
Pacific
Journal of
Mathematics

BOULIGAND DIMENSION AND ALMOST LIPSCHITZ
EMBEDDINGS

Eric Olson

Volume 202 No. 2 February 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 202, No. 2, 2002

BOULIGAND DIMENSION AND ALMOST LIPSCHITZ
EMBEDDINGS

Eric Olson

In this paper we present some new properties of the met-
ric dimension defined by Bouligand in 1928 and prove the
following new projection theorem: Let dimb(A − A) denote
the Bouligand dimension of the set A − A of differences be-
tween elements of A. Given any compact set A ⊆ RN such
that dimb(A − A) < m, then almost every orthogonal projec-
tion P of A of rank m is injective on A and P |A has Lipschitz
continuous inverse except for a logarithmic correction term.

1. Introduction.

What we shall call Bouligand dimension is the dimensional order defined
by Bouligand in [4] and further generalized by Assouad much later in [1]
and [2]. In this paper we prove several results about Bouligand dimension
and its relation to the Mañé type projection theorems of [16], [3] and [10].
The use of Bouligand dimension in studying projections was initiated by
Movahedi-Lankarani in [18] where he constructs a set A with finite fractal
dimension for which there are no finite rank projections P with P |A having
Lipschitz continuous inverse. Here A is a subset of a Hilbert space H. To do
this, he exhibits a set with finite fractal but infinite Bouligand dimension. He
then raises the question: What can happen in the case that the Bouligand
dimension of A is finite? This paper will attempt to shed some light on this
question.

WhenA is an attractor for a partial differential equation, knowing whether
Amay be embedded into a finite dimensional space is of theoretical and com-
putational interest. Work along these lines include Eden, Foias, Nicolaenko
and Temam [8] on exponential attractors, Sauer, Yorke and Casdagli [23]
on delay-coordinate maps, and Robinson [21], [20] on approximate attrac-
tors. Ideally, given an infinite dimensional dynamical system, we would
like to construct a finite dimensional dynamical system that has the same
long-term behavior. This is important, in particular, because any numerical
simulation of the dynamics on a computer is by necessity finite dimensional.
Since the long-term behavior of a dynamical system is largely governed by its
global attractor, this question may be rephrased as whether it is possible to
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construct a finite dimensional dynamical system with the same global attrac-
tor as the original dynamical system. To construct such a system requires
embedding the attractor of the original infinite dimensional dynamical sys-
tem into a finite dimensional space. This embedding should posses certain
continuity properties so as to preserve the original dynamics.

Inertial manifolds, as discussed by Constantin in [5] and Constantin,
Foias, Nicolaenko and Temam in [6] and [7], provide a bi-Lipschitz embed-
ding of the global attractor into a finite dimensional space. As the Bouligand
dimension of an attractor is preserved under bi-Lipschitz mappings, the fol-
lowing holds:

Fact 1.1. The Bouligand dimension of the global attractor of any dynami-
cal system possessing an inertial manifold must be finite.

Thus, there exist a number of global attractors with finite Bouligand
dimension. For example, the Kuramoto-Sivashinsky equation, the Kolmogo-
rov-Sivashinsky-Spiegel equation and the Ginzburg-Landau equation in one
space dimension [7], reaction diffusion equations in higher space dimensions
[15], and nonlinear viscoelasticity equations [19] have inertial manifolds and
therefore global attractors with finite Bouligand dimension. It not known
if there exists an inertial manifold for the Navier-Stokes equations in two
space dimensions. In light of the main result in this paper, computing the
Bouligand dimension of the global attractor directly and more specifically
the Bouligand dimension of the set A − A of differences between elements
of A is of great interest. Our main result is:

Theorem 1.2. Given A ⊆ RN such that dimb(A − A) < m, then almost
every orthogonal projection P of A of rank m is injective on A and P |A has
Lipschitz continuous inverse except for a logarithmic correction term.

This shows that almost every orthogonal projection ofA has the same Lip-
schitz properties that the embeddings of an inertial manifold have except for
a logarithmic correction. Here, almost every should be understood in terms
of the Haar measure invariant with respect to orthogonal transformations
on the space of all orthogonal projections of rank m in Rn. This provides
a partial converse to Fact 1.1. Note that n may be chosen arbitrarily large.
Thus, Theorem 1.2 embeds a fractal subset A of a large finite dimensional
space into a smaller finite dimensional space whose dimension is controlled
explicitly by the Bouligand dimension of A−A. Our theorem is related to
a result stated by Mañé in [16] which states under the assumption of finite
Hausdorff dimension that the injective projections form residual set.

Definition 1.3. The Hausdorff dimension of the set A is defined by

dimh(A) = inf{d : Hd(A) = 0} = sup{d : Hd(A) = ∞}
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where Hd is the d-dimensional Hausdorff measure

Hd(A) = lim
δ→0

inf

{ ∞∑
i=1

|Ui|d : {Ui} is a δ-cover of A

}
.

Here |Ui| = sup
{
|x − y| : x, y ∈ Ui } is the diameter of the set Ui and a

δ-cover is a cover {Ui} such that |Ui| ≤ δ for all i.

Definition 1.4. A set is called residual if its complement is a set of first
category; a set of first category is a countable union of nowhere dense sets;
and a nowhere dense set is a set whose closure has no interior points.

Theorem 1.5 (Mañé). If E is a Banach space and A ⊂ E is a countable
union of compact subsets with dimh(A) < ∞ then for every subspace B of
E with dimh(A − A) + 1 < dim(B) < ∞ the set of projections P : A → B
such that P |A is injective is a residual subset of the space of projections of
A onto B endowed with the norm topology.

Hölder continuity for the inverse in Mañé’s projection theorem has been
proved under the hypothesis of finite fractal dimension by Ben-Artzi, Eden,
Foias, and Nicolaenko in [3], and extended by Foias and Olson in [10].

Definition 1.6. Let NA(ρ) be the minimum number of ρ-radius balls re-
quired to cover all of A. Then, the fractal dimension

dimf (A) = lim sup
ρ→0

logNA(ρ)
log ρ

.

Theorem 1.7 (Foias and Olson). Let H be a real Hilbert space and A ⊆ H
be such that 2 dimf (A) < m. Then for any orthogonal projection P of rank
m and δ > 0 there is an orthogonal projection P̃ such that ‖P̃ −P‖ < δ and
P̃ |A has Hölder inverse.

Hunt and Kaloshin in [13] have recently shown that such projections P̃
are in fact prevalent according to the sense of prevalence given by Hunt,
Sauer and Yorke in [14]. Prevalence extends the notion of Lebesgue almost
every from Euclidean spaces to infinite-dimensional spaces. In particular:

Definition 1.8. A Borel subset S ⊆ B is prevalent if there exists a com-
pactly supported probability measure µ such that µ(S+x) = 1 for all x ∈ B.
A set, in general, is prevalent if it contains a prevalent Borel set.

Note that Theorem 1.7 is stated with a hypothesis only on the fractal
dimension of A. This simplification may be made because the fractal di-
mension of A−A is controlled by the inequality dimf (A−A) < 2 dimf (A).
Such inequalities are not true for the Bouligand and Hausdorff dimensions.
Therefore, Theorems 1.2 and 1.5 are stated under hypotheses about the set
A−A directly. In this paper we give an example for Bouligand dimension
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for which dimb(A) = 0 and dimb(A−A) = ∞ to demonstrate this dramatic
difference.

We also show the Bouligand dimension of a set may increase under an or-
thogonal projection. Note that for the fractal and Hausdorff dimensions, the
dimension of the projected image is always less than or equal the dimension
of the original set. Thus, Bouligand dimension gives us further insight over
what can happen to the geometry of a set under orthogonal projection. On
the other hand, there may be bad projections that make a global attractor
appear more complicated than it really is.

This paper is organized as follows: First, we define Bouligand dimension
and give an alternate characterization of it. In Section 3 we state some
properties and show that Bouligand dimension agrees with other notions of
dimension for self-similar fractals. In Section 4 we prove Theorem 4.7 and
in Section 5 we prove Theorem 1.2.

2. The Bouligand dimension.

In this section we define the fractal and Bouligand dimensions. Fractal di-
mension is sometimes also called the box-counting dimension, the capacity,
or the Minkowski dimension. We have already defined this dimension in
the introduction via Definition 1.6. An equivalent characterization of frac-
tal dimension in terms of an infimum follows easily from the definitions of
infimum and limit superior.

Fact 2.1. The fractal dimension dimf (A) is the infimum over all d for which
there exists K such that

NA(ρ) ≤ K(1/ρ)d for 0 < ρ < 1.(2.1)

We now define Bouligand dimension. As already mentioned this dimen-
sion is the generalization of the dimensional order of Bouligand [4] discussed
by Assouad in [1] and [2] and by Movahedi-Lankarani in [18].

Definition 2.2. The Bouligand dimension dimb(A) is defined as

dimb(A) = lim
ε→0

lim
t→∞

∆ε,t(A)

where

∆ε,t(A) = sup
{

logN (r, ρ)
log(r/ρ)

: 0 < ρ < r < ε and r > tρ

}
and N (r, ρ) is the number of ρ-balls required to cover any r-ball in A.

The Bouligand dimension may be characterized as an infimum in a way
similar to that of the fractal dimension. This is essentially the definition
given by Assouad in [1]. This characterization highlights a scaling condition
that will be important later. In particular, given 0 < λ ≤ 1 the Bouligand
dimension requires the number of ρ balls needed to cover an r ball portion
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of the set should be essentially the same as the number of λρ balls needed
to cover a λr ball portion.

Theorem 2.3. The Bouligand dimension dimb(A) is the infimum over all
d for which there exists K such that

NA(r, ρ) ≤ K(r/ρ)d for 0 < ρ < r < 1.(2.2)

First note that the exact form of the upper bound for r in condition (2.2)
is not critical. Equivalently we may require for some ε > 0 that there exists
Kε such that

NA(r, ρ) ≤ Kε(r/ρ)d for 0 < ρ < r < ε.(2.3)

It is obvious that if ε < 1, then condition (2.2) implies (2.3) with Kε = K.
Conversely suppose (2.3) holds for some 0 < ε < 1. Since A is compact,
then a finite number N of ε/4 balls will cover it. Let r and ρ be such that
0 < ρ < r < 1. Consider the following cases:

Case ρ ≥ ε/2. Then

NA(r, ρ) ≤ NA(r, ε/2) ≤ NA(ε/4) ≤ N.

Case ρ < ε/2 ≤ r. Then

NA(r, ρ) ≤ NA(r, ε/2)NA(ε/2, ρ) ≤ NKε

(
ε/2
ρ

)d

≤ NKε

(
r

ρ

)d

.

Thus taking K = NKε we obtain that

NA(r, ρ) ≤ K

(
r

ρ

)d

for 0 < ρ < r < 1.

In the situation where ε > 1 the argument is similar. Moreover, if there
exists one ε and Kε for which condition (2.3) holds, then for each ε there is
a Kε such that it holds.

Proof of Theorem 2.3. Suppose there is d and K such that (2.2) holds. Then

logNA(r, ρ)
log(r/ρ)

≤ d +
log K

log(r/ρ)
for 0 < ρ < r < 1.

It follows that

∆1,t(A) ≤ d +
log K

log(t)

and therefore
dimb(A) = lim

ε→0
lim
t→∞

∆1,t(A) ≤ d.
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Conversely, suppose d is chosen so that dimb(A) < d. Then by definition
there are values of ε and t such that 0 < ε < 1 < t and ∆ε,t(A) < d. It
follows that

logNA(r, ρ)
log(r/ρ)

< d for 0 < tρ < r < ε

and therefore

NA(r, ρ) < (r/ρ)d for 0 < tρ < r < ε.

Now, suppose 0 < ρ < r < ε. Then 0 < t(ρ/t) < r < ε and

NA(r, ρ) ≤ NA(r, ρ/t) ≤
(

r

ρ/t

)d

= K

(
r

ρ

)d

for 0 < ρ < r < ε

where K = td. It follows that dimb(A) is the infimum over all d for which
(2.2) holds. �

It is often of interest to know whether a set has finite Bouligand dimension
or not. The following lemma provides a simple test for determining this.

Lemma 2.4. If there exists K such that NA(r, r/2) < K holds for all r < 1
then A has finite Bouligand dimension. Moreover, dimb(A) ≤ log2 K.

Proof. Given r and ρ such that 0 < ρ < r < 1 choose n so that r/2n ≤ ρ <
r/2n−1. Then

NA(r, ρ) ≤ NA(r, r/2)NA(r/2, r/22) · · · NA(r/2n−1, r/2n) ≤ Kn

and since n− 1 ≤ log2(r/ρ) it follows that

NA(r, ρ) ≤ K(Kn−1) ≤ K(r/ρ)log2 K .

Therefore dimb(A) ≤ log2 K < ∞. �

3. Properties of the Bouligand dimension.

The Bouligand dimension satisfies many of the usual properties that a rea-
sonable dimension should satisfy. In this section we state and prove a few of
these properties. In particular, we prove the Bouligand dimension is well be-
haved with respect to Cartesian products and that the Bouligand dimension
agrees with the similarity dimension for self-similar fractals.

First, we will state for reference as Theorem 3.1 a few properties of the
Bouligand dimension found in Movahedi-Lankarani [18] and Assouad [1].

Theorem 3.1. The Bouligand dimension has the following properties:
(i) If A ⊆ B then dimb(A) ≤ dimb(B).
(ii) If A is an open subset of RN then dimb(A) = N .
(iii) If A and B are bi-Lipschitz isomorphic, then dimb(A) = dimb(B).
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We now discuss how the Bouligand dimension behaves with respect to
Cartesian products. We would like

dimb(A× B) = dimb(A) + dimb(B).

However, as with any metric dimension, the Bouligand dimension depends
on what metric is used. Therefore, care must be taken in choosing a metric.
Let A and B be compact metric spaces with metrics dA and dB. Define the
metric spaces Xp = A× B for 1 ≤ p ≤ ∞ by the metrics dp given by

dp

(
(a1, b1), (a2, b2)

)
=

{(
dA(a1, a2)p + dB(b1, b2)p

)1/p for 1 ≤ p < ∞,
max

(
dA(a1, a2), dB(b1, b2)

)
for p = ∞.

Theorem 3.2. dimb(Xp) = dimb(A) + dimb(B).

Proof. Since d∞ is Lipschitz equivalent to dp for 1 ≤ p < ∞, it follows from
property (iii) of Theorem 3.1 that

dimb(X∞) = dimb(Xp) for 1 ≤ p < ∞.

Hence, we may prove the theorem for X = X∞ without loss of generality.
For every α and β such that dimb(A) < α and dimb(B) < β there exists

KA and KB such that

NA(r, ρ) < KA

(
r

ρ

)α

and NB(r, ρ) < KB

(
r

ρ

)β

for 0 < ρ < r < 1. Let B be a ball of radius r in X. Then by definition,
B = U × V where U and V are balls of radius r. Cover U by balls Ui of
radius ρ in A and V by balls Vj of radius ρ in B. Since Ui×Vj form a cover
of B, it follows that

NX(r, ρ) ≤ NA(r, ρ)NB(r, ρ) ≤ KAKB

(
r

ρ

)α+β

.

Hence dimb(X) ≤ α + β and so dimb(X) ≤ dimb(A) + dimb(B).
Now, let n be the maximum number of disjoint ρ/2-radius balls with

centers ui in U . Let Ui be balls of radius ρ with the same centers. Thus the
points ui are at least a distance ρ/2 apart from each other and Ui covers U .
Do the same for V to obtain m balls Vj of radius ρ whose centers vj are at
least a distance ρ/2 apart from each other which cover V . Let zk ∈ B be an
enumeration of the points (ui, vj) and define Z = { zk : k = 1 . . . nm }. It
follows that

NX(r, ρ/4) ≥ NZ(ρ/2) ≥ nm ≥ NU (ρ)NV (ρ).

Choose U and V such that NU (ρ) and NV (ρ) attain their maximum values.
Given d such that dimb(X) < d, there is K such that

NX(r, ρ) ≤ K

(
r

ρ

)d

for 0 < ρ < r < 1.
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Thus

NA(r, ρ)NB(r, ρ) ≤ NX(r, ρ/4) ≤ 4dK

(
r

ρ

)d

,

and therefore by Theorem 2.3 dimb(A) + dimb(B) = dimb(X). �

It is interesting to note that the Hausdorff dimension does not behave
well under Cartesian products. For example, Falconer exhibits sets A and
B in [9] such that dimh(A) + dimh(B) < dimh(A× B).

We end this section with a calculation of the Bouligand dimension for a
self-similar fractal. In particular, we show the Bouligand dimension agrees
with the similarity dimension for such sets, and therefore the fractal and
Hausdorff dimensions as well. First note that the Hausdorff dimension is
bounded by the fractal dimension which is in turn bounded by the Bouligand
dimension. Thus given a compact metric space A we have that

dimh(A) ≤ dimf (A) ≤ dimb(A).(3.1)

Definition 3.3. A transformation f : Rn → Rn is said to be a similarity if
there is a constant c such that

∣∣f(x)− f(y)
∣∣ = c|x− y| for all x, y in Rn.

Let fi : RN → RN , where i = 1, . . . , L be similarities with ratios ci ∈
(0, 1) and define F (M) = ∪fi(M) for M ⊆ RN . Let A be the compact
invariant set such that F (A) = A.

Definition 3.4. The similarity dimension of A is defined as dims(A) = s
where Σcs

i = 1.

Theorem 3.5. Let A be defined as above. Then dimb(A) = dims(A).

Proof. Since A is compact there is ε such that 0 < ε < 1 and

dist
(
fi(A), fj(A)

)
> ε for i 6= j.

Let c = min{ci : i = 1, . . . , L}. Let R > ε/c be chosen so large that A fits
inside an R ball. Let r and ρ be chosen so that 0 < ρ < r < ε/2. Let I be
the set of finite sequences (i1, . . . , in) such that

ci1 · · · cinε ≤ 2r < ci1 · · · cin−1ε.

Since 2r < ε, then I is nonempty. Furthermore, A = ∪{fi1 ◦ · · · ◦ fin(A) :
(i1, . . . , in) ∈ I}. Let (i1, . . . , in) and (j1, . . . , jm) be distinct elements of
I. Suppose for definiteness that n ≤ m. Consider the sets fi1 ◦ · · · ◦ fin(A)
and fj1 ◦ · · · ◦ fjm(A). Let k be the largest index such that il = jl for all
l ≤ k. Obviously k < n for otherwise k = n would imply n < m leading to
the contradiction

ci1 · · · cinε ≤ 2r < cj1 · · · cjm−1ε ≤ cj1 · · · cjnε = ci1 · · · cinε.
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Define F = fik+1◦· · ·◦fin(A) and G = fjk+1◦· · ·◦fjm(A). Then ik+1 6= jk+1

implies dist(F ,G) > ε. It follows that

dist
(
fi1 ◦ · · · ◦ fin(A), fj1 ◦ · · · ◦ fjm(A)

)
> ci1 · · · cikε ≥ ci1 · · · cin−1ε > 2r.

Now let B be a ball of radius r. It follows that B ∩ fi1 ◦ · · · ◦ fin(A) 6= ∅ for
at most one (i1, . . . , in) ∈ I. Let (i1, . . . , in) be that one and fix it.

Hence B ∩ A = B ∩ fi1 ◦ · · · ◦ fin(A). Define γ = ci1 · · · cin and let J be
the set of (j1, . . . , jm) such that

Rγcj1 · · · cjm ≤ ρ < Rγcj1 · · · cjm−1 .

Since ρ < r ≤ γε/c ≤ Rγ, then J is nonempty. Since

A = ∪{fj1 ◦ · · · ◦ fjm(A) : (j1, . . . , jn) ∈ J}
it follows that

B ∩ A ⊆ ∪{fi1 ◦ · · · ◦ fin ◦ fj1 ◦ · · · ◦ fjm(A) : (j1, . . . , jm) ∈ J}.
Furthermore, since Rγcj1 · · · cjm ≤ ρ, it follows that

fi1 ◦ · · · ◦ fin ◦ fj1 ◦ · · · ◦ fjm(A) ⊆ Bρ

(
fi1 ◦ · · · ◦ fin ◦ fj1 ◦ · · · ◦ fjm(α)

)
.

We now estimate the number of elements in J . Since Σcs
i = 1, it follows by

induction that
∑

J(cj1 · · · cjm)s = 1. Therefore
∑

J

(
cρ/(Rγ)

)s ≤ 1 and so
J has no more than

(
Rγ/(cρ)

)s elements. Hence, NB∩A(ρ) ≤
(
Rγ/(cρ)

)s.
Since γ = ci1 · · · cin ≤ 2r/ε, it follows that NA(r, ρ) ≤ K(r/ρ)s where K =(
2R/(cε)

)s. As this holds for all 0 < ρ < r < ε/2, it further follows that
dimb(A) ≤ s. By [9], Theorem 9.3, the Hausdorff dimension dimh(A) = s;
therefore, in light of (3.1) we obtain that dimb(A) = s. �

Thus, for self-similar sets, the Bouligand dimension agrees with the sim-
ilarity, fractal, and Hausdorff dimensions. In the case that ci = c for all i,
the similarity dimension has an easy to calculate form and we obtain the
following corollary:

Corollary 3.6. Let fi : RN → RN where i = 1, . . . , L be similarities with
ratio c ∈ (0, 1) and define F (M) = ∪fi(M) for M ⊆ RN . Take A to be the
compact invariant set such that F (A) = A. If the images under the fi are
disjoint then dimb(A) = − log(L)/ log(c).

4. Dimension increasing projections.

The results in this section are motivated by examples involving orthogonal
sequences in a Hilbert space. The fractal dimension of such sequences has
been already studied by Ben-Artzi, Eden, Foias and Nicolaenko in [3] and
by Ladislav Mǐśık Jr. and Tibor Žáčik in [17]. In some sense, an orthogonal
sequence is the farthest thing possible from the regular self-similar fractals
discussed in the previous section. Not surprisingly, it is in the treatment of
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these sets that the Bouligand dimension differs most dramatically from the
fractal dimension. In particular, we exhibit a set A such that dimb(A) = 0
and dimb(A − A) = ∞. This section closes with a proof of Theorem 4.7
concerning the existence orthogonal projections that increase the Bouligand
dimension.

In Theorem 2.3 it was shown that the Bouligand dimension requires that
the number of ρ balls needed to cover an r ball should be essentially the same
as than the number of λρ balls needed to cover a λr ball. The homogeneity
of this scaling makes the Bouligand dimension sensitive to inhomogeneities
in the set A. We will now consider a particularly inhomogeneous set: The
closure of an orthogonal sequence converging to zero in a Hilbert space. Let
H be a Hilbert space and ei an orthonormal sequence.

Lemma 4.1. Let A = {0} ∪ {en/nα : n ∈ N}. Then dimf (A) = 1/α and
dimb(A) = ∞.

Proof. The first fact appears in [3]. For the second, consider the ball of
radius r = 1/mα centered at the origin

B = {a ∈ A : ‖a‖ < r} = {0} ∪ {en/nα : n > m}.

Cover B by r/2 balls. Each point a distance more that r/2 from the origin
will require a separate ball. Since

1/nα > r/2 implies n < (2/r)1/α = m21/α

then
NA(r, r/2) ≥ NB(r/2) > m21/α −m− 1.

This is unbounded as n →∞; therefore, dimb(A) = ∞ by Lemma 2.4. �

The Bouligand dimension of a geometric sequence is finite because geo-
metric sequences have the scaling property needed for NA(r, r/2) in Lem-
ma 2.4 to be bounded. Moreover, we have:

Fact 4.2. Let A = { 0 } ∪ { anen : n ∈ N }. If there exists K and α such
that 0 < α < 1 and

(1/K)αn ≤ an ≤ Kαn,(4.1)

then dimb(A) = 0.

The proof of this fact follows from arguments similar to those used in
the proof of Lemma 4.1. For the fractal dimension it is shown in [3] that
an ≤ K/nα implies dimf (A) ≤ 1/α. To see that the lower bound in (4.1) is
required consider

Theorem 4.3. There exist sequences converging arbitrarily fast to zero that
have infinite Bouligand dimension.
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Proof. Let {bj} be a sequence converging to zero. Consider the sequence
{anen} where

an = bj for n = 2j−1, . . . , 2j − 1.

Let B be the ball in A = {0} ∪ { anen : n ≥ 1 } of radius r = bj + ε centered
at the origin. Thus

B = {anen : n ≥ 2j−1}.
Cover B by r/2 balls. Then

NA(r, r/2) ≥ NB(r/2) ≥ 2j − 2j−1 = 2j−1

is unbounded; therefore, dimb(A) = ∞. Since no conditions on {bj} were
imposed, then {an} may converge arbitrarily fast to zero. �

Corollary 4.4. There exist a set A such that dimb(A) = 0 and dimb(A −
A) = ∞.

Proof. Let {xj} be a sequence of the type given in Theorem 4.3 such that
‖xj‖ ≤ 4−j . We assume the complement of the closed linear span of {xj}
to be infinite dimensional and define {yj} to be an orthogonal sequence in
that complement such that ‖yj‖ = 4−j . Let A be the closure of the set {aj}
where a2j = yj and a2j+1 = xj + yj . Clearly the set of differences A − A
contains the set {xj} and therefore dimb(A−A) = ∞.

Claim dimb(A) = 0. If k = 2j then

‖ak‖ = ‖yj‖ = 4−j = 2−k

and so the condition (4.1) is satisfied with α = 1/2. If k = 2j + 1, then

‖ak‖ ≤ ‖xj‖+ ‖yj‖ ≤ 4−j + 4−j = 2(4−(k−1)/2) ≤ 4(2−k)

and
‖ak‖ ≥ ‖yj‖ = 2(2−k).

Therefore, taking K = 4 and α = 1/2 satisfies (4.1) for all terms of the
sequence {aj}. It follows from Fact 4.2 that dimb(A) = 0. �

We will now use the same scaling properties exploited in the above ex-
amples to construct orthogonal projections that increase the Bouligand di-
mension. First, we need the following definitions and results.

Definition 4.5. Let ∨A denote the closed linear span of A.

Lemma 4.6. There exists a projection Q such that QA contains an orthog-
onal sequence if and only if there exists V ⊆ A such that dim(∨V ) = ∞
and

∨
(
V \ {v}

)
6= ∨V for all v ∈ V .
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Proof. Suppose there is such a projection Q. Choose vn ∈ A such that
the Qvn form an orthogonal sequence. Define V = {vn : n ∈ N}. It
follows that Qv is orthogonal to ∨

(
QV \ {Qv}

)
for any v ∈ V . Therefore

∨
(
QV \ {Qv}

)
6= ∨

(
QV

)
. Since orthogonal projections are continuous and

linear, then Q commutes with ∨ and we obtain Q
(
∨

(
V \ {v}

))
6= Q(∨V ),

which implies ∨
(
V \ {v}

)
6= ∨V .

Conversely, by omitting some elements of V if necessary, we write V =
{vn : n ∈ N} and suppose the orthogonal complement of ∨V to be infinite
dimensional. Let fi be an orthonormal sequence contained in that comple-
ment.

Define V1 = V and W1 = V1 \ {v1}. For induction suppose ∨Wn 6= ∨Vn.
Then there exists en ∈ ∨Vn such that ‖en‖ = 1 and en ⊥ ∨Wn. Let
gn = (en + fn)/

√
2. Define Vn+1 = Vn ∪ {gn} and Wn+1 = Vn+1 \ {vn+1}.

Clearly ∨Wn+1 6= ∨Vn+1.
The above construction yields an orthonormal sequence gn such that

(gi, vi) 6= 0 and (gi, vj) = 0 for i 6= j. Let Q be the projection onto the
space spanned by the gn. It follows that Qvn = αngn where αn 6= 0 and so
QV ⊆ QA contains an orthogonal sequence. �

Theorem 4.7. If A satisfies Lemma 4.6, then there exists an orthogonal
projection P such that the Bouligand dimension of PA is infinite.

Note that Fact 4.2 provides an example of a set with finite Bouligand
dimension that satisfies Lemma 4.6. However, a slight modification of the
solution given by Halmos for Problem 11 in [12] yields an infinite dimen-
sional compact set which does not satisfy these hypotheses. It is unknown
whether the attractors of naturally occurring physical systems satisfy these
hypothesis or not.

Proof of Theorem 4.7. By Lemma 4.6 there exists an orthogonal projection
Q such that QA contains the orthogonal sequence αngn. Let

mj = min
{
|αn| : n = 2j−1, . . . , 2j − 1

}
and choose a monotone sequence βj strictly decreasing to zero such that βj ≤
mj . We may assume that the orthogonal complement of ∨{αngn : n ∈ N}
in QH is infinite. Let hn be an orthonormal sequence in that complement
and define

g̃n = sin(θn)gn + cos(θn)hn

where θn has been chosen in such a way that

αn sin(θn) = βj for n = 2j−1, . . . , 2j − 1.

This can be done since βj < αn. Let P be the projection onto the space
spanned by the g̃n. It follows that PA = PQA contains a sequence similar
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to the one found in Theorem 4.3 and therefore

dimb(PA) ≥ dimb{αn sin(θn)gn : n ∈ N} = ∞.

�

5. The projection theorem.

In this section we prove Theorem 1.2 restated more explicitly in the form
of Theorem 5.2 below. We want to find rank m orthogonal projections such
that

‖Px− Py‖ ≥ εf
(
‖x− y‖

)
for x, y ∈ A(5.1)

where f is linear with a logarithmic correction. Moreover, we show that
the measure of all the projections which do not satisfy this condition for any
constant ε > 0 is zero. Writing Y = A−A simplifies (5.1) to the requirement
that

‖Py‖ ≥ εf
(
‖y‖

)
for y ∈ Y .

Let G be the space of orthogonal projections in RN of rank m and µ
be the invariant measure on G with respect to orthogonal transformations.
Define the shadow of a set B in RN to be

S(B) = {P ∈ G : 0 ∈ PB}.
Showing that µ

(
S(Y )

)
= 0 would prove almost every rank m orthogonal

projection is injective. To obtain continuity of the inverse we construct a
slightly larger set U containing Y and show that µ

(
S(U)

)
= 0. We shall use

the following estimate in our computations:

Theorem 5.1. The measure of the shadow of a ρ-ball B centered a distance
r from the origin is bounded by µ

(
S(B)

)
≤ C(ρ/r)m.

This result is given by Santalo in [22]. An explicit proof involving only
elementary techniques has recently been given by by Friz and Robinson in
[11].

Theorem 5.2. Given a bounded set A ⊆ RN such that A ⊆ BR(0) and
dimb(A−A) < d < m. Let η > 1 and define

f(x) = x

(
1

log2(2R/x)

)η/(m−d)

where R = 2 sup
{
‖a‖ : a ∈ A

}
. Then for almost every projection P of rank

m there is a constant ε such that (5.1) is satisfied.

Proof. Define rn = R/2n and ρn = f(rn−1). Divide Y into shells

Zn = {y ∈ Y : rn ≤ ‖y‖ ≤ rn−1}
and cover Zn by balls of radius ρn.
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Let Y = A−A and choose K such that NB(r, ρ) ≤ K(r/ρ)d for all B ⊆ Y .
Further choose c > 2 so large that cm−d > K. Cover each ρn-ball by ρn/c-
balls and each of those by ρn/c2-balls and so on. Label the centers of the
ρn/ci-balls that cover Zn by anij . Thus

Zn ⊆
⋃

jBρn/ci(anij)

where the index j ranges over at most Ki+1cid(rn−1/ρn)d balls.
Since c > 2, the covers formed by doubling the radius of the balls in each

generation will be nested. Let

Ui =
⋃

n,jB2ρn/ci(anij)

be the union of all the balls in the i-th generation with double the radius.
For each y ∈ Y there is a ball Bρ(a) of radius ρ = ρn/ci centered at a such
that y ∈ Bρ(a). If P 6∈ S(Ui) then 0 6∈ PB2ρ(a) and hence

‖Py‖ ≥ ρ = ρn/ci = f(rn−1)/ci ≥ f
(
‖y‖

)
/ci

shows that (5.1) holds for the i-th generation with ε = 1/ci.
Let U = lim supi Ui. It remains to show the measure of S(U) is zero.

Estimate

µ
(
S(U)

)
≤ µ

(
S(Ui)

)
≤

∑
n,j

µ
(
S

(
B2ρn/ci(anij)

))
≤

∑
n,j

C

(
2ρn

cirn

)m

≤
∑

n

CKi+1cid

(
rn−1

ρn

)d (
2ρn

cirn

)m

= 4mCK

(
K

cm−d

)i ∑
n

(
f(rn−1)

rn−1

)m−d

= 4mCK

(
K

cm−d

)i ∑
n

1
nη

= L

(
K

cm−d

)i

where L is a constant. Letting i become large, we obtain µ
(
S(U)

)
= 0.

Thus, almost every orthogonal projection of rank m satisfies (5.1) for some
ε > 0. �
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