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‘We construct examples having remarkable properties of co-
homological dimension.

1. Introduction.

It is well-known that dim X < n if and only if every map of a closed subspace
of X into the n-dimensional sphere S can be extended over X. It is also
well-known that for the cohomological dimension dimgX of X with respect
to an abelian coefficient group G, dimgX < n if and only if every map of a
closed subspace of X into the Eilenberg-Mac Lane complex K (G, n) extends
over X. These properties give rise to the notion of extensional dimension
[3]. Let K be a CW complex. The extensional dimension of X does not
exceed K, written e-dimX < K, if every map of a closed subset of X into
K extends over X. Here e-dim X > K means that e-dim X < K does not
hold. We write e-dimX > n if e-dimX > K for every CW-complex K which
is not n-connected. Thus e-dim> n implies both dim> n and dimg > n for
every group G # 0.

Below are listed some remarkable examples in cohomological dimension.

Theorem 1.1 (Dranishnikov [1]). There is a locally compact separable met-
ric space X such that dimz X < 4 and dimg B8X = oo where BX is the
Stone-Cech compactification of X .

Theorem 1.2 (Dydak [5], cf. [6]). For each abelian group G there is a sep-
arable metric space X such that dimg X < 3 and every Hausdorff compact-
ification of X is of dimg > 3.

Theorem 1.3 (Dranishnikov-Repovs [4], cf. [11]). There is a compactum
X such that dimz, X <1 and e-dim X > RP™ for all integers m > 0.

The goal of this note is to improve these results with a simpler construc-
tion. Namely we will prove the following theorems.

Theorem 1.4. There is a locally compact separable metric space X such
that for every abelian group G and every non-contractible CW-complex P,
dim X <2 and e-dim X > P.
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Theorem 1.5. There is a separable metric space X such that for every
abelian group G and every Hausdorff compactification X' of X, dimg X < 2
and e-dim X’ > 2.

Theorem 1.6. There is a compactum X such that for every cyclic finite
CW-complex P and every abelian group G, e-dim X > P, dimg X < 2 and
dimg X <1 if G is finite.

A space is called cyclic if at least one of its (reduced integral) homology
groups does not vanish. We call a map homologically essential if it induces
a nontrivial homomorphism of at least one of the homology groups.

The main tool for constructing our examples is the following theorem
which was proved in [8]. We will formulate this theorem without using
notations of truncated cohomology (note that no algebraic properties of
truncated cohomology were used in [8]).

For a CW-complex K and a space L, [K, L] denotes the set of pointed ho-
motopy classes of maps from K to L. Let map (K, L) stand for the space of
pointed maps from K to L. By map (K, L) = 0 we mean that map (K, L) is
weakly homotopy equivalent to a point, that is m,(map (K, L)) = [X"K, L] =
[K,Q"L] = 0 for every n > 0. Clearly map (K,L) = 0 implies both
map (X"K,L) = 0 and map (K,Q"L) = 0 for all n > 0. A space L and
CW-complexes in Theorems 1.7-1.10 are assumed to be pointed. Maps be-
tween pointed spaces are also assumed to be pointed.

Theorem 1.7 ([8]). Let K and P be countable CW-complezes and let a
space L have finite homotopy groups. If map (K, L) =20 and [P, L] # 0 then
there exists a compactum X such that P < e —dim X < K.

Theorem 1.7 was formulated in [8] in a slightly different form. First, it was
assumed in [8] that K and P are countable simplicial complexes. Since each
countable CW-complex is homotopy equivalent to a countable simplicial
complex we can replace simplicial complexes by CW-complexes. Secondly,
it was assumed in [8] that map (K, L) = 0 and |m;(L)| < 00,7 =0,1,... for
any base point in L. This restriction can be omitted. Indeed, this is obvious
if L is path connected. Let a pointed map f : P — L be essential. If P is
mapped by f into the path component of the base point of L then replace L
by the path component of the base point and we are done. So the only case
one needs to consider is when both P and L are not path connected. Then
the condition [K, L] = 0 (derived from map(K, L) = 0) implies that K is
connected. In this case one can define X = [0, 1] which obviously satisfies
P <e-dim X < K.

We will need a more precise version of Theorem 1.7 (which was actually
proved in [8]).
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Theorem 1.8. Let K, P = Py be countable CW-complexes, let a space L
have finite homotopy groups and let map (K, L) =2 0. Let Py, ... ,P, be CW-
complexes and let maps f; : P, — Pjy1,i=0,1,... ,;n—1and f, : P, — L
be such that f = fpoo---0 fo : P — L 1is essential. Then there are a
compactum X, a closed subset X' of X and a map g : X' — P such that
e-dim X < K and the maps go = g and g; = fi_10---0 fopog: X' — P;,
i=1,2,...,n do not extend over X. In particular e-dim X > P; for every
1=0,1,... n.

Theorem 1.8 was proved in [8] for the case n = 0, see the proof of Theorem
1.2(b) in [8]. The general case can easily be derived from the case n =
0. We recall that X and X' were constructed in [8] as the inverse limit
(X, X" = lgn((Mj,Nj),p;_l) of a sequence of pairs of finite complexes
(Mj,Nj), 7 =0,1,... with bonding maps pg-fl : (Mj, Nj) — (Mj—1,Nj—1)
such that Ny is a finite subcomplex of P, N; = (pg-_l)*l(Nj_l) and the map
pé :'p[l) o--- op;::; Op;:_l : (Mj, N;) — (Mo, No) has the property that
f Op%|Nj : N; — L does not extend over M; where pé\Nj : Nj — Ny is
considered as a map to P. Let p: (X, X') — (Mp, Ny) be the projection.
Consider gy = p|x : X' — Ny as amap to P and let g; = f;_10---0 fpogo :
X' — P;,i=1,2,... ,n. Then for every i the map g; does not extend over
X since otherwise for a sufficiently large j the map (fi—10---0 fy) o p()\Nj :
N; — P;if i > 1 or the map p6|Nj : Nj — P if i = 0 would extend over

M; and this would imply that f o pl| N; + Nj — L also extends over Mj.
This contradiction proves Theorem 1.8.

Note that if L is a CW-complex (or a space homotopy equivalent to a
CW-complex) then we can assume P,11 = L and get that g,11 = fr 0 gn :
X" — L does not extend over X and hence e-dim X > L (cf. the remark
at the end of [8]).

The following two theorems provide us with a very important class of
CW-complexes to which Theorems 1.7 and 1.8 apply.

Theorem 1.9 (Miller’s theorem (the Sullivan conjecture) [10]). Let G be a
finite group and L a finite CW-complex. Then map (K(G,1),L) = 0.

Theorem 1.10 (Dydak-Walsh [7]). Let L have finite homotopy groups.
Then map (K(Q,1),L) = 0.

The Dranishnikov-Repovs example (Theorem 1.3) can be obtained as an
application of Theorem 1.7 and Miller’s theorem. Indeed, fix m > 0 and let
k > m be even. The homology groups of RP* are finite and hence so are the
homology groups of XRP¥. Since YRP* is simply connected the Hurewicz
isomorphism theorem modulo the class of finite abelian groups ([12], Sec.
9.6) implies that the homotopy groups of XRP* are finite and hence so are
the homotopy groups of QXRP*. The inclusion i : RP™ — RP* induces
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the nontrivial homomorphism 4, : Hy(RP™) — H;(RP*) and hence Y :
YRP™ —s YRP* is essential. Thus [RP™, QXRP*] = [ERP™, SRP*] # 0.
By the Sullivan conjecture (Theorem 1.9) map (K (Zs, 1), YRP*) = 0 and
hence map (K (Z2,1), QXRP¥) = 0. Then Theorem 1.7 applied to K =
K(Z3,1),P = RP™ and L = QXRP* produces a compactum X,, with
dimz, X;, <1 and e-dimX,,, > RP™. Let X be the one point compactifica-
tion of the disjoint union of X,,, m =1,2,... and we have constructed the
Dranishnikov-Repovs example (Theorem 1.3).

More or less the same strategy is applied for proving Theorems 1.4, 1.5
and 1.6 but this time instead of a specific structure of the real projective
spaces RP™ we need Lemma 2.1 which plays a key role in our proofs.

2. Proofs.

Lemma 2.1. Let m > 2 and let A be a finite CW-complex with H,,(A) # 0.
Then there exists a finite CW-complex B with finite homotopy groups such
that [A, B] # 0. Moreover, if 0 # « € H,,(A) then B can be constructed
such that there is a map ¢ : A — B with ¢.(a) # 0.

Proof. By adjoining to A finitely many cells of dim< m we can kill the
homotopy groups m;(A) fori = 0,1,... ,m—1. Clearly a will remain nonzero
in this enlarged complex and hence without loss of generality we may assume
that m;(A) =0 fori=0,1,... ,m— 1.

Assume that « is of infinite order. By Hurewicz’s isomorphism theorem
we can adjoin an (m + 1)-cell to A to kill the element 2«, leaving a # 0.
Thus we may assume that « is of finite order.

Let z1,...,2;r € Hyu(A) be a maximal collection of elements of infinite
order such that t121 + - - +tp2g, t; € Z is of finite order if and only if t; =0
for all 1 < i < k. By Hurewicz’s isomorphism theorem attach to A k cells
of dim = m + 1 to kill z;, 1 < i < k. Then the elements of H,,(A) of finite
order, and « in particular, will remain untouched and H,,(A) will become
a finite group. Thus we may assume that H,,(A) is finite.

Let n = dimA > m. If m+ 1 < n adjoin to A finitely many cells of
m + 2 <dim< n to kill the homotopy groups m;(A) for m+1<i<n—1.
Then H,,(A) remains unchanged and by the Hurewicz isomorphism theorem
modulo the class of finite abelian groups we may assume that H;(A) are finite
for i < n.

Now once again take a maximal collection z1, ... , zx € H,(A) of elements
of infinite order such that t1z1 + -+ + tg2k, t; € Z is of finite order only if
ti = 0 for all 1 < i < k. Let ¢ : m(A) — Hyp(A) be the Hurewicz
homomorphism. By the Hurewicz isomorphism theorem modulo the class of
finite abelian groups, cokery is finite and hence there are t; # 0, 1 <1 < k
such that t;z; € (m,(A)). Attach to A cells Cy,...,C of dim = n + 1
to kill ¢121,. ..tz respectively. Then H,(A) will become a finite group.
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Let C =n1C1 + - -+ + niCk, n; € Z be an (n + 1)-dimensional chain. Then
0C =tiniz1+- - +tgnpzy if 2;’s are considered as cycles. Therefore 9C = 0
only if C' = 0 and hence H,,4+1(A4) = 0.

Thus after all the enlargements of A we get a simply connected finite
CW-complex B with finite homology groups such that for the inclusion
¢: A— B, ¢.(a) #0. Then the homotopy groups of B are finite and the
lemma, follows. U

Proof of Theorem 1.6. Fix a cyclic finite CW-complex P. Then 2P is
simply connected and cyclic and hence by Lemma 2.1 there exists a fi-
nite CW-complex B with finite homotopy groups such that [Y2P, B] # 0.
Then [P,Q%B] = [¥2P,B] # 0 and Q2B also has finite homotopy groups.
Let K = K(Q,1)V(V{K(G,1) : G is finite}) be the wedge of K(Q,1)
and K(G,1)’s over all possible (up to isomorphism) finite abelian groups
G. Since there are only countably many non-isomorphic finite groups, K
is a countable CW-complex. By the Sullivan conjecture and Theorem 1.10
map (K, Q2B) = 0. Apply Theorem 1.7 to K, P and L = Q2B and construct
a compactum Xp such that e-dim Xp > P, dimgXp <1 and dimgXp <1
for every finite abelian group G. e-dim< K implies dimg < 1 and dim¢g <1
for every finite abelian group G. Hence by Bockstein’s theorem and inequal-
ities dim ¢ Xp < 2 for every abelian group G. Since there are only countably
many finite CW-complexes of different homotopy types define X as the one
point compactification of the disjoint union of Xp’s over all possible (up to
homotopy equivalence) cyclic finite CW-complexes P. Then X is the desired
compactum. O

Proof of Theorem 1.5. By a couple (f, F') we mean a finite CW-complex F'
and a map f : S? — F such that f. : Ha(S?) — Hy(F) is nontrivial.
Two couples (f, F) and (f’, F') are said to be of the same homotopy type or
homotopy equivalent if there is a homotopy equivalence h : F — F’ such
that ho f = f/.

Let K = K(Q,1) V(V{K(Zp,1) : p prime }) and let T" = (f,F) be a
couple. By Lemma 2.1 and Theorems 1.8, 1.9, 1.10 there are a compactum
XT' a closed subset X! of X{ and a map g : X' — S? such that e-
dimX{ < K and gf = fog? : XI' — F does not extend over X{. Let XT
be the quotient space of X{ obtained by replacing X! by S? according to
the map g!. Then S? can be considered as a subspace S? C X7 of X7 such
that the map f : S2 — F does not extend over X7. e-dim< K implies
dimg < 1 and dimz, <1 for every prime p. Hence by Bockstein’s theorem
and inequalities dimgX{ < 2 for every G and clearly the latter property
also holds for X7

Let 7 be a countable family of couples which includes all possible homo-
topy types of couples. Let X be the set obtained from the disjoint union of
XT T € T by identifying all the spheres S?, that is X = U{XT : T € T}
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with §2 = N{X? : T € 7}. Endow X with a separable metric topology
which agrees with the topology of X7 for each X”. Then dimgX < 2 for
every G.

We are going to show that X has the required properties. Let X’ be a
Hausdorff compactification of X. Since S ¢ X C X', e-dimX’ > P for
every CW-complex P which is not simply connected. Now assume that P
is simply connected but not 2-connected. Take f’ : S — P such that
fL(H(S?)) # 0. Assume that f’ extends to f” : X’ — P and take a finite
subcomplex F of P such that f”(X’) C F'. Counsider f’ and f” as maps to
F'. ThenT" = (f', F') is a couple and hence there is a couple T' = (f, F) € T
which is homotopy equivalent to T”, that is there is a homotopy equivalence
h: F' — F such that f = ho f’. By our construction f does not extend
over X7 and hence neither does h o f’. On the other hand h o f”|yr is an
extension of h o f’. This contradiction proves the theorem. (]

Proof of Theorem 1.4. By a pair T' = (P;, Py) we mean a pair of finite CW-
complexes Py C P; such that such that the inclusion fy : Py — P is
homologically essential. By Lemma 2.1 there are a finite CW-complex B
with finite homotopy groups and a map ¢ : ¥?>P; — B such that ¢o (X2 f) :
¥2Py — B is essential. Let f; : P — Q2B be the adjoint of ¢. Then
f=fiofo: Py — Q2B is the adjoint of ¢ o (X2fy) and hence f is also
essential. Define K = K(Q,1)\/(V{K(Zp,1) : p prime }), L = Q?B and
apply Theorems 1.8, 1.9 and 1.10 to construct a compactum X7, a closed
subset X! of XT and a map g7 : X[ — P, such that e-dimX” < K and
g" does not extend over X7 as a map to P;.

Let T = (P, Py) be a pair. One can find a countable collection QT of
maps from Py to Py such that each map from Py to Fy is homotopic to some
element of Q. Consider QT as a discrete space. Let 7 be a countable
collection of pairs which includes all possible homotopy types of pairs and
define X as the disjoint union of X7 x QT, T' € 7. Clearly X is separable
metrizable and locally compact and e-dimX < K. By the Bockstein theorem
and inequalities dimg X < 2 for every abelian G.

Let us show that e-dimBX > P for every non-contractible simply con-
nected CW-complex P. Take a finite subcomplex P’ of P supporting a
nontrivial homology cycle in P. Then for any finite subcomplex P” of P
containing P’ the inclusion of P’ into P” is homologically essential. Let
T'={T:T = (P, 1) € T such that P’ = Py} and let X’ = U{X{ x QT :
T € T'}. Then X' is a closed subset of X. For each T'= (P, Py) € 7' fix a
homotopy equivalence ¢ : Py — P’.

Define f': X' — P' by f/(z,q) = " (q(g” (x))) for (z,q) € XT x QT,T €
7.

Consider X’ as a closed subset of X and let 3f" : X’ — P’ be the
extension of f’. Let us show that 3f’ considered as a map to P does not
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extend over SX. Assume that there is an extension h : SX — P of 3f’
and let P” be a finite subcomplex of P containing both h(3X) and P’. Take
T = (Py,Py) € T' such that (P, Py) = (P",P') and let ¢" : (P",P') —
(P1, Py) be a homotopy equivalence. Let ¢ € QT be a homotopy inverse of
q"oq" : Py — Py, thatis ¢"oq” oq : Py — P, is homotopic to the identity
map.

From now we identify X{ x {¢} and XT x {q} with X and X7 respec-
tively. Then the map r = ¢” o f"X’OT =q"oql ogogl : X' — Py is
homotopic to g7 and hence by our construction r does not extend over X7*
as a map to P;. On the other hand ¢” o h|xr : XT — Py is an extension
of r where h is considered as a map to P”. This contradiction shows that
e-dimBX > P.

Now, by adding a 2-dimensional disk to X, we get that e-dim3X > K for
every non-simply connected CW-complex K. Clearly all the cohomological
dimensions of X remain < 2 and the theorem follows. O

Remarks. An interesting property of Theorems 1.4 and 1.5 is that the CW-
complexes are not required to be countable and fixed in advance. This was
achieved by using the so-called Rubin-Schapiro trick [9]. Another interesting
point is that the space X constructed in the proof of Theorem 1.6 has the
property dimgX™ < n + 1 for every G and n. And finally let us note that
it would be interesting to find out if Theorem 1.6 holds for non-contractible
(not necessarily cyclic) finite complexes P.
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