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On the basis of the Generalized Pontryagin-Thom construction
(see Rimanyi & Szucs, 1998) and its application in computing
Thom polynomials (see Rimanyi, 2001) here we introduce a
new point of view in multiple-point theory. Using this ap-
proach we will first show how to reprove results of Kleiman
and his followers (the corank 1 case) then we will prove some
new multiple-point formulas which are not subject to the con-
dition of corank ≤ 1. We will concentrate on the case of com-
plex analytic maps N∗ −→ P ∗+1, since this was the setting
where the most formulas were known before. The scheme
of the computation is similar to the one we used in comput-
ing Thom polynomials (see Rimanyi, 2001), with an essential
difference that here we need to compute nontrivial incidence
classes.

1. Introduction.

Consider complex analytic maps f : M∗ −→ N∗+k (k > 0). The ∗ is used
to put an emphasis on the fact that what follows will not depend on the
dimensions of the source and target manifolds, only on their differences.
For a nice enough f the closure of the r-tuple points of f in the source and
in the target determine cohomology classes mr(f), nr(f) — or simply mr,
nr. The so called multiple-point formulas are cohomological identities in the
cohomology ring of the source manifold involving these mr’s, f∗(nr)’s and
the Chern classes of the map — valid for certain f ’s. Of course, we like a
formula more if it is valid for a bigger set of maps. Such a formula is Ronga’s
result m2(f) = f∗(n1(f)) − ck(f), which is valid for most maps. Another
classical example is the Herbert-Ronga formula ([H], [Ro])

mr = f∗nr−1 − ckmr−1

which is valid only for immersions. In the 80’s and 90’s it turned out that
the Herbert-Ronga formulas can be “corrected” (by adding additional terms
involving ci’s for i > k) so that the new formulas hold for a bigger set of
maps — maps of corank ≤ 1.

The concrete determination of these formulas was a hot area in enumera-
tive algebraic geometry — partly for their own beauty, partly because they
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can be used to obtain other enumerative geometric results, such as e.g., in
[C1], [C2], [Ka1], [Ka2], [J]. The modern history of the subject began
with works of Laksov, Fulton and Le Barz. The best results are achieved
by the two main approaches — i.e., iteration and Hilbert-scheme — of S.
Kleiman ([K1], [K2], [K3], [K4], see also [Ka2]) whose papers also contain
historical remarks and summaries of how these formulas yield old and new
algebraic geometric formulas.

The multiple-point formulas can be considered as the Thom polynomials
of multi-singularities (though they are not polynomials). In this paper we
show that the approach which turned out to be very powerful in computing
(ordinary) Thom polynomials is also capable to find multiple-point formulas.
There, and here also, a part of the computation is the determination of
certain “incidence (cohomology) classes” (see [R]). In fact, the situation
here is more difficult, since in the case of Thom polynomials we only had
to deal with incidence classes trivially 0 (for geometrical reasons), but in
the case of multiple-point formulas we have to compute nontrivial incidence
classes. Their computation for the corank 1 singularities leads to the results
of [K4] and [Ka2]. We can, however, compute incidence classes involving
higher corank singularities, and these lead us to some modification of Katz’
last formula (now valid not only for corank 1 maps) and some new results.

As we mentioned, the recent research in this area used the techniques of
algebraic geometry. Here we use the techniques of “global singularity the-
ory” (= singularity theory + differential topology), the great invention of
Szűcs, see the introduction and references in [RSz]. Therefore the reader is
advised to get some familiarity with the generalized Pontryagin-Thom con-
struction (gPTc) [RSz] and its application of computing Thom polynomials
[R].

The author is grateful to T. Ohmoto and L. Fehér for helpful discussions,
and to OTKA T029759 and FKFP 0226/99 for support.

2. Main results.

Following works of Kleiman, Katz [Ka2] proved the following result.

Theorem 2.1. There exist polynomials pi such that for maps f : M∗ −→
N∗+1 of corank ≤ 1 the following formulas hold modulo torsion

mr = f∗nr−1 +
r−1∑
i=1

(−1)ipi(c(f))mr−i.(1r)

So the pi’s are multivariable polynomials evaluated at the Chern classes
c(f) = c(f∗TN − TM) = f∗c(N)/c(M) of the map.

Since in algebraic geometry some classes are counted with natural mul-
tiplicities, so Kleiman’s and Katz’s mr is (r − 1)! times ours, and their
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f∗f∗(mr) is r! times our f∗(nr). Kleiman also proves so called refined for-
mulas, which assert that the formulas (1r) really hold, not only modulo
torsion.

We will present a new method which reduces the problem of calculating
pi’s to solving linear equations. Using this method we will find the following
polynomials:

p1 = c1
p2 = c2
p3 = c1c2 + 2c3
p4 = c21c2 + c22 + 5c1c3 + 6c4
p5 = c31c2 + 3c1c22 + 9c21c3 + 8c2c3 + 26c1c4 + 24c5
p6 = c41c2 + 6c21c

2
2 + 2c32 + 14c31c3 + 37c1c2c3 + (56− t)c23 + tc2c4

+71c21c4 + 154c1c5 + 120c6
p7 = c51c2 + 10c31c

2
2 + 10c1c32 + 20c41c3 + 105c21c2c3+

32c22c3 + (362− u1)c1c23 + 155c31c4+
u1c1c2c4 + (408− u2)c3c4 +580c21c5 + u2c2c5 + 1044c1c6 +720c7

etc.

Remark 2.2. The polynomials p1–p6 appeared in [K4] and [Ka2] with a
particular value (42) of the parameter t (in p6). Here we state that the
formulas hold with any value of t, u1, u2. Of course, this uncertainty of the
polynomials is not a surprise, since the Thom polynomial of the singularity
III2,2 (the simplest of Thom-Boardman type Σ2) is c23 − c2c4. This explains
the presence of the parameter t. This, and the Thom polynomial of the
singularity I2,2 (the second simplest of type Σ2) — i.e., c1c23 − c1c2c4 +
2c3c4 − 2c2c5 (see [R]) — together explains the presence of the parameters
u1, u2. Indeed, u1 corresponds to c1 · T.P.(III2,2) and u2 corresponds to
(T.P.(I2,2)−c1 ·T.P.(III2,2))/2. These parameters t, u1, u2 will take concrete
values if we allow the map f to have more difficult singularities (namely
III2,2, I2,2), as follows.

Theorem 2.3. The above formulas hold if f is allowed to have III2,2 and
I2,2 singularities, with the following values of the parameters in p6, p7

t = 43, u1 = 281, u2 = 278.

Of course, allowing a bigger set of maps would be a more spectacular
result — and in fact we can allow the maps to have more complicated singu-
larities. Our method, however, works like a test: One can ask, whether the
formulas hold if we allow also singularity η, then we make some algebraic
calculation with η and answer either yes or no. In fact, for any (stable)
singularity the author tried the answer is yes, the formulas hold, therefore
here we conjecture that the above formulas hold for any stable maps. The
singularities III2,2 and I2,2 are special in the theorem because they are needed
to compute the values of the parameters: Allowing III2,2 sets the value of
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t = 43 and the linear equation u2 = 2u1 − 284. Allowing also I2,2 sets the
values of u1 and u2.

3. A short review on gPTc.

In this section we give a brief review on the generalized Pontryagin-Thom
construction which was invented decades ago by A. Szűcs.

Let k > 0 (in our application k = 1) be fixed and consider the set of all
stable germs (C∗, S) −→ (C∗+k, 0) where S is any finite set. Divide this set
by the equivalence relation generated by right-left equivalence (permutation
of the elements of S are allowed) and trivial unfolding (i.e., adding irrelevant
coordinates to the source and to the target). The equivalence classes will be
called multi-singularities, or singularities (mono-singularity if |S| = 1). Each
singularity has a prototype (defined up to right-left equivalence) such that
any other germ of the same singularity is right-left equivalent to an appro-
priate trivial unfolding of it. The source dimension of the prototype is called
the codimension of the singularity. For example, the mono-singularities for
k = 1 up to codim 10 is given in the following table (with their Thom-
Boardman class):

codim Σ0 Σ1 Σ2,0

0 A0

1
2 A1

3
4 A2

5
6 A3 III2,2

7 I2,2

8 A4 III2,3

9 I2,3

10 A5 III2,4 III3,3

Here Ai is the unique singularity of Thom-Boardman class Σ1i (i.e., the one
with local algebra C[[x]]/(xi+1)). For the singularities with local algebras

C[[x, y]]/(xa, yb, xy), C[[x, y]]/(xa + yb, xy)

we adapted Mather’s notation IIIa,b and Ia,b, respectively.

We can define the usual hierarchy of singularities: η is more complicated
than ζ (η > ζ) if near 0 in the target of a representative of η there is
necessarily a ζ point y, i.e., the representative at f−1(y) is from ζ. (This is
the obvious definition in the case where there is no moduli, so for the sake
of simplicity we will stay in that region.)
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Let τ be an ascending (ζ < η, η ∈ τ ⇒ ζ ∈ τ) set of singularities. A
map f : Nn

0 −→ Nn+k
1 is called a τ -map if for every y ∈ f(N0) the map

f near f−1(y) has singularity from τ . For example, {A0}-maps are the
embeddings, {rA0}r=1,2,...-maps are the immersions, or if τ contains finite
linear combinations of Ai’s (i = 0, 1, 2, . . . ) then we call a τ -map a Morin-
map or a corank 1 map.

In (local) singularity theory one can write up “normal forms” of (pro-
totypes of) singularities. Here we will present a “global normal form” of
singularities as follows. For simplicity we give it for a mono-singularity η
with prototype κ : (Cn, 0) −→ (Cn+k, 0). One can consider the maximal
compact subgroup of

Autκ = {(ψ, φ) ∈ Diff(Cn, 0)×Diff(Cn+k, 0) | φ ◦ κ ◦ ψ−1 = κ}.

Denote it by Gη. It comes with two representations λ0, λ1 on the source
and the target spaces (which are linear if κ is well chosen from its right-
left equivalence class). Now associate vector bundles ξ0(η), ξ1(η) with the
universal principal Gη-bundle using these representations. It can be easily
checked that one has a fibrewise map from the total space of ξ0 to the total
space of ξ1 which is (right-left equivalent to) κ in each fibre. We call this
map fη the global normal form of η.

It is showed in [RSz] that using the global normal forms of the singulari-
ties from τ one can put together a “universal τ -map” fτ : X0τ −→ X1τ —
from which any τ -map can be pulled back in a certain, more-or-less unique
way. A consequence of its “universality” is that whenever a cohomological
identity holds for fτ it must hold for all τ -maps.

Of course, the cohomological structure of e.g., X0τ is not clear. The way
we can check a cohomological identity for fτ has two levels: (1) If we know
the “structure” of the identity, and only concrete coefficients are missing,
then we can restrict it to the zero sections K0(η) of the global normal form
of η. Usually the computations can be carried out easily there. (2) If we also
need to prove the identity for fτ then we need a Mayer-Vietoris argument,
which is usually easy in the complex case, for more details see [R].

4. Morin singularities.

The prototype of the Morin singularity Ai in the case M∗ −→ N∗+1 is the
miniversal unfolding of the map (C1, 0) −→ (C2, 0), x 7→ (xi+1, 0), namely

(x, y1, . . . , yi−1, z1, . . . , zi)

7→

xi+1 +
i−1∑
j=1

yjx
j ,

i∑
j=1

zjx
j , y1, . . . , yi−1, z1, . . . , zi

 .
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The maximal compact symmetry group is U(1)×U(1) with the representa-
tion λ0 = ρ1 ⊕ ρV , λ1 = ρi+1

1 ⊕ ρ2 ⊕ ρV , where

ρV =
i−1⊕
j=1

ρi+1−j
1 ⊕

i⊕
j=1

(ρ1 ⊗ ρ2).

Here ρ1, ρ2 are the standard 1-dimensional representations of the 1st and
2nd factor of U(1)× U(1), and the powers mean tensor powers.

Now we compute the Chern classes of the map fτ restricted to K0(Ai):

c(fτ)|K0(Ai) =
f∗c

(
T (BGAi)⊕ ξ1(Ai)

)
c
(
T (BGAi)⊕ ξ0(Ai)

) =
c(f∗(ξ1(Ai)))
c(ξ0(Ai))

=
(1 + (i+ 1)a)(1 + b)

1 + a

= 1 + (ia+ b) + (−ia2 + iab) + (ia3 − ia2b) + · · · .

It seems to be a more difficult subject to computemr(fτ) (= the Poincaré-
dual of the fundamental homology class carried by the closure of K0(rA0))
restricted to K0(Ai). This is called the incidence class I(rA0, Ai) of the
singularities rA0 and Ai in [R]. Of course, this is trivially zero if r > i+ 1,
since in this case there are no r-tuple points near Ai. It is interesting, that
the analogue of this easy observation was enough when computed Thom
polynomials, but it is not enough here.

Lemma 4.1.

mr|K0(Ai) =
(

i

r − 1

)
(b− a)(b− 2a) · . . . · (b− (r − 1)a)

fτ∗(nr)|K0(Ai) =
(
i+ 1
r

)
b(b− a)(b− 2a) · . . . · (b− (r − 1)a).

Let us concentrate on the computation of mr|K0(Ai) = I(rA0, Ai) first.
Since this is the first nontrivial incidence class computation, before giving
the complete proof let us discuss easier special cases.

Consider the special case of i = 2. A prototype of A2 is

(x, y, z1, z2) 7→ (x3 + yx, z1x+ z2x
2, y, z1, z2),

with the maximal compact symmetry group U(1)× U(1) acting as

κ : α⊕ α2 ⊕ αβ ⊕ α2β and α3 ⊕ β ⊕ α2 ⊕ αβ ⊕ α2β

(α, β are the standard representations of the first and second U(1), products
are meant to be tensor products). Easy analysis of κ shows that the closure
of the triple point set (in the source) is z1 = 0, z2 = 0. Considering this set
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in each fibre of ξ0(A2) we get a subbundle ξ, so

m3|K0(A2) = [cl K0(3A0)]|K0(A2) = e(ξ0(A2)/ξ)

= top
(
(1 + b− a)(1 + b− 2a)

)
= (b− a)(b− 2a).

This easy method works if the (closure of the) r-tuple point set of the proto-
type is smooth at 0. This is hardly ever the case. E.g., the (closure of the)
double point set of the same κ has the equation z2

1 +yz2
2 = 0. Although it is

not smooth at 0, its tangent cone z2
1 = 0 is a linear space with multiplicity

2, so the Euler class of the subbundle corresponding to z1 in ξ0(A2) has to
be counted twice: m2|K0(A2) = 2(b− a).

This last computation relied on our ability to write up the (scheme the-
oretically) “correct equation system” for the r-tuple point set (with the
appropriate number of equations). This seems to be impossible in general,
already in the r = 3, i = 3 case. However we can easily give a parameteriza-
tion (a desingularization) of the r-tuple point set, which gives us a complete
proof.

Proof. Consider the map g : C2i −→ C2i+1

(x, y1, . . . , yi−1, z1 . . . , zi)

7→

xi+1 +
i−1∑
j=1

yjx
j ,

i∑
j=1

zjx
j , y1, . . . , yi−1, z1, . . . , zi


which is a (representative of a) prototype of Ai. Let the first two coordinate
functions —as functions of x — be denoted by e1(x) and f1(x) The natural
parameterization of the closure of the double point set would come from
{(u, v) ∈ C2i×C2i | g(u) = g(v)}, but of course there is no need to “double”
the unfolding parameters y1, . . . , yi−1, z1, . . . , zi. Also, we have to get rid of
the diagonal component, so we consider the set{

(x1, x2, y1, . . . , yi−1, z1, . . . , zi) | e2(x1) :=
e1(x1)− e1(x2)

x1 − x2
,

f2(x1) :=
f1(x1)− f1(x2)

x1 − x2

}
.

On one hand this set is smooth — it is a graph of a map (x1, x2, y2, . . . , yi−1,
z2, . . . , zi) 7→ (y1, z1), on the other hand forgetting x2 it projects to the
closure of the double point set of g. So we get the following desingularization
of the closure of the double point set:

(x1, x2, y2, . . . , yi−1, z2, . . . , zi) 7→ (x1, Y1, y2, . . . , yi−1, Z1, z2, . . . , zi),

where the function Y1 is from −xi
2 + m(x1, y2, . . . , yi−1, z2, . . . , zi) and the

function Z1 is from m(x1, y2, . . . , yi−1, z2, . . . , zi). Here m denoted the max-
imal ideal in the function algebra in the variables given in brackets. Now
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it can be easily read off that the tangent cone of the closure of the double
point set is the subspace spanned by the coordinates

(x1, y1, . . . , yi−1, z2, . . . , zi)

with multiplicity i. So we get that

m2|K0(Ai) = i · e(the subbundle of ξ0(Ai) corresponding to z1) = i(b− a).

Now we turn to the closure of the triple point set, so we consider{
(x1, x2, x3, y1, . . . , yi−1, z1, . . . , zi) | e2(x1), f2(x1),

e3(x1) :=
e2(x1)− e2(x3)

x1 − x3
, f3(x1) :=

f2(x1)− f2(x3)
x1 − x3

}
.

This is again smooth — a graph of a map to the coordinates y1, z1, y2, z2 —,
and parametrizes the closure of the triple point set by forgetting x2 and x3.
By calculation we get that the closure of the triple point set is parametrized
by

(x1, x2, x3, y3, . . . , yi−1, z3, . . . , zi)

7→ (x1, Y1, Y2, y3, . . . , yi−1, Z1, Z2, z3, . . . , zi),

where the functions Z1, Z2 are zero — modulo m(x1, y3, . . . , yi−1, z3, . . . , zi)
and the functions Y1, Y2 are homogeneous degree i and i − 1 polynomials
in x2, x3 — modulo the mentioned maximal ideal. Again, we can read off
that the tangent cone of the closure of the triple point set is the subspace
spanned by the coordinates

(x1, y1, . . . , yi−1, z3, . . . , zi)

with multiplicity i(i− 1). So we get that

m3|K0(Ai) =
i(i− 1)

2
· e(the subbundle of ξ0(Ai) corresponding to z1, z2)

=
(
i

2

)
(b− a)(b− 2a).

Going on like this we obtain a (degree (r − 1)!) parameterization of the
closure of the r-tuple set as

(x1, . . . , xr, yr, . . . , yi−1, zr, . . . , zi)

7→ (x1, Y1, . . . , Yr−1, yr, . . . , yi−1, Z1, . . . , Zr−1, zr, . . . , zi),

where the functions Z1, . . . , Zr−1 are in the maximal ideal generated by the
coordinates x1, yr, . . . , yi−1, zr, . . . , zi, while Y1, . . . , Yr−1 are homogeneous
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degree i, i − 1, . . . , i − r + 2 polynomials in x2, x3, . . . , xr. So the sought
incidence class mr|K0(Ai) is

i(i− 1) . . . (i− r + 2)
(r − 1)!

· e(the subbundle of ξ0(Ai) corresponding

to z1, . . . , zr−1) =
(

i

r − 1

)
(b− a)(b− 2a) . . . (b− (r − 1)a),

which was to be proved.

To prove the second equality we use the Gysin push-forward f∗ in coho-
mology, and its well-known property f∗f∗v = v ∪ f∗1 for all v. Let us apply
this for f = f(Ai), and pull it back by f :

f∗f∗
(
f∗v

)
=

(
f∗v

)
∪ f∗(n1).

Since f∗ is isomorphism, we can put any cohomology class for f∗v, e.g., mr:

f∗f∗mr = mr ∪ f∗n1.

The left hand side is clearly r · f∗nr and f∗(n1) = (i + 1)b (with the same
method — it is given by parameterization). This implies the second equality.

�

As an example let us show how to compute p1. This must be weighted
homogeneous of degree 2, so it is a constant A times c1. Consider the first
multiple-point formula m2 = f∗n1−Ac1m1 for f = fτ (with τ large enough
to consist A0) and restrict it to K0(A0). According to Lemma 4.1 and the
Chern-class computation above it, the restrictions of m2, f∗n1 and c1(fτ)
to K0(A1) are

(
0
1

)
(b − a),

(
1
1

)
b, b respectively. So our formula reduces to

0 = b − A · b ∈ H1(BGA0) = Z[a, b] (the equality is meant modulo torsion,
but there is no torsion at all here). So A = 1, i.e., p1 = c1.

To compute p2 = Ac21 + Bc2 we proceed similarly. Knowing the re-
sult above, restrict the triple point formula m3 = f∗n2 − c1m2 + (Ac21 +
Bc2)m1 (applied to fτ , where τ big enough to consist A1) to K0(A1). Using
Lemma 4.1 and the Chern-class computation above it again, we get(

1
2

)
(b− a)(b− 2a) =

(
2
2

)
b(b− a)− (a+ b)

(
1
1

)
(b− a)

+
(
A(a+ b)2 +B(−a2 + ab)

)
∈ Z[a, b],

which gives an (overdetermined) system of linear equations on A,B, with
the unique solution A = 0, B = 1. Therefore p2 = c2.

To obtain the next polynomial p3 = Ac31 +Bc1c2 +Cc3 we use the values
of p1, p2 just computed and restrict formula (14) (applied to an appropriate
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fτ) to K0(A2). We get the equation

0 = b(b− a)(b− 2a)− (3a+ b)(b− a)(b− 2a) + (−3a2 + 3ab)2(b− a)

−
(
A(3a+ b)3 +B(3a+ b)(−3a2 + 3ab) + C(3a3 − 3a2b)

)
in Z[a, b] which leads to an (overdetermined) system of linear equations with
the unique solution A = 0, B = 1, C = 3, so p3 = c1c2 + 3c3.

We can go on like that: When trying to compute pi we use the already
computed pj ’s (j < i) and restrict formula (1i+1) (when applied to an ap-
propriate fτ) to K0(Ai−1). We obtain a system of linear equations on the
coefficients of pi. From i = 6 the solution is not unique, contains a certain
number of parameters — at which we are not surprised, see Remark 2.2.

Remark 4.2. By now it is clear how to compute the polynomials pi, once
we know that formula (1r) holds (for corank 1 maps) with some polynomials.
Of course, our method is also capable to prove that the formulas, with the
computed polynomials really hold for corank 1 maps. For this we need to
check three things.

First that they hold if restricted to K0(Ai) for any i, not just the small
ones we used when determined the coefficients. This can be done individu-
ally (e.g., for (12) we need to check that i(b−a) = (i+1)b−(ia+b) holds for
any i), or using a general argument, based on the fact that if a polynomial
(in i) vanishes in i = 0, 1, . . . , deg, then it vanishes for greater i’s, too, since
it must be the 0 polynomial.

Secondly we need to check that the formulas hold restricted to K0(η)’s,
where η is a linear combination of Ai’s. The method we used in [R] (when
dealing with immersion formulas) shows that modulo torsion this task can
be reduced to verifying the formulas restricted to K0(ζ)’s, where the ζ’s are
the mono-singularities occurring in η.

Thirdly we need to use a Mayer-Vietoris argument to deduce the follow-
ing: If e.g., (1r) hold restricted to all blocks in X0τ then it holds in the
cohomology of X0τ , too. In the complex case these arguments are easy, see
[R].

5. Singularities of higher corank.

Now consider the simplest singularity —denoted as III2,2 by Mather — of
Thom-Boardman class Σ2,0, i.e., the one with local algebra C[[x, y]]/(x2, y2,
xy). Its prototype is the miniversal unfolding of (x, y) 7→ (x2, y2, xy). From
this we can see that the maximal compact symmetry group GIII2,2 is U(2).
So, according to our procedures we should now look for a miniversal unfold-
ing which admits U(2) as a (right-left linear) symmetry group. Of course,
such a prototype could be given, but the calculation is much simpler if we
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choose

κ : (x, y, u1, u2, v1, v2) 7→ (x2 + u1x+ u2y, y
2 + v1x+ v2y, xy, u1, u2, v1, v2)

as our prototype. On this germ only U(1) × U(1) (the maximal torus of
U(2)) acts linearly, with the representations

λ0(III2,2) = α⊕ β ⊕ µV λ1(III2,2) = α2 ⊕ β2 ⊕ αβ ⊕ µV

where µV = α⊕α2β ⊕αβ2 ⊕ β (α, β are the standard 1-dimensional repre-
sentations of the first and the second U(1)). The reduction of the maximal
symmetry group to a smaller one usually causes loss of information, but not
now, as we will see below.

To obtain the equation of the (closure of the) double point set

{(x, y, u1, u2, v1, v2) | ∃(x1, y1) 6= (x, y) s.t.

κ(x, y, u1, u2, v1, v2) = κ(x1, y1, u1, u2, v1, v2)}

in the source of κ let λ be x1/x = y/y1, i.e., let x1 = λx, y1 = 1
λy. Then the

equation of the double point set is the resultant of the two polynomials

κ1(x, y)− κ1(λx, 1
λy)

(λ− 1)
,

κ2(x, y)− κ2(λx, 1
λy)

(λ− 1)
.

These two polynomials are (by calculation)

λ2(−x2) + λ(−u1x− x2) + (u2y), λ2(−v1x) + λ(v2y + y2) + (y2).(∗)

Their resultant (after getting rid of the “false” factor x2y2) is

− (v1x3 + u2y
3)− (v2x2y + u1xy

2)− (2u1v1x
2 + 2u2v2y

2)

− (u1v2xy)− (3v1u2xy)− (u2
1v1x+ u2v

2
2y)

− (u2v1v2x+ u1u2v1y) + (u2
2v

2
1)− (u1u2v1v2).

This set coincides with its own tangent cone, which is now not a linear
space (with multiplicity), so we cannot use the methods above to compute
the cohomology class m2 represented by the double points of the map fκ :
ξ0 −→ ξ1 (recall that ξ0, ξ1 are vector bundles over U(1)× U(1) associated
with the universal principal U(1) × U(1)-bundle using the representations
λ1, λ2, and the map is fibrewise equivalent to κ). Our method now is the
following. The class sought is from H2(BU(1) × BU(1)) = Z ⊕ Z, so it
is Aa + Bb, where a and b correspond to the two U(1)’s. Let us consider
a 2-cycle in BU(1) × BU(1), on which a takes the value 1, by abuse of
language let us call this 2-cycle also a. If we calculate the value of m2 on
this 2-cycle, we get the coefficient A. Let us take a general perturbation of
a in ξ0. Then the coefficient A above will be the intersection number of this
perturbation and the (closure of the) double-point locus of fκ. However we
can make this perturbation in a special way: We can lift a in a universal
direction (not contained in the double-point locus) everywhere but in one
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point. The lifting will have a boundary over this point – the image of S1 ⊂ C
under the map: z 7→ (z, 1, z, z2, z, 1) – see the representation λ0(III2,2). To
obtain a complete lifting (perturbation) of a, we have to extend this map
from S1 to the disc. This way we achieved that the intersection number
of the double point locus and (a perturbation of) a is to be counted in
one fibre. Indeed we only have to calculate the intersection number of the
curve D2 −→ C6, z 7→ (z, 1, z, z2, z, 1) and the double point locus, which is
given by an equation above. To get this we substitute x = z, y = 1, u1 =
z, u2 = z2, v1 = z, v2 = 1 in the equation. We get z2(|z|4 − 10|z|2 − 7) = 0.
Since we can clearly get rid of the second factor by a small perturbation, we
obtain that the intersection number is (so A equals to) 2. Very similarly,
we substitute x = 1, y = z, u1 = 1, u2 = z, v1 = z2, v2 = z into the same
equation and we get that B = 2. So the double point cohomology class
represented by the double point locus of fκ is 2a+ 2b.

Remark 5.1. Technically what happened is that we calculated the equa-
tion of the double point locus in one fibre and — in some sense — we
“substituted the representation” λ0 for the variables (the value of A and B
could have been obtained this way together). Of course, this method works
for the singularities Ai above, too.

Now let us deal with the (closure of the) triple point set. This is given by
the condition that the two equations in (∗) have two common roots. This is
equivalent to saying that the matrix(

−x2 −u1x− x2 u2y
−v1x y2 + v2y y2

)
has rank ≤ 1. If this variety (in fact its ideal) were given by 2 equations
then we could follow the same procedure as above. This is not the case, but
there are ways to work with these kind of determinantal varieties. An easy
way which works here is that we can write it as a difference of two varieties
both given by two equations.{

det
(
−x2 −u1x− x2

−v1x y2 + v2y

)
, det

(
−u1x− x2 u2y
y2 + v2y y2

) }
\ { −u1 − x, y + v2}.

Now we can “substitute the representation λ0(III2,2)” into these equations
and obtain that the cohomology class represented by the (closure of the)
triple point locus of fκ is (2b)(2a)− ab = 3ab.

Since there are no quadruple points near the singularity III2,2, the coho-
mology classes corresponding to multiple points of fκ are as follows

m1 = 1, m2 = 2a+ 2b, m3 = 3ab, m≥4 = 0.

Again, we can use the Gysin homomorphism to obtain from this classes the
cohomology classes corresponding to multiple points in the target (pulled
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back), just as we did in case of Ai singularities. We get that f∗κ(nr) =
1/r · 4(a+ b)mr, that is

f∗κ(n1) = 4(a+ b), f∗κ(n2) = 4a2 + 8ab+ 4b2,

f∗κ(n3) = 4a2b+ 4ab2, f∗κ(n≥4) = 0.

We also need the total Chern class of the map fκ, which can be read from
the representations λ0(III2,2), λ1(III2,2) as follows

(1 + 2a)(1 + 2b)(1 + a+ b)
(1 + a)(1 + b)

= 1 + (2a+ 2b) + (3ab) + (−a2b− ab2) + (a3b− a2b2 + ab3)

+ (−a4b+ a3b2 + a2b3 − ab4) + · · · .

Now we have everything to substitute into the formulas (1r). Concrete
calculation shows that (1r) holds for f = fκ if r = 1, 2, 3, 4, 5; (16) holds if
and only if t = 43 and (17) holds if and only if in addition u2 = 2u1 − 284.

Recall that the whole maximal symmetry group of a prototype of III2,2

is U(2) and we worked only with its maximal torus U(1)×U(1), and found
that some formulas hold in H∗(BU(1) × BU(1)). However these formulas
are the natural images of the analogous formulas for in H∗(BU(2)), and
the map H∗(BU(2)) −→ H∗(BU(1) × BU(1)) induced by the inclusion
U(1)×U(1) ⊂ U(2) is injective. So we can also conclude that formulas (1r)
r = 1, 2, . . . , 7 hold with t = 43, u2 = 2u1 − 284 in the cohomology of the
base space of the global normal form of III2,2.

This means that if a formula like (1r) holds for maps with III2,2 singularity
then they must have the mentioned coefficients. To argue that they really
hold for every map not having worse singularity than III2,2 we would need
that these formulas hold restricted to the base spaces of the global normal
forms of multi-singularities, where the multi-singularity is put together from
mono-singularities not worse than III2,2. Easy cohomological analysis shows
that if a formula holds in the base spaces of the global normal form of
some mono-singularities, then the analogous formula holds (at least modulo
torsion) in the base space of the global normal form of a multi-singularity
put together from these mono-singularities.

According to the universal property of the gPTc this means that formulas
(1r) for r = 2, 3, 4, 5, 6(t = 42), 7(u2 = 2u1 − 284) hold for any map not
having more complicated singularity than III2,2.

Now, if we want to set the value of the parameter u1 (and so u2) we need
to go through the analogous procedure with the stable singularities of codi-
mension 7. In fact there is only one such, the one denoted by Mather as I2,2
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(it is defined by its local algebra C[[x, y]]/(xy, x2 +y2)). Recall that the pro-
cedure involves the following: Determination of the maximal compact sym-
metry group (or in some cases at least its maximal torus), its representations
on the source and target spaces — then we have the global normal form.
From this we can compute the total Chern class (basically c = c(λ1 − λ0)).
More difficult is the determination of the cohomology classes represented by
the multiple points — i.e., the incidence classes I(rA0, I2,2). However, the
methods we used in the case of Ai, III2,2 are sufficient to go through the
calculation with I2,2 (which we omit here), and get that

the total Chern class =
(1 + 2a)(1 + 2b)(1 + c)

(1 + a)(1 + b)
∈ Z[a, b, c] and

m1 = 1, m2 = 3c− a− b,

m3 = 3c2 − 3(a+ b)c+ 3ab, m4 = (c− a)(c− b)(c− a− b).

As above we can substitute these values, and prove Theorem 2.3.

6. Remarks.

Let us make some remarks. First it would be nice to prove the so called
refined formulas of Kleiman [K4] with our method, i.e., proving the multiple-
point formulas without the comment “modulo torsion”. Although this does
not seem to be impossible, we should make a much finer cohomologial anal-
ysis, already in the case of immersion formulas — so cohomologies of the
symmetric groups will get in the picture.

Another interesting question is the existence of analogous multiple-point
formulas over the reals. The prototype of these formulas has been found by
Szűcs in [Sz2] and [Sz3]. The fact is that our formulas can be translated
blindly to the real world (ci 7→ wi) with the only difference that f∗(nr),
which does not make sense there should be replaced by suitable “linking
cohomology class”, more details in a subsequent paper.

In [R] we computed Thom polynomials of mono-singularities no matter
how complicated they are. Here we computed “Thom polynomials” of multi-
singularities, whose mono-terms are all the simplest ones: A0. So there is
gap in between. One should understand and compute the Thom polynomials
of multi-singularities of type, e.g., A1 + A1, 2A0 + 3A1 + III2,2, etc. The
author believes that these problems also can be attacked by the method
presented in this paper.
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