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Many 3-manifolds can be represented as 2-fold branched
coverings of links, but this representation is, in general, not
unique. In the Seifert fibered case the problem is usually lo-
cal: For example, if K is a Montesinos knot its 2-fold branched
covering is Seifert fibered and there exists a complete system
of local geometric modifications on K by which we can get
every other Montesinos knot with the same 2-fold branched
covering. On the other hand, if the 2-fold covering M of a
knot is hyperbolic, the situation is globally determined by
the structure of the isometry group of M . In this paper we
develop a global approach for the case that M is hyperbolic
and we study the orbifolds which are quotients of M by the
action of a 2-group of isometries. This leads to a complete
description of the geometry of the possible configurations of
knots with the same 2-fold branched coverings. Moreover we
are also able to settle the 2-component link case, which was
still open, by finding an explicit bound on the number of in-
equivalent 2-component links which have the same hyperbolic
2-fold branched coverings.

1. Introduction.

Many 3-manifolds can be represented as 2-fold coverings of the 3-sphere
S3 branched over links (“2-fold branched coverings of links”), but this rep-
resentation is, in general, not unique. Examples of non-uniqueness of the
representation have been known for a long time ([1] and [19]); however a
complete description of the general situation is not yet available (see Prob-
lems 3.25 and 1.22 in Kirby’s list [8]).

As usual the two basic cases of the theory are the Seifert and the hyper-
bolic one.

The Seifert case is well understood and the problem is usually local.
The representation is unique for spherical Seifert fibered manifolds, be-

cause they have (up to conjugation) a unique involution with orbit space the
3-sphere S3: This is proved in [21] for S3, in [6] for lens spaces (which are
2-fold branched coverings of two-bridge links) and in [7], [10] for the other
spherical manifolds.
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In the nonspherical case the representation is highly not unique. By
[3], [9] and [18] any involution on a Seifert manifold is standard, that is
it is equivalent to a fiber-preserving one. If M is a Seifert fibered 2-fold
branched covering of a link L, there are two possible situations: If the
covering involution respects the orientation of the fibers, the link L is a
Seifert link, that is its complement in S3 admits a Seifert fibration by circles
[4]; on the other hand if the covering involution reverses the orientation
of the fibers, L is a Montesinos link, that is S3 admits a Seifert fibration
by circles and intervals such that L consists of all boundary points of the
intervals [11], [5]. Both situations may occur simultaneously. Moreover
the number of inequivalent Montesinos links which have the same 2-fold
branched coverings may be arbitrarily large because a Seifert space does not
change if we change the order of its exceptional fibers, but this permutation
may affect the corresponding Montesinos branch sets. This phenomenon is
local and well understood: If M is a Seifert fibered 2-fold branched covering
of a Montesinos link L every other Montesinos link with the same 2-fold
branched covering can be obtained by a sequence of elementary geometric
modifications of L (mutations along Conway spheres [11], [20]).

The case that M is hyperbolic is quite different. By Thurston’s Orbifold
Theorem [2] any involution with nonempty fixed point set on a hyperbolic
manifold M is standard, that is it is equivalent to an isometry. This implies
that any link with 2-fold branched covering M is π-hyperbolic, that is S3

admits a Riemannian metric of constant negative curvature which becomes
singular folding with an angle π around the link.

The first difference with the Seifert case is that the number of inequivalent
links which have the same hyperbolic 2-fold branched coveringM is bounded
by a constant C not depending on M . The estimate for C depends on the
number of components of the link (by homological reasons two links with
the same 2-fold branched coverings have the same number of components).
It has been proved that C ≤ 9 for knots [13] and that C ≤ 5 for links
which have at least three components [15]; for the most difficult case of
2-component links no explicit bound was known before.

A second major difference between the Seifert and the hyperbolic case is
how inequivalent links with the same 2-fold branched coverings are related.
We have recalled above that, if M is a Seifert fibered 2-fold covering of
a Montesinos knot K, there exists a complete system of local geometric
modifications on K by which we can get every other Montesinos knot with
the same 2-fold branched coverings. But if M is hyperbolic there is no
analogous system of local geometric modifications: Indeed the arguments of
[13] and [15] make clear that the hyperbolic situation is globally determined
by the structure of the isometry group of M .
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In this paper we develop a global approach for the case that M is hyper-
bolic and we study the orbifolds which are quotients of M by the action of a
2-group of isometries. This leads to a new proof of the main Theorem of [13]
and also to a complete description of the geometry of the possible configu-
rations of knots with the same 2-fold branched coverings. More important
we are able to settle the 2-component link case, which was still open, by
finding the explicit bound nine on the number of inequivalent 2-component
links which have the same hyperbolic 2-fold branched coverings.

The key result of the paper is (for 2-fold branched covering of a link
we mean that every meridian of the link corresponds to a generator of the
covering group):

Theorem 1. Let M be the hyperbolic 2-fold branched covering of a link
with one or two components. For any (finite) 2-group S of orientation-
preserving isometries of M which contains the covering involution of the
link, the singularity graph of the quotient orbifold M/S is combinatorially
equivalent to one of the twelve graphs IA, . . . , IIID (Figure 1).

By Mostow’s Rigidity Theorem the number of inequivalent π-hyperbolic
knots, respectively 2-component links, with the same 2-fold branched cov-
ering M is bounded by the number of the conjugacy classes of non-free
involutions in the orientation-preserving isometry group of M . So, as a con-
sequence of Theorem 1, by simply counting the number of edges and loops
(at most nine) of the twelve graphs IA, . . . , IIID, we get the following:

Theorem 2. There are at most nine different π-hyperbolic knots with the
same 2-fold branched coverings.

The word “different” in Theorem 2 must be made precise. In this paper
we shall always work in the category of oriented manifolds and orientation-
preserving diffeomorphisms. So two knots K and K ′ in S3 are equivalent
if and only if there is an orientation-preserving diffeomorphism of S3 which
carries K onto K ′. This is equivalent to say that K and K ′ are ambient
isotopic.

Thurston’s Orbifold Theorem [2] and Theorem 2 imply the purely topo-
logical result that there are at most nine different simple Conway-irreducible
knots (that is: Knots with no pairwise incompressible embedded 2-spheres
and such that every embedded incompressible 2-torus is boundary parallel)
with the same 2-fold branched coverings.

It is not completely clear if the bound ‘nine’ in Theorem 2 is best possible.
In [14] explicit examples of four different π-hyperbolic knots in S3 with the
same 2-fold branched coverings are constructed. Recently the author has
obtained an example of six different π-hyperbolic knots in S3 with the same
2-fold branched coverings (unpublished). There is some evidence that this
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Figure 1

last construction can be possibly generalized to give an example with nine
different knots, but computations are still in progress.

The estimate in Theorem 2 had already been obtained in [13] by abstract
group-theoretical methods; the advantage here is that Theorem 1 describes
also the possible configurations of knots with the same 2-fold branched cover-
ings. Moreover if we turn to the 2-component link case, the algebraic meth-
ods of [13] and [15] become too involved; but, from a geometrical point of
view, the situation is analogous to the knot case. Indeed Theorem 1 applies
simultaneously also to the 2-component link case:
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Theorem 3. There are at most nine different π-hyperbolic 2-component
links with the same 2-fold branched coverings.

Finally a Corollary of Theorem 2, Theorem 3 and [15, Theorem 1] is the
following explicit bound which does not depend on the number of compo-
nents of the link:

Corollary. There are at most nine different π-hyperbolic links with the same
2-fold branched coverings.

2. Proof of Theorems 2 and 3.

By Mostow’s Rigidity Theorem, the number of inequivalent π-hyperbolic
knots, respectively 2-component links, with the same 2-fold branched cover-
ing M is bounded above by the number of the conjugacy classes of non-free
involutions in the orientation-preserving isometry group of M . So it is also
bounded above by the number of conjugacy classes of non-free involutions
in a Sylow 2-subgroup S of the orientation-preserving isometry group of M .

The projection of the fixed point set of an involution of S to the quotient
orbifold M/S contains one edge or one loop of the singularity graph of M/S.
Moreover if two involutions of S are not conjugate, the projections of their
fixed point sets have no common interior points. The thesis follows from
Theorem 1 by counting the number of edges and loops (at most nine) of the
twelve graphs IA,. . . , IIID.

3. The family F of quotient orbifolds.

In this section we associate a family F of 3-orbifolds to each pair (M,S)
where M is a hyperbolic 2-fold branched covering of a link L with one or
two components and S a (finite) 2-group of orientation-preserving isometries
of M containing the covering involution. Each orbifold of the family F will
be a quotient M/H of M for some subgroup H of S; however we will not
include in F all the quotient orbifolds of M (we are now concerned only
with elements of S which have nonempty fixed point sets). We conclude the
section by proving the most important properties of F .

The following elementary algebraic result on 2-groups is crucial in the
construction of F :

Proposition 1 ([17, page 88, Theorem 1.6]). If H is a proper subgroup of
a finite 2-group S, then the normalizer NSH is strictly larger than H.

Construction of F .

We define F as a disjoint union of subfamilies F1, . . . ,Fn.
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The first subfamily F1 of F is the set {O(L)} where O(L) is the orbifold
with underlying topological space S3 and singular set L with singular index
two.

To construct F2, let S(L) be the group of isometries of O(L) such that
their lifts to M are elements of S (we briefly say: “Isometries which lift
to S”). By classical Smith theory for finite group actions on S3, if the
fixed point set of an involution of S(L) is nonempty, then it is connected.
The subfamily F2 is the set of all the 3-orbifolds (up to isometry) which
are quotients O(L)/u for some involution u of S(L) which has nonempty
fixed point set (in O(L)). In particular, if S(L) acts freely on M , the
subfamily F2 is empty. By the positive solution of the Smith conjecture
[12] the underlying topological space of any orbifold of F2 is S3. Note that
any orbifold of F2 is also a quotient M/H for some subgroup H of S which
contains h; moreover H is generated by elements which have nonempty fixed
point sets in M (if v is an involution of S(L) with nonempty fixed point set,
then at least one lift of v to M has also nonempty fixed point set).

The construction of F3 is analogous to F2. For any orbifold O ∈ F2, let
S(O) be the group of the isometries of O which lift to S. The subfamily
F3 is the set of all the 3-orbifolds which are quotients O/u′ of an orbifold
O ∈ F2 for some involution u′ of S(O) with nonempty fixed point set in
O (if any). By the positive solution of the Smith conjecture the underlying
topological space of any orbifold of F3 is S3. Again any orbifold of F3 is
also a quotient M/H ′ for some subgroup H ′ of S which contains h and it is
generated by elements with nonempty fixed point sets (in M).

Iteratively, the subfamily F4 is the set of quotients of orbifolds of the
subfamily F3 by involutions which have nonempty fixed point sets and lift
to S.

Since S is a finite group, after a finite number of steps the construction
ends. We denote by Fn the last nonempty subfamily we get, by F the
disjoint union F1 ∪ . . . ∪ Fn.

We now turn to describe some properties of the family F (Propositions 2
and 3) which we need for the proof of Theorem 1.

We recall what is already evident from the construction above:
- the underlying topological space of each orbifold of F is S3 (positive

solution of the Smith conjecture);
- each orbifold of Fi for 1 ≤ i ≤ n is a quotient M/H of M for some

subgroup H of S of order 2i which contains h and is generated by elements
with nonempty fixed point sets (in M).

We first characterize the last subfamily Fn of F by the following Propo-
sition.
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Proposition 2. The last subfamily Fn contains exactly one orbifold: This
orbifold is the quotient M/H of M where H is the subgroup of S which is
generated by all the elements with nonempty fixed point sets.

Proof. Let O ∈ Fn be any orbifold. By construction O is a quotient = M/H
of M for some subgroup H of S which has order 2n and is generated by
elements with nonempty fixed point sets. To prove the thesis it is enough
to show that any element of S − H acts freely on M : It follows that H is
the unique subgroup of S of order 2n which is generated by elements with
nonempty fixed point sets.

Suppose, ad absurdum, that there exists an element g of S − H which
has nonempty fixed point set in M . In particular H is a proper subgroup
of S. By Proposition 1 the normalizer NSH of H in S is larger than H and
the factor group NSH/H projects to a 2-group of isometries of O. Hence
there exists at least one isometry u of O which has order two and lifts to S.
Since Fn is the last subfamily of F , the involution u acts freely on O. The
quotient O1 := O/u is a hyperbolic 3-orbifold and it is also the quotient
M/H1 of M for a subgroup H1 of S containing H as a normal subgroup of
index two.

Note that g is not an element of H1 because if g ∈ H1 the fixed point set
of g in M projects to (a subset of) the fixed point set of u in O which is
impossible, since u acts freely. So again H1, which does not contain g, is a
proper subgroup of S and, by Proposition 1, there exists one isometry of O1

which is an involution and lifts to S. If every involution of O1 which lifts
to S acts freely on O1 we can construct a further quotient O2 of O1 by any
involution which lifts to S.

More generally, for some m ≥ 1, we can construct iteratively a hier-
archy O1, . . .Om of orbifolds and a sequence H1, . . . Hm of corresponding
subgroups of S such that every orbifold Oi is the quotient of Oi−1 by an
involution acting freely on Oi−1; every group Hi contains Hi−1 as a nor-
mal subgroup of index two. Since we know that S − H contains at least
one element g which has nonempty fixed point set, after finitely many steps
we must find an orbifold, say Om, which admits an involution v which has
nonempty fixed point set (in Om) and lifts to S. By construction Om is the
quotient M/Hm for the corresponding subgroup Hm of S. A lift ṽ of v to S
has nonempty fixed point set and it lies in the normalizer NSHm of Hm in
S; so ṽ also normalizes the subgroup H of Hm because H is the subgroup
of Hm generated by all the elements of Hm with nonempty fixed point set
and thus ṽ descends to an involution of O with nonempty fixed point set.
This is impossible because Fn is the last subfamily of F .

This finishes the proof.
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We conclude this section by showing that the procedure described at the
beginning of the paragraph can be reversed. Indeed we have constructed
F ‘up-bottom’ starting from F1 and taking quotients by involutions until
the last set Fn has been reached; but it is also possible to go back ‘bottom-
up’ from Fn to F1, taking 2-fold branched coverings at each step. This
reverse construction is made precise in Proposition 3. Before that we need
to introduce the notion of first homology group and 2-fold branched covering
of an orbifold.

The first homology group of an orbifold.
The first homology group H1(O) of a 3-orbifold O is the abelianization

of the orbifold fundamental group π1(O) of O. In our case the underlying
topological space of O is S3, each component of its singularity graph Γ is
a knot or a trivalent graph and the singularity order at each point of the
edges of Γ is a power of two (all vertices are of dihedral type).

Starting with a planar projection of the graph, one sees that π1O admits
a (Wirtinger) presentation of the form:

π1O = 〈x1, . . . , xn| r1 = 1, . . . , rm = 1;xi1
1 = · · · = xin

n = 1〉
where each xj represents a loop around an arc contained either in some edge
or in some knot of Γ and ij its singularity order (a power of two). There are
two possible types of relations rj . The first type corresponds to the vertices
of Γ and has the form xjxk

exs
d with e = +1 or −1 and d = +1 or −1; since

each vertex is of dihedral type at least two among the three elements xj , xk

and xs have order two. This type of relations involve only loops around
edges of Γ and not around components which are knots. The second type of
relations corresponds to the double points of Γ in the Wirtinger projection
and has the form xjxk

exs
−1xk

−e with e = +1 or −1. When abelianizing,
relations of the first type imply that x2

j = x2
k = x2

s = 1 and get the form
xjxkxs. Relations of the second type get the form xjxs

−1 where xj and xs

correspond to two loops around the same edge or the same knot of Γ.
This shows that, if the singularity graph of O has q edges, p vertices and s

knots, its first homology group H1(O) is the abelianization of a group which
admits a presentation of the form:

〈m1, . . . ,mq, n1, . . . , ns| R1 = 1, . . . , Rp = 1;

m2
1 = · · · = m2

q = nk1
1 = · · · = nks

s = 1〉
where mi is a small meridian around the i-th edge, nj is a small meridian
around the j-th knot with singularity order kj and Rs is the abelianized
relation at the sth-vertex.
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2-fold branched covering of O along a cycle.

Let O be an orbifold of F , Γ its singularity graph and c a subgraph of
Γ which is either a cycle of edges or a knot. If there exists a map ψ :
H1(O) −→ Z2 which sends a small meridian around each edge contained in
c, respectively around the knot c, to the generator of Z2 and all the other
small meridians around edges of Γ to the trivial element, we call 2-fold
branched covering of O along c the covering of O defined by ψ.

We are now ready to state Proposition 3 (recall that h is the covering
involution of the covering M → O(L)):

Proposition 3. Let O be an orbifold of the subfamily Fi for i ≥ 2 and Õ
the 2-fold branched covering of O along a cycle of edges or a loop c. If c
contains no interior points of the projection to O of the fixed point set of h,
then Õ is an orbifold of the subfamily Fi−1.

Proof. We first prove that the covering O(L) → O factors through Õ. Up to
identification of π1O(L) and π1Õ with subgroups of π1O, this is equivalent
to prove that π1O(L) is a subgroup of π1Õ. Since π1Õ has index two in π1O
the intersection π1Õ ∩ π1O(L) has index at most two in π1O(L). So it is
enough to prove that the case that π1Õ ∩ π1O(L) has index two in π1O(L)
is impossible.

Suppose, ad absurdum, that π1Õ∩π1O(L) is the fundamental group π1N
of an orbifold N which is a 2-fold covering of O(L). The 2-fold coverings
of O(L) are branched and classified by epimorphisms of H1O(L) onto Z2.
If L is connected, H1O(L) ∼= Z2 and O(L) has a unique 2-fold covering,
M0 := M , with covering involution h0 := h. If L has two components,
H1O(L) ∼= Z2 × Z2 and O(L) has three distinct 2-fold coverings, namely:
The 3-manifoldM0 = M with covering involution h0 = h, the 2-fold covering
M1 branched along the first component of L with covering involution, say
h1, the 2-fold covering M2 branched along the second component of L with
covering involution, say h2. So for some i, N is homeomorphic to Mi and the
involution hi projects to a nontrivial involution of π1Õ. Thus the quotient
orbifold Õ/hi is homeomorphic to O and the projection of the fixed point
set of hi to O is a subset of the branching set of the covering Õ −→ O.
But this is impossible, because we have supposed that the branching set c
contains no interior points of the projection of the fixed point set of h to O.

We have thus proved that the covering O(L) → O factors through Õ.

Finally we have to show that Õ is an element of F (note that what we
have proved above implies that Õ is a quotient of O(L), but it is not yet
clear at this point if we can get Õ by only quotienting by involutions with
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nonempty fixed point sets as it is the case when we construct the orbifolds
of F).

To fix notation let Õ = M/H̃ for some subgroup H̃ of S containing h. To
the pair (M, H̃) we can associate a family E of hyperbolic 3-orbifolds which
is the disjoint union of subfamilies E1, . . . , Em. Each orbifold of Ej is the
quotient of M by a subgroup of H̃ of order 2j and it is also an element of Fi

(indeed now we are using only involutions with nonempty fixed point sets).
So by Proposition 2, the last subfamily Em of E contains a unique orbifold,
say O′ = M/H ′ where H ′ is the subgroup of H̃ generated by all the elements
with nonempty fixed point sets. To conclude the proof, it is enough to show
that Õ = O′, because O′, hence Õ is an element of F (in particular of Fi−1

because it is the quotient of M by a subgroup of S of order 2i−1).

If H ′ = H̃, then Õ = O′ and the proof is complete. We shall show that
the case that H ′ is a proper subgroup of H̃ is impossible. If H ′ is a proper
subgroup of H̃, the normalizer N eHH ′ is larger than H ′ by Proposition 1 and
the factor group N eHH ′/H ′ projects to a 2-group of isometries of O′. Hence
there exists at least one involution u of O′ which lifts to H̃. The involution
u acts freely on O′, because H ′ is the subgroup of H̃ generated by all the
elements with nonempty fixed point sets. The quotient O1 of O′ by u is a
hyperbolic 3-orbifold which is also the quotient of M by a 2-subgroup H1 of
H̃ containing H ′ as a subgroup of index two.

If H1 is a proper subgroup of H̃, again by Proposition 1, there exists
at least one involution v of O1 which lifts to H̃. So we can construct a
quotient O2 := O1/v of O1 by v and v acts freely, because H ′ contains all
the elements of H̃ with nonempty fixed point sets.

Iteratively, for some m ≥ 1 we can construct a hierarchy O1, . . .Om of
orbifolds and a sequence H1, . . . Hm of corresponding subgroups of H̃ such
that each orbifold Oi is the quotient of Oi−1 by an involution acting freely
on Oi and each Hi contains Hi−1 as a subgroup of index two. After finitely
many steps our procedure stops because we have got the quotient orbifold
Õ = M/H̃ of M by the full group of isometries H̃.

Since m ≥ 1, the orbifold Õ admits a free regular 2-fold covering, which is
impossible because the underlying topological space of Õ, which is the 2-fold
branched covering of S3 branched along a knot, is a Z2-homology 3-sphere
[16, Sublemma 15.4].

This finishes the proof of Proposition 3.

4. The singularity graphs.

In this section we explain which combinatorial modifications may take place
on the singularity graph of an orbifold O of Fi when passing to a quotient of
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O in Fi+1. Indeed this section may be skipped without affecting the proof
of Theorem 1. We have included it in the paper just to give some intuition
why one considers graphs of Type IA, . . . , IIID as natural candidates for the
singularity graphs of the orbifolds of F .

First of all we need a generalized definition of graph which includes
loops, because, in general, the singularity graph of an orbifold O ∈ F is
a union of trivalent graphs and disjoint knots (we use the term ‘loop’ in
the combinatorial setting, ‘knot’ in the topological one). A graph Γ is a set
(V (Γ), E(Γ), c1, . . . cr) for some nonnegative integer r, where the vertex-set
V (Γ) is a finite set of elements called vertices, the edge-set E(Γ) is a finite
set of ordered pairs of distinct elements of V (Γ) called edges and c1, . . . cr is
a finite set of disjoint loops.

A graph is called admissible if it is one of the twelve graphs IA, . . . , IIID,
inadmissible in any other case. So our notation for the twelve admissible
graphs (see Figure 1) is:

IA one loop:
(V (Γ) = ∅, E(Γ) = ∅, c1)

IIA two loops:
(V (Γ) = ∅, E(Γ) = ∅, c1, c2)

IIIA three loops:
(V (Γ) = ∅, E(Γ) = ∅, c1, c2, c3)

IB theta-graph:
(V (Γ) = {v1, v2}, E(Γ) = {(v1, v2), (v1, v2)′, (v1, v2)′′ and three reverse
edges})

IIB tetrahedral graph:
(V (Γ) = {v1, v2, v3, v4}, E(Γ) = {(v1, v2), (v1, v3), (v1, v4), (v2, v3),
(v2, v4), (v3, v4) and six reverse edges})

IIIB Kuratowski graph:
(V (Γ) = {v1, v2, v3, v4, v5, v6}, E(Γ) = {(v1, v2), (v1, v4), (v1, v6),
(v2, v3), (v2, v5), (v3, v4), (v3, v6), (v4, v5), (v5, v6) and nine reverse
edges})

IC pince-nez graph:
(V (Γ) = {v1, v2}, E(Γ) = {(v1, v1), (v1, v2), (v2, v2) and (v2, v1)})

IIC (V (Γ) = {v1, v2, v3, v4}, E(Γ) = {(v1, v3), (v1, v3)′, (v1, v2), (v2, v4),
(v2, v4)′, (v3, v4) and six reverse edges})
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IIIC (V (Γ) = {v1, v2, v3, v4, v5, v6}, E(Γ) = {(v1, v2), (v1, v3), (v1, v5),
(v2, v4), (v2, v6), (v3, v4), (v3, v5), (v4, v6), (v5, v6) and nine reverse
edges})

ID a theta-graph and a loop:
(V (Γ) = {v1, v2}, E(Γ) = {(v1, v2), (v1, v2)′, (v1, v2)′′ and three reverse
edges}, c1)

IID a pince-nez and a loop:
(V (Γ) = {v1, v2}, E(Γ) = {(v1, v1), (v1, v2), (v2, v2) and (v2, v1)}, c1)

IIID (V (Γ) = {v1, v2, v3, v4}, E(Γ) = {(v1, v1), (v1, v2), (v2, v3), (v2, v4),
(v3, v4), (v3, v4)′, (v2, v1), (v3, v2), (v4, v2), (v4, v3) and (v4, v3)′}).

Our point here is to understand which combinatorial modifications occur
on the singularity graph of an orbifold of Fi when passing to Fi+1. We are
concerned only with the combinatorial structure of the graph, so we forget
singularity orders at the various points.

As a warming up example, start with an orbifold O(K) of F1, with K
a knot, and let u be an involution of O(K) with connected fixed point
set. Either the fixed point set of u intersects K into two points and u acts
as a reflection on K or the fixed point set of u is disjoint from K and u
acts as a rotation on K (the fixed point set of u is distinct from K by the
positive solution of the Smith conjecture). Correspondingly, the graph of
the quotient orbifold O(K)/u is of Type IB or IIA. Thus, in the case of a
knot, the singular set of any orbifold of the subfamily F2 is combinatorially
a theta-graph or a set of two disjoint loops.

Passing to F3 we construct the quotients of the orbifolds of F2. For
example, consider an orbifold O of F2 with singularity graph of Type IB.
An involution v of O with connected fixed point set may act in the following
ways (up to combinatorial equivalence):

i)
v1 → v1 v2 → v2

(v1, v2) → (v1, v2) (v2, v1) → (v2, v1)

(v1, v2)′ → (v1, v2)′′ (v2, v1)′ → (v2, v1)′′

(v1, v2)′′ → (v1, v2)′ (v2, v1)′′ → (v2, v1)′
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ii)
v1 → v2 v2 → v1

(v1, v2) → (v2, v1) (v2, v1) → (v1, v2)
(v1, v2)′ → (v2, v1)′ (v2, v1)′ → (v1, v2)′

(v1, v2)′′ → (v2, v1)′′ (v2, v1)′′ → (v1, v2)′′

iii)
v1 → v2 v2 → v1

(v1, v2) → (v2, v1) (v2, v1) → (v1, v2)
(v1, v2)′ → (v2, v1)′′ (v2, v1)′ → (v1, v2)′′

(v1, v2)′′ → (v2, v1)′ (v2, v1)′′ → (v1, v2)′.

The singularity graph of the corresponding quotient orbifold is, respec-
tively, of Type IB, IIB or IC.

By a routine, not unpleasant, exercise in combinatorial theory, it is easy
to show that the twelve graphs IA, . . . , IIID appear after a few steps. This
is a purely combinatorial operation, which gives many graphs which are in-
admissible. But not all graphs we get combinatorially are singularity graphs
of some orbifolds in some family F . The proof of Theorem 1 in Section 5
will make clear that topological obstructions exclude graphs which are in-
admissible.

5. Proof of Theorem 1.

Let M be a hyperbolic 2-fold branched covering of a link with one or two
components, S a 2-group of orientation-preserving isometries of M contain-
ing the covering involution and F the family of orbifolds associated to M
and S (see Section 3). To prove Theorem 1 we show that inadmissible graphs
can not occur as singularity graphs of the orbifolds of F .

This implies the thesis that the singularity graph of the quotient orbifold
M/S is of Type IA, . . . , IIID. In fact, by Proposition 2, the last subfamily
Fn of F contains the quotient orbifold M/H where H is the subgroup of S
which is generated by all the elements with nonempty fixed point sets. By
Proposition 1 the quotient orbifold M/S is the final output of a hierarchy of
quotients, starting with M/H and quotienting by involutions at each step.
Since any element of S − H acts freely on M the quotienting involutions
act also freely at each step and it is easy to check that, since the singularity
graph of M/H is admissible, the singularity graph we get at each step is
also admissible.
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To prove that the singularity graphs of the orbifolds of F are admissi-
ble, we proceed by contradiction: Let i be the minimal index such that Fi

contains an orbifold O with inadmissible singularity graph. Minimality of
i implies that O is a quotient of an orbifold of Fi−1 which has admissible
singularity graph. Combinatorially the graph of O is obtained, when pass-
ing from Fi−1 to Fi, by a modification of one of the graphs IA, . . . , IIID as
explained in Section 4.

Again it is a routine exercise to check that the graphs we get combinato-
rially, when passing from Fi−1 to Fi, from the graphs IA, . . . , IIID are the
following:

IA: → IA, IIA, IB
IIA: → IIA, IIIA, IIB, IIC, ID

IIIA: → IIIA, IIIB, IIIC, ID, X1, X2, X3, X4, X5, X6, X7
IB: → IB, IIB, IC

IIB: → IIB, IIC
IIIB: → IIC, IIIC

IC: → IIB, IC, IIC
IIC: → IIIB, IIC, IIIC, ID, IID, IIID

IIIC: → IIIB, IIIC, IIID
ID: → IIC, IIIC, ID, IID, IIID, X2, X4

IID: → IIIB, IIIC, IID, IIID, X2, X3, X4, X5, X7
IIID: → IIIC, IIID, X2.

The seven inadmissible graphs Xj are (Figure 2):

X1 four loops:
(V (Γ) = ∅, E(Γ) = ∅, c1, c2, c3, c4)

X2
(V (Γ) = {v1, v2, v3, v4, v5, v6}, E(Γ) = {(v1, v2), (v1, v2)′, (v1, v6),
(v2, v3), (v3, v4), (v3, v5), (v4, v5), (v4, v6), (v5, v6) and nine reverse
edges})

X3
(V (Γ) = {v1, v2, v3, v4, v5, v6}, E(Γ) = {(v1, v2), (v1, v2)′, (v1, v6),
(v2, v3), (v3, v4), (v3, v4)′, (v4, v5), (v5, v6), (v5, v6)′ and nine reverse
edges})

X4 a tetrahedral graph and a loop:
(V (Γ) = {v1, v2, v3, v4}, E(Γ) = {(v1, v2), (v1, v3), (v1, v4), (v2, v3),
(v2, v4), (v3, v4) and six reverse edges)}, c1)



HYPERBOLIC 2-FOLD BRANCHED COVERINGS OF LINKS 443

2c c3c1

2v1v

v4
3v

2v c1

v4 v5

3v

v6

3vv4

1v 2v c1

c1

2v1v

1v
2v

3v
v4

v5

v6

v5

v6

2c

v43v
1v

2v
1v

X1

X5

X3

X2

X4

X7

c4

X6

Figure 2

X5
(V (Γ) = {v1, v2, v3, v4}, E(Γ) = {(v1, v3), (v1, v3)′, (v1, v2), (v2, v4),
(v2, v4)′, (v3, v4) and six reverse edges}, c1)

X6 a theta-graph and two loops:
(V (Γ) = {v1, v2}, E(Γ) = {(v1, v2), (v1, v2)′, (v1, v2)′′ and three reverse
edges}, c1, c2)

X7
(V (Γ) = {v1, v2, v3, v4, v5, v6}, E(Γ) = {(v1, v2), (v2, v3), (v2, v3)′,
(v3, v4), (v1, v4), (v4, v5), (v5, v6), (v5, v6)′, (v6, v1) and nine reverse
edges}).

Thus the singularity graph of O is combinatorially one of the seven graphs
Xj .

The thesis now follows from the following Claim which contradicts mini-
mality of i. The proof of the Claim occupies the rest of the section.

Claim. If Fi contains an orbifold with singularity graph of Type Xj , there
exists an index k, k < i and k ≥ 1, such that Fk contains an orbifold with
inadmissible singularity graph.
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Proof of the Claim.

We first prove that if O ∈ Fi has singularity graph Xj , there exists an
orbifold Õ of Fi−1 such that its singularity graph is either inadmissible or
of Type IIIA.

The orbifold Õ is a 2-fold branched covering of O along a cycle which
satisfies the hypotheses of Proposition 3. More precisely, we can always find
a cycle of edges c or a loop in the singularity graph of O such that there
exists the 2-fold branched covering Õ of O along c and c contains no interior
points of the projection F (h) of the fixed point set of h to O. Here is the
cycle to choose for the various graphs Xj (remember that F (h) has at most
two disjoint components and each component is an edge or a loop of the
singularity graph of O):

X1 Set c = c1 (up to renaming loops). The singularity graph of Õ is a set
of at least three disjoint loops, so inadmissible or of Type IIIA.

X2 Whatever is the projection F (h), we can always make one of the fol-
lowing choices: c = (v1, v2) ∪ (v2, v1)′; c = (v4, v5) ∪ (v5, v6) ∪ (v6, v4);
c = (v3, v4) ∪ (v4, v6) ∪ (v6, v5) ∪ (v5, v3). In all cases the singularity
graph of Õ is inadmissible.

X3 Set c = (v1, v2) ∪ (v2, v1)′ (up to renaming vertices). The singularity
graph of Õ is inadmissible.

X4 Whatever is the projection F (h), we can make one of the follow-
ing choices: c = c1; c = (v1, v2) ∪ (v2, v3) ∪ (v3, v4) ∪ (v4, v5); if
the singularity order of, say (v1, v3), is greater than two, set c =
(v1, v3)∪ (v3, v4)∪ (v4, v1). In the first case the singularity graph of Õ
is inadmissible, in the second case it is of Type IIIA, in the third case
is inadmissible.

X5 Either we can choose c = c1 or c = (v1, v3) ∪ (v3, v1)′ (up to renaming
vertices). In all cases the singularity graph of Õ is inadmissible.

X6 Either we can choose c = c1 or c = (v1, v2) ∪ (v2, v1)′. In the first case
the singularity graph of Õ is inadmissible, in the second case it is of
Type IIIA or inadmissible.

X7 Either we can choose c = (v2, v3) ∪ (v3, v2)′ or c = (v1, v2) ∪ (v2, v3) ∪
(v3, v4)∪(v4, v1). In all cases the singularity graph of Õ is inadmissible.

To complete the proof we finally show that in the remaining case that O
has a 2-fold branched covering Õ ∈ Fi−1 with singularity graph of Type
IIIA, there also exists an index k, k < i and k ≥ 1, such that Fk contains an
orbifold with inadmissible singularity graph, again contradicting minimality
of i. The rest of the section describes how to construct such an orbifold in
the various cases.
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In most cases the orbifold with inadmissible singularity graph is again a
2-fold branched covering of Õ along a cycle which satisfies the hypotheses of
Proposition 3. More precisely, we can always find a loop c1 in the singularity
graph (V (Γ) = ∅, E(Γ) = ∅, c1, c2, c3) of Õ which contains no interior points
of the projection of the fixed point set of h to Õ. Thus, by Proposition 3,
the 2-fold branched covering Õ′ of Õ along c1 is an orbifold of Fi−2.

Before going on we fix some notation. We denote by u, respectively by v,
the covering involution of the covering Õ → O, respectively Õ′ → Õ. Since
we assume that the singularity graph of O is of Type Xj , it can be easily
checked that u fixes setwise each component ci of the singularity graph of
Õ. In particular u lifts to Õ′ and its two lifts u1 and u2 := (u1)v generate
a dihedral group D of order four.

The fixed point set F (u) of u in Õ may intersect the singularity graph of
Õ in three different ways. We have to distinguish these three cases.

a) F (u) ∩ c2 = F (u) ∩ c3 = ∅.
In this case the singularity graph of Õ′ is inadmissible. Indeed the singu-

larity graph of Õ′ contains the preimages c̃2 and c̃3 in Õ′ of c2 and c3. The
preimage c̃2 can not be connected because, if c̃2 is connected, the group D
would contain three distinct rotations of order two of c̃2 such that their fixed
point sets do not intersect c̃2, which is impossible. So c̃2 has two compo-
nents. An analogous argument holds for the preimage c̃3 of c3 in Õ′ which
also has two components.

b) F (u) ∩ c2 = ∅; F (u) ∩ c3 6= ∅.
In this case either the singularity graph of Õ′ is inadmissible or there exists

in Fi−1 a quotient Õ′/u1 of Õ′ with inadmissible singularity graph. By the
same argument as in a), c̃2 has two components which are interchanged by
the action of the covering involution v.

If c̃3 has also two components, the singularity graph of Õ′ is inadmissible.
If c̃3 is connected we show that the quotient Õ′/u1 of Õ′ by a lift u1 of

u is an orbifold of Fi−1 and its singularity graph is inadmissible. To prove
this it is enough to look at the action induced by u1 on c̃2 and c̃3. First of
all, if c̃3 is connected, both u1 and u2 act as reflections on c̃3. Indeed an
involution of Õ′ either acts freely or it has connected fixed point set because
its underlying topological space is S3. This implies that each of u1 and
u2 has a connected fixed point set intersecting c̃3 into two distinct points
(the preimage of the two intersection points F (u) ∩ c3 in Õ consists of four
distinct points of c̃3).

On the other hand u2 is the product u2 = (u1v); so one between u1 and
u2, say u2, interchanges the two components of c̃2 as v, while u1 fixes setwise
each of the two components of c̃2 acting as a rotation on them. It follows
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now that the singularity graph of the quotient orbifold Õ′/u1, which is an
orbifold of Fi−1, is inadmissible.

c) F (u) ∩ c2 6= ∅; F (u) ∩ c3 6= ∅.
In this case either the singularity graph of Õ′ is inadmissible or there exists

in Fi−1 a quotient Õ′/u1 of Õ′ with inadmissible singularity graph.
If both c̃2 and c̃3 have two components, the singularity graph of Õ′ is

inadmissible.

So assume for the following that c̃3 is connected; in this case arguing as
in b), we find that both lifts u1 and u2 of u to Õ′ act as reflections on c̃3.

If c̃2 has two components, one between u1 and u2, say u1, fixes setwise
each of the two components acting as a reflection on them. Factoring by u1

we find an orbifold in Fi−1 with singularity graph which is either of Type
IIIB or IIIC or inadmissible. The case that the singularity graph is of Type
IIIB or IIIC is impossible because this orbifold is a 2-fold covering of Õ and
it can not have a inadmissible singularity graph (see the list at the beginning
of this section).

The only possible left case is that both c̃2 and c̃3 are connected. So the
singularity graph of Õ′ has two components and both u1 and u2 acts as
reflections on each component. This case is impossible because, in this case,
the quotient Õ′/D which is homeomorphic to Õ has a singularity graph of
Type IIIB or IIIC and not of Type Xj , a contradiction.

This finishes the proof of the Claim.
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