Pacific Journal of Mathematics

SOME EXAMPLES IN COHOMOLOGICAL DIMENSION THEORY

MICHAEL LEVIN

Volume 202 No. 2

February 2002

SOME EXAMPLES IN COHOMOLOGICAL DIMENSION THEORY

MICHAEL LEVIN

We construct examples having remarkable properties of cohomological dimension.

1. Introduction.

It is well-known that $\dim X \leq n$ if and only if every map of a closed subspace of X into the n-dimensional sphere \mathbb{S}^n can be extended over X. It is also well-known that for the cohomological dimension $\dim_G X$ of X with respect to an abelian coefficient group G, $\dim_G X \leq n$ if and only if every map of a closed subspace of X into the Eilenberg-Mac Lane complex K(G, n) extends over X. These properties give rise to the notion of extensional dimension [**3**]. Let K be a CW complex. The extensional dimension of X does not exceed K, written e-dim $X \leq K$, if every map of a closed subset of X into K extends over X. Here e-dim X > K means that e-dim $X \leq K$ does not hold. We write e-dimX > n if e-dimX > K for every CW-complex K which is not n-connected. Thus e-dim> n implies both dim> n and dim_G > n for every group $G \neq 0$.

Below are listed some remarkable examples in cohomological dimension.

Theorem 1.1 (Dranishnikov [1]). There is a locally compact separable metric space X such that $\dim_{\mathbb{Z}} X \leq 4$ and $\dim_{\mathbb{Z}} \beta X = \infty$ where βX is the Stone-Čech compactification of X.

Theorem 1.2 (Dydak [5], cf. [6]). For each abelian group G there is a separable metric space X such that $\dim_G X \leq 3$ and every Hausdorff compactification of X is of $\dim_G > 3$.

Theorem 1.3 (Dranishnikov-Repovš [4], cf. [11]). There is a compactum X such that $\dim_{\mathbb{Z}_2} X \leq 1$ and e-dim $X > \mathbb{R}P^m$ for all integers m > 0.

The goal of this note is to improve these results with a simpler construction. Namely we will prove the following theorems.

Theorem 1.4. There is a locally compact separable metric space X such that for every abelian group G and every non-contractible CW-complex P, $\dim_G X \leq 2$ and e-dim $\beta X > P$.

Theorem 1.5. There is a separable metric space X such that for every abelian group G and every Hausdorff compactification X' of X, $\dim_G X \leq 2$ and e-dim X' > 2.

Theorem 1.6. There is a compactum X such that for every cyclic finite CW-complex P and every abelian group G, e-dim X > P, dim_G $X \le 2$ and dim_G $X \le 1$ if G is finite.

A space is called cyclic if at least one of its (reduced integral) homology groups does not vanish. We call a map homologically essential if it induces a nontrivial homomorphism of at least one of the homology groups.

The main tool for constructing our examples is the following theorem which was proved in [8]. We will formulate this theorem without using notations of truncated cohomology (note that no algebraic properties of truncated cohomology were used in [8]).

For a CW-complex K and a space L, [K, L] denotes the set of pointed homotopy classes of maps from K to L. Let map (K, L) stand for the space of pointed maps from K to L. By map $(K, L) \cong 0$ we mean that map (K, L) is weakly homotopy equivalent to a point, that is $\pi_n(\text{map}(K, L)) = [\Sigma^n K, L] = [K, \Omega^n L] = 0$ for every $n \ge 0$. Clearly map $(K, L) \cong 0$ implies both map $(\Sigma^n K, L) \cong 0$ and map $(K, \Omega^n L) \cong 0$ for all $n \ge 0$. A space L and CW-complexes in Theorems 1.7-1.10 are assumed to be pointed. Maps between pointed spaces are also assumed to be pointed.

Theorem 1.7 ([8]). Let K and P be countable CW-complexes and let a space L have finite homotopy groups. If map $(K, L) \cong 0$ and $[P, L] \neq 0$ then there exists a compactum X such that $P < e - \dim X \leq K$.

Theorem 1.7 was formulated in [8] in a slightly different form. First, it was assumed in [8] that K and P are countable simplicial complexes. Since each countable CW-complex is homotopy equivalent to a countable simplicial complex we can replace simplicial complexes by CW-complexes. Secondly, it was assumed in [8] that map $(K, L) \cong 0$ and $|\pi_i(L)| < \infty, i = 0, 1, ...$ for any base point in L. This restriction can be omitted. Indeed, this is obvious if L is path connected. Let a pointed map $f: P \longrightarrow L$ be essential. If P is mapped by f into the path component of the base point of L then replace Lby the path component of the base point and we are done. So the only case one needs to consider is when both P and L are not path connected. Then the condition [K, L] = 0 (derived from map $(K, L) \cong 0$) implies that K is connected. In this case one can define X = [0, 1] which obviously satisfies $P < e-\dim X \leq K$.

We will need a more precise version of Theorem 1.7 (which was actually proved in [8]).

Theorem 1.8. Let K, $P = P_0$ be countable CW-complexes, let a space L have finite homotopy groups and let map $(K, L) \cong 0$. Let P_1, \ldots, P_n be CW-complexes and let maps $f_i : P_i \longrightarrow P_{i+1}, i = 0, 1, \ldots, n-1$ and $f_n : P_n \longrightarrow L$ be such that $f = f_n \circ \cdots \circ f_0 : P \longrightarrow L$ is essential. Then there are a compactum X, a closed subset X' of X and a map $g : X' \longrightarrow P$ such that e-dim $X \leq K$ and the maps $g_0 = g$ and $g_i = f_{i-1} \circ \cdots \circ f_0 \circ g : X' \longrightarrow P_i$, $i = 1, 2, \ldots, n$ do not extend over X. In particular e-dim $X > P_i$ for every $i = 0, 1, \ldots, n$.

Theorem 1.8 was proved in [8] for the case n = 0, see the proof of Theorem 1.2(b) in [8]. The general case can easily be derived from the case n = 0. We recall that X and X' were constructed in [8] as the inverse limit $(X, X') = \lim_{\leftarrow} ((M_j, N_j), p_{j-1}^j)$ of a sequence of pairs of finite complexes $(M_j, N_j), j = 0, 1, \ldots$ with bonding maps $p_{j-1}^j : (M_j, N_j) \longrightarrow (M_{j-1}, N_{j-1})$ such that N_0 is a finite subcomplex of $P, N_j = (p_{j-1}^j)^{-1}(N_{j-1})$ and the map $p_0^j = p_0^1 \circ \cdots \circ p_{j-2}^{j-1} \circ p_{j-1}^j : (M_j, N_j) \longrightarrow (M_0, N_0)$ has the property that $f \circ p_0^j|_{N_j} : N_j \longrightarrow L$ does not extend over M_j where $p_0^j|_{N_j} : N_j \longrightarrow N_0$ is considered as a map to P. Let $p : (X, X') \longrightarrow (M_0, N_0)$ be the projection. Consider $g_0 = p|_{X'} : X' \longrightarrow N_0$ as a map to P and let $g_i = f_{i-1} \circ \cdots \circ f_0 \circ g_0 : X' \longrightarrow P_i, i = 1, 2, \ldots, n$. Then for every i the map g_i does not extend over M_j if $i \ge 1$ or the map $p_0^j|_{N_j} : N_j \longrightarrow L$ also extends over M_j . This contradiction proves Theorem 1.8.

Note that if L is a CW-complex (or a space homotopy equivalent to a CW-complex) then we can assume $P_{n+1} = L$ and get that $g_{n+1} = f_n \circ g_n$: $X' \longrightarrow L$ does not extend over X and hence e-dim X > L (cf. the remark at the end of [8]).

The following two theorems provide us with a very important class of CW-complexes to which Theorems 1.7 and 1.8 apply.

Theorem 1.9 (Miller's theorem (the Sullivan conjecture) [10]). Let G be a finite group and L a finite CW-complex. Then map $(K(G, 1), L) \cong 0$.

Theorem 1.10 (Dydak-Walsh [7]). Let L have finite homotopy groups. Then map $(K(\mathbb{Q}, 1), L) \cong 0$.

The Dranishnikov-Repovš example (Theorem 1.3) can be obtained as an application of Theorem 1.7 and Miller's theorem. Indeed, fix m > 0 and let $k \ge m$ be even. The homology groups of $\mathbb{R}P^k$ are finite and hence so are the homology groups of $\Sigma \mathbb{R}P^k$. Since $\Sigma \mathbb{R}P^k$ is simply connected the Hurewicz isomorphism theorem modulo the class of finite abelian groups ([12], Sec. 9.6) implies that the homotopy groups of $\Sigma \mathbb{R}P^k$ are finite and hence so are the homotopy groups of $\Omega \Sigma \mathbb{R}P^k$. The inclusion $i : \mathbb{R}P^m \longrightarrow \mathbb{R}P^k$ induces

the nontrivial homomorphism $i_* : H_1(\mathbb{R}P^m) \longrightarrow H_1(\mathbb{R}P^k)$ and hence $\Sigma i : \Sigma\mathbb{R}P^m \longrightarrow \Sigma\mathbb{R}P^k$ is essential. Thus $[\mathbb{R}P^m, \Omega\Sigma\mathbb{R}P^k] = [\Sigma\mathbb{R}P^m, \Sigma\mathbb{R}P^k] \neq 0$. By the Sullivan conjecture (Theorem 1.9) map $(K(\mathbb{Z}_2, 1), \Sigma\mathbb{R}P^k) \cong 0$ and hence map $(K(\mathbb{Z}_2, 1), \Omega\Sigma\mathbb{R}P^k) \cong 0$. Then Theorem 1.7 applied to $K = K(\mathbb{Z}_2, 1), P = \mathbb{R}P^m$ and $L = \Omega\Sigma\mathbb{R}P^k$ produces a compactum X_m with $\dim_{\mathbb{Z}_2}X_m \leq 1$ and e-dim $X_m > \mathbb{R}P^m$. Let X be the one point compactification of the disjoint union of $X_m, m = 1, 2, \ldots$ and we have constructed the Dranishnikov-Repovš example (Theorem 1.3).

More or less the same strategy is applied for proving Theorems 1.4, 1.5 and 1.6 but this time instead of a specific structure of the real projective spaces $\mathbb{R}P^m$ we need Lemma 2.1 which plays a key role in our proofs.

2. Proofs.

Lemma 2.1. Let $m \ge 2$ and let A be a finite CW-complex with $H_m(A) \ne 0$. Then there exists a finite CW-complex B with finite homotopy groups such that $[A, B] \ne 0$. Moreover, if $0 \ne \alpha \in H_m(A)$ then B can be constructed such that there is a map $\phi : A \longrightarrow B$ with $\phi_*(\alpha) \ne 0$.

Proof. By adjoining to A finitely many cells of dim $\leq m$ we can kill the homotopy groups $\pi_i(A)$ for i = 0, 1, ..., m-1. Clearly α will remain nonzero in this enlarged complex and hence without loss of generality we may assume that $\pi_i(A) = 0$ for i = 0, 1, ..., m-1.

Assume that α is of infinite order. By Hurewicz's isomorphism theorem we can adjoin an (m + 1)-cell to A to kill the element 2α , leaving $\alpha \neq 0$. Thus we may assume that α is of finite order.

Let $z_1, \ldots, z_k \in H_m(A)$ be a maximal collection of elements of infinite order such that $t_1z_1 + \cdots + t_kz_k$, $t_i \in \mathbb{Z}$ is of finite order if and only if $t_i = 0$ for all $1 \leq i \leq k$. By Hurewicz's isomorphism theorem attach to A k cells of dim = m + 1 to kill $z_i, 1 \leq i \leq k$. Then the elements of $H_m(A)$ of finite order, and α in particular, will remain untouched and $H_m(A)$ will become a finite group. Thus we may assume that $H_m(A)$ is finite.

Let $n = \dim A > m$. If m + 1 < n adjoin to A finitely many cells of $m + 2 \leq \dim \leq n$ to kill the homotopy groups $\pi_i(A)$ for $m + 1 \leq i \leq n - 1$. Then $H_m(A)$ remains unchanged and by the Hurewicz isomorphism theorem modulo the class of finite abelian groups we may assume that $H_i(A)$ are finite for i < n.

Now once again take a maximal collection $z_1, \ldots, z_k \in H_n(A)$ of elements of infinite order such that $t_1z_1 + \cdots + t_kz_k$, $t_i \in \mathbb{Z}$ is of finite order only if $t_i = 0$ for all $1 \leq i \leq k$. Let $\psi : \pi_n(A) \longrightarrow H_n(A)$ be the Hurewicz homomorphism. By the Hurewicz isomorphism theorem modulo the class of finite abelian groups, coker ψ is finite and hence there are $t_i \neq 0, 1 \leq i \leq k$ such that $t_i z_i \in \psi(\pi_n(A))$. Attach to A cells C_1, \ldots, C_k of dim = n + 1to kill $t_1 z_1, \ldots, t_k z_k$ respectively. Then $H_n(A)$ will become a finite group. Let $C = n_1C_1 + \cdots + n_kC_k$, $n_i \in \mathbb{Z}$ be an (n+1)-dimensional chain. Then $\partial C = t_1n_1z_1 + \cdots + t_kn_kz_k$ if z_i 's are considered as cycles. Therefore $\partial C = 0$ only if C = 0 and hence $H_{n+1}(A) = 0$.

Thus after all the enlargements of A we get a simply connected finite CW-complex B with finite homology groups such that for the inclusion $\phi: A \longrightarrow B, \ \phi_*(\alpha) \neq 0$. Then the homotopy groups of B are finite and the lemma follows.

Proof of Theorem 1.6. Fix a cyclic finite CW-complex P. Then $\Sigma^2 P$ is simply connected and cyclic and hence by Lemma 2.1 there exists a finite CW-complex B with finite homotopy groups such that $[\Sigma^2 P, B] \neq 0$. Then $[P, \Omega^2 B] = [\Sigma^2 P, B] \neq 0$ and $\Omega^2 B$ also has finite homotopy groups. Let $K = K(\mathbb{Q}, 1) \bigvee (\bigvee \{K(G, 1) : G \text{ is finite}\})$ be the wedge of $K(\mathbb{Q}, 1)$ and K(G, 1)'s over all possible (up to isomorphism) finite abelian groups G. Since there are only countably many non-isomorphic finite groups, Kis a countable CW-complex. By the Sullivan conjecture and Theorem 1.10map $(K, \Omega^2 B) \cong 0$. Apply Theorem 1.7 to K, P and $L = \Omega^2 B$ and construct a compactum X_P such that e-dim $X_P > P$, dim ${}_{\mathbb{O}}X_P \leq 1$ and dim ${}_{G}X_P \leq 1$ for every finite abelian group G. e-dim $\leq K$ implies dim $\mathbb{Q} \leq 1$ and dim $G \leq 1$ for every finite abelian group G. Hence by Bockstein's theorem and inequalities dim $_{G}X_{P} \leq 2$ for every abelian group G. Since there are only countably many finite CW-complexes of different homotopy types define X as the one point compactification of the disjoint union of X_P 's over all possible (up to homotopy equivalence) cyclic finite CW-complexes P. Then X is the desired compactum. \square

Proof of Theorem 1.5. By a couple (f, F) we mean a finite CW-complex Fand a map $f : \mathbb{S}^2 \longrightarrow F$ such that $f_* : H_2(\mathbb{S}^2) \longrightarrow H_2(F)$ is nontrivial. Two couples (f, F) and (f', F') are said to be of the same homotopy type or homotopy equivalent if there is a homotopy equivalence $h : F \longrightarrow F'$ such that $h \circ f \cong f'$.

Let $K = K(\mathbb{Q}, 1) \bigvee (\bigvee \{K(\mathbb{Z}_p, 1) : p \text{ prime }\})$ and let T = (f, F) be a couple. By Lemma 2.1 and Theorems 1.8, 1.9, 1.10 there are a compactum X_1^T , a closed subset X_s^T of X_1^T and a map $g_s^T : X_s^T \longrightarrow \mathbb{S}^2$ such that edim $X_1^T \leq K$ and $g_1^T = f \circ g_s^T : X_s^T \longrightarrow F$ does not extend over X_1^T . Let X^T be the quotient space of X_1^T obtained by replacing X_s^T by \mathbb{S}^2 according to the map g_s^T . Then \mathbb{S}^2 can be considered as a subspace $\mathbb{S}^2 \subset X^T$ of X^T such that the map $f : \mathbb{S}^2 \longrightarrow F$ does not extend over X^T . e-dim $\leq K$ implies dim $\mathbb{Q} \leq 1$ and dim $\mathbb{Z}_p \leq 1$ for every prime p. Hence by Bockstein's theorem and inequalities dim $_G X_1^T \leq 2$ for every G and clearly the latter property also holds for X^T .

Let \mathcal{T} be a countable family of couples which includes all possible homotopy types of couples. Let X be the set obtained from the disjoint union of $X^T, T \in \mathcal{T}$ by identifying all the spheres \mathbb{S}^2 , that is $X = \bigcup \{X^T : T \in \mathcal{T}\}$ with $\mathbb{S}^2 = \cap \{X^T : T \in \mathcal{T}\}$. Endow X with a separable metric topology which agrees with the topology of X^T for each X^T . Then $\dim_G X \leq 2$ for every G.

We are going to show that X has the required properties. Let X' be a Hausdorff compactification of X. Since $\mathbb{S}^2 \subset X \subset X'$, e-dimX' > P for every CW-complex P which is not simply connected. Now assume that P is simply connected but not 2-connected. Take $f' : \mathbb{S}^2 \longrightarrow P$ such that $f'_*(H_2(\mathbb{S}^2)) \neq 0$. Assume that f' extends to $f'' : X' \longrightarrow P$ and take a finite subcomplex F' of P such that $f''(X') \subset F'$. Consider f' and f'' as maps to F'. Then T' = (f', F') is a couple and hence there is a couple $T = (f, F) \in \mathcal{T}$ which is homotopy equivalent to T', that is there is a homotopy equivalence $h : F' \longrightarrow F$ such that $f \cong h \circ f'$. By our construction f does not extend over X^T and hence neither does $h \circ f'$. On the other hand $h \circ f''|_{X^T}$ is an extension of $h \circ f'$. This contradiction proves the theorem. \Box

Proof of Theorem 1.4. By a pair $T = (P_1, P_0)$ we mean a pair of finite CWcomplexes $P_0 \subset P_1$ such that such that the inclusion $f_0 : P_0 \longrightarrow P_1$ is homologically essential. By Lemma 2.1 there are a finite CW-complex Bwith finite homotopy groups and a map $\phi : \Sigma^2 P_1 \longrightarrow B$ such that $\phi \circ (\Sigma^2 f_0) :$ $\Sigma^2 P_0 \longrightarrow B$ is essential. Let $f_1 : P_1 \longrightarrow \Omega^2 B$ be the adjoint of ϕ . Then $f = f_1 \circ f_0 : P_0 \longrightarrow \Omega^2 B$ is the adjoint of $\phi \circ (\Sigma^2 f_0)$ and hence f is also essential. Define $K = K(\mathbb{Q}, 1) \bigvee (\bigvee \{K(\mathbb{Z}_p, 1) : p \text{ prime }\}), L = \Omega^2 B$ and apply Theorems 1.8, 1.9 and 1.10 to construct a compactum X^T , a closed subset X_0^T of X^T and a map $g^T : X_0^T \longrightarrow P_0$ such that e-dim $X^T \leq K$ and g^T does not extend over X^T as a map to P_1 .

Let $T = (P_1, P_0)$ be a pair. One can find a countable collection Q^T of maps from P_0 to P_0 such that each map from P_0 to P_0 is homotopic to some element of Q^T . Consider Q^T as a discrete space. Let \mathcal{T} be a countable collection of pairs which includes all possible homotopy types of pairs and define X as the disjoint union of $X^T \times Q^T$, $T \in \mathcal{T}$. Clearly X is separable metrizable and locally compact and e-dim $X \leq K$. By the Bockstein theorem and inequalities dim_GX ≤ 2 for every abelian G.

Let us show that e-dim $\beta X > P$ for every non-contractible simply connected CW-complex P. Take a finite subcomplex P' of P supporting a nontrivial homology cycle in P. Then for any finite subcomplex P'' of Pcontaining P' the inclusion of P' into P'' is homologically essential. Let $\mathcal{T}' = \{T : T = (P_0, P_1) \in \mathcal{T} \text{ such that } P' \cong P_0\}$ and let $X' = \bigcup\{X_0^T \times \mathcal{Q}^T : T \in \mathcal{T}'\}$. Then X' is a closed subset of X. For each $T = (P_1, P_0) \in \mathcal{T}'$ fix a homotopy equivalence $q^T : P_0 \longrightarrow P'$.

Define $f': X' \longrightarrow P'$ by $f'(x,q) = q^T(q(g^T(x)))$ for $(x,q) \in X_0^T \times \mathcal{Q}^T, T \in \mathcal{T}'$.

Consider $\beta X'$ as a closed subset of βX and let $\beta f' : \beta X' \longrightarrow P'$ be the extension of f'. Let us show that $\beta f'$ considered as a map to P does not

extend over βX . Assume that there is an extension $h : \beta X \longrightarrow P$ of $\beta f'$ and let P'' be a finite subcomplex of P containing both $h(\beta X)$ and P'. Take $T = (P_1, P_0) \in \mathcal{T}'$ such that $(P_1, P_0) \cong (P'', P')$ and let $q'' : (P'', P') \longrightarrow$ (P_1, P_0) be a homotopy equivalence. Let $q \in \mathcal{Q}^T$ be a homotopy inverse of $q'' \circ q^T : P_0 \longrightarrow P_0$, that is $q'' \circ q^T \circ q : P_0 \longrightarrow P_0$ is homotopic to the identity map.

From now we identify $X_0^T \times \{q\}$ and $X^T \times \{q\}$ with X_0^T and X^T respectively. Then the map $r = q'' \circ f'|_{X_0^T} = q'' \circ q^T \circ q \circ g^T : X_0^T \longrightarrow P_0$ is homotopic to g^T and hence by our construction r does not extend over X^T as a map to P_1 . On the other hand $q'' \circ h|_{X^T} : X^T \longrightarrow P_1$ is an extension of r where h is considered as a map to P''. This contradiction shows that $e-\dim\beta X > P$.

Now, by adding a 2-dimensional disk to X, we get that $e-\dim\beta X > K$ for every non-simply connected CW-complex K. Clearly all the cohomological dimensions of X remain ≤ 2 and the theorem follows.

Remarks. An interesting property of Theorems 1.4 and 1.5 is that the CWcomplexes are not required to be countable and fixed in advance. This was achieved by using the so-called Rubin-Schapiro trick [9]. Another interesting point is that the space X constructed in the proof of Theorem 1.6 has the property $\dim_G X^n \leq n+1$ for every G and n. And finally let us note that it would be interesting to find out if Theorem 1.6 holds for non-contractible (not necessarily cyclic) finite complexes P.

References

- A.N. Dranishnikov, The cohomological dimension is not preserved under the Stone-Čech compactification (Russian), C. R. Acad. Bulgare Sci., 41(12) (1988), 9-10.
- [2] _____, Basic elements of the cohomological dimension theory of compact metric spaces, preprint.
- [3] A. Dranishnikov and J. Dydak, Extension dimension and extension types, Tr. Mat. Inst. Steklova, 212 (1996), Otobrazh. i Razmer., 61-94, MR 99h:54049, Zbl 0898.54027.
- [4] A. Dranishnikov and D. Repovš, On Alexandroff theorem for general abelian groups, Topology Appl., 111(3) (2001), 343-353, CMP 1 814 233.
- [5] J. Dydak, Compactifications and cohomological dimension, Topology Appl., 50(1) (1993), 1-10, MR 94c:55002, Zbl 0859.55002.
- J. Dydak and J.J. Walsh, Spaces without cohomological dimension preserving compactifications, Proc. Amer. Math. Soc., 113(4) (1991), 1155-1162, MR 92c:54039, Zbl 0742.55002.
- [7] _____, Infinite-dimensional compacta having cohomological dimension two: An application of the Sullivan conjecture, Topology, **32**(1) (1993), 93-104, MR 94b:55002, Zbl 0822.55001.

- [8] M. Levin, Constructing compacts of different extensional dimensions, Can. Math. Bull., 44(1) (2001), 80-86, CMP 1 816 051.
- [9] M. Levin, L.R. Rubin and P.J. Schapiro, The Mardešić factorization theorem for extension theory and C-separation, Proc. Amer. Math. Soc., 128(10) (2000), 3099-3106, MR 2000m:54042, Zbl 0951.54033.
- [10] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math.
 (2), 120(1) (1984), 39-87, MR 85i:55012, Zbl 0552.55014.
- T. Miyata, Moore spaces and cohomological dimension, Bull. Polish Acad. Sci. Math., 48(3) (2000), 231-235, MR 2001h:54063.
- [12] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966, MR 35 #1007, Zbl 0477.55001.

Received March 8, 2000 and revised January 25, 2001. The author was supported in part by a JSPS postdoctoral fellowship for foreign researchers.

DEPARTMENT OF MATHEMATICS BEN-GURION UNIVERSITY P.O. BOX 653 BEER-SHEVA 84105 ISRAEL *E-mail address*: mlevine@math.bgu.ac.il