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A theorem of William Jaco and Eric Sedgwick states that
if M is an irreducible, ∂-irreducible 3-manifold with bound-
ary a single torus, and if M contains no genus one essential
(incompressible and ∂-incompressible) surfaces, then M can-
not contain infinitely many distinct isotopy classes of essential
surfaces of uniformly bounded genus. The main result in this
paper is a generalization: If M is an irreducible ∂-irreducible
3-manifold with boundary, and M contains no genus one or
genus zero essential surfaces, then M cannot contain infin-
itely many isotopy classes of essential surfaces of uniformly
bounded genus.

1. Introduction.

In this paper, a Haken manifold is an orientable, irreducible, ∂-irreducible 3-
manifold containing a (2-sided) incompressible surface. Even if a 3-manifold
is not Haken, we shall always, for simplicity, assume that it is orientable. An
irreducible, ∂-irreducible manifold M is simple if it contains no incompress-
ible, ∂-incompressible tori or annuli. We say a properly embedded 2-sided
surface S ↪→ M is essential if it is incompressible and ∂-incompressible and
not a sphere or disc. In this paper all essential surfaces will be 2-sided and
embedded, and it will be understood that “essential surface” means “isotopy
class of an essential surface.” The following is a well-known result attributed
to Wolfgang Haken, see [7].

Theorem 1.1 (W. Haken). Let M be a simple Haken manifold, then M
cannot contain infinitely many essential surfaces of uniformly bounded Euler
characteristic χ.

Here, in the introduction, we give sketchy explanation of the proof. For
simplicity, we assume M is closed. The proof uses normal surface theory.
There are many sources: The original sources are [9] and [4]; an early source
recommended for readability is [14]. For a more modern version in terms
of triangulations, see for example [8] or [5]. To any given essential surface
S in a closed Haken 3-manifold M equipped with a triangulation, one can
associate an Euler ratio |χ(S)|/Area(S) = R(S). To measure area here,
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we first note that the surface S can be isotoped to make it a normal sur-
face relative to the triangulation; the area is then the area of the least area
normal representative in the isotopy class of S, where the area is the usual
the combinatorial measure of area defined in normal surface theory, i.e., the
number of intersections of the surface with the 1-skeleton of the triangula-
tion. The Euler ratio then measures the average “curvature per unit area”
in the surface.

Now, given infinitely many distinct normal surfaces Si, their areas must
be unbounded, since there are just finitely many normal surfaces of a given
area. If the Euler characteristics of these surfaces are uniformly bounded,
|χ(Si)| ≤ U for all i, then the Euler ratios R(Si) are not bounded away
from 0. After passing to a subsequence, R(Si) → 0. There is a way of
taking limits of (normalized) subsequences of the sequence {Si}, which we
shall describe in a later section. The limit is an embedded, measured, zero-
Euler-characteristic lamination, which can be approximated by an embedded
incompressible torus. The method of taking limits is well-known, see for
example [10], [13], [11]. This completes the sketch of the proof of the
Haken result stated above.

We observe that the Euler ratio is closely related to the “isoperimet-
ric ratio,” see for example [11]. For a null homotopic curve γ in M , the
isoperimetric ratio is defined as Area(D)/Length(γ) where D is a least area
null homotopy for γ and length is also measured combinatorially. Spaces
for which the isoperimetric ratios are uniformly bounded have negatively
curved fundamental groups in the sense of Gromov, [3].

William Jaco and Eric Sedgwick have proved an interesting variation on
the Haken finiteness theorem:

Theorem 1.2 (Jaco-Sedgwick). Let M be an irreducible, ∂-irreducible 3-
manifold with boundary a single torus, and suppose M contains no essential
surfaces of genus 1, then M cannot contain infinitely many essential surfaces
of uniformly bounded genus.

We shall give an easy proof of this result using branched surface techniques
and the limiting argument mentioned above.

We give a further generalization to arbitrary Haken manifolds with bound-
ary:

Theorem 1.3. Let M be an irreducible, ∂-irreducible 3-manifold, and sup-
pose M contains no essential surfaces of genus 1 or genus 0, then M cannot
contain infinitely many essential surfaces of uniformly bounded genus.

Returning to the original Haken finiteness theorem, we shall prove, as
we have already mentioned, that in the case of a simple 3-manifold M
there is a constant K such that any essential surface S ↪→ M satisfies
|χ(S)| ≥ KArea(S). “Large area surfaces have large topology.” This state-
ment implies Theorem 1.1 and is only slightly stronger. When we measure
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the area of an essential surface, we assume, as usual, that we have chosen a
triangulation for M and that Area(S) means the area of a least area normal
surface in the isotopy class of S.

In view of the Jaco-Sedgwick result, one might then ask whether a similar
result is true in a manifold M with boundary one torus and no genus one
essential surfaces, whether “large area connected essential surfaces have large
genus.” This is true. We will prove the following stronger version of the Jaco-
Sedgwick theorem. Given an essential surface S ↪→ M , a natural modified
Euler ratio is R = |χ(S)|/Area(S), where S is obtained from S by capping
all boundary components with discs.

Theorem 1.4. Let M be a Haken 3-manifold with boundary a single torus
and with a given triangulation. Suppose M contains no genus one essential
surfaces. Then there is a uniform lower bound K > 0 for the Euler ratio
R(S) on all essential surfaces S.

We also have a slightly stronger version of Theorem 1.3:

Theorem 1.5. Let M be a Haken 3-manifold and with a given triangula-
tion. Suppose M contains no genus one or genus zero essential surfaces.
Then there is a uniform lower bound K > 0 for the Euler ratio R(S) on all
essential surfaces S ↪→ M .

2. Preliminaries.

We give here a brief informal overview of normal surfaces and incompressible
or essential branched surfaces. There are numerous sources for these related
subjects. We note that the earlier versions of normal surface theory were
described in terms of handle decompositions, whereas the currently used
normal surface theory is in terms of triangulations. In fact, the latter can
be regarded as a special case of the former. For normal surface theory, see
for example [4], [12], [5]; for branched surfaces as applied to incompressible
surfaces and essential laminations see [1], [12], [2].

The basic result in normal surface theory says that any essential surface
S in a Haken 3-manifold M can be isotoped to be normal relative to a tri-
angulation. The same result applies to other essential surfaces, for example
to essential spheres in reducible 3-manifolds, but we will not need these re-
sults. To say that an embedded surface is normal means that it intersects
each 3-simplex of the triangulation in arbitrarily many discs, each combina-
torially isomorphic to one shown in Figure 1. For each 3-simplex there are
seven types of discs as in Figure 1 which are known as disc types, so that
for a triangulation with n 3-simplices, there are 7n disc types. Typically
one goes further and chooses a normal representative of least area for the
isotopy class of S, where Area(S) is the number of intersections with the
1-skeleton of the triangulation.
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Figure 1.

∂h N(B)
∂h N(B)

Β

Figure 2.

The transition to branched surfaces is made as follows. Given an essential
normal surface of least area in its isotopy class, we push together adjacent
discs of the same disc type and identify them. At the boundary of the
region where several discs are identified, branching may occur, and we may
suppose that the identification space, a branched surface B ↪→ M , has a
smooth structure which pulls back to a smooth structure on the surface
S. The locus of points where B is not a manifold is called the branch
locus of B. The completion of a component of the complement in B of the
branch locus is called a sector of B. The branched surface just described is
called a normal branched surface, since it intersects 3-simplices in normal
discs. It has non-generic branch locus. One can perturb the branch locus by
increasing slightly, in a generic manner, the area of identification, and the
result is a branched surface with generic branch locus. A branched surface
with generic branch locus is locally modelled as shown in Figure 2. It has a
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fibered neighborhood N(B) modelled as shown in Figure 2, which is foliated
by interval fibers. The frontier of N(B) is partitioned into the horizontal
boundary ∂hN(B) and the vertical boundary ∂vN(B) as shown. There is a
similar fibered neighborhood for a branched surface with non-generic branch
locus. Clearly, there is a projection map π : N(B) → B which collapses each
fiber. A surface is carried by B if it can be embedded in N(B) transverse
to fibers, and it is fully carried if it also intersects every fiber of N(B)

2

w1

w2

w3

w3

w1

w

= w1+ w2

w3

Figure 3.

If S is carried by B, it induces a weight vector on B. To each sector Zi of B
the weight vector assigns the weight wi ≥ 0 equal to the number of intersec-
tions of S with a fiber π−1(p), where p is any point in

◦
Zi. Furthermore, the

weights satisfy branch equations as indicated in Figure 3. Any weight vector
on B satisfying all the branch equations for a branched surface B yields an
invariant weight vector on B. If the entries of an invariant weight vector
w are integers, it is not hard to show that the weight vector determines
a surface which we denote B(w). Invariant weight vectors with rationally
related weights give weighted surfaces. In general, an invariant weight vec-
tor w determines a measured lamination B(w), which we will not describe
here in detail. One can think of a measured lamination simply as branched
surface with an invariant weight vector. There is an Euler characteristic
associated to a measured lamination B(w). Assuming the branched surface
is generic, we first assign an Euler characteristic zi to each sector Zi. This is
not the Euler characteristic of Zi as a compact surface; instead, letting |Zi|
denote the underlying topological surface, zi = χ(Zi) = χ(|Zi|) − (1/4)ki,
where ki is the number of “corners” of the sector. The corners can be seen
in the local model of Figure 2. Now, we define the Euler characteristic of a
measured lamination B(w) as χ(B(w)) =

∑
i ziwi. This coincides with the

usual Euler characteristic of a surface when w is an invariant weight vector
with integer entries, see [11].

Given a branched surface B ↪→ M with s sectors, the set of all invariant
weight vectors gives a weight cone in Rs which we denote C(B). It is a cone
in the first orthant bounded by finitely many hyperplanes. If we normalize
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invariant weight vectors, requiring for example the sum of entries to equal 1,
then we obtain the weight cell which we denote M(B). Later in the paper,
we will often normalize a weight vector w with integer entries on a nor-
mal branched surface by dividing by the area Area(B(w)). The normalized
weight vectors obtained in this way also lie in a compact set homeomorphic
to M(B). This is because

∑
wi differs from Area(B(w)) only by positive

scalar multiples, i.e., there exists a constant C such that

(1/C)
∑

wi ≤ Area(B(w)) ≤ C
∑

wi.

It turns out that the branched surfaces obtained by the construction de-
scribed above satisfy certain conditions which ensure that any surface carried
by the branched surface is essential. We do not need to describe here the
exact technical conditions the branched surface satisfies, but we will call a
branched surface satisfying these conditions essential. The conditions are
those given in [2] to define essential branched surfaces, though essential
branched surfaces are there defined for a larger class of 3-manifolds than
the class of Haken manifolds. They are also the conditions given in [12] to
define Reebless incompressible branched surfaces.

Theorem 2.1 ([12]). Let M be Haken 3-manifold. Then there is a finite
collection of essential normal branched surfaces such that every essential
surface is fully carried by one of the branched surfaces of the collection as a
least area surface.

Theorem 2.2 ([12]). Let M be an irreducible, ∂-irreducible, 3-manifold
and let B ↪→ M be an essential branched surface in M . Then any sur-
face carried by B is essential.

3. Proofs.

We shall begin with a proof of the following, which easily implies Theo-
rem 1.1.

Theorem 3.1. Let M be a Haken 3-manifold, equipped with a triangulation.
Suppose M contains no essential annulus or torus. Then there is a uniform
lower bound K > 0 for the Euler ratio R(S) on all essential surfaces S.

Proof. Suppose there is no uniform lower bound for R(S), and let {Si} be
a sequence of surfaces such that R(Si) → 0. Without loss of generality
in view of Theorem 2.1, we may pass to a subsequence and assume that
all surfaces Si are fully carried by one essential branched surface B ↪→ M .
The proof of the Theorem 2.1, see [12], shows that B can be taken to be a
normal branched surface, and we can assume that each Si carried by B is
a least area normal representative of the isotopy class of Si. Each surface
Si determines a weight vector w(Si) on B, which we normalize by dividing
by Area(Si) to obtain wi = w(Si)/Area(Si). These vectors are contained
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in a compact subset of the cone of weight vectors C(B), hence we may pass
to a subsequence and assume wi → w. The weight vector w determines
a measured lamination B(w). Calculating Euler characteristic, which is a
linear function on C(B), we get

χ(B(w)) = lim
i→∞

χ(Si)
Area(Si)

= 0.

Thus w is contained in the subset of {v ∈ C(B) : χ(B(v)) = 0}. The equa-
tion χ(v) = 0 can be written as a linear equation with integer coefficients
in the components vj of v, hence there are integer solutions if there are
any solutions. We can thus replace w by an integer weight vector w with
χ(B(w)) = 0, and this reperesents a union of annuli and tori. The annuli
and tori are essential by Theorem 2.2, so we have proved the theorem by
contradiction. �

Next we give a proof of the Theorem 1.4, which implies the theorem
of Jaco-Sedgwick. The theorem concerns an irreducible, ∂-irreducible 3-
manifold M whose boundary is a single torus. As in the introduction, we
let S denote the surface obtained by capping every boundary component of
S by a disc, and we let R(S) denote |χ(S)|/Area(S).

Proof of Theorem 1.4. Suppose there is no uniform lower bound for the Eu-
ler ratio R(S) of essential surfaces S. Let {Si} be a sequence of surfaces
such that R(Si) → 0. Without loss of generality in view of Theorem 2.1, we
may pass to a subsequence and assume that all surfaces Si are fully carried
by one essential branched surface B ↪→ M . As before, Si can be taken to be
least area normal surfaces carried by the normal branched surface B. From
Allen Hatcher’s result on boundary slopes, [6], we know that all surfaces
fully carried by B and with non-empty boundary, have boundary curves of
the same slope, r say. Let M denote the closed manifold obtained from M
using slope r Dehn filling. Then each Si can be capped in M by a disc. Fur-
thermore, one can construct a branched surface B by attaching a meridian
disc of the surgery solid torus to ∂B. Note that the attaching map of the
disc to ∂B is in general far from an embedding, and there can be highly
non-generic branching where the disc is attached. Note also that we do not
claim that B is essential, though it might be.

Now, as in the previous proof, we use normalized weight vectors wi =
w(Si)/Area(Si). Clearly each wi determines a weight vector wi on B which
is the normalized weight vector wi = w(Si)/Area(Si). As in the previous
proof, the weights wi are contained in a compact subset of C(B), and so
after passing to a subsequence, we may assume wi → w. As before, we
calculate χ(B(w)) = 0, and again we can replace w by a projectively near
weight vector w with integer entries. Then B(w) is a union of tori T and
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T = T ∩ M is a union of genus one essential surfaces. The surface T is
carried by B = B ∩M , and is therefore essential by Theorem 2.2. �

Proof of Theorem 1.5. Suppose the theorem is false, and that there is a se-
quence of surfaces {Sn} such that R(Sn) → 0. Without loss of generality,
in view of Theorem 2.1, we may pass to a subsequence and assume that
all surfaces Sn are fully carried by one essential branched surface B ↪→ M .
As usual, Sn can be taken to be least area normal surfaces carried by the
normal branched surface B.

In this proof we cannot appeal to Hatcher’s theorem on boundary slopes,
therefore the analysis is more delicate. Let

Mn = Max{Length(b) : b is a boundary component of Sn}

mn = Min{Length(b) : b is a boundary component of Sn}.

We begin with easier cases before considering the most general case.

Case 1. There is a uniform bound on Mn, so that Mn ≤ U for all n. Let
B(Sn) be the set of normal curves in ∂M which occur in ∂Sn. Then there are
just finitely many possibilities for B(Sn) as n is allowed to vary. Thus we can
pass to a subsequence of {Sn} and assume that B(Sn) = B is the same for all
n. The set B can be regarded as an embedded curve system in ∂M carried
by ∂B with no two closed curves of B isotopic in ∂M . We can now construct
a branched surface B with one disc appropriately attached for each curve
in B. In fact, B is embedded in a 3-manifold M obtained by attaching one
2-handle along b for each curve b ∈ B. The situation is now very similar
to the situation in the proof of Theorem 1.4. Taking An = Area(Sn), and
passing to a subsequence, we take a limit of the sequence {Sn/An} in B,
and the assumption that R(Si) → 0 ensures that the limiting weight vector
has Euler characteristic 0 and can be approximated by a surface T which is
a union of tori. Again, the intersection with M must be a union of genus 1
surfaces T , and these are essential because they are carried by an essential
branched surface. This contradicts the hypotheses of the theorem.

Case 2. The set {mn : n ≥ 1} is unbounded. This is, in some sense, the
opposite of the previous case. After passing to a subsequence of {Sn}, we
may assume that mn → ∞. We will again take a limit of a subsequence of
{Sn/An}, but this time in the branched surface B. The limit will again be a
measured lamination carried by B (or a limiting weight vector on B). Each
surface Sn/An induces a weight vector on B, and the weight vectors are
contained in a compact subset of C(B). In this case, we compare χ(Sn/An)
to χ(Sn/An), where Sn is again the surface with all boundary components
capped by discs. (Here the Sn’s cannot be embedded in any manifold M .)
Since we have normalized, the length of the weighted boundaries ∂Sn are
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uniformly bounded, say Length(∂Sn/An) = (1/An)Length(∂Sn) ≤ R for
some constant R. Now we conclude that

|χ(Sn/An)− χ(Sn/An)| ≤ R/mn → 0.

To see this we note that Sn/An is obtained from Sn/An by attaching at most
a weight Length(Sn/An)/mn of discs. This attachment can change the Euler
characteristic by at most R/mn which approaches 0. Thus χ(Sn/An) →
0, since clearly χ(Sn/An) → 0. It follows that when we find a limiting
lamination by passing to a subsequence and taking limits of weights induced
by Sn/An on B, we obtain a measured lamination of Euler characteristic 0
in M , which can be approximated by a union of tori and annuli. This
contradicts the hypotheses of the theorem.

Case 3. General case. We have an arbitrary sequence {Sn} with R(Si) → 0.
If some normal curve b1 occurs as a component of ∂Sn for infinitely many
Sn, we pass to a subsequence such that every Sn has a boundary component
b1. In the new sequence {Sn}, if some normal curve b2 6= b1 is a component
of ∂Sn for infinitely many n, we again pass to a subsequence such that b1

and b2 occur in ∂Sn for every n. Repeating this argument, we must end
with b1, . . . , bk occurring in ∂Sn for all n, and with no other normal curve
occurring infinitely often.

Let M̂ be the manifold obtained by attaching k 2-handles along the curves
b1, . . . , bk, and let Ŝn denote the surface obtained from Sn by capping all
curves isotopic to bi by discs in M̂ . We can assume that all the surfaces Ŝn

are carried by one branched surface B̂, obtained from B by attaching discs
using the carrying maps of bi as attaching maps, as in Case 2. Now define

mn = Min{Length(b) : b is a boundary component of Sn, b 6= b1, . . . , bk}, or

mn = Min{Length(b) : b is a boundary component of Ŝn}.
Clearly mn →∞.

As in Case 2, we construct a limiting measured lamination (L̂, µ̂) ↪→ M̂

from Ŝn and we show as in Case 2 that χ((L̂, µ̂)) = 0. The measured
lamination can be approximated by a surface Ŝ which is a union of annuli
and tori in M̂ . Then we obtain a surface S = Ŝ ∩M carried by B whose
components have genus 1 or genus 0. The surface S is essential because B
is essential. Again, this contradicts the hypotheses of the theorem. �
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