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Let X′ be a complex affine algebraic threefold with H3(X′)
= 0 which is a UFD and whose invertible functions are con-
stants. Let Z be a Zariski open subset of X′ which has a
morphism p : Z → U into a curve U such that all fibers of p
are isomorphic to C2. We prove that X′ is isomorphic to C3

iff none of irreducible components of X′ \ Z has non-isolated
singularities. Furthermore, if X′ is C3 then p extends to a
polynomial on C3 which is linear in a suitable coordinate sys-
tem. This implies the fact formulated in the title of the paper.

1. Introduction.

A nonconstant polynomial on Cn is a variable if it is linear in a suitable
polynomial coordinate system on Cn. In 1961 Gutwirth [Gu] proved the
following fact which was later reproved by Nagata [Na]: Every polynomial
p ∈ C[2] whose general fibers are isomorphic to C is a variable. In 1974-
1975 Abhyankar, Moh, and Suzuki showed that a much stronger fact holds:
Every irreducible polynomial p ∈ C[2] with p−1(0) ' C is variable [AbMo],
[Su]. The Embedding conjecture formulated by Abhyankar and Sathaye
[Sa1] suggests that the similar fact holds in higher dimensions:

Every irreducible polynomial p ∈ C[n] with p−1(0) ' Cn−1 is a variable.
It seems that in the full generality the positive answer to the Embedding

conjecture is not feasible in the near future but there is some progress for
n = 3. In this dimension A. Sathaye, D. Wright, and P. Russell proved some
special cases of this conjecture ([Sa1], [Wr], [RuSa], see also [KaZa1]).
Then M. Koras and P. Russell proved the Linearization conjecture for n = 3
[KoRu2], [KaKoM-LRu] which implies the following theorem: If p is an
irreducible polynomial on C3 such that it is quasi-invariant with respect
to a regular C∗-action on C3 and its zero fiber is isomorphic to C2, then
p is a variable.1 This paper and paper [KaZa2] contain another step in
the direction of the Embedding conjecture – we prove the analogue of the

1In fact, P. Russell indicated to the author that the “hard-case” of the Linearization
conjecture is equivalent to this theorem. This equivalence can be extracted from [KoRu1].
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Gutwirth theorem in dimension 3, i.e., every polynomial with general C2–
fibers is a variable. It is worth mentioning that a special case of this theorem
(when additionally all fibers are UFDs and the generic fiber is a plane)
follows from more general results of Miyanishi [Miy1] and Sathaye [Sa2].
In fact, in our paper the analogue of the Gutwirth theorem in dimension 3
is also a consequence of the following more general result.

Main Theorem. Let X ′ be an affine algebraic variety of dimension 3
such that

(0) X ′ is a UFD and all invertible functions on X ′ are constants;
(1) X ′ is smooth and H3(X ′) = 0;
(2) there exists a Zariski open subset Z of X ′ and a morphism p : Z → U

into a curve U whose fibers are isomorphic to C2;
(3) each irreducible component of X ′ \Z has at most isolated singularities.
Then U is isomorphic to a Zariski open subset of C and p can be extended

to a regular function on X ′. Furthermore, X ′ is isomorphic to C3 and p is
a variable.

The same conclusion remains true if we replace (1) and (3) by
(1′) the Euler characteristic of X ′ is e(X ′) = 1;
(3′) each irreducible component of X ′ \ Z is a UFD.

In the case when conditions (1) and (2) hold but (3′) does not, X ′ is an
exotic algebraic structure on C3 (that is, X ′ is diffeomorphic to R6 as a
real manifold but not isomorphic to C3) with a nontrivial Makar-Limanov
invariant.

The Makar-Limanov invariant was introduced in [M-L1], [KaM-L1] (see
also [KaM-L2], [Za], and [De]). For a reduced irreducible affine algebraic
variety X ′ this invariant is the subalgebra ML(X ′) of the algebra of regular
functions C[X ′] on X ′ that consists of all functions which are invariant under
any regular C+-action on X ′. If ML(X ′) ' C then we call it trivial. This
is so, for instance, when X ′ ' Cn.

The proof of the Main Theorem consists of three Lemmas.

Lemma I (cf. [Miy1]). Let X ′ be an affine algebraic variety of dimension
3 which satisfies assumption (0), (1), and (3) from the Main Theorem and
(2′) there exists a Zariski open subset Z of X ′ which is a C2-cylinder over

a curve U (i.e., Z is isomorphic to the C2 × U).
Then U can be viewed as a subset of C, X ′ is isomorphic to C3, and the

natural projection Z → U can be extended to a regular function on X ′ which
is a variable.

Miyanishi’s theorem (which can be also proved by the technique we de-
velop below) claims the same fact with assumptions (1) and (3) replaced by
(1′) and (3′). The idea of the proof of Lemma I is as follows. Let σ : X ′ → X
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be an affine modification. The restriction σ to the complement of the excep-
tional divisor E of X ′ is an isomorphism between X ′ \ E and X \D where
D is a divisor of X. We show that under the assumption of Lemma I X ′ is
an affine modification of X = C3 and the divisor D is the union of a finite
number of parallel affine planes in C3. Then the problem is reduced to the
case when D consists of one plane only. We consider the set of so-called
basic modification which preserve normality, contractibility, and for which
C0 = σ(E) is closed in X and E is naturally isomorphic to Ck ×C0. One of
the central facts (Theorem 3.1) says that σ is the composition σ1 ◦ · · · ◦ σm

where each σi : Xi → Xi−1 (X ′ = Xm and X = X0) is a basic modification.
If m = 1 and C0 is either a point or a straight line in the plane D then it is
easy to check that X ' C3 and the other statements of the Lemma I hold.
When m > 1, using the control over topology, one can show that the center
of σ1 is either a point or a curve in D which is isomorphic to C. If the cen-
ter is such a curve then it can be viewed as a straight line by [AbMo, Su]
whence X1 is isomorphic to C3. Now the induction by m yields Lemma I.

Lemma II. Let X ′ be an affine algebraic variety of dimension 3 which
satisfies assumptions (0), (1), and (2′), but does not satisfy assumption (3′).
Then X ′ is an exotic algebraic structure on C3 with a nontrivial Makar-
Limanov invariant.

Under the assumption of Lemma II X ′ is still an affine modification of
X = C3, σ is still a composition of basic modifications, and one can reduce
the problem to the case when D is a coordinate plane. It can be shown that
C0 is either a point or an irreducible contractible curve in D. The remarkable
Lin-Zaidenberg theorem [LiZa] says that such a curve is given by xn = ym in
a suitable coordinate system where n and m are relatively prime. This allows
us to present explicitly a system of polynomial equations in some Euclidean
space CN whose zero set is X ′. Here we use the fact that basic modifications
of Cohen-Macaulay varieties are Davis modifications which were introduced
in [KaZa1] and which fit perfectly the aim of presenting explicitly the result
of a modification as a closed affine subvariety of a Euclidean space. This
explicit presentation of X ′ as a subvariety of CN enables us to compute
ML(X ′), using the technique from [KaM-L1], [KaM-L2]. If condition (3′)
does not hold then ML(X ′) 6= C whence X ′ 6= C3. We show also that X ′

is contractible whence it is diffeomorphic to R6 by the Dimca-Ramanujam
theorem [ChDi] which concludes Lemma II.

The Main Theorem follows from Lemmas I, II, Miyanishi’s theorem, and:

Lemma III ([KaZa2]). Assumptions (2) and (2′) are equivalent.

Acknowledgments. It is our pleasure to thank M. Zaidenberg for his sug-
gestion to check Lemma II and many fruitful discussions. Actually, the idea
of this paper arose during the joint work of the author and M. Zaidenberg on
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[KaZa1]. Later M. Zaidenberg decided not to participate in the project due
to other obligations and the author had to finish it alone. It is also our plea-
sure to thank I. Dolgachev, P. Russell, and J. Lipman whose consultations
were very useful for the author.

2. Affine modifications.

2.1. Notation and terminology. In this subsection we present central
definitions and notation which will be used in the rest of the paper. The
ground field in this paper will always be the field of complex numbers C.

Definition 2.1. Let X be a reduced irreducible affine algebraic variety,
A = C[X] be its algebra of regular functions, I be an ideal in A, and
f ∈ I \ {0}. By the affine modification of A with locus (I, f) we mean the
algebra A′ := A[I/f ] together with the natural embedding A ↪→ A′. That is,
if b0 = f, b1, . . . , bs are generators of I then A′ is the subalgebra of the field
of fractions of A which is generated over A by the elements b1/f, . . . , bs/f .
It can be easily checked [KaZa1] that A′ is also an affine domain, i.e.,
its spectrum X ′ is an affine algebraic variety and the natural embedding
A ↪→ A′ generates a morphism σ : X ′ → X. Sometimes we refer to σ as an
affine modification or we say that X ′ is an affine modification of X. The
reduction D (resp. E) of the divisor f∗(0) ⊂ X (resp. (f ◦ σ)∗(0) ⊂ X ′) will
be called the divisor (resp. the exceptional divisor) of the modification. The
(reduction of the) subvariety of X defined by I will be called the (reduced)
center of the modification and σ(E) will be called the geometrical center of
modification.

Definition 2.2. A morphism p : Y → Z of algebraic varieties is called a
Cs-cylinder over Z if there exists an isomorphism ϕ : Y → Cs × Z so that
p ◦ ϕ−1 is the projection to the second factor. Let σ(E) be an algebraic
variety of pure dimension where σ and E are from Definition 2.1. We say
that σ is a cylindrical modification of rank s if σ|E : E → σ(E) is a Cs-
cylinder where s + 1 = codim Xσ(E).

Definition 2.3. A sequence of generators b0, . . . , bs of an ideal I of A =
C[X] is called semi-regular if the height of I is s + 1. If in addition b0 = f
then the affine modification A ↪→ A′ with locus (I, f) is called semi-basic
of rank s. Furthermore, if C is the set of the common zeros of I in X this
semi-regular sequence is called an almost complete intersection when every
irreducible components G of C meets reg X and G∩reg X contains a Zariski
open subset which is a complete intersection given by b0 = · · · = bs = 0. If,
in addition, b0 = f then the affine modification A ↪→ A′ is basic of rank s.

Let S be a multiplicative system of A and S−1A (resp. S−1A′) the ring
of fractions of A (resp. A′) with respect to S. Every ideal I in A generates
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an ideal S−1I in S−1A. The following fact is an immediate consequence of
the definitions of affine modifications and rings of fractions.

Proposition 2.1. In the notation above we have S−1A′ = (S−1A)[S−1I/f ].

Definition 2.4. Suppose that B is a localization of an affine domain, J
is an ideal in B and g ∈ B \ {0}. By the local modification of B with
locus (J, g) we mean the algebra B′ := B[J/g] together with the natural
embedding B ↪→ B′. By Proposition 2.1 B ↪→ B′ can be obtained by the
operation of taking fractions of an affine modification A ↪→ A′. We call
B ↪→ B′ semi-basic (resp. basic) if the affine modification A ↪→ A′ can be
chosen semi-basic (resp. basic).

Definition 2.5. Let AM be the localization of an affine domain A at a
maximal ideal M , and IM be the extension of an ideal I ⊂ A in AM . An
affine modification A ↪→ A′ is locally semi-basic (resp. basic) if for every
maximal ideal M that vanishes at a point of the geometrical center the local
modification AM ↪→ AM [IM/f ] = S−1A′ is semi-basic (resp. basic) where
S = A \M .

Convention 2.1. The algebra of regular functions of an affine algebraic
variety Y will be denoted by C[Y ]. Further in this paper X and X ′ are
always reduced irreducible affine algebraic varieties, A = C[X], and A′ =
C[X ′]. We suppose that the notation A ↪→ A′ is fixed throughout the
paper. It will always mean an affine modification with locus (I, f). The
corresponding morphism is always denoted by σ : X ′ → X. The divisor, the
exceptional divisor, and the reduced center of the modification are always
denoted by D,E, and C respectively.

We shall also use the following notation in the rest of this section: If Y
is an affine algebraic variety and B = C[Y ] then for every closed algebraic
subvariety Z of Y the defining ideal of Z in B will be denoted by IB(Z).
For every ideal J in C[Y ] we denote by VY (J) the zero set of this ideal in
Y .

2.2. General facts about affine modifications. The ideal K = {a ∈
A| a/f ∈ A′} in A is called the f -largest ideal of modification A ↪→ A′.
Clearly, I ⊂ K and A′ = A[K/f ]. When A and A′ are fixed we denote
K by If . Nullstellensatz implies that the geometrical center of an affine
modification is always contained in the reduced center, in the case of an
f -largest ideal one can see that it implies more.

Proposition 2.2. Let A ↪→ A′ be an affine modification such that I = If .
Then the reduced center of the modification is the closure of the geometrical
one.
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Proposition 2.3. Let g ∈ A \ {0} and f = gn for a natural n. Suppose
that IA′(E) coincides with the principal ideal in A′ generated by g. Then
(IA(C))n ⊂ If (in particular, for n = 1 we have IA(C) = If ). Furthermore,
for every ideal J in A which is contained in IA(C) the algebra A1 := A[J/g]
is contained in A′.

Proof. Note that for every a ∈ (IA(C))n we have a ∈ (IA′(E))n whence
a/f ∈ A′. Thus a ∈ If which is the first statement. This implies that
gn−1J ⊂ If . Hence A1 = A[gn−1J/f ] ⊂ A[If/f ] = A′. �

Corollary 2.1 (cf. [WaWe, Prop. 1.2]). Suppose that J = IA(C) in Pro-
position 2.3. Then there exists an ideal K1 in A1 such that A′=A1[K1/gn−1].
That is, A1 ↪→ A′ may be viewed as an affine modification with locus
(K1, g

n−1).

Proof. Let b0 = gn, b1, . . . , bs be generators of I. Note that bi/g ∈ A1 for
every i. The ideal K1 in A1 generated by gn−1, b1/g, . . . , bs/g is the desired
ideal. �

Proposition 2.4. Let B be a UFD, J be an ideal in B, g ∈ J \ 0 be irre-
ducible in B, f = gn, B′ = B[J/f ], and B′ 6= B[1/f ]. Then g is irreducible
in B′.

Proof. Let gk = a′b′ where a′ = a/f l, b′ = b/fm, a ∈ J l, and b ∈ Jm. Hence
gk+nl+nm = ab in B. Since B is a UFD we have a = ugs and b = vgr

where s + r = k + nl + nm and u, v are units. If s < nl then a′ = u/gnl−s

whence 1/f ∈ B′ which contradicts B′ 6= B[1/f ]. Thus s ≥ nl and, similarly,
r ≥ nm. Hence a′ = ugs−nl and b′ = vgr−nm are in B whence g is irreducible
in B′. �

Proposition 2.5. Let A ↪→ A′ be an affine modification and ∀k > 0 each
divisor g ∈ A of fk is not a unit in A′ (i.e., (g◦σ)−1(0) is not empty). Then
the units of A′ and A are the same.

Proof. Since A′ is a subalgebra of A[1/f ] its units are also units of A[1/f ].
The units of the last algebra are the products of irreducible divisors of fk

and the units of A. By the assumption these divisors are not invertible
functions on X ′ whence the units of A′ coincide with the units of A. �

Proposition 2.6. Let Ij be an ideal in A for j = 1, . . . , k, and let fj ∈ Ij \
{0}. Suppose that f = f1 · · · fk and I = (f/f1)I1 + · · ·+(f/fk)Ik. Let Aj =
A[Ij/fj ] and let δj : Xj → X be the morphism of affine algebraic varieties
associated with the affine modification A ↪→ Aj with locus (Ij , fj). Suppose
that Ej is the exceptional divisor of this modification. These morphisms
define the affine variety Y = X1 ×X X2 ×X · · · ×X Xk and its subvariety
Y ∗ = (X1 \ E1)×X · · · ×X (Xk \ Ek).
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(1) X ′ is isomorphic to the closure Y
∗ of Y ∗ in Y and under this iso-

morphism σ coincides with the restriction of the natural projection
τ : Y → X to Y

∗.
(2) If ∀j 6= l fj and fl have no common zeros on X then X ′ ' Y .

Proof. Let Dj = f−1
j (0). Then D =

⋃k
j=1 Dj . As δj |Xj\Ej

is an isomorphism
between Xj \ Ej and X \Dj we see that Y ∗ is isomorphic to X \D. Thus
B := C[Y ∗] is a subalgebra in the field of fractions of A. The natural
projection Y

∗ → Xj enables us to treat Aj as a subalgebra of B. Note
that A1, . . . , Ak generate B and A′ as I = (f/f1)I1 + . . . + (f/fk)Ik. Hence
A′ = B which yields (1). For (2) it suffices to prove that Y is irreducible.
Assume that Y has an irreducible component Y1 6= Y

∗. Note that τ(Y1) ⊂ D
as τ−1|X\D is an isomorphism between X \D and Y ∗. We can suppose that
τ(Y1) ⊂ D1. Put T =

⋃k
j=2 Dj and consider θ : Y \ τ−1(T ) → X \ T where

θ is the restriction of τ . As for j ≥ 2 the restriction of δj to Xj \ δ−1
j (T )

is an isomorphism between this variety and X \ T we see that Y \ τ−1(T )
is isomorphic to X1 \ δ−1

1 (T ) and θ coincides with the restriction of δ1 to
X1 \ δ−1

1 (T ) under this isomorphism. Thus δ−1
1 (X \ T ) ' τ−1(X \ T ). As

T does not meet D1, τ−1(X \ T ) contains Y1, i.e., it is not irreducible. But
δ−1
1 (X \ T ) ⊂ X1 is irreducible. Contradiction. �

Remark 2.1. We shall need the coordinate interpretation of Proposition 2.6
(2). Suppose for simplicity that k = 2. Let X be a closed affine subvariety
of Cn with a coordinate system x and let Xj be a closed affine subvariety
of Cnj with a coordinate system (x, zj). Suppose that Xj coincides with
the zeros of a polynomial system of equations Pj(x, zj) = 0 and σj can be
identified with the restriction of the natural projection Cnj → Cn. Consider
the space Cn1+n2−n with coordinates (x, z1, z2). Then Proposition 2.6 (2)
implies that the zero set of the system P1(x, z1) = P2(x, z2) = 0 in this
space is isomorphic to X ′.

2.3. Semi-basic modifications.

Lemma 2.1. Let Z be a closed reduced subvariety of X of codimension s+1
and let J = IA(Z). Suppose that f ∈ J \ {0}.

(1) Then J contains a semi-regular sequence L = {f = b0, . . . , bs}.
(2) Let this sequence generate an ideal J1. If none of the irreducible com-

ponents of Z and f−1(0) is contained in sing X then L can be chosen
so that none of the irreducible components of VX(J1) is contained in
sing X.

(3) If (2) holds and the zero multiplicity of f at general points of each
irreducible component of Z is 1, then one can choose L to be an almost
complete intersection.
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(4) There exists a finite-dimensional subspace S of J such that (1)–(3) hold
when b1, . . . , bs are general points of any finite-dimensional subspace of
J containing S.

The proof of the Lemma is straightforward. The first two statements is
just an induction on s. For (3) and (4) consider generators g0 = f, g1, . . . , gr

of J and a closed embedding X ↪→ Cn. Let S consist of elements of the
form

∑r
j=0 ljgj where each lj is the restriction to X of a linear function on

Cn. It is easy to see that the Lemma holds with this choice of S.

Proposition 2.7. Suppose that A ↪→ A′ is a semi-basic modification of
rank s > 0. Then it is a cylindrical modification of rank s. Furthermore,
the reduced and geometrical centers of this modification coincide.

Proof. Let J0 be the maximal ideal in C[s+1] = C[x0, x1, . . . , xs] that van-
ishes at the origin o in Cs+1. Put B0 = C[s+1][J0/x0] and consider the
modification C[s+1] ↪→ B0 with locus (J0, x0). Then B0 is isomorphic to
C[x0, y1, . . . , ys] and xi = x0yi for i = 1, . . . , s. That is, Z0 := spec B0 may
be viewed as the subvariety of C2s+1 (whose coordinates are x0, x1, . . . , xs,
y1, . . . , ys) given by the system of equations xi − x0yi = 0, i ≥ 1. Let
ρ : C2s+1 → Cs+1 be the natural projection to the first s + 1 coordinates.
Our modification is nothing but the restriction of ρ to Z0. Its reduced and
geometrical centers are o and the exceptional divisor E0 = ρ−1(o) ' Cs. Put
Z = Cs+1×X, B = C[Z], and J = J0B. Consider the modification B ↪→ B′

with locus (J, x0). By [KaZa1, Cor. 2.1] we see that Z ′ := spec B′ = Z0×X
and the above modification is the restriction δ to Z ′ ⊂ C2s+1 × X of the
natural projection (ρ, id) : C2s+1 ×X → Cs+1 ×X = Z. In particular, its
reduced and geometrical centers are C0 = o×X and the exceptional divisor
E0 = E0 ×X. Let b0 = f, b1, . . . , bs be a semi-regular system of generators
of I. Consider the embedding i : X ↪→ Z given by the system of equations
xj − bj = 0, j = 0, . . . , s. The restriction of J to X coincides with I. By
[KaZa1, Cor. 2.1] we have the commutative diagram

X ′ ↪→
i′

Z ′

X ↪→
i

Z
?
σ

?
δ

where i′ : X ′ ↪→ Z ′ is a closed embedding. The reduced center of σ is
C = C0 ∩ i(X), and it is of codimension s + 1 in X as σ is semi-basic. As
codim X′E = 1 each fiber F of σ|E : E → σ(E) ⊂ C must be at least of
dimension s. But F is contained in a fiber F 0 ' Cs of δ|E0 : E0 → C0.
Hence dim F = s and σ(E) is dense in C. Furthermore, as i′ is a closed
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embedding F = F 0 and σ(E) = C whence E is a Cs-cylinder over C and
the reduced and geometrical centers of σ coincide. �

2.4. Davis modifications.

Theorem 2.1 ([Da], see also [Ei, Ex. 17.14]). Let f = b0, b1, . . . , bs be gen-
erators of an ideal J in a Noetherian domain B. Consider the surjective
homomorphism

β : B[s] = B[y1, . . . , ys] −→→ B[J/f ] = B[b1/f, . . . , bs/f ] ' B′

where y1, . . . , ys are independent variables and β(yi) = bi/f, i = 1, . . . , s.

Denote by J ′ the ideal of B[s] generated by the elements L1, . . . , Ls ∈ ker β
where Li = fyi − bi. Then ker β coincides with J ′ iff J ′ is a prime ideal.
The latter is true, for instance, if the system of generators b0 = f, b1, . . . , bs

of the ideal J is regular.

Definition 2.6. Let B be (a localization of) an affine domain. When J ′

from Theorem 2.1 is prime the (local) affine modification B ↪→ B′ with locus
(J, f) is called Davis, and b0 = f, b1, . . . , bs is its representative system of
generators.

Remark 2.2. It is easy to see that in the case of a nonempty reduced center
every (local) affine Davis modification is automatically semi-basic.

Proposition 2.8. Let A ↪→ A′ be an affine modification, b0 = f, b1, . . . , bs

be a system of generators of I, M be a maximal ideal in A, and AM , IM ,
S be as in Definition 2.5, i.e., AM ↪→ S−1A′ is the local modification with
locus (IM , f). Let for every maximal ideal M this local modification be Davis
and b0, . . . , bs be a representative system of generators. Then A ↪→ A′ is a
Davis modification.

Proof. Let Y = Cs × X, i.e., C[Y ] = A[s] = A[y1, . . . , ys]. Let I ′ be the
ideal in A[s] generated by Li = yif − bi, i = 1, . . . , s and Y1 = VY (I ′). Show
that I ′ is prime, i.e., Y1 is reduced irreducible. Choose a maximal ideal M ′

in A[s] which vanishes at x′ ∈ Y1. Let x be the image of x′ in X under the
natural projection and let M be the maximal ideal of A that vanishes at
x. Then A \ M ⊂ A[s] \ M ′ and A

[s]
M ′ is a further localization of S−1A[s].

Since AM ↪→ S−1A′ is a Davis modification and b0, . . . , bs is a representative
system of generators of this modification, the ideal S−1I ′ is prime in S−1A[s]

whence the localization I ′M ′ of this ideal is also prime, i.e., the germ of Y1

at x′ is reduced irreducible. It remains to show that Y1 is connected. As
E1 = Y1 ∩ f−1(0) ' Cs × C and the localizations of our modification are
Davis the codimension of irreducible component of C in X must be s+1 by
Remark 2.2. Hence dim E1 = dim X−1 unless E1 is empty. By construction
Y1 \E1 is isomorphic to X \D and, therefore, irreducible. As codim Y Y1 = s
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the numbers of irreducible components of Y1 and Y1 \E1 are the same. Thus
Y1 is irreducible. �

Proposition 2.9.
(1) Let A be Cohen-Macaulay and A ↪→ A′ be semi-basic. Then this mod-

ification is Davis.
(2) Suppose that A ↪→ A′ is a Davis modification. Let A be Cohen-

Macaulay. Then A′ is also Cohen-Macaulay.

Proof. (1) Let M be a maximal ideal in A. Then AM is also Cohen-Macaulay
[Ma, Th. 30]. In the local ring AM every semi-regular sequence is regular
[Ma, Th. 31]. Thus the modification AM ↪→ AM [IM/f ] = S−1A′ (where
S = A \M) is Davis by Theorem 2.1. Hence A ↪→ A′ is Davis by Proposi-
tion 2.8. For (2) consider L1, . . . , Ls ∈ A[s] as in the proof of Proposition 2.8.
Since A is Cohen-Macaulay A[s] is Cohen-Macaulay as well [Ei, Prop. 18.9].
The ideal I ′ generated by L1, . . . , Ls has height s. Hence A′ ' A[s]/I ′ is
Cohen-Macaulay by [Ei, Prop. 18.13]. �

2.5. Basic modifications.

Remark 2.3. Let A ↪→ A′ be a basic modification and b0 = f, . . . , bs be
a system of generators of I which is an almost complete intersection. Note
b0, . . . , bs may be viewed as elements of a local holomorphic coordinate sys-
tem at a general point x of C. That is, in a neighborhood of x the basic
modification is nothing but a usual (affine) monoidal transformation. This
implies that every point y ∈ σ−1(x) is a smooth point of X ′ and the zero
multiplicity of f ◦ σ at y is 1.

Remark 2.3 and [KaZa1, Th. 3.1 and Prop. 3.1] imply the following fact.

Proposition 2.10. Let A ↪→ A′ be a basic modification, C and, therefore,
E be irreducible topological manifolds, and the natural embedding of C into
D generate an isomorphism of the homology of C and D. Then σ generates
isomorphisms of the fundamental groups and the homology groups of X and
X ′.

Proposition 2.11. Let A ↪→ A′ be a basic modification. Suppose that A is
normal and Cohen-Macaulay. Then A′ is normal and Cohen-Macaulay.

Proof. By Proposition 2.9 this modification is Davis and A′ is Cohen-Macau-
lay. Note that if the singularities of X ′ is at least of codimension 2 then X ′

is normal by [Ha, Ch. 2, Prop. 8.23]. Since X is normal the codimension of
σ−1(sing X \D) = σ−1(sing X \C) in X ′ is at least 2 whence we can ignore
this subvariety. Let C0 be the subset of the reduced center C, at the points
of which the gradients of a system of generators of I (which are an almost a
complete intersection) are linearly independent. The codimension of C \C0
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in C is at least 1. Since σ is cylindrical the codimension of σ−1(C \ C0) in
E is at least 1, and in X ′ it is at least 2, and we can ignore these points
again. The other points of X ′ are smooth by Remark 2.3. �

2.6. Preliminary decomposition. We shall fix first notation for this sub-
section.

Convention 2.2.
(1) In this subsection A is normal Cohen-Macaulay. When we speak about

the modification A ↪→ A′ then I = If , f = gn where g ∈ A generates
IA(D), E is nonempty irreducible and IA′(E) is also generated by g.

(2) We consider affine domains Ai = C[Xi], i ≥ 0 such that A ↪→ Ai ↪→ A′.
These embeddings generate morphisms δi : Xi → X and ρi : X ′ → Xi

where σ = δi ◦ ρi. It is easy to see that there exist ideals Ii in A and
Ki in Ai such that the locus of A ↪→ Ai is (Ii, g

ni) and the locus of
Ai ↪→ A′ is (Ki, f). Hence the exceptional divisor Ei of δi coincides
with the divisor Di of ρi.

(3) We suppose that Ki is the f -largest ideal of ρi whence by Proposi-
tion 2.2 the closure of the geometrical center Ci of ρi coincides with
its reduced center Ci.

Lemma 2.2. Let A1 ↪→ A′ be an affine modification as in Convention 2.2.
Suppose that A1 is normal and the closure of C1 = ρ1(E) in X1 is an
irreducible component D1

1 of D1. Let E0 be the Zariski open subset of E
that consists of all points x′ ∈ E such that x′ is a connected component
of ρ−1

1 (ρ1(x′)). Put D0 = ρ1(E0) and let D2
1 be the union of irreducible

components of D1 different from D1
1. Then

(i) D0 = D1
1 \D2

1 and E0 = ρ−1
1 (D0);

(ii) the restriction of ρ1 to (X ′ \ E) ∪ E0 is an isomorphism between this
variety and (X1 \D1) ∪D0;

(iii) in particular, if E = E0 (this is so, for instance, when D2
1 does not

meet D1
1) then ρ1 is an embedding, and if D1 = D1

1 then ρ1 is an
isomorphism.

Proof. Put x1 = ρ1(x′) for x′ ∈ E0. As X1 is normal x1 cannot be a
fundamental point of the birational map ρ−1

1 by the Zariski Main Theorem
[Ha, Ch. 5, Th. 5.2]. That is, ρ−1

1 an embedding in a neighborhood of x1

which proves (ii). Put X0
1 = (X1 \ D1) ∪ (D1

1 \ D2
1). The complement to

(X1\D1)∪D0 in X0
1 is a constructive subset of codimension at least 2. Since

X ′ is affine and X0
1 is normal we can extend morphism ρ−1

1 to a morphism
from X0

1 to X ′ [Dan, Sect. 7.1]. This implies that ρ−1
1 |X0

1
: X0

1 → X ′ is an
embedding whence D0 ⊃ D1

1 \D2
1. Assume that x′ ∈ E0 and x1 = ρ1(x′) ∈

D1
1 ∩D2

1. As ρ−1
1 is an embedding in a neighborhood of x1 we see that the
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exceptional divisor of ρ1 must contain a component different from E. This
contradiction yields (i). The last statement follows immediately from (i)
and (ii). �

Definition 2.7. Let A ↪→ A′ be an affine modification, A ↪→ A1 be a basic
modification such that A1 ⊂ A′, h ∈ A\{0} and S = {hn | n ∈ N}. Suppose
that (h ◦ σ)−1(0) does not contain E and S−1A1 = S−1A′. Then we call
A ↪→ A′ a pseudo-basic modification (relative to A ↪→ A1).

Note that if the assumption of Lemma 2.2 holds and A ↪→ A1 is basic
then it follows from this Lemma that A ↪→ A′ is pseudo-basic.

Proposition 2.12. Let Convention 2.2 hold, C be not contained in sing X,
codimXC ≥ 2, and the zero multiplicity of g at general points of C is 1. Let

A = A0 ↪→ · · · ↪→ Ak−1 ↪→ Ak, k ≥ 0

be a strictly increasing sequence of affine domains such that Ak ⊂ A′, and
∀i ≤ k

(i) affine modification Ai−1 ↪→ Ai is basic with locus (Ji, g) and of rank
si−1 where si−1 + 1 = codim Xi−1Ci−1.

(1) Then k ≤ n (recall that f = gn) and this sequence can be extended to
a strictly increasing sequence of affine domains

A0 ↪→ · · · ↪→ Am−1 ↪→ Am, k ≤ m ≤ n

so that (i) holds ∀i ≤ m and Am−1 ↪→ A′ is pseudo-basic relative to
Am−1 ↪→ Am.

(2) Suppose that σi : Xi → Xi−1 is the morphism associated with the
affine modification Ai−1 ↪→ Ai. Then σi(Ci) = Ci−1 for i ≤ m − 1,
and ρm−1(E) = Cm−1.

(3) Let the closure E1
m of ρm(E) be a connected component of Em (resp. Em

be irreducible). Then ρm−1 is a locally basic (resp. basic) modification.

Proof. Let us show (2) first. By Convention 2.2 the exceptional divisor of
ρi is E whence ρi(E) = Ci. As σ = ρ0 we have σ(E) = C0. As σ =
ρi ◦ δi we see that δi(Ci) = C0. Hence σi(Ci) = Ci−1 since δi = δi−1 ◦ σi.
For (1) note first that as A is normal Cohen-Macaulay so is each Ai by
Proposition 2.11. Hence if sk = 0 then we put m = k and (1) follows from
Lemma 2.2. Let sk > 0. By Remark 2.3 σ−1

1 (x) ⊂ reg X1 for a general
point x ∈ C0. As σ1(C1) = C0 we see that σ−1

1 (x) contains general points
of C1 whence C1 meets reg X1, and the zero multiplicity of g ◦ δ1 at general
points of C1 is 1 by Remark 2.3. By induction the similar facts are true
for Ck and g ◦ δk. By Lemma 2.1 and Proposition 2.3 we can choose a
basic modification Ak ↪→ Ak+1 with locus (Jk+1, g) such that its rank is sk

and Ak+1 ⊂ A′. Thus we can extend our strictly increasing sequence of
affine domains and we can always suppose that k ≥ 1 in (1). There are
two possibilities: Either this sequence is infinite or there exists m such that
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sm = 0 which implies (1). Show by induction that the first possibility does
not hold and that m ≤ n. Assume first that (1) holds for n − 1 > 0. Let
b0 = g, b1, . . . , bs be a system of generators of J1 which is an almost complete
intersection. By Definition 2.3 there exists h ∈ A such that h−1(0) does not
contain C, X \ h−1(0) is smooth, C \ h−1(0) is a complete intersection in
X \ h−1(0) given by b0 = · · · = bs = 0. If S = {hj |j ∈ N} then the affine
modification S−1A ↪→ S−1A′ satisfies the analogue of assumption of this
proposition and, furthermore, S−1J1 is the defining ideal of C \ h−1(0) in
S−1A. By Proposition 2.1 the locus of S−1A ↪→ S−1A1 is (S−1J1, g), and
by Corollary 2.1 the locus of S−1A1 ↪→ S−1A′ can be chosen in the form
(L1, g

n−1). By the induction assumption the codimension of the reduced
center of the modification S−1Am ↪→ S−1A′ is 1 for some m ≤ n. Hence the
same is true for the reduced center of Am ↪→ A′, i.e., sm = 0 which concludes
this step of induction. The next step is for n = 1. By Proposition 2.3 in
this case S−1J1 coincides with the g-largest ideal of the affine modification
S−1A ↪→ S−1A′. Hence S−1A1 = S−1A′. As h is chosen so that h−1(0) does
not contain C this implies (1) which concludes induction. Claim (3) is now
a consequence of Lemma 2.2. �

Let C∗
m−1 be the complement in Cm−1 to the intersection of Cm−1 with

the other components of the reduced center of σm. Then the exceptional
divisor of σm contains E∗

m ' Csm−1 × C∗
m−1. By Lemma 2.2 under the

assumption of Proposition 2.12 the restriction of ρ−1
m to (Xm \Em) ∪E∗

m is
an embedding. Hence:

Corollary 2.2 (cf. [Miy2, Lemma 2.3]). Under the assumption of Propo-
sition 2.12 the exceptional divisor E contains a Zariski open cylinder E∗

m '
Csm−1 × C∗

m−1 such that ρm−1|E∗
m

is the projection to the second factor.

3. The geometry of the exceptional divisor and the reduced
center.

3.1. The exceptional divisor. In this section we shall strengthen Propo-
sition 2.12 in the case when X is a threefold. Our main aim is to make
Am = A′.

Lemma 3.1. Let X ′ be an affine threefold with H3(X ′) = 0 and E be a
closed irreducible surface in X ′ which admits a surjective morphism τ : E →
Cm−1 into an irreducible curve Cm−1

2 such that for a Zariski open subset
C∗

m−1 ⊂ Cm−1 and E∗ = τ−1(C∗
m−1) the morphism τ |E∗ : E∗ → C∗

m−1 is a
C-cylinder and L := E \ E∗ is a curve. Let H2(X ′ \ E) = H3(X ′ \ E) = 0.
Let z ∈ Cm−1 \ C∗

m−1 and Cz be the punctured germ of Cm−1 at z. Put
Lz = τ−1(z). Then there exists an isomorphism H0(reg L) ' H1(E∗) such

2We denote this curve by Cm−1 since it will play later the role of the geometrical center
of the modification ρm−1 from Proposition 2.12 and τ will be ρm−1|E .
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that for every germ Cz as above the restriction of this isomorphism gener-
ates an isomorphism H0(reg Lz) ' H1(Cz) (i.e., the number of irreducible
components of Lz is the same as the number of connected components of
Cz). Furthermore, the normalization of Cm−1 is C.

Proof. Consider the following exact homology sequences of pairs:

−→ Hj+1(X ′) → Hj+1(X ′, X ′ \ L) → Hj(X ′ \ L)

→ Hj(X ′) → Hj(X ′, X ′ \ L) →
and

. . . −→ Hj(X ′ \E) → Hj(X ′ \L) → Hj(X ′ \L,X ′ \E) → Hj−1(X ′ \E) → .

Note that H4(X ′) = 0 since X ′ is an affine algebraic variety [Mil, Th. 7.1].
Replace X ′ (resp. E, resp. L) with the complement to sing L in X ′ (resp. E,
resp. L). Though X ′ is no more affine, this replacement does not affect
H3(X ′),H4(X ′), and Hi(X \ E), and the advantage is that L is smooth
now. From the above sequences and Thom’s isomorphisms (e.g., see [Do,
Ch. 8, 11.21]) we have

H0(L) ' H4(X ′, X ′ \ L) ' H3(X ′ \ L) ' H3(X ′ \ L,X ′ \ E) ' H1(E∗).

As H1(C∗
m−1) ' H1(E∗) we have an isomorphism H0(L) ' H1(C∗

m−1). Let
Li be an irreducible component of L (which is now a connected smooth
component of L), and V be a tubular neighborhood of Li in X ′. Consider the
germ S ′i of a smooth complex surface whose image under a natural retraction
V → Li is a point z′ ∈ Li, i.e., Si is transversal to Li at z′. We can suppose
that S ′i is diffeomorphic to a ball and its boundary ∂S ′i in X ′ is diffeomorphic
to a three-sphere which meets E∗ transversally along a smooth real curve
γi. Let [Si] ∈ H4(V, V \ Li) be generated by Si. Thom’s isomorphism
H4(V, V \Li) → H0(Li) sends [Si] to the positive generator of H0(Li) [FoFu,
Ch. 4, Sect. 30, p. 262]. As Thom’s isomorphisms are functorial under
open embeddings [Do, Ch. 8, 11.5], isomorphism H4(X ′, X ′ \ L) → H0(L)
sends [Si] to the positive generator of H0(Li). Isomorphism H4(X ′, X ′ \
L) ' H3(X ′ \ L) sends [S ′i] to the element [∂S ′i] ∈ H3(X ′ \ L) generated by
∂S ′i. Let Ti be a small tubular neighborhood of γi in ∂S ′i. By the excision
theorem Ti generates an element [Ti] of H3(X ′ \ L,X ′ \ E) which coincides
with [∂S ′i]. Thus the constructed isomorphism H0(L) ' H3(X ′ \ L,X ′ \
E) sends the positive generator of H0(Li) to [Ti]. The same argument as
above implies that under isomorphism H3(X ′ \ L,X ′ \ E) → H1(E∗) the
cycle [Ti] goes to the element [γi] ∈ H1(E∗) ' H1(C∗

m−1) generated by
γi. Note that H1(C∗

m−1) = ⊕z∈Cm−1\C∗
m−1

H1(Cz) ⊕ N where the group
N is not trivial provided that either Cm−1 is of positive genus or Cm−1

has more than one puncture. As τ(z′) = z and γi is contained in a small
neighborhood of z′, the image of the generator of H0(Li) under isomorphism
H0(L) ' H1(C∗

m−1) is contained in H1(Cz). Hence the image of H0(L) is
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contained in ⊕z∈Cm−1\C∗
m−1

H1(Cz). Thus N is trivial and H0(Lz) ' H1(Cz)
which is the desired conclusion. �

Remark 3.1. If E is a UFD then there is no need to assume in Lemma 3.1
that X ′ is smooth and H3(X ′) = H2(X ′ \ E) = H3(X ′ \ E) = 0. One can
show that the fibers of τ are irreducible whence the Euler characteristics
e(E) = e(Cm−1) ≤ 1. Thus in order to make Cm−1 contractible one need
e(E) = 1.

The proof of Lemma 3.1 implies more. Fix z ∈ Cm−1 \ C∗
m−1. Let

Cj , j = 1, . . . , k be the irreducible components of Cz, i.e., Cj corresponds
to a generator αj of H1(Cz). Each irreducible component Li of τ−1(z)
corresponds to a generator βi of H0(Lz). By Lemma 3.1 the image of βi

under isomorphism H0(Lz) ' H1(Cz) is
∑

j mj
iαj . One can extract from

Lemma 3.1 a way to compute these coefficients mj
i .

Lemma 3.2. Let the notation above hold and τ = ρm−1|E where ρm−1 :
X ′ → Xm−1 is the same as in Proposition 2.12. Let S ′i be the Euclidean germ
of a smooth algebraic surface transversal to Li at a smooth point z′ ∈ Li,
and Si = ρm−1(S ′i). Then for every point x ∈ Cj the germ of Si at x consists
of mj

i smooth branches which meet the divisor Dm−1 of modification ρm−1

transversally along the germ of Cj at x.

Proof. Suppose that S ′i meets τ−1(Cj) along the germ Γj
i of a curve. As S ′i

is transversal to Li, it is transversal to E at every x′ ∈ Γj
i . Let B′ be the

germ of S ′i at x′, x = ρm−1(x′), and B = ρm−1(B′). As ρm−1 is pseudo-
basic it is basic in a neighborhood of x′, i.e., it can be viewed as a monoidal
transformation at x, by Remark 2.3. Hence B is smooth and transversal
to Dm−1 at x. It remains to show that the number of such branches B is
mj

i which is equivalent to the fact that the mapping τ |
Γj

i
: Γj

i → Cj is mj
i -

sheeted. One can suppose that S ′i is the same as in the proof of Lemma 3.1.
The boundary of Γj

i may be viewed as a smooth real curve γj
i and

⋃
j γj

i = γi

where γi = ∂S ′i ∩ E. Let Ez = τ−1(Cz). It was shown in the proof of
Lemma 3.1 that the image of βi under the isomorphism H0(Lz) ' H1(Ez)
is [γi] =

∑
j [γ

j
i ] where [γj

i ] is the cycle in H1(Ez) generated by γj
i . Then

the image of [γj
i ] under the isomorphism H1(Ez) ' H1(Cz) coincides with

mj
iαj where mj

i is the winding number of τ(γj
i ) in Cj around z. As γj

i is
the boundary of the punctured disc Γj

i this implies that τ |
Γj

i
: Γj

i → Cj is

mj
i -sheeted. �

3.2. The reduced center. We shall describe some condition under which
the reduced center of an affine modification is a complete intersection.
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Lemma 3.3. Let C be an affine reduced irreducible curve, v be a coordinate
on the first factor of D1 = C×C, and θ : D1 → C be the natural projection.
Let o be a singular point of C, V be the germ of C at o, D1 = θ−1(V), and
FV (resp. OV) be the ring of complex-valued (resp. holomorphic) functions
on V.

(1) Suppose that a function h ∈ FV [v] is holomorphic everywhere in D1

except for a finite number of points. Then h is holomorphic in D1.
(2) Let h ∈ FV [v] be holomorphic in D1, h−1(0) not contain θ−1(o), and

the zero multiplicity of h at general points of h−1(0) be n. Then h1/n

is holomorphic.
(3) Let C1 be a reduced irreducible curve in D1 so that projection θ|C1 :

C1 → C is finite and for each singular point o ∈ C there exist V
and D1 as in (1) for which the defining ideal of C1 ∩ D1 in OV [v] is
principal. Then the defining ideal of C1 in C[D1] is generated by a
function b ∈ C[D1] which is a monic polynomial in v.

Proof. The argument is of local analytic nature whence it is enough to con-
sider the case when C is contractible. Let ν0 : C ' Cν → C be a normal-
ization, t be a coordinate on Cν , and ν = (ν0, id) : C2 ' C × Cν → D1,
i.e., (v, t) is a coordinate system on C2. Note that γ = h ◦ ν is of form
rk(t)vk + rk−1(t)vk−1 + · · ·+ r0(t). One can suppose that o is the origin of
Cn ⊃ C. As h is holomorphic everywhere on D1 except for a finite number
of points implies that for every fixed v = v0 except for a finite number of
values, γ(v0, t) is contained in the ring of convergent power series of the
coordinate functions x1(t), . . . , xn(t) of ν0. Hence each ri(t) belongs to this
ring whence h is holomorphic in D1 which is (1). For (2) it suffices to note
that the function h1/n is holomorphic everywhere in D1 except for possibly
points from the finite set h−1(0) ∩ θ−1(o). Let Cν

1 = ν−1(C1) be the zero
fiber of an irreducible polynomial β(v, t) on C2. The projection of Cν

1 to
the t-axis is finite as θ|C1 is finite whence β(v, t) is monic in v. The function
b = β ◦ ν−1 is rational on D1, and in order to show that it is regular, it
suffices to show that b is holomorphic at each point of D1 (e.g., see [Ka1]).
Let o be a singular point of C. It is enough to check that b is holomorphic
at the points of θ−1(o). Let O be the ring of germs of analytic functions at
o ∈ Cn and h be the generator of the defining ideal of C1 ∩ D1 in OV [v].
By Cartan’s theorems (e.g., see [GuRo, Ch. 8A, Th. 18]) we can extend
each coefficient of h to a holomorphic function in a neighborhood of o ∈ Cn

whence we can treat h as an element of O[v]. Applying the Weierstrass
Preparation Theorem [Rem, Ch. 1, Th. 1.4] one can show that h = ωe
where ω ∈ O[v] is a monic polynomial and e ∈ O[v] is invertible on D1.
Thus ω|D1 generates the same ideal as h whence we can suppose that h is a
monic polynomial in v. Thus γ = h ◦ ν is monic as a polynomial in v over
the ring of germs of analytic functions at ν−1

0 (o) ⊂ C. Note that γ = βα
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where α does not vanish since the zero multiplicity of γ and β at general
points Cν

1 is 1. Hence α is is constant on each line parallel to the v-axis.
This constant is 1 since both γ and β are monic (look at the quotient γ/β
as v approaches ∞ along any of these lines). Thus β = γ whence b coincides
with h in D1 and, therefore, b is holomorphic. �

Definition 3.1. We say that X is a locally analytic UFD of for every x ∈ X
the ring of germs of holomorphic functions on X at x is a UFD.

Proposition 3.1. Let the assumptions of Convention 2.2 and Proposition
2.12 hold. Suppose that dim X = 3, m ≥ 2 where m is from Proposition 2.12,
X ′ is smooth, and H3(X ′) = H2(X ′\E) = H3(X ′\E) = 0. Suppose that for
i = 1, . . . , r the divisor Di is naturally isomorphic to C × Ci−1 (i.e., Ci−1

is a curve), the natural projection σi|Ci : Ci → Ci−1 is finite, D0 (= D) is
smooth. Let X be a locally analytic UFD. Then the defining ideal of Cr in
C[Dr] is principal.

Proof. Let z, L, Lz be as in Lemma 3.1 and let Li be an irreducible compo-
nent of Lz. Suppose that for each z ∈ Cm−1 \C∗

m−1 the objects S ′i,Si, Cj ,mj
i

are the same as in Lemma 3.2. As these objects depend on z, the notation,
say, mj

i (z) has an obvious meaning. By Lemma 3.1 the matrix (mj
i (z)) is in-

vertible whence there exists a vector v(z) with integer entries vi(z) such that
each entry of the vector (mj

i (z))v(z) is equal to 1. Consider the Euclidean
germ T ′ =

∑
z∈Cm−1\C∗

m−1

∑
Li⊂Lz vi(z)S ′i(z) of a divisor and its strict trans-

forms Tl = ρl(T ′). By Lemma 3.2 the germ of Tm−1 at any point of Cj con-
sists of smooth branches transversal to Dm−1 and the sum of multiplicities of
these branches is 1. For i ≤ m−1 put γi = ρi ◦ρ−1

m−1 = σi+1 ◦ · · · ◦σm−1 and
zi = γi(z). Let Ci be the germ of Ci at zi and morphism γi|Cm−1 : Cm−1 → Ci

be ki-sheeted. As γi is a composition of basic modifications (which can be
viewed locally as monoidal transformations by Remark 2.3) the germ of Ti at
a general point of Ci consists of smooth branches which meet Di transver-
sally and the sum of multiplicities of these branches is ki. Let V0 be the
Euclidean germ of X = X0 at z0 and let S0 ⊂ V0 be an irreducible com-
ponent of T0 (i.e., S0 = ρ0(S′i) for some i). One can check that S0 \ D is
closed in V0 \ D (i.e., S0 \ D is an analytic hypersurface in V0 \ D as the
restriction of ρ0 to X ′ \ E is an embedding) and the closure S

0 of S0 \ D

in V0 is S0. Hence S
0 ∩ D ⊂ C (in particular, the intersection of T0 and

D0 ∩ V0 is C0) and by [BeNa, Th. 1.2] S0 is an analytic hypersurface in
V0. As X is locally analytic UFD, in V0 the divisor T0 coincides with the
divisor of a meromorphic function h0 on V0. By the theorem about delet-
ing singularities the restriction of h0 to V0 ∩ D0 is a holomorphic function
whose divisor is k0C0. Put V1 = σ−1

1 (V0) and D1 = σ−1
1 (C0). As σ1 is basic

e1 = h0 ◦ σ1 is a meromorphic function on V1 whose divisor is T1 + k0D1.
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By Remark 2.3 the divisor of g1 = g ◦ σ1 on V1 is D1 whence T1 is the di-
visor of the meromorphic function h1 := e/gk0

1 . As for general x1 ∈ C1 each
branch of T1 at x1 meets D1 transversally and T1 ∩ D1 = C1, Lemma 3.3
(1) implies that h1|D1 is a holomorphic function with divisor k1C1. Put
e2 = h1 ◦ σ2, V2 = σ−1

2 (V1) = δ−1
2 (V0), and D2 = σ−1

2 (C1) = δ−1
2 (C0) (where

δi is as in Convention 2.2 (2)). Repeating the procedure we get the germ
of a meromorphic function h2 whose divisor is T2. Induction yields a mero-
morphic function hi on Vi = δ−1

i (V0) whose divisor is Ti. Hence ∀i ≤ r the
restriction of hi to Di = δ−1

i (C0) is a holomorphic function whose divisor is
kiCi. By Lemma 3.3 the defining ideal of Ci is principal, and, therefore, the
defining ideal of Ci in C[Di] is also principal. �

3.3. Decomposition.

Lemma 3.4. Let Convention 2.2 hold, A1 ↪→ A′ be a basic modification,
D1 ' C×C where C is a curve, z be an irreducible singular point of C, and
C1 meet C × z ⊂ D1 at z1 = 0 × z but C1 6= C × z. Then z1 is a singular
point of C1.

Proof. Assume the contrary, i.e., C1 is smooth at z1. As the situation is
local we can suppose that C is a closed curve in Cn. Consider a normal-
ization ν0 : Cν → C and ν = (id, ν0) : C × Cν → C × C ⊂ Cn+1. Let
(y, x) = (y, x1, . . . , xn) be a coordinate system in Cn+1, and g, b1 be an al-
most complete intersection in A1 which generates modification A1 ↪→ A′, i.e.,
b1 generates the defining ideal of C1 in C[D1]. We treat b1 as a polynomial
b1(y, x) on Cn+1. Let β = b1|D1 ◦ ν, Cν

1 be the proper transform of C1 (i.e.,
Cν

1 = β−1(0)), and let o = ν−1(z1). As C1 is smooth and ν|Cν
1

: Cν
1 → C1

is a homeomorphism, Cν
1 is biholomorphic to C1 by [Pe, Cor. 1.5] whence

Cν
1 is smooth at o. As A1 ↪→ A′ is basic the gradient of β does not vanish

at general points of Cν
1 and also at o as Cν

1 is smooth at o. Let (v, t) be
a local coordinate system at o where t is a coordinate on the second fac-
tor of C × Cν and v is a coordinate on the first one. The Taylor series of
β(v, t) = b1(v, x(t)) at o does not have a nonzero linear term ct since z is
a singular point of C. The linear part of this power series must be nonzero
(otherwise the gradient of β at o is zero). Thus the Taylor series of b1 at z1

has a nonzero linear term cv. The implicit function theorem implies that the
germ of C1 at z1 is biholomorphic to the germ of C at z, i.e., C1 is singular
at z1. Contradiction. �

Theorem 3.1. Let Convention 2.2 (1) hold for an affine modification A ↪→
A′, X ′ be a threefold, and H3(X ′) = H2(X ′ \ E) = H3(X ′ \ E) = 0. Let

(i) D be isomorphic to C2;
(ii) X be a locally analytic UFD, and
(iii) C be not contained in the singularities of X.
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Let m,Ai, Ci, and Ci be the same as in Proposition 2.12 3 and Conven-
tion 2.2 (3).

(1) Then the algebras Ai’s can be chosen so that Am = A′, Ci = Ci for
every i, and if Ci is a curve its defining ideal in C[Di] is principal.

(2) Each Ci is either a point or an irreducible contractible curve, and in
the case when E has at most isolated singularities these curves are
smooth contractible.

Proof. We use induction on m. Suppose first that C0 is a point. Assumption
(i) allows us to choose b1, b2 ∈ A such that g, b1, b2 generate the defining ideal
I1 of C0 in A. Hence the exceptional divisor E1 = D1 of modification A ↪→
A1 = A[I1/g] with locus (I1, g) is isomorphic to C2. By Proposition 2.3 and
Convention 2.2 (1) A1 ⊂ A′. If m = 1 in Proposition 2.12 then Lemma 2.2
implies that ρ1 is an isomorphism, i.e., A1 = A′. Let m ≥ 2. Note that E1 '
C2 and it is the divisor of the modification A1 ↪→ A′ from Convention 2.2.
By (iii) C0 is a smooth point of X whence σ−1

1 (C0) is contained in the
smooth part of X1 by Remark 2.3, i.e., X1 is a locally analytic UFD and
normal Cohen-Macaulay. Thus the assumptions of this Theorem hold also
for the modification A1 ↪→ A′. The decomposition of A1 ↪→ A′ contains
m − 1 factors and induction implies the desired conclusion in this case.
Let C0 be a curve. As there is a surjective morphism Cm−1 → C0 the
normalization of C0 is C by Lemma 3.1. This implies that C0 is closed
in X, i.e., C = C0. The defining ideal of C0 ⊂ D ' C2 is generated by
b ∈ C[D] whence the defining ideal I1 of C in A is generated by g and b
where b is an extension of b to X. Thus the exceptional divisor E1 ' C×C0

of A ↪→ A1 = A[I1/g] is irreducible and by Proposition 2.11 A1 is normal
Cohen-Macaulay. By Proposition 3.1 the defining ideal of C1 in C[D1] (recall
D1 = E1 by Convention 2.2) is principal. Let b1 be its generator and b1 be
an extension of b1 to X1. The defining ideal I2 of C1 in A1 is generated by
g and b1. Thus the exceptional divisor E2 of A ↪→ A2 = A[I2/g] is again
irreducible. Repeating this procedure we can construct basic modifications
σi from Proposition 2.12 so that Em is irreducible. As ρm is pseudo-basic
relative to σm, Lemma 2.2 implies that X ′ ' Xm and ρm coincides with
σm under this isomorphism. If Ci has a double point then one can check
that Ci+1 ⊂ Di+1 ' C × Ci has also a double point as the defining ideal
of Ci+1 in C[Di+1] is principal. Thus Cm−1 has a double point. For every
z ∈ Cm−1 the number of components in σ−1

m (z) is one, since σ−1
m (z) ' C. By

Lemma 3.1 the number of irreducible components of the germ of Cm−1 at z is
one, i.e., Cm−1 and, therefore, each Ci have no double points. By the same
Lemma the normalization of Cm−1 is C whence Cm−1 and similarly Ci’s
are contractible. If Ci has an irreducible singularity then, by Lemma 3.4,

3If we allow σ1 in Proposition 2.12 to be only locally basic then instead of (i) one can
suppose that D is only smooth, or it is a cylinder over a curve.
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Ci+1 and, therefore, Cm−1 have singularities. But if Cm−1 is singular then
E ' C×Cm−1 has non-isolated singularities which yields the last statement
of (2). �

4. Applications of the decomposition.

4.1. The proof of Lemma I. We shall reduce first Lemma I to a problem
about affine modifications.

Lemma 4.1. Let X ′ be a UFD of dimension 3 which contains a C2-cylinder
Z over a smooth affine curve U .

(i) Then U is rational and the natural projection p0 : Z → U can be ex-
tended to a function p ∈ C[X ′] whose general fibers are still isomorphic
to C2.

(ii) Furthermore, let x, y, z be coordinates on X = C3. Then there exists
an affine modification σ : X ′ → X such that its coordinate form is
σ = (p, p1, p2) and the divisor of this modification coincides with the
zeros of some polynomial f(x) on C3.

Proof. Let F c be the closure of the fiber Fc = {p0 = c} ⊂ Z in X ′ (where
c ∈ U). Assume that F c ∩ F c′ 6= ∅ for some c 6= c′ ∈ U . Since X ′ is a
UFD there exists g ∈ C[X ′] whose zero fiber is F c′ . Thus the zero locus of
g|

F c
is F c ∩ F c′ . But g|

F c
is nowhere zero on F c \ (F c ∩ F c′) ⊃ Fc ' C2

whence this function must be a nonzero constant on Fc and, therefore, F c.
Contradiction. Thus F c ∩ F c′ = ∅ for every c′ 6= c ∈ U . Assume Fc ' C2

if different from F c. Let one of the irreducible components of F c \ Fc be a
point. Then a normalization G of F c contains C2 and one of the irreducible
components of G\C2 is also a point o. By [Rem, Ch. 13] every holomorphic
function on C2 can be extended to o whence C2 is not Stein. Contradiction.
Thus F c \ Fc is a curve. As F c ∩ F c′ = ∅ the closure of

⋃
c∈U (F c \ Fc) is a

divisor in X ′. As X ′ is a UFD there exists h ∈ C[X ′] whose zero fiber is this
divisor. Thus the zero locus of h|

F c
is F c \ F c and we get a contradiction

in the same way we did for function g. Hence Fc = F c. This implies that
Z → U can be extended to continuous map p from X ′ to the completion U
of U , and p−1(U) = Z. In particular, general fibers of p are isomorphic to
C2. As X ′ is a UFD p must be holomorphic [Rem, Ch. 13] and, therefore,
regular (e.g., see [Ka1]). Since X ′ is a UFD Z is also a UFD whence U is a
UFD. This implies that U is rational, i.e., U = P1. Assume that p : X ′ → P1

is surjective. Let X0 = p−1(C) and q = p|X0 . We can suppose that Z ⊂ X0,
i.e., U ⊂ C. Extend the isomorphism Z ' U ×C2 ⊂ C ×C2 to a rational
map from X0 to C3 (with coordinate x, y, z) and then multiply the two last
coordinates by polynomials in q to make this mapping regular. We obtain
a birational morphism σ : X0 → C3 which is an affine modification by
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[KaZa1, Th. 1.1]. Clearly, q = x ◦ σ and the divisor of this modification
is the zero fiber of f ∈ C[x]. As q : X0 → C is surjective, every invertible
function on X0 is constant by Proposition 2.5. But p−1(∞) is the zero divisor
of g ∈ C[X ′] as X ′ is a UFD. Hence g|X0 is invertible and nonconstant.
Contradiction. Thus one can suppose that p = q and X ′ = X0. �

Lemma 4.2. Let A ' C[x, y, z], f = xn, and A ↪→ A′ be an affine modi-
fication. Let A′ be a UFD, E 6= ∅, X ′ be smooth, and H3(X ′) = 0. If E
have at most isolated singularities then A′ is also a polynomial ring which
contains x as variable.

Proof. By Proposition 2.4 x ◦ σ is irreducible in A′ whence E is irreducible
as A′ is a UFD. Thus Convention 2.2 (1) holds which makes Theorem 3.1
applicable to modification σ : X ′ → X. Let the notation from Theorem 3.1
and Proposition 2.12 hold. Then the reduced center Ci of each element σi+1

of the decomposition is either a point or a smooth contractible irreducible
curve. Let C0 = C be a point (say, the origin o = {x = y = z = 0})
and M be the maximal ideal in A that vanishes at o. By Theorem 3.1
A1 = A[M/x] whence A1 ' C[x, y/x, z/x]. Suppose that j is the first
number for which Cj and, therefore, by Proposition 2.12 (2) every Ck with
k > j are curves. By induction we can suppose that Aj ' C[x, ξ, ζ] (in
particular, the divisor Dj+1 of σj+1 is the ξζ-plane). By Theorem 3.1 Cj is
isomorphic to C and by the Abhyankar-Moh-Suzuki theorem one can assume
that it is given by x = ξ = 0. Let Ij be the ideal generated by x and ξ.
By Theorem 3.1 Aj+1 = Aj [Ij/x] whence Aj+1 ' C[x, ξ/x, ζ]. Induction
concludes the proof. �

Lemma 4.3. Let A = C[x, y, z], f ∈ C[x], and A ↪→ A′ be an affine modi-
fication. Let A′ be a UFD and f − c be a non-unit in A′ for every root c of
f . If X ′ is smooth, H3(X ′) = 0, and every irreducible component of E has
at most isolated singularities then X ′ ' C3 and x ◦ σ is a variable on this
sample of C3.

Proof. Let f(x) = xnq(x) where q(0) 6= 0, J = I[1/q] and B = A[1/q]. By
Proposition 2.1 B′ = B[J/xn] coincides with A′[1/q]. Hence the exceptional
divisor E0 of modification B ↪→ B′ is not empty by the assumption on f ◦σ.
Let L be the ideal in A generated by I and xn, i.e., I[1/q] = L[1/q] = J .
Put A1 = A[L/xn]. Note that B′ = A1[1/q] whence the exceptional divisor
of A ↪→ A1 is not empty. By Lemma 4.2 A1 is a polynomial ring in three
variables. Let K be the ideal in A1 generated by I/xn. By [KaZa1, Prop.
1.2] A′ = A1[K/q]. Now the induction by the degree of f implies the desired
conclusion. �

Lemmas 4.1 and 4.3 yield Lemma I.

Remark 4.1. Miyanishi’s theorem can be proven by this technique as fol-
lows. Assumption (3′) implies that E0 (from the proof of Lemma 4.3) is a
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UFD, and it is enough show that e(E0) = 1 (see Remark 3.1). By Proposi-
tion 2.12 we can present B ↪→ B′ as a composition of basic modifications.
Hence either E0 is isomorphic to Cm−1 ×C2 where Cm−1 is a point or it is
as in Remark 3.1, i.e., e(E0) ≤ 1. Let D0 be the plane x = 0. Then by the
additivity of Euler characteristics [Du] e(X ′) differs from e(X) = e(C3) = 1
by the sum of terms of form e(E0)− e(D0) (which should be considered for
each root of f). As e(X ′) = 1 we have e(E0) = e(D0) = 1 which makes
Lemma 4.2 applicable.

4.2. How to present X ′ as a closed algebraic subvariety of CN .

Proposition 4.1. Let A = C[x, y, z], f ∈ C[x] have roots c0 = 0, c1, . . . ,
A ↪→ A′ be an affine modification, and X ′ satisfy assumptions (0) and (1)
of the Main Theorem. Then X ′ is contractible and either X ′ ' C3 or there
exists a root of f (say c0) so that X ′ can be viewed as the subvariety of CN

given by polynomial equations

xv1 − q0(y, z) = 0
xv2 − vn1

1 + q1(y, z, v1) = 0
. . .

xvm − v
nm−1

m−1 + qm−1(y, z, v1, . . . , vm−1) = 0
(x− c1)u1,1 − r1,0(y, z) = 0
(x− c1)u1,2 − u

n1,1

1,1 + r1,1(y, z, u1,1) = 0
. . .

(x− c1)u1,m1 − u
n1,m1−1

1,m1−1 + r1,m1−1(y, z, u1,1, . . . , u1,m1−1) = 0
(x− c2)u2,1 − r2,0(y, z) = 0

. . .

where q0(y, z) = yk − zl, (k, l) = 1, k > l ≥ 2, m > 1, the standard degree
of qj with respect to vi is less than ni ∀i = 1, . . . , j, and the standard degree
of rs,j with respect to us,i is less than ns,i ∀i = 1, . . . , j. Furthermore, the
defining ideal I ′ of X ′ in C[N ] is prime and generated by the left-hand sides
of the equations above.

Proof. We can suppose that f(x) = xn since Remark 2.1 reduces the problem
to the case when f has one root only. As X ′ \ E ' C3 \ {x = 0} we
have H2(X ′ \ E) = H3(X ′ \ E) = 0. By Theorem 3.1 σ : X ′ → X is a
composition of basic modifications X ′ = Xm

σm→ Xm−1 → . . . → X1
σ1→ X.

Let Aj = C[Xj ] and Cj be as in Convention 2.2 (3). By Theorem 3.1 each
Cj is either a point or an irreducible contractible curve. If C0 is either
a point or a smooth curve then X1 ' C3 and one can use induction on
m (see the proof of Lemma 4.2). When C0 is not a smooth curve, by
the Lin-Zaidenberg theorem [LiZa] one can assume C0 is given in C3 by
x = yk − zl = 0 where (k, l) = 1 and k > l ≥ 2. Let I1 be the ideal in A
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generated by x and yk−zl. By Theorem 3.1 A1 = A[I1/x]. By Theorem 2.1
that A1 = C[x, y, z, (yk − zl)/x] and X1 is the irreducible hypersurface in
C4 with coordinates (x, y, z, v1) given by xv1 = q0(y, z) := yk − zl. By
Theorem 3.1 and by Lemma 3.3 C1 is the zero fiber of a regular function on
the exceptional divisor E1 = X1 ∩{x = 0} which is of form vn1

1 + q1(y, z, v1)
where the standard degree of q1 with respect to v1 is at most n1−1. Let I2 be
the ideal in A1 generated by x and vn1

1 + q1(y, z, v1). By Theorem 3.1 A2 =
A1[I2/x]. Therefore, by Theorem 2.1 X2 may be viewed as the irreducible
complete intersection in C5 (with coordinates (x, y, z, v1, v2)) given by the
equations xv1 − q0(y, z) = xv2 − vn1

1 + q1(y, z, v1) = 0. Repeating the above
argument we see that X ′ can be viewed as the desired irreducible complete
intersection in C3+m. Contractibility of X ′ follows from Proposition 2.10.
In order to check that m > 1 when X ′ is smooth it is enough to note that
X1 is singular at the origin. �

In combination with Lemma 4.1 and [ChDi] we get:

Corollary 4.1. Suppose that X ′ satisfies Assumptions (0) and (1) of the
Main Theorem and Assumption (2′) of Lemma I. Then either X ′ ' C3

or X ′ is diffeomorphic to R6 and given by the system of equations from
Proposition 4.1.

5. The Makar-Limanov invariant.

5.1. General facts about locally nilpotent derivations. Recall that a
derivation ∂ on A is called locally nilpotent if for each a ∈ A there exists
an k = k(a) such that ∂k(a) = 0. For t ∈ C the mapping exp(t∂) : A → A
is an automorphism whence ∂ generates a C+-action on X [Ren]. Every
locally nilpotent derivation defines a degree function deg ∂ on the domain
A with natural values (e.g., see [FLN]) given by the formula deg ∂(a) =
max{k | ∂k(a) 6= 0} for every nonzero a ∈ A.

Proposition 5.1 (cf. [Za], proof of Lemma 9.3). Let ∂ be a nonzero locally
nilpotent derivation of A = C[X] and let F = (f1, . . . , fs) : X → Y ⊂ Cs

and G : Y → Z ⊂ Cj be dominant morphisms of reduced affine algebraic
varieties. Put H = G ◦ F = (h1, . . . , hj) : X → Z. Suppose that for general
point ξ ∈ Z there exists a (Zariski) dense subset Tξ of G−1(ξ) such that the
image of any nonconstant morphism from C to G−1(ξ) does not meet Tξ. If
h1, . . . , hj ∈ A∂ then f1, . . . , fs ∈ A∂.

Proof. Consider the C+-action on X generated by ∂. Choose a general point
ξ ∈ Z. Let Oζ be the orbit of ζ ∈ H−1(ξ). As h1, . . . , hj ∈ A∂ the fiber
H−1(ξ) is invariant under the action and Oζ ⊂ H−1(ξ). Note that F (Oζ)
is a point ∀ζ ∈ F−1(Tξ). As F−1(Tξ) is dense in H−1(ξ) this is also true
∀ζ ∈ H−1(ξ) whence each orbit is contained in a fiber of F which yields the
desired conclusion. �
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Definition 5.1. The Makar-Limanov invariant of A is ML(A) =⋂
∂∈LND(A) Ker ∂ where LND(A) is the set of all locally nilpotent deriva-

tions on A. Equivalently, ML(A) is the subset of A which consists of those
regular functions on X that are invariant under any regular C+-action.

5.2. The associated algebra. Let A′ = C[N ]/I ′ where I ′ is a prime ideal
in C[N ]. For every a ∈ A′ put [a] = {p ∈ C[N ]| p|X′ = a} and for every
p ∈ C[N ] \ {0} we denote by M(p) the set of monomials that are summands
of p.

Definition 5.2. A weight degree function on C[N ] is a degree function d
such that d(p) = max{d(µ) |µ ∈ M(p)}, where p ∈ C[N ] \ {0}. Let p =∑

µ∈M(p),d(µ)=d(p) µ be the leading d-homogeneous part of p. Consider the

ideal Î ′d generated by such p when p runs over I ′ \ {0} and the variety
X̂ ′

d ⊂ CN defined by Î ′d. Then we call Â′
d = C[X̂ ′

d] the associated graded
algebra.

Proposition 5.2 ([KaM-L2]). Let X ′ ⊂ CN contain the origin of CN .
Then:

(1) ∀a ∈ A′ \ {0} there exists p ∈ [a] so that p /∈ Î ′d. Furthermore, the map
gr d : A′ \ {0} → Â′

d \ {0} given by gr d(a) = p| bX′
d

is well-defined.
(2) Every nonzero ∂ ∈ LND(A′) generates a nonzero (associated)

∂̂ ∈ LND(Â′
d) such that for every a ∈ A′ \ {0} we have deg ∂(a) ≥

deg b∂d
(gr d(a)).

Convention 5.1. Let q0(y, z) = yk − zl,mi, nj,i, and coordinates (x, y, z,
v1, . . . , vm, u1,1, . . . , uj,i, . . . ) in CN be as in Proposition 4.1. Put dx =
d(x), dy = d(y), dz = d(z), di = d(vi) and dj,i = d(uj,i) where d is a weight
degree function. From now on we suppose that

(1) kdy = ldz (in particular, q0 = q0 = yk − zl);
(2) d1 + dx = kdy, and d1, dx are Q-independent;
(3) dx < 0 and d1 >> dy > 0;
(4) dx + di+1 = midi for i ≥ 1;
(5) dx + dj,i+1 = nj,idj,i > 0 for every j, i ≥ 1.

This Convention implies the following non-difficult Proposition:

Proposition 5.3. Let X ′ be the zero set of the system of polynomial equa-
tions from Proposition 4.1 and A′ = C[X ′]. Then under Convention 5.1 the
associated graded algebra Â′

d = C[X̂ ′
d] where X̂ ′

d is isomorphic to the zero
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set of the following system

xv1 − q0(y, z) = 0, xv2 − vn1
1 = 0, . . . , xvm − v

nm−1

m−1 = 0
−c1u1,1 = 0,−c1u1,2 − u

n1,1

1,1 = 0, . . . ,−c1u1,m1 − u
n1,m1−1

1,m1−1 = 0
−c2u2,1 = 0,−c2u2,2 − u

n2,1

2,1 = 0, . . . ,−c2u2,m2 − u
n2,m2−1

2,m2−1 = 0
. . .

Furthermore, the defining ideal Î ′d of X̂ ′
d is prime and generated by the left-

hand sides of the equations above.

Remark 5.1. The variety X̂ ′
d is independent on the choice of d satisfying

Convention 5.1 and it is isomorphic to the zero set of the following polyno-
mial equations in C3+m with coordinates (x, y, z, v1, . . . , vm)

P1(x, y, z, v1) = xv1 − q0(y, z) = 0
P2(x, v1, v2) = xv2 − vn1

1 = 0
. . .

Pm(x, vm−1, vm) = xvm − v
nm−1

m−1 = 0.

Therefore, we shall write further Î ′, Â′, and X̂ ′ instead of Î ′d, Â
′
d, and X̂ ′

d
provided it does not cause misunderstanding.

5.3. Locally nilpotent derivation of Jacobian type. We say that a ∈
Â′ is d-homogeneous if a is the restriction to X̂ ′ ⊂ CN of a d-homogeneous
polynomial. In the rest of the paper we denote q| bX′ by q̃ for every q ∈ C[m+3].

Lemma 5.1. Let a ∈ Â′ be an irreducible d-homogeneous element. Then
up to a constant factor a is of one of the following elements ṽi, x̃, ỹ, z̃, or
ỹk + cz̃l where c ∈ C∗ and k, l are the same as in Proposition 4.1.

Proof. Let q be d-homogeneous and a = q̃ (in particular, q is irreducible).
By Remark 5.1 we can suppose that ∀µ ∈ M(q) is non-divisible by xvi ∀i =
1, . . . ,m. Each ṽi coincides with a rational function on X̂ ′ of form qs

0/xj

where s, j > 0. If we extend d naturally to the field of rational functions
then d(vi) = d(qs

0/xj) by Convention 5.1. Assume that µ1, µ2 ∈ M(q) are
such that µ1 is divisible by x but µ2 is not. Then µ1 and µ2 coincides
with the restriction to X̂ ′ of functions xj1yα1zβ1 and yα2zβ2qs

0/xj2 where
j1 > 0, j2 ≥ 0. As d(µ1) = d(µ2) we have (j1 + j2)dx = d(yα2−α1zβ2−β1qs

0).
As dy = (l/k)dz and d(q0) = kdy we get Q-dependence of dx and dy which
contradicts Convention 5.1. Thus if q 6= cx, c ∈ C∗, none of µ ∈ M(q) is
divisible by x. Let µ1, µ2 ∈ M(q) and µi = yαizβiνi where νi is a monomial
which depends on v1, . . . , vm only. The restriction of µi to X̂ ′ coincides
with yαizβiqsi

0 /xji . The same argument as above shows that j1 = j2 since
otherwise dx and dy are Q-dependent. Hence d(yα1zβ1qs1

0 ) = d(yα2zβ2qs2
0 ).

As d(q0) = kdy = ldz and (k, l) = 1 we have αi = α0 + tik and βi = β0 + τil
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where 0 ≤ α0 ≤ k − 1, 0 ≤ β0 ≤ l − 1, and t1 − t2 + τ1 − τ2 = s2 − s1.
Therefore, the restriction of q to X̂ ′ coincides with yα0zβ0ϕ(yk, zl)qs

0/xj

where ϕ(yk, zl) is d-homogeneous and the restriction of qs
0/xj to X̂ ′ coincides

with the restriction of a monomial ν which depends on v1, . . . , vm only. Now
the Lemma follows from the fact that that ϕ(yk, zl) is the product of factors
of type c1y

k + c2z
l where c1, c2 ∈ C. �

Corollary 5.1. Let a = q̃ where q /∈ C[y, z] is a d-homogeneous polynomial
which does not depend on x. Then q is divisible by some vi.

Note that (x̃, ỹ, z̃) is a local (holomorphic) coordinate system at each point
of X̂0 = X̂ ′ \ {x = 0}. For a1, a2, a3 ∈ Â′ we denote by Jac (a1, a2, a3) the
Jacobian of these regular functions on X̂0 with respect to x̃, ỹ, and z̃. This
is a rational function on X̂ ′ but x̃mJac (a1, a2, a3) is already regular on X̂ ′

since xm is the determinant of the matrix {∂Pi/∂vj | i, j = 1, . . . ,m} where
Pi are as in Remark 5.1. Fix a1, a2 ∈ Â′ and let a ∈ Â′. Then one can see
that ∂(a) = x̃mJac (a1, a2, a) is a derivation on Â′.

Proposition 5.4. Let m ≥ 2, a1 and a2 be d-homogeneous, and ∂(a) =
x̃mJac (a1, a2, a) be nontrivial locally nilpotent. Then:

(1) If a1 and a2 are irreducible then (a1, a2) coincides (up to the order)
with one of the pairs (x̃, ỹ) or (x̃, z̃).

(2) x̃ ∈ Ker ∂ and deg ∂(ṽi) ≥ 2 for every i = 1, . . . ,m.

Proof. If (a1, a2) is one of the pairs in (1) it is easy to check that ∂ is
nontrivial and locally nilpotent, and (2) holds also. Show that if we use
other possible irreducible d-homogeneous elements from Lemma 5.1 as a1, a2

then ∂ cannot be a nontrivial locally nilpotent derivation. Note that a1 and
a2 are algebraically independent in Â′ as otherwise ∂ is trivial.

Case 1. Let (a1, a2) = (ỹ, z̃). The direct computation shows that ∂(x̃) = x̃m

whence ∂ cannot be locally nilpotent. Indeed, one can see that deg ∂(∂(x̃)) =
deg ∂(x̃)− 1. But deg ∂(x̃m) = mdeg ∂(x̃) which yields a contradiction.

Case 2. Either a1 or a2 is of form ỹk + cz̃l where c ∈ C∗ and k and l are
as in Proposition 4.1. By [M-L2] ỹ, z̃ ∈ Ker ∂ as ỹk + cz̃l ∈ Ker ∂. By
[KaM-L1, Lemma 5.3] the derivation x̃mJac (ỹ, z̃, a) must be also nonzero
locally nilpotent whence this case does not hold.

Case 3. Let (a1, a2) = (ṽi1 , ṽi2) where i1 < i2. Consider the identical
morphism F : X̂ ′ → X̂ ′ ⊂ Cm+3 and morphism G : X̂ ′ → C2 given by
(x̃, ỹ, z̃, ṽ1, . . . , ṽm) → (ṽi1 , ṽi2). Recall that ṽik = q̃sk

0 /x̃jk . It is easy to
check that ṽi1 and ṽi2 are algebraically independent in Â′ which means that
the pairs (s1, j1) and (s2, j2) are not proportional. Consider a general point
ξ ∈ C2. Each component of the fiber G−1(ξ) is a curve in Cm+3 given
by equations vi = ci, x = c′, and q0(y, z) = yk − zl = c where ci, c

′ ∈ C
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and c ∈ C∗. This curve is hyperbolic and thus it does not admit noncon-
stant morphisms from C. By Proposition 5.1 if ∂ is locally nilpotent then
x̃, ỹ, z̃, ṽi ∈ Ker ∂ whence ∂ is trivial. Thus this case does not hold.

Case 4. Let (a1, a2) = (x̃, ṽi). The same argument is in Case 3 works.

Case 5. Let (a1, a2) = (ỹ, ṽi) (or, similarly (z̃, ṽi)). Consider the identical
morphism F : X̂ ′ → X̂ ′ and G : X̂ ′ → C2 given by (x̃, ỹ, z̃, ṽ1, . . . , ṽm) →
(ỹ, ṽi). As ṽi = q̃s

0/x̃j (where j ≥ 2 if i > 1) the fiber G−1(ξ) where
ξ = (c1, c2) ∈ C2 is isomorphic to the curve (ck

1 − zl)s − c2x
j = 0. When

j ≥ 2 and s is not divisible by j the last curve have no contractible com-
ponents for general ξ. Proposition 5.1 implies that ∂ must be trivial. If
j ≥ 2 and s is divisible by j then each irreducible component of G−1(ξ)
is contractible and contains double points of G−1(ξ). As G−1(ξ) ⊂ X̂ ′ is
invariant under the associated C+-action and has singular points this ac-
tion is trivial on G−1(ξ) and, thus, on X̂ ′. Hence ∂ is trivial. Let j = 1,
i.e., (a1, a2) = (ỹ, ṽ1) = (ỹ, q̃0/x̃). The direct computation shows that
∂(x̃) = cx̃m−1z̃l−1, c ∈ C. As m ≥ 2, ∂ cannot be nontrivial locally nilpo-
tent (indeed, compare deg ∂(x̃) and deg ∂(∂(x̃))) and we have to disregard
this case. In order to see statement (2) in the case when a1 and a2 are not
irreducible, we note that one can replace a1 and a2 with their irreducible fac-
tors in the definition of ∂ and obtain a locally nilpotent derivation equivalent
to ∂ [KaM-L2]. �

5.4. The computation of ML(A′). A locally nilpotent derivation ∂ on A′

is called perfect if its associated derivation ∂̂d is of form ∂̂d(a) = x̃mJac (a1,

a2, a) where a1, a2 ∈ Â′
d are d-homogeneous and algebraically independent.

The set of all perfect derivations will be denoted by Per (A′).

Proposition 5.5. Let A′ be as in Proposition 4.1 and let d satisfy Conven-
tion 5.1. For every ∂ ∈ Per (A′) we have x ∈ Ker ∂.

Proof. Let a ∈ A′ with deg ∂(a) ≤ 1. Show that there exist a polynomial q
with q|X′ = a such that none of µ ∈ M(q) is divisible by vi or us,j for all
i, s, j, i.e., q ∈ C[x, y, z]. By Proposition 4.1 we can suppose that none of
µ ∈ M(q) is divisible by xvi or xus,j . Thus M(q) = M1(q) ∪ M2(q) where
M1(q) ⊂ C[x, y, z] and M2(q) consists of monomials which do not depend
on x and do not belong to C[y, z]. Assume that µ ∈ M2(q). Under Conven-
tion 5.1 one can keep dy, dz fixed, decrease dx, and increase di, ds,j so that
d(µ) > d(ν)∀ν ∈ M1(q). Hence if qd is the leading d-homogeneous part of q
then M(qd) ⊂ M2(q). By Proposition 5.2 deg b∂d

(gr d(a)) ≤ 1. The element

gr d(a) = qd| bX′ is the product of irreducible d-homogeneous elements of Â′.
By Corollary 5.1 one of them is ṽi whence deg b∂d

(ṽi) ≤ deg b∂d
(gr d(a)) ≤ 1

which contradicts Proposition 5.4. Thus M2(q) is empty. Let b ∈ A′
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with deg ∂(b) = 1. By [M-L1] there exist a′, a0, . . . , as ∈ Ker ∂ such that
a′ṽ1 =

∑s
j=0 ajb

j where s = deg ∂ ṽ1. Hence ṽ1 = (q(x, y, z)/r(x, y, z))|X′

where a′ = r(x, y, z)|X′ . But A′ ⊂ C[x, y, z, 1/f(x)] where f is as in Propo-
sition 4.1. Since v1 /∈ C[x, y, z] we have r(x, y, z) divisible by some x − c
where c is a root of f . Therefore, x − c ∈ Ker ∂ as a divisor of an element
from Ker ∂. �

Proof of Lemma II and the Main Theorem. By Proposition 5.3 Â′ is a do-
main whence ML(A′) =

⋂
∂∈Per (A′) Ker ∂ [KaM-L2]. By Propositions 5.5

ML[A′] ⊃ C[x]|X′ which implies Lemma II 4 and, therefore, the Main Theo-
rem. �
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