q) ∈ XT
0 ×QT , T ∈

T ′.
Consider βX ′ as a closed subset of βX and let βf ′ : βX ′ −→ P ′ be the

extension of f ′. Let us show that βf ′ considered as a map to P does not
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extend over βX. Assume that there is an extension h : βX −→ P of βf ′

and let P ′′ be a finite subcomplex of P containing both h(βX) and P ′. Take
T = (P1, P0) ∈ T ′ such that (P1, P0) ∼= (P ′′, P ′) and let q′′ : (P ′′, P ′) −→
(P1, P0) be a homotopy equivalence. Let q ∈ QT be a homotopy inverse of
q′′ ◦qT : P0 −→ P0, that is q′′ ◦qT ◦q : P0 −→ P0 is homotopic to the identity
map.

From now we identify XT
0 × {q} and XT × {q} with XT

0 and XT respec-
tively. Then the map r = q′′ ◦ f ′|XT

0
= q′′ ◦ qT ◦ q ◦ gT : XT

0 −→ P0 is
homotopic to gT and hence by our construction r does not extend over XT

as a map to P1. On the other hand q′′ ◦ h|XT : XT −→ P1 is an extension
of r where h is considered as a map to P ′′. This contradiction shows that
e-dimβX > P .

Now, by adding a 2-dimensional disk to X, we get that e-dimβX > K for
every non-simply connected CW-complex K. Clearly all the cohomological
dimensions of X remain ≤ 2 and the theorem follows. �

Remarks. An interesting property of Theorems 1.4 and 1.5 is that the CW-
complexes are not required to be countable and fixed in advance. This was
achieved by using the so-called Rubin-Schapiro trick [9]. Another interesting
point is that the space X constructed in the proof of Theorem 1.6 has the
property dimGX

n ≤ n + 1 for every G and n. And finally let us note that
it would be interesting to find out if Theorem 1.6 holds for non-contractible
(not necessarily cyclic) finite complexes P .
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extension theory and C-separation, Proc. Amer. Math. Soc., 128(10) (2000), 3099-
3106, MR 2000m:54042, Zbl 0951.54033.

[10] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math.
(2), 120(1) (1984), 39-87, MR 85i:55012, Zbl 0552.55014.

[11] T. Miyata, Moore spaces and cohomological dimension, Bull. Polish Acad. Sci. Math.,
48(3) (2000), 231-235, MR 2001h:54063.

[12] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.-
London, 1966, MR 35 #1007, Zbl 0477.55001.

Received March 8, 2000 and revised January 25, 2001. The author was supported in part
by a JSPS postdoctoral fellowship for foreign researchers.

Department of Mathematics
Ben-Gurion University
P.O. Box 653
Beer-Sheva 84105
Israel
E-mail address: mlevine@math.bgu.ac.il

http://www.ams.org/mathscinet-getitem?mr=1816051
http://www.ams.org/mathscinet-getitem?mr=2000m:54042
http://www.emis.de/cgi-bin/MATH-item?0951.54033
http://www.ams.org/mathscinet-getitem?mr=85i:55012
http://www.emis.de/cgi-bin/MATH-item?0552.55014
http://www.ams.org/mathscinet-getitem?mr=2001h:54063
http://www.ams.org/mathscinet-getitem?mr=35:1007
http://www.emis.de/cgi-bin/MATH-item?0477.55001
mailto:mlevine@math.bgu.ac.il

