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A theorem of Marc Frantz about controlled continuous ex-
tensions of functions inspired us to prove a general result con-
cerning boundary avoiding continuous selections into Banach
spaces, which has Frantz’ theorem as a corollary. In addition,
with relatively simple means we improve upon some other re-
sults of Frantz involving extensions of products and of disjoint
families of functions.

1. Introduction.

The following two extension theorems are presented in Frantz [3]. Let I
denote the interval [0, 1].

Theorem 1. Let X be a normal space, let A be a closed subset of X, and
let Yo, Y1 be disjoint closed Gg-subsets of X. If f : A — I is a continuous
function such that fori = 0,1, f~1(i) = Y;N A then there exists a continuous
extension f : X — I of f with f~1(i) =Y; fori=0,1.

Theorem 2. Let X be a compact metric space and let A be a closed subset
of X. If f:A—-R,g: A—[0,00), and h : X — R are continuous func-
tions such that f - g = h|A and g=1(0) C f=1(0) then there are continuous
extensz’onsf:X —Rand §g: X — [0,00) of f and g wz’thf-gz h.

We present a general result (Theorem 4) about boundary avoiding contin-
uous selections that has Theorem 1 as a corollary. We also give a very simple
argument that shows that Theorem 2 is valid without any restrictions on the
domain X other than the necessary normality (see Corollary 8). In addition,
with Corollary 12 and Example 3 we sharpen a result in [3] concerning the
extension of pairwise disjoint collections of functions.

All spaces in this paper are assumed to be Tychonoff.

2. Boundary avoiding continuous selections.

If Y is a set then 2¥ = P(Y)\ {#}. Let X and Y be topological spaces
and let ¢ : X — 2Y be a set-valued function. If A C Y then we put
oA = {z € X : p(z) N A # 0}. The function ¢ is called lower semi-
continuous (LSC for short) if for each open set O in Y the set ¢~1[0] is
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open in X. A function f: X — Y is called a selection of ¢ if f(z) € p(z)
for every x € X. If Y is a metric space then we call ¢ bounded if there is an
M > 0 such that the diameter of every ¢(z) is less than M.

Let (B, | - ||) be a Banach space and let € > 0. Let U, denote the open
e-ball {y € B : ||y| < e}. If C is a subset of B then int C' denotes the
interior of C' in B and if € > 0 then we put

int.C={yeB:y+U. CC}.

Note that int. C' is always closed and that if C' is convex then so is int. C.
A space X is called countably paracompact if every countable open cover
of the space has a locally finite open refinement that covers the space. For
normal spaces this property is equivalent to the property that for every
increasing sequence U; C Uy C ... of open sets with |J;2, U; = X there
exist a sequence Fi, Fy, ... of closed sets such that F; C U; for i € N and
U2, Fi = X, see [2, Corollary 5.2.2]. Spaces that are normal but not
countably paracompact are known as Dowker spaces, see Rudin [6].

Lemma 3. Let X be a normal space, let B be a Banach space, let C be a
convex subset of B, let ¢ : X — 2¢ be LSC and bounded such that every
o(x) is closed and convex in B, and let Fy, Fs,... be a sequence of closed
subsets of X such that F,, C gofl[intl/n C] for each n € N.

(a) If B is separable and every ¢(x) is compact, or
(b) if B is separable and X is countably paracompact, or
(c) if X is paracompact
then there is a continuous selection f of ¢ with f(F,) C int C for each n.

Proof. We may assume that F,, C F,y; for every n. Put Fy = 0 and
A=X\U;2, F.. Let M > 1 be an upper bound for the diameters of the
¢(z)’s. For n € N put 6(n) = 1/(Mn?) and C, = ints,) C. We define a
function v : X — 2¢ as follows:

) (), if x € A;
vle) = {(,0($) NCy, ifzeFy\ Fyy.

Note that since int. C is closed and convex, every 1(z) is closed (and in case
(a) compact) and convex. If ¢ is LSC then according to Michael [5] it has a
continuous selection f which obviously has the property f(F,) C C, C int C
for each n € N.

It remains to prove that 1 is LSC. Let O be open in B and let x € ¢~1[O].
Select a vector a € ¥(z) N O. In order to prove that = is an interior point of
1~ O] we distinguish two cases:

Casel. = ¢ A. Let n € N be such that x € F,,\ Fj,—1. So ¢(z) = p(z)NC,
and a € ¢(x)NC, NO. Since by assumption F,, C go_l[intl/n C] we can find
a vector b € ¢(x)Ninty , C. Since 1/n > §(n) we have b € int,,, C C int C,,
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and hence b+ U. C C,, for some € > 0. Let ¢ € (0, 1] and note that by the
convexity of Cy, we have a+t(b—a)+ U C C,,. Note that a € O so for some
small enough ¢ € (0, 1] the vector ¢ = a+t(b—a) is in ONint C),. By convexity
of ¢(z) we have ¢ € p(x). Define the open set U = ¢~ {0 Nint Cy,] \ F,—_1.
Note that x € U. If y € U then there is a d € O N ¢(y) Nint C,. Since
y ¢ F,,—1 we have p(y) N C,, C ¥ (y) and hence d € O N(y). Conclusion:
y € O] and U C ¢~ YO].

Case Il. x € A. Let n € N be such that a + Uy, C O. Define the open
set U = ¢ a4 Uy \ Fp. Since z € A we have z € U. Let y € U and
select b € p(y) such that ||b —al < 1/n. If y € A then ¢(y) = ¢(y) and
obviously y € ¥~1[0]. So we may assume that y € F,, \ F,,_1 for some
m > n. Since F,, C go_l[intl/m C] we can find a vector ¢ € ¢(y) Ninty /, C.
So ¢+ Uy CCand b € p(y) C C. Put t = 1/(Mm) and note that by the
convexity of C' we have b+t(c —b) + Uy, CC. Sod=b+t(c—0b)isin
int; ), C = Cy,. Note that since b and c are in ¢(y) we have [c —b]| < M
and hence ||d — b|| < tM = 1/m < 1/n. Also, by convexity of ¢(y) we
have d € ¢(y). So the distance between d and a is less than 2/n and hence
d € ONp(y)NCy = ONY(y). Conclusion: y € Y~ 1O]and U C ¥~0]. O

Theorem 4. The following statements are equivalent:

(1) X is a normal and countably paracompact space.

(2) For every separable Banach space B, every convex subset C of B, every
LSC function ¢ : X — 2¢ such that each o(z) is compact and convex
in B, and every A C ¢~ [int C] that is an F,-subset of X there ewists
a continuous selection f of o with A C f~ (int C) C p~![int C].

(3) For every separable Banach space B, every convex subset C of B, every
LSC function ¢ : X — 2% such that each p(x) is closed and convez in
B, and every A C ¢~ [int C] that is an F,-subset of X there exists a
continuous selection f of ¢ with A C f~1(int C) C ¢~ ![int C].

Theorem 5. The following statements are equivalent:

(1) X is a paracompact space.

(2) For every Banach space B, every convex subset C of B, every LSC
function ¢ : X — 29 such that each ¢(x) is closed and conver in
B, and every A C ¢~ [int C] that is an F,-subset of X there exists a
continuous selection f of ¢ with A C f~1(int C) C ¢~ ![int C].

Proof. We will prove both theorems at the same time. Note first that if we
substitute C' = B then we have Michael’s selection theorems so if (2) is valid
then X is normal in Theorem 4 and paracompact in Theorem 5. Note that
the implication (3) = (2) in Theorem 4 is trivial.

In order to prove that condition (2) in Theorem 4 implies that X is
countably paracompact we consider an countable, monotone open cover
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U C U C -+ of X. Put Uy = () and define the LSC function ¢ : X — 2!
by

o(x) =10,1/n] if z € U, \ Up—1 for some n € N.

Let B=R, C =1, and A = X = ¢ ![intC]. According to condition
(2) there is a continuous function f : X — (0,1) such that f(X \ U,) C
[0,1/(n + 1)] for each n € N. Then F,, = f~1([1/n,1]), n € N, is the closed
cover of X that proves countable paracompactness.

Let us now turn to proving that (1) implies (3) in Theorem 4 and that
(1) implies (2) in Theorem 5. So assume that X is normal and countably
paracompact (respectively paracompact) and let B, C, ¢, and A be as in
the hypotheses of condition (3) in Theorem 4 (respectively (2) in Theo-
rem 5). With Michael we choose a continuous selection g of ¢ and we define
a function ¢ : X — 2¢ by

() = p(x)N{a € B:lla—gx)]| <1}.

We intend to apply Lemma 3 to ¢. It is obvious that 1 is bounded and LSC
and that every v (z) is convex and compact (respectively closed). We verify
that ¢~ ![int C] = ¢~ ![int C] so that A C 1~ [int C]. Let x € ¢~ [int C]. So
there is a vector a € ¢(x) Nint C' and hence a + U, C C for some £ > 0.
Note that g(z) € ¢(x) C C and pick a t € (0,1] with t||la — g(z)|| < 1. Let
b= g(x)+(a—g(x)) € p(x) and note that [b—g(x)|| = tlla—g(z)|| < 1. By
convexity of C' we have b+ Uy C C and hence b € int C. So b € ¢(x)Nint C
and z € ¢~ [int O).

Since A is by assumption an Fj,-set we may choose a sequence Hy C Hy C

- of closed subsets of X such that | J;—,; Hy = A. For every n € N consider
the open set U,, = ¢~} [int(int; /,, C)] and note that the U,’s cover Y~ int C]
and hence A. Since X is countably paracompact, which is a closed hereditary
property, we can find for each £ € N a closed covering Kj; C Kgo C --- of
Hj, such that Ky, C U, for each n € N. If we define F,, = J;_; Ki, then
the F},’s cover A. Note that for each n € N we have F,, C U, C wil[intl/n C]
so we may apply Lemma 3 to ¢ to obtain a continuous selection f with the
property f(A) = U, f(F,) C int C. Since ¢(x) C ¢(x) for each z € X, f
is also a selection of ¢ and we trivially have f~!(int C') C o~ ![int C]. O

Theorem 1 now follows immediately from Theorem 4 with the slight flaw
that Dowker spaces are not covered. To obtain the full strength of Theorem 1
we derive it from Lemma 3:

Proof of Theorem 1. Let X be a normal space, let A be a closed subset of
X, let Yy, Y7 be disjoint closed Ggs-subsets of X, and let f : A — I be
a continuous function such that for i = 0,1, f~!(i) = ¥; N A. Choose a
continuous extension g : X — I of f such that ¢g(Y;) C {i} for i =0,1. Put
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G = g 1({0,1}) and let Hs, Hs,... be a sequence of closed subsets of X
such that (J>2 o H, = X \ (Yo UY7). We define for n > 2 the closed sets

Fu =g " ([1/n,1 = 1/n]) U (H, N G).

For the purpose of applying Lemma 3 the role of the Banach space B is
played by R and C' = I so int;/, C = [1/n,1 — 1/n]. Define the obviously
bounded LSC function ¢ : X — 2! by

if AUYyUY7y;
SO(.”L‘) — {g($)}, nre . 0 15
1, otherwise.

If z € F, then either g(z) € ¢(x) Ninty;, C or z € H, NG which means
that x ¢ Yo UY; and g(x) € {0,1}. In the second case we have = ¢ A and
¢(z) = I which implies 1/2 € ¢(z) Nint;/, C. So in either case we may
conclude that F,, C ¢~ ![int; /n C] for every n > 2. Observe that ¢ satisfies

all the hypotheses of Lemma 3 so there is a continuous selection f of ¢ such
that f(J>°, F,,) C (0,1). Note that f extends g (and f) so f(Y;) C {i}.
Let z € X\ (YoUYy). If g(z) € (0,1) then z is in some g~ 1([1/n,1 —1/n))
and if g(x) € {0,1} then z is in some Hy, N G. So z is in some Fj, and
f(x) € (0,1). We have shown that f~1(i) = Y; for i = 0, 1. O

As to the question of whether it is necessary for C' to be convex in Theo-
rems 4 and 5 note that if C is any open set or any set with empty interior
then (2) is always valid, the condition A C f~1(int C) being trivially sat-
isfied. According to [1, p. TVS II.14], if C' is a convex set with nonempty
interior then int C' is dense in C' and int C' = int C, which means that the
content of Theorems 4 and 5 does not change if we add the requirement that
C be closed. These observations suggest that the theorems are primarily of
interest if C is a closed set with dense interior so let us consider that case.
It is obvious that (2) is valid if C' is for instance a union of two disjoint
convex and closed sets so also in this case convexity is not strictly necessary.
However, convexity plays an important role: The following proposition im-
plies that if C is a closed set with a dense and connected interior such that
condition (2) is valid then C' must be convex.

Proposition 6. Let B be a Banach space and let C' be a closed subset of B.
If for every LSC function ¢ : I — 2 such that each ¢(x) is compact and
convex there is a continuous selection f of ¢ with f~1(int C) = ¢~ [int C]
then each component of int C' is convex.

Proof. Let O be a component of int C' and let @ and b be two distinct vectors
in O. Consider (a,b), the line segment {a + ¢(b — a) : t € I'} that connects
a and b. Since we are in a Banach space O is open and arcwise connected.
We can find an embedding « : I — O such that a(0) = a and «(1) = b. Let

s=sup{t € I : (a,a(t)) C O}.
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Since a has convex neighbourhoods in O we know that s > 0. Put ¢ = «a(s)
and note that (a, c) is contained in the closure of O and hence in the closed
set C. Define the LSC function ¢ : I — 2¢ by

{a}, ft=0;
o(t) =< (a,c), if0O<t<I;
{c}, ift=1

Let f : I — C be a continuous selection of ¢ such that f~!(intC) =
@ lint C] = I. Since f(I) C {(a,c), f(0) = a, and f(1) = ¢ the function
f must be surjective onto (a,c). So (a,c) is a subset of int C' and O. If
s = 1 then (a,b) = (a,c) C O and we are finished. Note that (a,c) must
have a convex neighbourhood in O so if s < 1 then there is an € > 0 with
(a,a(t)) C O forallt € (s—e,s+¢). This result contradicts the maximality
of s. (]

3. Extending products.
Put RT = [0,00) and R™ = (—o0, 0].

Theorem 7. Let X be a normal space and let A be a closed subset of X.
Iff:A—R", g: A—R", and h: X — RT are continuous functions such
that f - g = h|A then there are continuous extensions f,g X - RT of f
and g with f-§ = h. If in addition g~*(0) C f~1(0) then it can be arranged
that §=*(0) € £=1(0).

Proof. Let f,§ : X — R* be Tietze extensions of f and g. Define the
obviously continuous functions f,§: X — R™ by

@)~ @) + /(@) — 3(2))? + 4h(a)
B 2

f(@)
and

) — fla)+ — §(x))? + 4h(x)

g(x) = \/ -
Some straightforward algebra~shows that f g = h and that whenever f (x)-
g(x) = h(z) we have f(z) = f(x) and g(x) = g( which means that f and

g are extensions of f and g

If we have g~ 1(0) C f71(0 ) or, equivalently, f~10)=hr"10 )ﬁA then we
choose § as above but we let f be a Tietze extension of fu (0|h=1(0)). We
then define f and § as above. If §(x) = 0 then h(z) = f(z) - §(z) = 0 and
hence f(x) = 0. Substitution of this information into the definition of f gives
f(z) = —g(z) + §(z) = 0 and we may conclude that §=1(0) c f~1(0). O

The following result is Theorem 2 without the restrictions on the domain.
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Corollary 8. Let X be a normal space and let A be a closed subset of X.
Iff itA—-R,g: A—R" and h : X — R are continuous functions such
that f-g = h|A and g=1(0) C f~1(0) then there are continuous extensions
f:X—>Rand§: X = R" of f and g with f-§ = h.

Proof. Let f,q X - R* be continuous extensions of |f| and g such that
f-g=1hland f~1(0) = h=1(0). If we put f = (f]p"'(R*))U(~f|h""(R7))
and g = g then f is continuous and f - § = h. O

A natural question is how this corollary extends to the complex numbers.
Let C* stand for C with the negative real numbers removed.

Corollary 9. Let X be a normal space and let A be a closed subset of X.
Iffi:A—-C,g:A— C*, and h : X — C are continuous functions such
that f - g = h|A and g=1(0) C f~1(0) then there are continuous extensions
f:X—>(C and §: X — C* of f and g withfog}:h.

Proof. Let f,§ : X — RT be continuous extensions of |f| and |g| such
that f-§ = |h| and §2(0) € f~1(0). Put O = G~ 1((0,00)) and G,, =
G 1([1/n,00)) for n € N. Since g(A) C CT we can find a continuous function
0: ANO — (—m, ) such that g(z) = |g(x)]e?® for each 2 € ANO. Let
01 : G1 — (—m,m) be a Tietze extension of §|ANG;. Proceeding inductively,
let 0p41 : Gpy1 — (—m, ) be a Tietze extension of 6, U (0|A N Gpt1). Put
0 = >, 0, and note that since O = [J°°, int G, we have that § : O —
(—m,7) is a continuous extension of 6.
Define for z € X,

R g(x eié(x), ifx € O;
) = {9
0, if x ¢ O,

and
o v Jh(x)/g(z), ifzeO;
f(x)_{o, ite¢O.

It is obvious that f and ¢ extend f and g, that ff] = h, and that f and §
are continuous at points in O. What remains is to verify the continuity at

A

points in X\ O. Let z € X\O and y € X. Then g(z) = §(z) = f(z) = 0 and
since §71(0) € f71(0) we have also f(z) = 0. Note that §(y) = f(y) = 0 or
9(y) — g(x)| = l9(y)| = 9(y) = 19(y) — g(x)| and |[f(y) = f(@)] = |f(y)| =
|h(y)/g(y) = f(y) = |f(y) — f(x)|. Since g and f are continuous we have
that g and f are continuous at x. ([l

The two restrictions, g(A) C C* and g=1(0) C f~1(0), are essential as
the following examples show. Let D be the unit disk {z € C : [z] < 1}.
Choose X =D and A=0D ={z€C:|z|=1}.
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Example 1. For z € 9D, f(z) = z and g(z) = 1/z and let h be the constant
function 1 on D. If f extends f over D then according to Brouwer f(z) =0
for some z € D which contradicts f-g = 1.

Example 2. For z € 0D, let f(z) = z and ¢g(z) = 0 and for z € D let
h(z) =1 —|z|. If f extends f over D then f(z) = 0 for some z € D\ 9D
which contradicts f(z)-g(z) =1 — |z| > 0.

4. Extending pairwise disjoint collections.

We call two functions f, g : X — R disjoint if their product f - g is the zero
function. Frantz [3] presents the following two propositions.

Proposition 10. Let A be a closed subset of a normal space X and let
the functions fi, fo,..., fn : A — R be continuous and pairwise disjoint.
Then there exist pairwise disjoint continuous extensions fl, fg, ey fn of the
respective f; over all of X.

Proposition 11. Let A be a closed subset of a metric space X and let
{fy v €T} be a set of continuous and pairwise disjoint functions from A
to R. Then there exist a set {fv : v € T'} of pairwise disjoint continuous
functions from X to R such that f7|A = fy for each v €T.

Frantz states that Proposition 10 is also valid for countably infinite collec-
tions of functions but that the proof is rather technical and will be included
in later work. We observe, however, that this result can easily be obtained
as a corollary to Proposition 11.

Corollary 12. Let A be a closed subset of a normal space X and let the
functions fi, fo,...: A — R be continuous and pairwise disjoint. Then there

exist pairwise disjoint continuous extensions f1, fo,... of the respective f;
over all of X.

Proof. Let ﬁ : X — R be a Tietze extension of f; for each i € N. Consider
the metric space RY and let 7; : RY — R be the projection on the i-th
coordinate. Define the map F : X — RN by m0 F = ﬁ for every ¢ € N. Let
B stand for the closure of F(A) in RN, If i # j then m; - m;|F(A) is the zero
function and hence by continuity m; - 7| B is zero as well. So Proposition 11
implies that there are pairwise disjoint continuous extensions g; : RN — R
of m;|B, i € N. Then the functions ﬁ = g; o F' are as required. U

Example 3. It can be shown that Proposition 11 fails for any space X
that contains an uncountable product of nontrivial spaces, which answers a
question raised in [3]. The same examples also show that Corollary 12 does
not extend to families of functions with cardinality Nj.

Let X contain the space Y = Hwer Y., where I' is uncountable and every
Y, consists of at least two points. Let 7, : Y — Y, be the projection. We
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may assume that every Y, contains only two points, a and b,. Define for
each v € I' a point z, € Y by m(z) = b, and mg(x,) = ag for § # v and
note that D = {x, : v € I'} is a discrete space. Define a € Y by m,(a) = ay
for all v € T" and note that A = D U {a} is the one-point compactification
of D and hence A is closed in X. Define for v € I, f, : A — R as the
characteristic function of the singleton {z,}. So F = {f, : v € I'} is an
uncountable pairwise disjoint family of continuous functions. According to
[4, Theorem 1.9] the Cantor cube Y satisfies the countable chain condition
which means that every pairwise disjoint collection of open sets in Y is
countable. So no continuous extension of the family F over Y (and hence
over X) is pairwise disjoint.

References

[1] N. Bourbaki, Topological Vector Spaces, Chapters 1-5, Springer-Verlag, Berlin, 1987,
MR 88g:46002, Zbl 0622.46001.

[2] R. Engelking, General Topology, PWN, Warsaw, 1977, MR 58 #18316b,
Zbl 0373.54002.

[3] M. Frantz, Controlling Tietze- Urysohn extensions, Pacific J. Math., 169 (1995), 53-73,
MR 97b:54019, Zbl 0843.54024.

[4] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Am-
sterdam, 1980, MR 85e:03003, Zbl 0534.03026.

[5] E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382, MR 17,990e,
Zbl 0071.15902.

[6] M.E. Rudin, A normal space X for which X x I is not normal, Fund. Math., 73 (1971),
179-186, MR, 45 #2660, Zbl 0224.54019.

Received May 5, 2000 and revised November 30, 2000.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF ALABAMA
TUSCALOOSA, AL 35487-0350
E-mail address: stoyu@hotmail.com

BAaLL STATE UNIVERSITY
Muncig, IN 47306

Di1visiE DER WISKUNDE EN INFORMATICA
VRIJE UNIVERSITEIT

DE BOELELAAN 1081A

1081 HV AMSTERDAM

THE NETHERLANDS

FE-mail address: dijkstra@cs.vu.nl






