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We construct a correspondence between the complex gauge
equivalence classes of holomorphic U(1)-connections on a
smooth semi-flat special Lagrangian torus fibration and the
Hamiltonian deformation classes of Lagrangian sections Σ in
the mirror manifold together with the gauge equivalence classes
of flat U(1)-connections on Σ.

1. Introduction.

It was conjectured in [SYZ] that Calabi-Yau spaces can be often fibered
by special Lagrangian tori and their mirrors can be constructed by dualiz-
ing these tori. It was further suggested by Vafa in [V] that the holomorphic
vector bundles on a Calabi-Yau n-fold M correspond to the Lagrangian sub-
manifolds in the mirror M̌ and the stable vector bundles correspond to the
special Lagrangian submanifolds in M̌ together with flat U(1)-connections.

In this note, we will describe a correspondence between holomorphic U(1)-
connections and Lagrangian cycles. We assume that M is a space admitting
a special Lagrangian torus fibration. This is a topological fibration π : M →
B, where B is a compact n-dimensional manifold without boundary which
is locally a Lagrangian section of π, whose fibers are special Lagrangian n-
tori with respect to the Kähler form ω and a holomorphic n-form Ω on M
(cf. Definition 2.2). We assume that the fibration does not possesses singular
fibers and all fibers are flat with respect to the induced metric from M . Note
that this is the case studied by Hitchin in [H], and the mirror manifold M̌ has
been constructed and it can be identified with the cotangent bundle T ∗B of
quotient by a nondegenerate family of lattices. In particular, M̌ is a smooth
special Lagrangian torus fibration over B as well. The symplectic form is
the one induced by the canonical symplectic form on T ∗B (cf. [H], [G2]). If
degeneration of fibers possesses, the mathematically rigorous construction
of the mirror manifolds remains one of the major challenges in the SYZ
program (cf. [G1], [G2], [G3], [R]).

On the M side, we shall focus on the holomorphic connections on a U(1)-
bundle E over M . On the mirror side, we consider the pair (Σ, α) where
Σ is a Lagrangian section from B in M̌ , and α is a flat U(1)-connection
on a complex line bundle L over Σ. One can deform Σ in its Hamiltonian
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class which is denoted by [Σ], i.e., through Lagrangian cycles which can
be translated by the Hamiltonian diffeomorphisms from one to the other
(cf. Definition 6.1), and deform the flat connection α on Σ in its gauge
equivalence class [α].

Definition 1.1. Let Σ be a Lagrangian section from B in M̌ and α a flat
U(1)-connection on Σ. The pair ([Σ], [α]) which consists of the Hamiltonian
deformation class [Σ] of Σ and the gauge equivalence class [α] of α is called
a Hamiltonian Lagrangian supersymmetric cycle in M̌ .

The main result of this note is:

Theorem 1.1. Let M be a semi-flat special Lagrangian Tn-fibration over
B with a Lagrangian section and let E be U(1) vector bundle over M . Let
M̌ be the mirror manifold of M . Suppose that A = {A : A is a holomorphic
connections on E} and πGC

: A → A/GC is the projection to the complex
gauge equivalent classes. Let S = {(Σ, α) : α is a flat U(1)-connection
over a Lagrangian section Σ of M̌} and πS be the projection of S to the set
{([Σ], [α])} of Hamiltonian Lagrangian supersymmetric cycles in M̌ . Then
there is a map φ : A → S which induces a map φ′ : A/GC → S/πS such
that πS ◦ φ = φ′ ◦ πGC

; and conversely there is an injective map ψ : S → A
which induces a map ψ′ : S/πS → A/GC such that πGC

◦ ψ = ψ′ ◦ πS .

When the complex dimension of M is two, the special T 2-fibration M
becomes an elliptic K3 surface by rotating the complex structure by π

2 and
the Lagrangian fibers become holomorphic curves of genus one. In this
context, Friedman-Morgan-Witten [FMW] studied extensively flat vector
bundles through spectral curves. When M is an elliptic curve, Polishchuk-
Zaslow in [PZ] described an isomorphism between the categories suggested
by Kontsevich and a suitable version of Fukaya’s category of Lagrangian
submanifolds on M̌ . There are also related works by Tyurin in [Ty] on
the construction for Hermitian-Einstein bundles on Calabi-Yau n-folds with
n = 1, 2, 3.

The results of this note grow out of extensive discussion with Gang Tian
and they constitute partial progress of a general program of Tian and the au-
thor. These results and some of their extension to higher rank bundles have
been reported by the author in several seminars and conferences. Finally,
Tian informed the author that R. Thomas also obtained similar results.

The author is grateful to the referee for valuable comments.

2. Special Lagrangian torus fibration.

First, we describe the space we are interested in. Let π : M → B be a
smooth proper map from a real 2n-dimensional smooth compact manifold
M to a real n-dimensional compact manifold B. Both M and B have no
boundary.
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Definition 2.1. π : M → B is a topological torus fibration over B if the
fiber π−1(p) is a diffeomorphic to Tn for any point p ∈ B.

Recall that a real n dimensional submanifold N in a n dimensional Kähler
manifold X is Lagrangian if the Kähler form of X restricts to zero every-
where on the submanifold N . A Lagrangian submanifold is special if it is
Lagrangian and minimal. The later means that the mean curvature H of the
submanifold vanishes identically. If X is a Calabi-Yau manifold, then there
is a covariant constant holomorphic n-form Ω on X and a special Lagrangian
submanifold N is characterized by

ω|N = 0(2.1)
Im Ω|N = 0.(2.2)

Definition 2.2. A compact Calabi-Yau n-fold (M,ω, J,Ω) is a Lagrangian
torus fibration over B if for each p ∈ B, the fiber π−1(p) is a Lagrangian
torus in M with respect to the symplectic structure ω, and M is semi-flat if
each fiber is flat in the induced metric from M . Furthermore, M is a special
Lagrangian torus fibration over B if in addition the Lagrangian fibers are
special.

According to Hitchin’s discussion (cf. [H], [G2]), the complex structure
J on M acts on TM as follows

J

(
∂

∂si

)
=

∂

∂ti
, J

(
∂

∂ti

)
= − ∂

∂si
(2.3)

where ti are the local coordinates in B and si are coordinates on the fiber
tori for i = 1, 2, . . . , n. Note that the section B needs to be Lagrangian for
the complex coordinates to exist, and this will be understood throughout
the paper. Hitchin shows:

Proposition 2.1. For the special Lagrangian torus fibration π : M → B
without singular fibers, in the complex coordinates sj+

√
−1tj, the symplectic

form of M can be written as

ω =
∑
i,j

aijdsi ∧ dtj ,

where aij only depend on t ∈ B.

For each base point t ∈ B, set Lt = π−1(t). It is shown in [H] that the 1-
form ι( ∂

∂tj
)ω is harmonic on Lt when Lt is special Lagrangian, j = 1, . . . , n,

hence ι( ∂
∂tj

)ω and ∗tι( ∂
∂tj

)ω are closed 1-form and (n− 1)-form respectively,
where ∗t is the Hodge star operator of the induced metric on Lt. Take a basis
A1, . . . , An of the first homology group H1(Lt,Z). Evaluation of ι( ∂

∂tj
)ω on
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Aj yields a period matrix which depends on t:

λij =
∫

Ai

ι

(
∂

∂tj

)
ω.(2.4)

The Poincaré dual of Aj provide a basis Bj of Hn−1(Lt,Z) for j = 1, . . . , n.
Then form a period matrix

µij =
∫

Bi

∗tι

(
∂

∂tj

)
ω.(2.5)

Lemma 2.2. For the special Lagrangian torus fibration π : M → B with
the symplectic form ω =

∑
i,j aijdsi ∧ dtj, then

aij = V −1
∑

k

λikµjk(2.6)

where V is the volume of the special Lagrangian fiber Lt and is independent
of t.

Proof. By Proposition 2.1, aij only depend on t, then∑
k

λikµjk =
∑

k,l1,l2

ail1ajl2

∫
Ak

dsl1

∫
Bk

∗tdsl2

=
∑
l1,l2

ail1ajl2

∫
Lt

dsl1 ∧ ∗tdsl2 .

On the other hand, sj , tj form a complex coordinates, so

g

(
∂

∂si
,
∂

∂sj

)
= ω

(
∂

∂si
,
∂

∂tj

)
= aij .

Therefore,

dsl1 ∧ ∗tdsl2 = 〈dsl1 , dsl2〉dµLt

= al1l2dµLt

where aij denote the entries of the inverse matrix of (aij). It then follows
that ∑

k

λikµjk = V (Lt)aij

where V (Lt) is the volume of Lt and is independent of t since Lt is special
Lagrangian. �

Since the special Lagrangian tori Lt are calibrated by Im Ω, from that
Re Ω is closed in M it follows easily:

Lemma 2.3. The induced volume form dµLt on the fiber Lt is independent
of t ∈ B.
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3. Construction of the mirror manifold (M̌, ω̌).

From now on, we shall fix a special Lagrangian torus fibration over B and
denote it by (M,ω, J,Ω) with J defined in (2.3). The set MSL of all special
Lagrangian submanifolds which can be deformed through special Lagrangian
submanifolds to the fiber tori in (M,ω, J) is called the moduli space of special
Lagrangian submanifolds. The deformations of special Lagrangian subman-
ifolds were studied by McLean in [M]. As in [SYZ], we can construct the
mirror manifold (the D-brane moduli space in the literatures of physics)
over B by taking

M̌ = MSL ×B MFLAT

where MSL denotes local deformation space of the special Lagrangian fibers
over B andMFLAT denotes the moduli space of the gauge equivalence classes
of the flat U(1)-connections on the fibers over B. A point in M̌ is a pair
(Lt, [A]) where Lt is a special Lagrangian fiber torus over t ∈ B and [A] is the
gauge equivalence class of a flat U(1)-connection A on Lt. Note that MFLAT

is diffeomorphic to H1(Tn,R)/H1(Tn,Z) hence to Tn. Topologically, π̌ :
M̌ → B is a torus fibration over B.

Recall that M is identified with T ∗B quotient by the lattice Λ. We now
describe the dual lattice Λ̌ (cf. [H], [G2]). Over a base point t ∈ B, consider
a smooth fiber torus Lt. According to McLean’s result, we know that

dimMSL = b1(Lt) = dimH1(Tn,R) = n.

Moreover, any tangent vector v ofB can be identified with a harmonic 1-form
on the fiber Lt as follows. Recall that we had a basis Aj of H1(Lt,Z) and a
basis Bj of Hn−1(Lt,Z) and Aj , Bj are dual to each other, for j = 1, . . . , n.
For each j, let αj be the dual of Aj in H1(L1,Z) hence they form a basis of
H1(Lt,Z), and similarly let βj be the dual of Bj in Hn−1(Lt,R). Then the
mapping

v −→ [ι(v)ω] =
∑

i

(∫
Ai

ι(v)ω
)
αi(3.1)

identifies TtB with H1(Lt,R). Define

Λ′
t =

{
v ∈ TtB

∣∣∣∣ ∫
γ
ι(v)ω ∈ Z, for any γ ∈ H1(Lt,Z)

}
.

Then we take
Λ̌t =

{
[ι(v)ω] | v ∈ Λ′

t

}
= H1(Lt,Z).

Let Λ̌ =
⋃

t∈B Λ̌t be the dual lattice over B. Then M̌ = T ∗B/Λ̌.
We can use the basis α1, . . . , αn of H1(Lt,R) to give coordinates x1, . . . ,

xn on the universal covering of the torus H1(Lt,R/Z). Let Ω be the covari-
ant constant holomorphic n-form on M from the Calabi-Yau structure with
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a standard normalization
ωn

n!
= (−1)

n(n−1)
2

(
i

2

)n

Ω ∧ Ω.

To fix a symplectic structure on M̌ , Gross considered a holomorphic n-form
Ωn normalized by

Ωn =
Ω∫

Lt
Ω

= V −1Ω

where V is the volume of the special Lagrangian fiber torus Lt. Gross has
shown (cf. Lemma 4.1 and Proposition 4.2 in [G2]):

Proposition 3.1. Under the identification

Λ̌ ∼= H1(Lt,Z) ∼= Hn−1(Lt,Z),

the image of Λ̌ under the mapping F : Hn−1(Lt,Z) → T ∗B, defined by

F (γ)(v) = −
∫

γ
ι(v)Im Ωn

for any v ∈ TtB, γ ∈ Hn−1(Lt,Z), is Lagrangian in T ∗B. Moreover M̌ =
T ∗B/Λ̌ inherits the symplectic form ω̌ from T ∗B, and∫

Aj

ι(v)ω̌ =
∫

Bj

ι(v)Im Ωn.(3.2)

Next, we compute the symplectic form ω̌ in coordinates t1, . . . , tn, x1, . . . ,
xn, determined by α1, . . . , αn.

Lemma 3.2. Let π : M → B be a special Lagrangian torus fibration and
π̌ : M̌ → B be its dual space. Then

ω̌ =
∑
i,j

µijdti ∧ dxj .(3.3)

Proof. By McLean’s result [M],

ι(v)Im Ωn|Lt = − ∗t ι(v)ω|Lt .(3.4)

It follows that ∫
Bj

ι

(
∂

∂ti

)
Im Ωn = −

∫
Bj

∗tι

(
∂

∂ti

)
ω

= −µij .

In the canonical coordinates t1, . . . , tn, x′1, . . . , x
′
n on T ∗B, the symplectic

form has the form
ω̌ =

∑
j

dtj ∧ dx′j .

The coordinates x′1, . . . , x
′
n are determined by some basis α′1, . . . , α

′
n of

H1(Lt,Z), and in fact by dx′1, . . . , dx
′
n which are harmonic 1-forms on Lt



LAGRANGIAN SECTIONS AND HOLOMORPHIC U(1)-CONNECTIONS 145

by Corollary 5.15 in [G2] since dΩ = 0. Lifted to the universal covering
H1(Lt,R) of H1(Lt,R/Z), α1, . . . , αn and α′1, . . . , α

′
n are related by

α′i =
∑

j

bijαj

for some functions bij on B. Therefore,∫
Aj

ι

(
∂

∂ti

)
ω̌ = −

∫
Aj

dx′i

=
∑

l

bil

∫
Aj

αl

= −bij .

We then have
bij = µij

as claimed in the lemma. �

From now on, we shall always assume that Volume(Lt) = 1 for simplicity
by normalizing the metric g on M .

We now explore the relationship between the coordinates si on Lt and xi

on the dual tori Ľt, i.e., the moduli space of the flat U(1)-connections on
Lt.

Proposition 3.3. Let (t1, . . . , tn, s1, . . . , sn) and (t1, . . . , tn, x1, . . . , xn)
are the local coordinates on M and M̌ respectively as before. For any closed
1-form

∑
j c

jdsj on Lt, if its cohomology class [
∑

j c
jdsj ] is expressed as∑

j c̃
jαj, then

c̃i =
∑

k

µki

∫
Lt

ckdµLt .(3.5)

Proof. Notice that by Proposition 2.1 and Lemma 2.2, we have

ω =
∑
i,j,k

λikµjkdsi ∧ dtj .

Then

dsj =
∑
l,i

λjiµliι

(
∂

∂tl

)
ω

=
∑

l

µjlαl.

Recall that 1-forms αj and (n− 1)-forms βj are chosen such that

αi ∧ βj = δijdµLt
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and hence

〈αi, βj〉 =
∫

Lt

αi ∧ βj

= δijV.

It follows that

c̃k =

〈∑
j

c̃jαj , βk

〉

=

〈∑
j

cjdsj , βk

〉

=
∫

Lt

∑
j

cjdsj ∧ βk

=
∑
j,l

∫
Lt

cjµjlαl ∧ βk

=
∑

l

µlk

∫
Lt

cldµLt .

This completes the proof. �

Let Y =
∑

j Y
jdsj be a differential 1-form on Lt. By the Hodge decom-

position theorem,
Y = H(Y ) + df + d∗ψ

where H(Y ) is the harmonic part of Y . In particular, H(Y ) + df defines a
cohomology class and we denote it by [Y ] in H1(Lt,R).

Lemma 3.4. If Y is a 1-form on the Lagrangian fiber Lt and [Y ] is its
cohomology class in H1(Lt,R), then

[Y ] =
∑

j

(∑
l

µlj

∫
Lt

Y ldµLt

)
αj(3.6)

=
∫

Lt

Y dµLt .(3.7)

Proof. By Proposition 3.3,

[Y ] =
∑
j,l

(
µlj

∫
Lt

(
Y l − (d∗ψ)l

)
dµLt

)
αj .

Note that ∑
j,l

µlj

∫
Lt

(d∗ψ)ldµLtαj =
∑

l

(∫
Lt

(d∗ψ)ldµLt

)
dsl.
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Also, we have

d∗ψ ∧ ∗ι
(
∂

∂tl

)
ω =

∑
k,j

(d∗ψ)kdsk ∧ ∗aljdsj

=
∑
k,j

(d∗ψ)kalja
kjdµLt

= (d∗ψ)ldµLt .

It follows that ∫
Lt

(d∗ψ)ldµLt =
∫

Lt

d∗ψ ∧ ∗ι
(
∂

∂tl

)
ω

=
∫

Lt

ψ ∧ ∗dι
(
∂

∂tl

)
ω

= 0

since ι( ∂
∂tl

)ω is closed. �

4. Holomorphic connections.

Let E be a complex vector bundle over M and A be a unitary connection.
The curvature 2-form F of A can be decomposed according to the complex
structure on E into (2, 0), (1, 1), (0, 2) parts:

F = F 2,0 + F 1,1 + F 0,2.

In terms of real local coordinates s1, . . . , sn, t1, . . . , tn,

F =
n∑
i,j

(
Fijdti ∧ dtj + Fi(j+n)dti ∧ dsj + F(i+n)(j+n)dsi ∧ dsj

)
(4.1)

where the indices i, j + n stand for the ti-component and sj-component of
the connection correspondingly. Recall that a unitary connection A on E
over (M,J, ω) gives rise to a holomorphic connection if and only if

F 0,2
A = 0.(4.2)

Therefore we obtain the following curvature equations for the holomorphic
connections in real coordinates.

Proposition 4.1. Let E be a complex vector bundle over a smooth special
Lagrangian fibration (M,J, ω) over B. Then the curvature of a holomorphic
connection on E satisfies

Fi(j+n) − Fj(i+n) = 0(4.3)

Fij − F(i+n)(j+n) = 0.(4.4)
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Proof. In terms of the complex coordinates zi = si +
√
−1ti, i = 1, . . . , n,

we can rewrite (4.1) as

F = −
n∑

i,j=1

Fij(dzi − dzi) ∧ (dzj − dzj)

−
√
−1

n∑
i,j=1

Fi(j+n)(dzi − dzi) ∧ (dzj + dzj)

+
n∑

i,j=1

F(i+n)(j+n)(dzi + dzi) ∧ (dzj + dzj).

This local expression leads to

F 0,2 =
n∑

i,j=1

(
−Fij + F(i+n)(j+n) +

√
−1Fi(j+n)

)
dzi ∧ dzj

and

F 1,1 =
n∑

i,j=1

(
2Fij + 2F(i+n)(j+n) +

√
−1(Fi(j+n) + Fj(i+n))

)
dzi ∧ dzj .

Then F 0,2 = 0 implies the two desired equations. �

The holomorphic connections are preserved by the complex gauge trans-
formations. Recall that the complex gauge group Gc consists of all general
linear automorphisms of the complex vector bundle E which cover the iden-
tity map on the base manifold M . If g ∈ Gc, the action of g is given by

∂g(A) = ∂A − (∂Ag)g−1(4.5)

∂g(A) = ∂A + (∂Ag)g−1
t
.(4.6)

The unitary gauge group is contained as a subgroup in Gc and it preserves
the Hermitian metric on E. In particular, if E is a complex line bundle,
then a connection A′ is C-gauge equivalent to another connection A if there
exist real valued functions u and v such that

A′ = A+
√
−1(∂ − ∂)u+ (∂ + ∂)v.(4.7)

When u = 0, we obtain the ordinary U(1) gauge action.

5. Holomorphic line bundles vs. Lagrangian cycles with flat line
bundles.

In this section, we shall start from a holomorphic connection on a complex
line bundle E over M to construct a Lagrangian submanifold Σ in M̌ and a
flat U(1)-connection α on Σ. Then we shall demonstrate how to reconstruct
a holomorphic connection on E from (Σ, α).
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5.1. Construction of Lagrangian cycles with flat line bundles. Let E
be a holomorphic line bundle over a smooth special Lagrangian Tn fibration
(M,J, ω, g) and A be a U(1)-connection whose curvature satisfies F 0,2

A = 0.
It is a standard fact that each bundle trivialization, with a trivializing cover
{Uj} and fj : Uj → C satisfying the compatibility conditions

fj = hjkfk on Uj
⋂
Uk 6= ∅,

where hjk are the transition functions, defines a global section f ∈ Γ(M,E);
and in the gauge determined by f the connection A can be viewed as an
E-valued 1-form, which decomposes into its fiber component and its base
component as follows

A =
n∑

i=1

(
Xidti + Y idsi

)
.(5.1)

Here as in the previous sections we use t1, . . . , tn for the local coordinates
on the base B and s1, . . . , sn for the fiber torus Lt = π−1(t), for any t ∈ B.
Xi and Y i are C-valued functions.

On the fiber tori Lt, the gauge equivalent class of Y = A|Lt is just the
cohomology class [Y ] of the E-valued 1-form Y . The image of the single
valued map

Φ : t→ (t, [Y (·, t)])(5.2)

defines an embedded submanifold of real dimension n in M̌ :

Σ = {(t, [Y (·, t)]) : t ∈ B}.(5.3)

Proposition 5.1. Let E be a U(1)-bundle over a special Lagrangian torus
fibration π : M → B and let π̌ : M̌ → B be the dual space. If A is a
connection on E, then for any v ∈ TtB and t ∈ B,

ι(v)(ω̌|Σ) =
∫

Lt

ι(Jv)ReF 0,2
A ∧ dµLt .(5.4)

In particular, if A is holomorphic, then Σ is an embedded Lagrangian sub-
manifold in M̌ .

Proof. In the local coordinates (x1, . . . , xn) on MFLAT, let [Y ]1, . . . , [Y ]n

be the local expression of [Y ] in H1(Ľt,R). We claim that the restriction of
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ω̌ on Σ vanishes. In fact,

ω̌|Σ = Φ∗ω̌(5.5)

=
∑
i,j

ω̌

 ∂

∂ti
+
∑
α

∂[Y ]α

∂ti

∂

∂xα
,
∂

∂tj
+
∑
β

∂[Y ]β

∂tj

∂

∂xβ

 dti ∧ dtj

= 2
∑
i,j,α

µαj
∂[Y ]α

∂ti
dti ∧ dtj

= 2
∑
i,j,α

µαj
∂

∂ti

(
µkα

∫
Lt

Y kdµLt

)
dti ∧ dtj

by Proposition 3.3. Recall that the volume element dµLt is independent of
t by Lemma 2.3. Since ω̌ =

∑
i,j µijdti ∧ dxj is closed, we have

∂µik

∂tj
=
∂µjk

∂ti
(5.6)

and it follows that∑
α

(
µαj

∂µkα

∂ti
− µαi

∂µkα

∂tj

)
=

∑
α

(
−∂µαj

∂ti
µkα +

∂µαi

∂tj
µkα

)
(5.7)

= 0.

Now we conclude from (5.5) that

ω̌|Σ =
∑
i,j

(∫
Lt

∂Y j

∂ti
dµLt

)
dti ∧ dtj .(5.8)

On the other hand,

∑
i,j

(∫
Lt

∂Y j

∂ti
dµLt

)
dti ∧ dtj(5.9)

=
∑
i,j

(∫
Lt

(
Fi(j+n) −

∂X i

∂sj

)
dµLt

)
dti ∧ dtj

=
∑
i,j

(∫
Lt

Fi(j+n)dµLt

)
dti ∧ dtj

−
∑
i,j

(∫
Lt

dLtX
i ∧ ∗ι

(
∂

∂tj

)
ω

)
dti ∧ dtj .
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Because Lt is special Lagrangian, ∗ι( ∂
∂tj

)ω is closed on Lt, and in turn the
last integral in (5.9) vanishes. This leads to

ω̌|Σ =
∑
i,j

(∫
Lt

Fi(j+n)dµLt

)
dti ∧ dtj .(5.10)

If A is a holomorphic U(1)-connection, it follows immediately from (4.3) in
Proposition 4.1 that ω̌ restricts to zero on Σ and Σ is Lagrangian.

It is straightforward to find

ReF 0,2 =
∑
i,j

Fi(j+n)(dti ∧ dsj + dsi ∧ dtj)(5.11)

+
∑
i,j

(F(i+n)(j+n) − Fij)(dsi ∧ dsj − dti ∧ dtj).

Then

ι

(
∂

∂sk

)
ReF 0,2 ∧ dµLt =

∑
j

(Fj(k+n) − Fk(j+n))dtj ∧ dµLt .(5.12)

Finally, we compute

ι

(
∂

∂tk

)
(ω̌|Σ) =

∑
j

(∫
Lt

(Fj(k+n) − Fk(j+n))dµLt

)
dtj(5.13)

and we are done. �

To investigate what the second curvature equation (4.4) leads to, we con-
sider the 1-form defined by

α =
∫

Lt

A ∧ Re Ω.(5.14)

Proposition 5.2. If A is a holomorphic U(1)-connection over M , then α
is a flat U(1)-connection over Σ. If A is a U(1)-connection, then for any
v ∈ TtB with t ∈ B,

ι(v)dtα =
∫

Lt

ι(Jv)ImF 0,2
A ∧ dµLt .(5.15)
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Proof. By Lemma 2.3, the exterior differentiation on B is

dtα =
∫

Lt

(dtA) ∧ dµLt

=
∑

i

∫
Lt

(dt(Xidti)) ∧ dµLt

=
∑
i,k

(∫
Lt

∂X i

∂tk
dµLt

)
dti ∧ dtk

=
∑
i,k

(∫
Lt

∂Y i

∂sk
dµLt

)
dti ∧ dtk

=
∑
i,k

(∫
Lt

dLtY
i ∧ ∗ι

(
∂

∂tk

)
ω

)
dti ∧ dtk

=
∑
i,k

(∫
Lt

dLt

(
Y i ∧ ∗ι

(
∂

∂tk

)
ω

))
dti ∧ dtk

= 0

where we have used Fik = F(i+n)(k+n) in the fourth equality, that ∗ι( ∂
∂tk

)ω
is closed and Stokes’ theorem. The imaginary part of F 0,2 is given by

ImF 0,2 = Fi(j+n)(dsi ∧ dsj − dti ∧ dtj)(5.16)

+
(
F(i+n)(j+n) − Fij

)
(dti ∧ dsj + dsi ∧ dtj).

Then we can deduce

ι

(
∂

∂sj

)
ImF 0,2

A ∧ dµLt = 2
∑

i

(F(i+n)(j+n) − Fij)dti ∧ dµLt .(5.17)

On the other hand, the previous computation shows

ι

(
∂

∂tj

)
dtα =

∑
i

∫
Lt

(
∂X i

∂tj
− ∂Xj

∂ti

)
dti ∧ dµLt(5.18)

=
∑

i

∫
Lt

(
F(i+n)(j+n) − Fij

)
dti ∧ dµLt .

Now the proof is complete by integrating (5.17) along Lt and then substi-
tuting (5.18) into the result. �

It follows from Proposition 5.1 and Proposition 5.2 that:

Proposition 5.3. Let E be a complex line bundle over a special Lagrangian
torus fibration M → B and A be a U(1)-connection on E. Then, for any
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v ∈ TtB and t ∈ B

ι(v)
(
ω̌|Σ +

√
−1dtα

)
=
∫

Lt

ι(Jv)F 0,2
A ∧ Re Ω.(5.19)

Remark. Assume that M is a Calabi-Yau 3-fold. The derivative of the
holomorphic Chern-Simons functional is given by∫

M
Tr(δA ∧ F 0,2

A ) ∧ Ω.

Its differential is given by the right side of (5.19). It was observed by Tian
and myself that there is a useful version for the left side of (5.19). Consider
the space L of all (L, [N ], B) where L is any 3-cycle homologous to a fixed
3-cycle L0, N is a 4-cycle with boundary ∂N = L − L0 and B is a U(1)-
connection on L extendible to N with fixed boundary value along L0. Then
one can integrate the left side of (5.19) to obtain a functional on L

F (L, [N ], B) =
∫

N

(
ω̌ +

√
−1FB

)2
.

If L is a section, then it corresponds to the holomorphic Chern-Simons
functional through (5.19). However, this functional F is well-defined on any
Calabi-Yau 3-fold without knowing the mirrors. It is certainly interesting
to explore more about F .

5.2. Construction of holomorphic line bundles from (Σ, α). We have
just constructed a Lagrangian submanifold Σ in M̌ and a flat U(1)-connec-
tion α. Strictly speaking, α is a pull-back of a flat U(1)-connection on B via
the projection π̌|Σ : Σ → B. Conversely, given a pair (Σ, α) on the mirror
side, we would like to construct a holomorphic connection A on a complex
line bundle over M .

The information encoded in Σ is [Y ]. Let P : Σ → B be the natural
projection. The 1-form α determines a flat complex line bundle over B
which pulls back via P to the flat connection, still denoted by α, on Σ.
Since P : Σ → B is diffeomorphic, the inverse map P−1 pulls back the flat
bundle (L,α) to a flat bundle over B, which will still be denoted by (L,α).
Then we use π : M → B to pull back (L,α) to X on M which satisfies
(5.20) below. The desired connection A = X +Y , where X =

∑
iX

idti and
Y =

∑
i Y

idsi, should satisfy, in addition to being holomorphic, that∫
Lt

XidµLt = αi(5.20) ∫
Lt

Y idµLt =
∑

k

µki[Y ]k(5.21)

for i = 1, . . . , n, where α = αidti is over B. To find a flat connection Y on
Lt, we recall that flat line bundles on Lt are classified by H1(Lt,R/Z). On
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the universal covering H1(Lt,R) of H1(Lt,R/Z), we consider the 1-form
V (Lt)−1

∑
i,k µki[Y ]kαi, where α1, . . . , αn is the basis of H1(Lt,R). This

1-form descents to Y which satisfies (5.21).
We shall concentrate on the special case that Xi and Y i are smooth C-

valued functions on M which depend only on the base variable t ∈ B.

Proposition 5.4. If Xi and Y i depend only on t and satisfy (5.20) and
(5.21) for all i, then the 1-form A =

∑
i(X

idti + Y idsi) is holomorphic.

Proof. The volume of the fiber Lt is independent of t, due to that Lt is
special Lagrangian in M , and without loss of any generality we may assume
the fiber has unit volume by re-normalization. The C-valued 1-form A
satisfies

F(i+n)(j+n) =
∂Y i

∂sj
− ∂Y j

∂si
= 0

since Y i’s are free of s,

Fij =
∂X i

∂tj
− ∂Xj

∂ti

=
∂αi

∂tj
− ∂αj

∂ti
= 0

since α is flat, and finally

Fi(j+n) − Fj(i+n) =
∂X i

∂sj
− ∂Y j

∂ti
− ∂Xj

∂si
+
∂Y i

∂tj

=
∂Y i

∂tj
− ∂Y j

∂ti

=
∑

k

µki
∂[Y ]k

∂tj
−
∑

k

µkj
∂[Y ]k

∂ti

= 0

because Σ is Lagrangian. We conclude that A is holomorphic and satisfies
(5.20) and (5.21). �

6. Deformations of U(1)-connections and Lagrangian cycles.

In this section, we first investigate how deformation of holomorphic U(1)-
connections A on E affects the Lagrangian cycles Σ and the flat U(1)-
connections α on the mirror side constructed in the last section. Then
we examine how the U(1)-connection on E constructed from (Σ, α) varies if
Σ and α are deformed.
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6.1. Deforming A by the complex gauge groups. Let A′ be a U(1)-
connection on E which is C-gauge equivalent to A:

A′ = A+
√
−1(∂ − ∂)u+ (∂ + ∂)v(6.1)

where u and v are R-valued functions on M . If A is holomorphic, so is A′.
If u = 0, then A′ is gauge equivalent to A. It is straightforward to verify

√
−1(∂ − ∂)u = −

∑
i

(
∂u

∂ti
dsi −

∂u

∂si
dti

)
(∂ + ∂)v =

∑
i

(
∂v

∂si
dsi +

∂v

∂ti
dti

)
.

The fiberwise component Y ′ of A′ is given by

Y ′ = Y +
√
−1
∑

i

(
∂u

∂ti
+
∂v

∂si

)
dsi.(6.2)

The Hodge decomposition yields∑
i

(
∂u

∂ti
+
∂v

∂si

)
dsi = ψ + d∗η,(6.3)

where ψ is the sum of a harmonic 1-form and an exact 1-form on Lt and η
is a 2-form on Lt. Hence, the graph of the mapping t → [Y ′(t, ·)] defines a
Lagrangian submanifold in M̌ :

Σ′ = {(t, [Y (t, ·)] + [ψ(t, ·)]) : t ∈ B}.(6.4)

Let us recall:

Definition 6.1. A diffeomorphism F : (M̌, ω̌) → (M̌, ω̌) is called Hamil-
tonian if there exists a smooth function H : [0, 1] × M̌ → R and a family
f t, t ∈ R, of symplectic diffeomorphisms of M̌ such that

df t

dt
= XH(t, f t)

f0 = id
f1 = F

where the Hamiltonian vector field XH is determined by

ι(XH)ω̌ = −dH.

We then introduce:

Definition 6.2. Two Lagrangian submanifolds Σ and Σ′ in M̌ are Hamil-
tonian equivalent if there exists a piecewise smooth and continuous family
of Hamiltonian diffeomorphisms Fσ : M̌ → M̌ for σ ∈ [0, 1] such that F0 is
the identity map and F1(Σ) = Σ′. The equivalence class determined by Σ
is denoted by [Σ].
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Proposition 6.1. Let A be a holomorphic U(1)-connection on the complex
line bundle E over the special Lagrangian torus fibration π : M → B. Sup-
pose that another U(1)-connection A′ is C-gauge equivalent to A. Then
Σ = {(t, [Y (t, ·)]) : t ∈ B} and Σ′ = {(t, [Y ′(t, ·)]) : t ∈ B} are Hamiltonian
equivalent Lagrangian submanifolds in M̌ . If A′ is gauge equivalent to A,
then Σ = Σ′.

Proof. For each t ∈ B, we connect the two points [Y (t)] and [Y (t)]+[ψ(t)] by
a path in the torus Lt = H1(Lt,R/Z). On the universal covering H1(Lt,R),
the path may be taken to be Ct(τ) = [Y (t)] + τ [ψ(t)] for τ ∈ [0, 1]. Along
the path Ct, the infinitesimal deformation vector field is equals to

∑
k

[ψ]k
∂

∂xk
=
∑

k

(
µkj

∫
Lt

ψjdµLt

)
∂

∂xk

(6.5)

=
∑
k,j

(
µkj

∫
Lt

(
∂u

∂tj
+
∂v

∂sj
− (d∗η)j

)
dµLt

)
∂

∂xk

=
∑
k,j

(
µkj

∫
Lt

(
∂u

∂tj
dµLt + dv ∧ ∗ι

(
∂

∂tj

)
ω − d∗η ∧ ∗ι

(
∂

∂tj

)
ω

))
∂

∂xk

=
∑
k,j

(
µkj

∫
Lt

∂u

∂tj
dµLt

)
∂

∂xk
.

Integrating (6.5) yields the transformation from Σ to Σ′. To construct the
Hamiltonian deformation, it suffices to assume that [ψ] is small enough so
that Σ′ stays inside a tubular neighborhood O of Σ. We may further assume
that the closure of O is contained in some larger tubular neighborhood O′

of Σ. The function
∫
Lt
udµLt is defined globally on B hence may be viewed

as a function on Σ′. On the mirror space π̌ : M̌ → B, introduce a function
H : [0, 1]× M̌ → R as follows. If t = π̌(y) for y ∈ M̌ set

H(σ, y) = σh(y)
∫

Lt

udµLt

where h is a cut-off function on M̌ which equals to one on O and zero outside
O′. H determines a Hamiltonian vector field XH for each fixed σ by

ω̌(XH , ·) = −dH.
Using Lemma 3.2, we get

ω̌

∑
j,k

(
µkj

∫
Lt

∂u

∂tj
dµLt

)
∂

∂xk
, ·

 =
∑

j

(∫
Lt

∂u

∂tj
dµLt

)
dtj(6.6)

= d

∫
Lt

udµLt .
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In particular, it follows that

XH |O = σ
∑
j,k

(
µkj

∫
Lt

∂u

∂tj
dµLt

)
∂

∂xk
.(6.7)

The Cauchy problem

dFσ

dσ
= XH(Fσ)(6.8)

F0 = id(6.9)

has a unique solution Fσ. For each fixed parameter σ, Fσ : M̌ → M̌ is a
Hamiltonian diffeomorphism and Fσ is equal to the identity map outside O′

for any σ. As σ moving from 0 to 1, any point p in Σ evolves along the
curve Fσ(p) with velocity XH evaluated at the point Fσ(p), and especially
F1(p) ∈ Σ′.

Now we conclude that Σ and Σ′ belong to the same Hamiltonian class,
and moreover that if u = 0 then H ≡ 0 hence Σ = Σ′. �

Proposition 6.2. If A′ is C-gauge equivalent to A, then α′ =
∫
Lt
A′ ∧ReΩ

differs from α =
∫
Lt
A ∧ ReΩ by an exact 1-form. In fact, for A′ = A +√

−1(∂−∂)u+(∂+∂)v, v = 0 implies α′ = α and u = 0 implies that α′−α
is an exact 1-form.

Proof. The 1-form defined by A′ is

α′ =
∫

Lt

A′ ∧ Re Ω

(6.10)

= α−
√
−1
∑

i

(∫
Lt

∂u

∂si
dµLt

)
dti +

√
−1
∑

i

(∫
Lt

∂v

∂ti
dµLt

)
dti

= α−
√
−1
∑

i

(∫
Lt

dLtu ∧ ∗ι
(
∂

∂ti

)
ω

)
dti +

√
−1
∑

i

(∫
Lt

∂v

∂ti
dµLt

)
dti

= α+
√
−1dt

(∫
Lt

vdµLt

)
.

This completes the proof. �

6.2. Deforming Σ in its Hamiltonian class and α by the gauge
group. To understand the effects of deformations of the pair (Σ, α) on the
reconstructed holomorphic connection A, we first observe:

Proposition 6.3. The representatives of the cohomology class [α] yield
gauge equivalent holomorphic connections A.
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Proof. If α′ = α+ dtf for some function f on Σ, the s-independent connec-
tion corresponds to α′ is

A′ = A+ dtf = A+ df.(6.11)

Thus A′ is gauge equivalent to A. �

Next, we have:

Proposition 6.4. Assume that Σ′ is in the Hamiltonian class determined
by Σ. Then A′ induced from (Σ′, α) is C-gauge equivalent to A induced from
(Σ, α).

Proof. Let Fσ be the continuous family of Hamiltonian diffeomorphisms
which deforms Σ to Σ′. Take a finite collection of numbers 0 = σ0 <
σ1 < . . . < σm = 1 such that Σi+1 is contained in some open tubular neigh-
borhood Ui of Σi in M̌ , and Fσ is smooth in σ for σ ∈ [σi, σi+1]. Note
that the Hamiltonian deformation classes of the Lagrangian section Σi are
given by H1(Σi,R) ∼= H1(B,R). Hence there exists a family of symplectic
diffeomorphisms F (i)

σ : Ui → Ui which is Hamiltonian locally:

dF
(i)
σ

dσ
= Xh(i)(F (i)

σ )(6.12)

for some function h(i) on [σi − ε, σi+1 + ε]×Ui for some small ε > 0 and h(i)

depends only on t ∈ B, subject to

ι(Xh(i))ω̌ = −dh(i).

It is straightforward to check

Xh(i) =
∑
j,k

µjk ∂h
(i)

∂tj

∂

∂xk
−
∑
j,l

µlj ∂h
(i)

∂xj

∂

∂tl
.(6.13)

That h(i) depends only on t implies the second term above vanishes. It then
follows from Proposition 3.3, (6.12) and (6.13) by taking the kth components
of the corresponding vector fields that∫

Lt

Y k
σi+1

dµLt −
∫

Lt

Y k
σi
dµLt =

∑
j

µjk([Yσi+1 ]
j − [Yσi ]

j)

=
∑
j,l

µjk

∫ σi+1

σi

µlj ∂h
(i)

∂tl

=
∂

∂tk

∫ σi+1

σi

h(i).

Extend the function h(i) globally by introducing

H(i) = h(i)ξi
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for some smooth cut-off function ξi which equals 0 outside Ui and equals 1
on a smaller open tubular neighborhood U ′

i ⊂ Ui of Σi which still contains
Σi+1.

Now we construct a 1-form A(i+1) by setting

A(i+1) = X + Yσi +
(
∂

∂tk

∫ σi+1

σi

H(i)

)
dsk(6.14)

= A(i) +
(
∂

∂tk

∫ σi+1

σi

H(i)

)
dsk.

It is easy to see that A(i+1) is C-gauge equivalent to A(i). Repeat this
procedure for each i. Finally, we obtain

A′ = A(n) = A+

(
∂

∂tk

m∑
i=1

∫ σi+1

σi

H(i)

)
dsk.

This implies that A′ is C-gauge equivalent to A. �

Summing up our discussion, we obtain Theorem 1.1.

References

[AB] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil.
Tran. Roy. Soc. London, Series A, 308 (1982), 523-615, MR 85k:14006.

[BJPS] M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, On four-dimensional com-
pactifications of F -theory, Nucl. Phys. B, 505 (1997), 165-201, MR 99d:81107,
Zbl 0925.14019.

[DK] S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Claren-
don Press, Oxford, 1990, MR 92a:57036, Zbl 0820.57002.

[DT] S.K. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, preprint.

[FMW] R. Friedman, J. Morgan and E. Witten, Vector bundles and F theory, Comm.
Math. Phys., 187 (1997), 679-743, MR 99g:14052, Zbl 0919.14010.

[G1] M. Gross, Special Lagrangian fibrations I: Topology, in ‘Integrable Systems and Al-
gebraic Geometry’ (M.-H. Saito, Y. Shimizu and K. Ueno, eds.), World Scientific,
(1998), 156-193, MR 2000e:14066, Zbl 0964.14033.

[G2] , Special Lagrangian fibrations II: Geometry, Surveys in Differential Ge-
ometry, 5, Int. Press, Boston, (1999), 341-403, MR 2001j:53065.

[G3] , Topological mirror symmetry, math.AG/9909015, 1999.

[HL] R. Harvey and H.B. Lawson, Calibrated geometry, Acta Math., 148 (1982), 47-
157, MR 85i:53058.

[H] N. Hitchin, The moduli space of special Lagrangian submanifolds, Ann. Scuola
Norm. Sup. Pisa CI. Sci. (4), 25(3-4) (1997), 503-515, MR 2000c:32075.

[M] R.C. McLean, Deformations of calibrated submanifolds, Duke University, preprint,
1996.

[PZ] A. Polishchuk and E. Zaslow, Categorical mirror symmetry: The elliptic curve,
math.AG/9801119.

http://www.ams.org/mathscinet-getitem?mr=85k:14006
http://www.ams.org/mathscinet-getitem?mr=99d:81107
http://www.emis.de/cgi-bin/MATH-item?0925.14019
http://www.ams.org/mathscinet-getitem?mr=92a:57036
http://www.emis.de/cgi-bin/MATH-item?0820.57002
http://www.ams.org/mathscinet-getitem?mr=99g:14052
http://www.emis.de/cgi-bin/MATH-item?0919.14010
http://www.ams.org/mathscinet-getitem?mr=2000e:14066
http://www.emis.de/cgi-bin/MATH-item?0964.14033
http://www.ams.org/mathscinet-getitem?mr=2001j:53065
http://arXiv.org/abs/math.AG/9909015
http://www.ams.org/mathscinet-getitem?mr=85i:53058
http://www.ams.org/mathscinet-getitem?mr=2000c:32075
http://arXiv.org/abs/math.AG/9801119


160 JINGYI CHEN

[R] W.D. Ruan, Lagrangian tori fibration of toric Calabi-Yau manifold III: Symplectic
topological SYZ mirror construction for general quintics, math.DG/9909126.

[SYZ] A. Strominger, S.T. Yau and E. Zaslow, Mirror symmetry is T-duality, Nuclear
Phys., B 479(1-2) (1996), 243-259, MR 97j:32022, Zbl 0896.14024.

[Ti] G. Tian, Gauge theory and calibrated geometry I, Ann. of Math. (2), 151(1)
(2000), 193-268, MR 2000m:53074, Zbl 0957.58013.

[Ty] A. Tyurin, Geometric quantization and mirror symmetry, math.AG/9902027.

[V] C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles, hep-th/9804131.

[W] R.O. Wells, Differential Analysis on Complex Manifolds, GTM 65, Springer-
Verlag, 1980, MR 83f:58001, Zbl 0435.32004.

Received May 16, 2000 and revised September 12, 2000. The author is supported partially
by a NSERC grant and an Alfred P. Sloan Research Fellowship.

Department of Mathematics
The University of British Columbia
Vancouver, B.C.
Canada V6T 1Z2
E-mail address: jychen@math.ubc.ca

http://arXiv.org/abs/math.DG/9909126
http://www.ams.org/mathscinet-getitem?mr=97j:32022
http://www.emis.de/cgi-bin/MATH-item?0896.14024
http://www.ams.org/mathscinet-getitem?mr=2000m:53074
http://www.emis.de/cgi-bin/MATH-item?0957.58013
http://arXiv.org/abs/math.AG/9902027
http://arXiv.org/abs/hep-th/9804131
http://www.ams.org/mathscinet-getitem?mr=83f:58001
http://www.emis.de/cgi-bin/MATH-item?0435.32004
mailto:jychen@math.ubc.ca

