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We propose a notion of a quantum universal enveloping al-
gebra for any Lie algebra defined by generators and relations
which is based on the quantum Lie operation concept. This
enveloping algebra has a PBW basis that admits a monomial
crystallization by means of the Kashiwara idea. We describe
all skew primitive elements of the quantum universal envelop-
ing algebras for the classical nilpotent algebras of the infinite
series defined by the Serre relations and prove that the above
set of PBW-generators for each of these enveloping algebras
coincides with the Lalonde–Ram basis of the ground Lie al-
gebra with a skew commutator in place of the Lie operation.
The similar statement is valid for Hall–Shirshov basis of any
Lie algebra defined by one relation, but it is not so in the
general case.

1. Introduction.

Quantum universal enveloping algebras appeared in the famous papers by
Drinfeld [15] and Jimbo [18]. Since then a great deal of articles and number
of monographs were devoted to their investigation. All of these publications
are mainly concerned with a particular quantification of Lie algebras of the
classical series. This is accounted for first by the fact that these Lie alge-
bras have applications and visual interpretations in physical speculations,
and then by the fact that a general, and commonly accepted as standard,
notion of a quantum universal enveloping algebra is not elaborated yet (see
a detailed discussion in [2], [33]).

In the present paper we propose a combinatorial approach to a solution
of this problem by means of the quantum (Lie) operation concept [22],
[24], [25]. In line with the main idea of our approach, the skew primitive
elements must play the same role in quantum enveloping algebras as the
primitive elements do in the classical case. By the Friedrichs criteria [13],
[16], [32], [34], [35], the primitive elements form the ground Lie algebra
in the classical case. For this reason we consider the space spanned by the
skew primitive elements and equipped with the quantum Lie operations as
a quantum analogue of a Lie algebra.
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In the second section we adduce the main notions and consider some
examples. These examples, in particular, show that the Drinfeld–Jimbo en-
veloping algebra as well as its modifications are quantum enveloping algebras
in our sense.

In the third section with the help of the Heyneman–Radford theorem
we introduce a notion of a combinatorial rank of a Hopf algebra generated
by skew primitive semi-invariants. Then we define the quantum enveloping
algebra of an arbitrary rank that slightly generalizes the definitions given in
the preceding section.

The basis construction problem for the quantum enveloping algebras is
considered in the fourth section. We indicate two main methods for the
construction of PBW-generators. One of them modifies the Hall–Shirshov
basis construction process by means of replacing the Lie operation with a
skew commutator. The set of the PBW-generators defined in this way, the
values of hard super-letters, plays the same role as the basis of the ground Lie
algebra does in the PBW theorem. At first glance it would seem reasonable
to consider the k[G]-module generated by the values of hard super-letters as
a quantum Lie algebra. However, this extremely important module falls far
short of being uniquely defined. It essentially depends on the ordering of the
main generators, their degrees, and it is almost never antipode stable. Also
we have to note the following important fact. Our definition of the hard
super-letter is not constructive and, of course, it cannot be constructive in
general. The basis construction problem includes the word problem for Lie
algebras defined by generators and relations, while the latter one has no
general algorithmic solution (see [5], [8]).

The second method is connected with the Kashiwara crystallization idea
[20], [21] (see also a development in [12], [27]). M. Kashiwara has consid-
ered the main parameter q of the Drinfeld–Jimbo enveloping algebra as a
temperature of some physical medium. When the temperature tend to zero,
the medium crystallizes. The PBW-generators must crystallize as well. In
our case under this process no one limit quantum enveloping algebra ap-
pears since the existence conditions normally include equalities of the form∏

pij = 1 (see [24]). Nevertheless if we equate all quantification parameters
to zero, the hard super-letters would form a new set of PBW-generators
for the given quantum universal enveloping algebra. To put this another
way, the PBW-basis defined by the super-letters admits a crystallization by
means of the Kashiwara idea.

In the fifth section we bring a way to construct a Groebner–Shirshov re-
lations system for a quantum enveloping algebra. This system is related to
the main skew primitive generators, and, according to the Diamond Lemma
(see [4], [6], [41]), it determines the basis appeared in the above crystal-
lization process. The usefulness of the Groebner–Shirshov systems depends
upon the fact that such a system not only defines a basis of an associative
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algebra, but it also provides a simple diminishing algorithm for expansion
of elements on this basis (see, for example [3], [8]).

In the sixth section we adapt a well-known method of triangular splitting
to the quantification with constants. The original method appeared in stud-
ies of simple finite dimensional Lie algebras. Then it has been extended into
the field of quantum algebra in a lot of publications (see, for example [9],
[31], [42]). By means of this method the investigation of the Drinfeld–Jimbo
enveloping algebra amounts to a consideration of its positive and negative
homogeneous components, quantum Borel sub-algebras. Constructions of
this type also appear in classification theorems for pointed Hopf algebras
(see [1]).

In the seventh section we consider more thoroughly the quantum univer-
sal enveloping algebras of nilpotent algebras of the series An, Bn, Cn, Dn

defined by the Serre relations. We adduce first lists of all hard super-letters
in the explicit form, then Groebner–Shirshov relations systems, and next
spaces L(UP (g)) spanned by the skew primitive elements (i.e., the Lie al-
gebra quantifications gP proper). In all cases the lists of hard super-letters
(but not the hard super-letters themselves) turn out to be independent of
the quantification parameters. This means that the PBW-generators result
from the Hall–Shirshov basis of the ground Lie algebra by replacing the Lie
operation with the skew commutator. The same is valid for the Groebner–
Shirshov relations systems. Note that the Hall–Shirshov bases, under the
name standard Lyndon bases, for the classical Lie series were constructed by
P. Lalonde and A. Ram [28], while the Groebner–Shirshov systems of Lie
relations were found by L.A. Bokut’ and A.A. Klein [7].

Furthermore, in all cases gP as a quantum Lie algebra (in our sense) proves
to be very simple in structure. Either it is a colored Lie super-algebra (pro-
vided that the parameter p11 equals 1), or values of all non-unary quantum
Lie operations equal zero on gP . In particular, if char(k) = 0 and pt

11 6= 1
then the quantum Lie operations may be defined on gP , but all of them
have zero values. Thus, in this case we have a reason to consider UP (g) as
an algebra of ‘commutative’ quantum polynomials, since the universal en-
veloping algebra of a Lie algebra with zero bracket is the algebra of ordinary
commutative polynomials. Immediately afterwards a number of interesting
questions appears. What is the structure of other algebras of ‘commutative’
quantum polynomials? When do the PBW-generators result from a basis
of the ground Lie algebra by means of replacing the Lie operation with the
skew commutator? These and other questions we briefly discuss in the last
section.

It is well to bear in mind that the combinatorial approach is not free
from flaws: The quantum universal enveloping algebra essentially depends
on a combinatorial representation of the ground Lie algebra, i.e., a close
connection with the abstract category of Lie algebras is lost.
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2. Quantum enveloping algebras.

Recall that a variable x is called a quantum variable if an element gx of
a fixed Abelian group G and a character χx ∈ G∗ are associated with it.
The parameters gx and χx associated with a quantum variable say that
an element a in a Hopf algebra H may be considered as a value of this
quantum variable only if a is a skew primitive semi-invariant with the same
parameters, that is

∆(a) = a⊗ 1 + gx ⊗ a, g−1ag = χx(g)a, g ∈ G,(1)

where we suppose that the elements of G have some interpretation in H as
grouplike elements.

A noncommutative polynomial in quantum variables is called a quantum
Lie operation if all of its values in all Hopf algebras are skew primitive for
all values of the quantum variables.

Let x1, . . . , xn be a set of quantum variables. For each word u in x1, ..., xn

we denote by gu an element of G that appears from u by replacing of all xi

with gxi . In the same way we denote by χu a character that appears from
u by replacing of all xi with χxi . Thus on the free algebra k〈x1, . . . , xn〉
a grading by the group G × G∗ is defined. For each pair of homogeneous
elements u, v we fix the denotations puv = χu(gv) = p(u, v).

We define an action of G on k〈x1, . . . , xn〉 by g−1ug = χu(g)u, where
u is an arbitrary monomial in x1, . . . xn. The skew group algebra G〈X〉 =
k〈x1, . . . , xn〉 ∗G has a natural Hopf algebra structure with the coproduct

∆(xi) = xi ⊗ 1 + gxi ⊗ xi, 1 ≤ i ≤ 1, ∆(g) = g ⊗ g, g ∈ G.

Hence xi = xi ∈ G〈X〉 are correct values of quantum variables. By this
means the quantum Lie operations can be identified with skew primitive
polynomials in G〈X〉. Recall that the Hopf algebra G〈X〉 is called the free
enveloping algebra for the set X of quantum variables (see [22, Sect. 3]
under denotation H〈X〉).

The free algebra k〈x1, . . . , xn〉 has a structure of braided bigraded Hopf
algebra. Namely, letH be an associative algebra graded by the group G×G∗:

H =
∑

g∈G,χ∈G∗

⊕Hχ
g .

Define multiplication on the tensor product H⊗H of linear spaces by setting

(a⊗ b) · (c⊗ d) = (χc(gb))−1(ac⊗ bd).

The result is an associative algebra, denoted by H⊗H. Now if, in the defi-
nition of a Hopf algebra, we change the sign ⊗ by ⊗, and assume coprod-
uct, ∆b, counity, εb, and antipode, Sb, are homogeneous, we arrive at a
definition of the braided bigraded Hopf algebra. In other words a braided
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bigraded Hopf algebra is a graded by G × G∗ Hopf algebra in braided cat-
egory where the braiding is connected with the grading by the formula
c(u⊗ v) = (χv(gu))−1(v ⊗ u).

The quantum Lie operation can be defined equivalently as a G × 1-
homogeneous polynomial that has only primitive values in all braided bi-
graded Hopf algebras provided that the correct value of a quantum variable
x = xχ

g is primitive and homogeneous, that is a ∈ Hχ
g , ∆b(a) = a⊗1 + 1⊗a.

The detailed discussion of the notion of quantum Lie operation and examples
can be found in [22, Sect. 1-4].

Recall that a constitution of a word u is a sequence of nonnegative integers
(m1,m2, . . . , mn) such that u is of degree m1 in x1, deg1(u) = m1; of degree
m2 in x2, deg2(u) = m2; and so on (see [39, Definition 3]). Since the group
G is Abelian, all constitution homogeneous polynomials are homogeneous
with respect to the grading. Let us define a bilinear skew commutator on
the set of graded homogeneous noncommutative polynomials by the formula

[u, v] = uv − puvvu.(2)

These brackets satisfy the following Jacobi and skew differential identities:

[[u, v], w] = [u, [v, w]] + p−1
wv [[u, w], v] + (pvw − p−1

wv)[u, w] · v;(3)

[[u, v], w] = [u, [v, w]] + pvw[[u, w], v] + puv(pvwpwv − 1)v · [u, w];(4)

[u, v · w] = [u, v] · w + puvv · [u, w]; [u · v, w] = pvw[u, w] · v + u · [v, w],
(5)

where by the dot we denote the usual multiplication. It is easy to see that
the following conditional restricted identities are valid as well

[u, vn] = [. . . [[u, v], v] . . . , v]; [vn, u] = [v, [. . . [v, u] . . . ]],(6)

provided that pvv is a primitive t-th root of unit, and n = t or n = tlk in
the case of characteristic l > 0.

Suppose that a Lie algebra g is defined by the generators x1, . . . , xn and
the relations fi = 0. Let us convert the generators into quantum variables.
For this associate to them elements of G × G∗ in arbitrary way. Let P =
||pij ||, pij = χxi(gxj ) be the quantification matrix.

Definition 2.1. A braided quantum enveloping algebra of g is a braided
bigraded Hopf algebra U b

P (g) defined by the variables x1, . . . , xn and the
relations fi = 0, where the Lie operation is replaced with (2), provided
that in this way fi are converted into the quantum Lie operations f∗i . The
coproduct and the braiding are defined by

∆b(xi) = xi⊗1 + 1⊗xi,(7)

(xi⊗xj) · (xk⊗xm) = (χxk(gxj ))
−1xixk⊗xjxm.(8)
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Definition 2.2. A simple quantification of U(g) or a quantum universal
enveloping algebra of g is an algebra UP (g) that is isomorphic to the skew
group algebra

UP (g) = U b
P (g) ∗G,(9)

where the group action and the coproduct are defined by

g−1xig = χxi(g)xi, ∆(xi) = xi ⊗ 1 + gxi ⊗ xi, ∆(g) = g ⊗ g.(10)

Definition 2.3. A quantification with constants is a simple quantification
where additionally some generators xi associated to the trivial character are
replaced with the constants αi(1− gxi).

The formulae (10) and (7) correctly define the coproduct since by defini-
tion of the quantum Lie operation ∆(f∗i ) = f∗i ⊗ 1 + gi ⊗ f∗i in the case of
ordinary Hopf algebras and ∆b(f∗i ) = f∗i ⊗1 + 1⊗f∗i in the braided case.

We have to note that the defined quantifications essentially depend on the
combinatorial representation of the Lie algebra. For example, an additional
relation [x1, x1] = 0 does not change the Lie algebra. At the same time
if χx1(g1) = −1 then this relation admits the quantification and yields a
nontrivial relation for the quantum enveloping algebra, 2x2

1 = 0.

Example 1. Suppose that the Lie algebra is defined by a system of consti-
tution homogeneous relations. If the characters χi are such that pijpji = 1
for all i, j then the skew commutator itself is a quantum operation. There-
fore on replacing the Lie operation all relations become quantum operations
as well. This means that the braided enveloping algebra is the universal
enveloping algebra U(gcol) of the colored Lie super-algebra which is defined
by the same relations as the given Lie algebra is. The simple quantification
appears as the Radford biproduct U(gcol) ?k[G] or, equivalently, as the uni-
versal G-enveloping algebra of the colored Lie super-algebra gcol (see [37] or
[22, Example 1.9]).

Example 2. Suppose that the Lie algebra g is defined by the generators
x1, . . . , xn and the system of nil relations

xj(adxi)nij = 0, 1 ≤ i 6= j ≤ n.(11)

Usually instead of the matrix of degrees (without the main diagonal),
||nij ||, the matrix A = ||aij ||, aij = 1−nij is considered. The Coxeter graph
Γ(A) is associated to every such a matrix. This graph has the vertices
1, . . . , n, where the vertex i is connected by aijaji edges with the vertex j.

If aij = 0 then the relation xjadxi = 0 is in the list (11), and the relation
xi(adxj)nji = 0 is a consequence of it. The skew commutator [xj , xi] is
a quantum Lie operation if and only if pijpji = 1. Under this condition we
have [xi, xj ] = −pij [xj , xi]. Therefore both in the given Lie algebra and in its
quantification one may replace the relation xi(adxj)nji = 0 with xiadxj = 0.
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In other words, without loss of generality, we may suppose that aij = 0 ↔
aji = 0. By the Gabber-Kac theorem [17] we get that the algebra g is the
positive homogeneous component g+

1 of a Kac-Moody algebra g1.
The following theorem describes the conditions for a homogeneous poly-

nomial in two variables which is linear in one of them to be a quantum
operation.

Theorem 2.4. For quantum variables x1 and x2, there exists a nonzero
linear in x1 quantum Lie operation W of degree n in x2 if and only if either
p12p21 = p1−n

22 , or p22 is a primitive m-th root of unity, m|n, and pm
12p

m
21 = 1.

If one of these conditions is satisfied, then all the operations have the form
W = α[. . . [[x1x2]x2] . . . x2], α ∈k, where the brackets are defined by (2).

Proof. It follows from Theorem 6.1 [22], and the conditional identity (6). �

From this theorem we have the following corollary.

Corollary 2.5. If nij is a simple number or unit and in the former case
pii is not a primitive nij-th root of unit, then the relation (11) admits a
quantification if and only if pijpji = p

aij

ii .

Theorem 2.4 provides no essential restrictions on the non-diagonal pa-
rameters pij : If the matrix P correctly defines a quantification of (11) then
for every set Z = {zij |zijzji = zii = 1} the following matrix does as well:

PZ = {pijzij |pij ∈ P, zij ∈ Z}.(12)

Example 3. Let G be freely generated by g1, . . . gn and A be a generalized
Cartan matrix symmetrized by d1, . . . , dn, while the characters are defined
by pij = q−diaij . In this case the simple quantification of g defined by (11) is
the positive component of the Drinfeld–Jimbo enveloping algebra together
with the group-like elements, UP (g) = U+

q (g) ∗G. By means of an arbitrary
deformation (12) one may define a ‘coloring’ of U+

q (g) ∗G.

The braided enveloping algebra equals U+
q (g) where the coproduct and

braiding are defined by (7) and (8) with the coefficient qdkakj . The formula
(12) correctly defines its ‘coloring’ as well.

Example 4. If in the above example we complete the set of quantum vari-
ables by the new ones x−1 , . . . , x−n ; z1, . . . , zn such that

χx− = (χx)−1, gx− = gx, χzi = id, gzi = g2
i ,(13)

then, by Theorem 2.4, the Gabber–Kac relations (2), (3) of [17, Theo-
rem 2], and [ei, fj ] = δijhi under the identification ei = xi, fi = x−i , hi = zi

admit the quantification with constants zi = εi (1 − g2
i ). (Informally we

may consider the obtained quantification as one of the Kac–Moody alge-
bra identifying gi with qhi , where the rest of the Kac–Moody algebra re-
lations, [hi, ej ] = aijei, [hi, fj ] = −aijfj , is quantified to the G-action:
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g−1
j x±i gj = q∓dijaijx±i .) This quantification coincides with the Drinfeld–

Jimbo one under a suitable choice of xi, x−i , and εi depending up the par-
ticular definition of Uq(g):

[30] xi = Ei, gi = Ki, x−i = FiKi, pij = v−diaij , εi = (v−di − vdi)−1;
[31] xi = Ei, gi = K̃i, x−i = FiK̃i, piµ = v−〈µ,i′〉, εi = (v−1

i − vi)−1;
[20]∆+ xi = ei, gi = ti, x−i = tifi, pij = q

−〈hj ,αi〉
j , εi = (qi − q3

i )
−1;

[20]∆− xi = fi, gi = ti, x−i = eiti, pij = q
〈hj ,αi〉
j , εi = (q−1

i − qi)−1;
[36] xi = EiKi, gi = K2

i , x−i = FiKi, pij = q−2diaij , εi = (1− q4di)−1.

By (13) the brackets [xi, x
−
j ] are the quantum Lie operation only if pij = pji.

So in this case the ‘colorings’ (12) may be only black-white, zij = ±1.

In the perfect analogy the Kang quantification [19] of the generalized
Kac-Moody algebras [10] is a quantification in our sense as well.

3. Combinatorial rank.

Recall that a Hopf algebra H is called character if the group G of all group-
like elements is commutative and H is generated by skew primitive semi-
invariants ai:

∆(ai) = ai ⊗ 1 + gai ⊗ ai, g−1aig = χai(g)ai, g ∈ G.(14)

By the definitions of the above section the quantum enveloping algebras
(with or without constants) are character Hopf algebras. In this section by
means of a combinatorial rank notion we identify the quantum enveloping
algebras in the class of character Hopf algebras.

Let H be a character Hopf algebra generated by the skew primitive semi-
invariants a1, . . . , an. Let us associate a quantum variable xi with the pa-
rameters (χai , gai) to ai. Denote by G〈X〉 the free enveloping algebra defined
by the quantum variables x1, . . . , xn. The map xi → ai has an extension to
a homomorphism of Hopf algebras ϕ : G〈X〉 → H. Denote by I the kernel
of this homomorphism. If I 6= 0 then by the Heyneman–Radford theorem
(see [36, Corollary 5.4.7]), the Hopf ideal I has a nonzero skew primitive
element. Let I1 be an ideal generated by all skew primitive elements of I.
Clearly I1 is a Hopf ideal as well. Now consider the Hopf ideal I/I1 of the
quotient Hopf algebra G〈X〉/I1. This ideal also has nonzero skew primitive
elements (provided I1 6= I). Denote by I2/I1 the ideal generated by all
skew primitive elements of I/I1, where I2 is its preimage with respect to the
projection G〈X〉 → G〈X〉/I1. Continuing the process we will find a strictly
increasing, finite or infinite, chain of Hopf ideals of G〈X〉:

0 = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . ,
⋃
α

Iα = I.(15)

Definition 3.1. The length of (15) is called a combinatorial rank of H.
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By definition, the combinatorial rank of any quantum enveloping algebra
(with constants) equals one. In the case of zero characteristic the inverse
statement is valid as well.

Theorem 3.2. Each character Hopf algebra of the combinatorial rank 1
over a field of zero characteristic is isomorphic to a quantum enveloping
algebra with constants of a Lie algebra.

Proof. By definition, I is generated by skew primitive elements. These el-
ements as noncommutative polynomials are the quantum Lie operations.
Consider one of them, say f. Let us decompose f into a sum of homoge-
neous components f =

∑
fi. All positive components belongs to k〈X〉 and

they are the quantum Lie operations themselves, while the constant com-
ponent has the form α(1 − g), g ∈ G (see [22, Sec. 3 and Prop. 3.3]). If
α 6= 0 then we introduce a new quantum variable zf with the parameters
(id, g). Each fi has a representation through the skew commutator. Indeed,
by [22, Theorem 7.5] the complete linearization f lin

i of fi has the required
representation. By the identification of variables in a suitable way in f lin

i
we get the required representation for fi multiplied by a natural number,
mifi = f

[ ]
i .

Now consider a Lie algebra g defined by the generators xi, zf and the
relations

∑
m−1

i f
[ ]
i + zf = 0, with the Lie multiplication in place of the

skew commutator. It is clear that H is the quantification with constants of
g. �

In the same way one may introduce the notion of the combinatorial rank
for the braided bigraded Hopf algebras. In this case all braided quantum
enveloping algebras are of rank 1, and all braided bigraded algebras of rank
1 are the braided quantification of some Lie algebras.

Now we are ready to define a quantification of arbitrary rank. For this in
the definitions of the above section it is necessary to change the requirement
that all f∗i are quantum Lie operations with the following condition.

The set F splits in a union F =
⋃n

j=1 Fj such that F ∗
1 consists of quantum

Lie operations; the set F ∗
2 consists of skew primitive elements of G〈X||F ∗

1 〉;
the set F ∗

3 consists of skew primitive elements of G〈X||F ∗
1 , F ∗

2 〉, and so on.
The quantum enveloping algebras of an arbitrary rank are character Hopf

algebras also. Conversely, if a character Hopf algebra H is homogeneous and
the ground field has a zero characteristic, then H is a quantification of some
rank of a suitable Lie algebra (see [26]). It is not clear if there exist character
Hopf algebras, or braided bigraded Hopf algebras, of infinite combinatorial
rank; while it is easy to see that

⋃∞
n=1 In = I. Also it is possible to show

that F1 always contains all relations of a minimal constitution in F. For
example, each of (11) is of a minimal constitution in (11). Therefore the
quantification of arbitrary rank with the identification gi = exp(hi) of any
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(generalized) Kac–Moody algebra g, or its nilpotent component g+, is always
a quantification in the sense of the above section.

4. PBW-generators and monomial crystallization.

The next result yields a PBW basis for the quantum enveloping algebras.

Theorem 4.1. Every character Hopf algebra H has a linearly ordered set of
constitution homogeneous elements U = {ui | i ∈ I} such that the set of all
products gun1

1 un2
2 · · ·unm

m , where g ∈ G, u1 < u2 < . . . < um, 0 ≤ ni < h(i)

forms a basis of H. Here if pii
df
= puiui is not a root of unity then h(i) = ∞;

if pii = 1 then either h(i) = ∞ or h(i) = l is the characteristic of the ground
field; if pii is a primitive t-th root of unity, t 6= 1, then h(i) = t.

The set U is referred to as a set of PBW-generators of H. This theorem
easily follows from [23, Theorem 2]. Let us recall necessary notions.

Let a1, . . . , an be a set of skew primitive generators of H, and let xi be
the associated quantum variables. Consider the lexicographical ordering of
all words in x1 > x2 > . . . > xn. A beginning of a word is considered to be
greater than the word itself, for example x1 > x1x

2
2 > x1x

2
2x1. A nonempty

word u is called standard if vw > wv for each decomposition u = vw with
nonempty v, w. The following properties are well-known (see, for example
[11], [14], [29], [40], [41]).

1s. A word u is standard if and only if it is greater than each of its ends.
2s. Every standard word starts with a maximal letter that it has.
3s. Each word c has a unique representation c = un1

1 un2
2 · · ·unk

k , where
u1 < u2 < · · · < uk are standard words (the Lyndon theorem).

4s. If u, v are different standard words and un contains vk as a sub-word,
un = cvkd, then u itself contains vk as a sub-word, u = bvke.

Recall that a nonassociative word is a word where brackets [, ] somehow
arranged to show how multiplication applies. If [u] denotes a nonassociative
word then by u we denote an associative word obtained from [u] by removing
the brackets (of course [u] is not uniquely defined by u in general).

The set of standard nonassociative words is defined as the smallest set SL
that contains all variables xi and satisfies the following properties.

1) If [u] = [[v][w]] ∈ SL then [v], [w] ∈ SL, and v > w are standard.
2) If [u] = [[[v1][v2]][w]] ∈ SL then v2 ≤ w.
The following statements are valid as well.
5s. Every standard word has the only alignment of brackets such that the

appeared nonassociative word is standard (the Shirshov theorem [40]).
6s. The factors v, w of the nonassociative decomposition [u] = [[v][w]] are

the standard words such that u = vw and v has the minimal length
([41]).
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Definition 4.2. A super-letter is a polynomial that equals a nonassociative
standard word where the brackets mean (2). A super-word is a word in
super-letters.

By 5s every standard word u defines the only super-letter, in what follows
we will denote it by [u]. For example, the words x1x

2
2, x3

2x3, x1x2x3x2,
x2x3x2x3x4, x1x2x

2
3x2 are standard and they define the following super-

letters

[x1x
2
2] = [[x1x2]x2], [x3

2x3] = [x2[x2[x2x3]]], [x1x2x3x2] = [[x1[x2x3]]x2],

[x2x3x2x3x4] = [[x2x3][x2[x3x4]]], [x1x2x
2
3x2] = [[x1[[x2x3]x3]]x2].

In Theorem 2.4 we have W = α[x1x
n
2 ]. If the variables are ordered in the

opposite way, x2 > x1, then x1x
n
2 is not a standard word, while xn

2x1 is, and

one may see that [. . . [[x1x2]x2] . . . x2] = (−p12)np
n(n−1)

2
22 [xn

2x1] provided that
one of the existence conditions is valid (see Corollary 4.10 below). Therefore
the quantified relations (11) can be written in a form of equality to zero of
some super-letters:

[xjx
nij

i ] = 0, [xnji

j xi] = 0, j < i.(16)

Let D be a linearly ordered Abelian additive group. Suppose that some
positive D-degrees d1, . . . , dn ∈ D are associated to x1, . . . , xn. We define
the degree of a word to be equal to m1d1+ . . .+mndn where (m1, . . . , mn) is
the constitution of the word. The order and the degree on the super-letters
are defined in the following way: [u] > [v] ⇐⇒ u > v; D([u]) = D(u).

Definition 4.3. A super-letter [u] is called hard in H provided that its
value in H is not a linear combination of values of super-words of the same
degree in less than [u] super-letters and G-super-words of a lesser degree.

Definition 4.4. We say that a height of a super-letter [u] of degree d equals
h = h([u]) if h is the smallest number such that: First puu is a primitive
t-th root of unity and either h = t or h = tlr, where l = char (k); and then
the value in H of [u]h is a linear combination of super-words of degree hd
in less than [u] super-letters and G-super-words of a lesser degree. If there
exists no such number then the height equals infinity.

Clearly, if the algebra H is D-homogeneous then one may omit the un-
derlined parts of the above definitions.

Theorem 4.5 ([23, Theorem 2]). The set of all values in H of all G-super-
words W in the hard super-letters [ui],

W = g[u1]n1 [u2]n2 · · · [um]nm ,(17)

where g ∈ G, u1 < u2 < . . . < um, ni < h([ui]) is a basis of H.
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In order to find the set U of PBW-generators it is necessary first to include
in U the values of all hard super-letters, then for each hard super-letter [u]
of a finite height, h([u]) = tlk, to add the values of [u]t, [u]tl, . . . [u]tl

(k−1)
, and

next for each hard super-letter of infinite height such that puu is a primitive
t-th root of unity to add the value of [u]t.

Obviously the set of PBW-generators plays the same role as the basis of
the Lie algebra in the PBW theorem does. Nevertheless the k[G]-bimodule
generated by the PBW-generators is not uniquely defined. It depends on
the ordering of the main generators, the D-degree, and under the action of
antipode it transforms to a different bimodule of PBW-generators k[G]S(U).

Another way to construct PBW-generators is connected with the M.
Kashiwara crystallization idea [20], [21]. M. Kashiwara considered the main
parameter of the Drinfeld–Jimbo enveloping algebra as the temperature of
some physical medium. When the temperature tends to zero the medium
crystallizes. By this means a ‘crystal’ bases must appear. If we replace
pij with zero then [u, v] turns into a monomial uv, while [u] turns into a
monomial u.

Lemma 4.6. Under the above monomial crystallization the set of PBW-
generators constructed in Theorem 4.5 turns into another set of PBW-
generators.

Proof. See [23, Corollary 1].

Lemma 4.7. A super-letter [u] is hard in H if and only if the value of
u is not a linear combination of values of lesser words of the same degree
and G-words of a lesser degree.

Proof. See [23, Corollary 2].

Lemma 4.8. Let B be a set of the super-letters containing x1, . . . , xn. If
each pair [u], [v] ∈ B, u > v satisfies one of the following conditions:

1) [[u][v]] is not a standard nonassociative word;
2) the super-letter [[u][v]] is not hard in H;
3) [[u][v]] ∈ B,

then the set B includes all hard in H super-letters.

Proof. Let [w] be a hard super-letter of minimal degree such that [w] /∈ B.
Then [w] = [[u][v]], u > v where [u], [v] are hard super-letters. Indeed, if [u]
is not hard then by Lemma 4.7 we have u =

∑
αiui + S, where ui < u and

D(ui) = D(u), D(S) < D(u). We have uv =
∑

αiuiv +Sv, where uiv < uv.
Therefore by Lemma 4.7, the super-letter [w] = [uv] can not be hard in H.
Contradiction. Similarly, if [v] is not hard then v =

∑
αivi + S, vi < v,

D(vi) = D(v), D(S) < D(v). Therefore uv =
∑

αiuvi + uS, uvi < uv, and
again [w] can not be hard.
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Thus, according to the choice of [w], we get [u], [v] ∈ B. Since this pair
satisfies neither condition 1) nor 2), the condition 3), [uv] ∈ B, holds. �

Lemma 4.9. If T ∈ H is a skew primitive element then

T = α[u]h +
∑

αiWi +
∑

βjgjW
′
j , α 6= 0,(18)

where [u] is a hard super-letter, Wi are basis super-words in super-letters
less than [u], D(Wi) = hD([u]), D(W ′

j) < hD([u]). Here if puu is not a root
of unity then h = 1; if puu is a primitive t-th root of unity then h = 1, or
h = t, or h = tlk, where l is the characteristic.

Proof. Consider an expansion of T in terms of the basis (17)

T = αgU +
k∑

i=1

γigiWi + W ′, α 6= 0,(19)

where gU, giWi are different basis elements of maximal degree, and U is one
of the biggest words among U,Wi with respect to the lexicographic ordering
of words in the super-letters. On basis expansion of tensors, the element
∆(T) −T ⊗ 1 − gt ⊗T has only one tensor of the form gU ⊗ . . . and this
tensor equals gU⊗α(g−1). Therefore g = 1 and one may apply [23, Lemma
13]. �

Corollary 4.10. If one of the existence conditions in Theorem 2.4 holds
then

[. . . [[x1x2]x2] . . . x2] = (−p12)np
n(n−1)

2
22 [x2[x2 . . . [x2x1] . . . ]].

Proof. Let us introduce the opposite order, x2 > x1. Since [...[[x1x2]x2]...x2]
is a quantum Lie operation, it has a representation (18) where all addends
have the same constitution, (1, n). This implies h = 1, u = xn

2x1. All stan-
dard words of the constitution less than or equal to (1, n) are x2, xk

2x1, k ≤ n.
By definition of the lexicographical order x2 > xn

2x1. Therefore x2 does not
occur in (18) as a super-letter. Since every addend has degree 1 in x1, the
equality (18) reduces to T = α[xn

2x1]. In order to find α one may to compare
the coefficients at xn

2x1. �

5. Groebner–Shirshov relations systems.

Let x1, . . . , xn be variables that have positive degrees d1, . . . , dn ∈ D. Recall
that a Hall ordering of words in x1, . . . , xn is an order when the words
are compared firstly by the degree and then words of the same degree are
compared by means of the lexicographic ordering. Consider a set of relations

wi = fi, i ∈ I,(20)

where wi is a word and fi is a linear combination of Hall lesser words. The
system (20) is said to be closed under compositions or a Groebner–Shirshov
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relations system if first none of wi contains wj , i 6= j ∈ I as a sub-word, and
then for each pair of words wk, wj such that some nonempty terminal of wk

coincides with an onset of wj , that is wk = w′
kv, wj = vw′

j , the difference
(a composition) fkw

′
j − w′

kfj can be reduced to zero in the free algebra by
means of a sequence of one sided substitutions wi → fi, i ∈ I.

Lemma 5.1 (Diamond Lemma [4], [6], [41]). If the system (20) is closed
under compositions then the words that have none of wi as sub-words form
a basis of the algebra H defined by (20).

If none of the words wi has sub-words wj , j 6= i, then the converse state-
ment is valid as well. Indeed, any composition by means of substitutions
wi → fi can be reduced to a linear combination of words that have no
sub-words wi. Since fiw

′
j − w′

ifj = (fi − wi)w′
j − w′

i(fj − wj), this linear
combination equals zero in H. Therefore all the coefficients have to be zero.

Since Lemma 4.6 provides the basis that consists of words, the above
note gives a way to construct the Groebner–Shirshov relations system for
any quantum enveloping algebra.

Let H be a character Hopf algebra generated by skew primitive semi-
invariants a1, . . . , an (or a braided bigraded Hopf algebra generated by grad-
ing homogeneous primitive elements a1, . . . , an) and let x1, . . . , xn be the
related quantum variables. A non-hard in H super-letter [w] is referred to
as a minimal one if first w has no proper standard sub-words that define
non-hard super-letters, and then w has no sub-words uh, where [u] is a hard
super-letter of the height h.

By Lemma 4.7, for every minimal non-hard in H super-letter [w] we may
write a relation in H

w =
∑

αiwi +
∑

βjgjwj ,(21)

where wj , wi < w in the Hall sense, D(wi) = D(w), D(wj) < D(w). In the
same way if [u] is a hard in H super-letter of a finite height h then

uh =
∑

αiui +
∑

βjgjuj ,(22)

where uj , ui < uh in the Hall sense, D(ui) = hD(u), D(uj) < hD(u). The
relations (14) and the group operation provide the relations

xig = χxi(g)gxi, g1g2 = g3.(23)

Theorem 5.2. The set of relations (21), (22), and (23) forms a Groebner–
Shirshov system that defines H. The basis determined by this system in
Diamond Lemma coincides with the PBW basis obtained via monomial crys-
tallization.

Proof. The property 4s implies that none of the left hand sides of (21), (22),
(23) contains another one as a sub-word. Therefore by Lemma 4.6 it is
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sufficient to show that the set of all words c determined in the Diamond
Lemma coincides with the basis appeared in Lemma 4.6. By 3s we have
c = un1

1 un2
2 · · ·unk

k , where u1 < . . . < uk is a sequence of standard words.
Every word ui define a hard super-letter [ui] since in the opposite case ui,
and therefore c, contains a sub-word w that defines a minimal non-hard
super-letter [w]. In the same way ni does not exceed the height of [ui]. �

Lemma 5.3. In terms of Lemma 4.8 the set of all super-letters [[u][v]] that
satisfy the condition 2) contains all minimal non-hard super-letters, but non-
hard generators xi.

Proof. If [w] is a minimal non-hard super-letter then [w] = [[u][v]], where
[u], [v] are hard super-letters. By Lemma 4.8 we have [u], [v] ∈ B, while
[[u][v]] neither satisfies 1) nor 3). �

6. Quantification with constants.

By means of the Diamond Lemma in some instances the investigation of a
quantification with constants can be reduced to one of a simple quantifica-
tion.

Let H1 = G〈x1, . . . , xk||F1〉 be a character Hopf algebra defined by the
quantum variables x1, . . . , xk and the grading homogeneous relations {f =
0 : f ∈ F1}, while H2 = G〈xk+1, . . . , xn||F2〉 is a character Hopf algebra
defined by the quantum variables xk+1, . . . , xn and the grading homogeneous
relations {h=0 : h∈F2}. Consider the algebra H =G〈x1, ..., xn||F1, F2, F3〉,
where F3 is the following system of relations with constants

[xi, xj ] = αij(1− gigj), 1 ≤ i ≤ k < j ≤ n.(24)

If the conditions below are met then the character Hopf algebra structure
on H is uniquely determined:

pijpji = 1, 1 ≤ i ≤ k < j ≤ n; χxiχxj 6= 1 =⇒ αij = 0.(25)

Indeed, in this case the difference wij between the left and right hand sides
of (24) is a skew primitive semi-invariant of the free enveloping algebra
G〈x1, . . . , xn〉. Consider the ideals of relations I1 =id(F1) and I2 =id(F2)
of H1 and H2 respectively. They are, in the present context, Hopf ideals of
G〈x1, . . . , xk〉 and G〈xk+1, . . . , xn〉, respectively. Therefore V = I1 + I2+∑

k[G]wij is an antipode stable coideal of G〈X〉. Consequently the ideal
generated by V is a Hopf ideal. It remains to note that this ideal is generated
in G〈X〉 by wij and F1, F2.

Lemma 6.1. Every hard in H super-letter belongs to either H1 or H2, and
it is hard in the related algebra.

Proof. If a standard word contains at least one of the letters xi, i ≤ k then
it has to start with one of them (see 2s in §4). If this word contains a letter
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xj , j > k then it has a sub-word of the form xixj , i ≤ k < j. Therefore by
Lemma 4.7 and relations (24) this word defines a non-hard super-letter. �

The converse statement is not universally true. In order to formulate the
necessary and sufficient conditions let us define partial skew derivatives:

∂i(xj) = ∂j(xi) = αij(1− gigj), i ≤ k < j;(26)
∂i(v · w) = ∂i(v) · w + p(xi, v)v · ∂i(w), i ≤ k, v, w ∈ k〈xk+1, . . . , xn〉;
∂j(u · v) = p(v, xj)∂j(u) · v + u · ∂j(v), j > k, u, v ∈ k〈x1, . . . , xk〉.

Lemma 6.2. All hard in H1 or H2 super-letters are hard in H if and only
if ∂i(h) = 0 in H2 for all i ≤ k, h ∈ F2, and ∂j(f) = 0 in H1 for all j > k,
f ∈ F1. If these conditions are met then

H ∼= H2 ⊗k[G] H1(27)

as k[G]-bimodules, and the space generated by the skew primitive elements
of H equals the sum of these spaces for H1 and H2.

Proof. By (5) and (26) the following equalities are valid in H:

0 = [xi, h] = ∂i(h); 0 = [f, xj ] = ∂j(f), i ≤ k < j.(28)

If all hard in H1 or H2 super-letters are hard in H then H1, H2 are sub-
algebras of H. So (28) proves the necessity of the lemma conditions.

Conversely, let us consider an algebra R defined by the generators g ∈ G,
x1, . . . , xn and the relations (23), (24). Evidently this system is closed under
the compositions. Therefore by Diamond Lemma the set of words gvw forms
a basis of R where g ∈ G; v is a word in xj , j > k; and w is a word in xi,
i ≤ k. In other words R as a bimodule over k[G] has a decomposition

R = G〈xk+1, . . . , xn〉 ⊗k[G] G〈x1, . . . , xk〉.(29)

Let us show that the two sided ideal of R generated by F2 coincides with
the right ideal I2R = I2⊗k[G] G〈x1, . . . , xk〉. It will suffice to show that I2R

admits left multiplication by xi, i ≤ k. If v is a word in xk+1, . . . , xn, h ∈ F2,
r ∈ R then xivhr = [xi, vh]r + p(xi, vh)vhxir. The second term belongs to
I2R, while the first one can be rewritten by (5): [xi, v]h + p(xi, v)v[xi, h].
Both of these addends belong to I2R since [xi, v] = ∂i(v) ∈ G〈xk+1, . . . , xn〉
and [xi, h] = ∂i(h) ∈ I2.

Furthermore, consider a quotient algebra R1 = R/I2R:

R1 = (G〈xk+1, . . . , xn〉 ⊗k[G] G〈x1, . . . , xk〉)/(I2 ⊗k[G] G〈x1, . . . , xk〉)
= H2 ⊗k[G] G〈x1, . . . , xk〉,

where the equality means the natural isomorphism of k[G]-bimodules.
Along similar lines, the left ideal R1I1 = H2 ⊗k[G] I1 of this quotient

algebra coincides with the two-sided ideal generated by F1. Therefore

H = R1/R1I1 = H2 ⊗k[G] G〈x1, . . . , xk〉/H2 ⊗k[G] I1 = H2 ⊗k[G] H1.
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Thus the monotonous restricted G-words in hard in H1 or H2 super-letters
form a basis of H. This, in particular, proves the first statement.

Now let T =
∑

αtgtVtWt be the basis decomposition of a skew primitive
element, gt ∈ G, Vt ∈ H2, Wt ∈ H1, αt 6= 0. We have to show that for
each t one of the super-words Vt or Wt is empty. Suppose that it is not
so. Among the addends with nonempty Vt, Wt we choose the largest one in
the Hall sense, say gsVsWs. Under the basis decomposition of ∆(T ) − T ⊗
1− g(T )⊗ T the term αsgsg(Vs)Ws ⊗ gsVs appears and cannot be canceled
with other. Indeed, since the coproduct is homogeneous (see [23, Lemma
9]) and since under the basis decomposition the super-words are decreased
(see [23, Lemma 7]) the product αs(gs ⊗ gs)∆(Vs)∆(Ws) has the only term
of the above type. By the same reasons αt(gt ⊗ gt)∆(Vt)∆(Wt) has a term
of the above type only if Vt ≥ Vs and Wt ≥ Ws with respect to the Hall
ordering of the set of all super-words. However, by the choice of s, we
have D(VsWs) ≥ D(VtWt). Hence D(Vt) = D(Vs) and D(Wt) = D(Ws). In
particular Vt is not a proper onset of Vs. Therefore Vt = Vs since otherwise
the inequality Vt > Vs yields a contradiction VtWt > VsWs. The inequality
Wt > Ws yields the same contradiction. Therefore Vt = Vs and Wt = Ws, in
which case gtg(Vt)Wt⊗gtVt = gsg(Vs)Ws⊗gsVs. Thus gt = gs and t = s. �

7. Quantification of the classical series.

In this section we apply the above general results to the infinite series An,
Bn, Cn, Dn of nilpotent Lie algebras defined by the Serre relations (11) or,
equivalently, (16). Let g be any such Lie algebra.

Lemma 7.1. If a standard word u has no sub-words of the type

xs
ixjx

m
i , where s + m = 1− aij(30)

then [u] is a hard in UP (g) super-letter.

Proof. Let R be defined by the generators x1, . . . , xn and the relations

xs
ixjx

m
i = 0, where s + m = 1− aij .(31)

Clearly (31) implies (16). Therefore R is a homomorphic image of U b
P (g).

The system (31) is closed under compositions since a composition of mono-
mial relations always has the form 0 = 0.

Let u have no sub-words (30). Then the value of u in R belongs to
the basis of R defined in Diamond Lemma. If [u] is not hard then, by the
homogeneous version of Lemma 4.7, u is a linear combination of lesser words
in U b

P (g). Therefore u is a linear combination of lesser words in R as well.
This contradicts the fact that u belongs to the basis of R defined in Diamond
Lemma. �
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Theorem An. Suppose that g is of the type An, and pii 6= −1. Denote by
B the set of the super-letters given below:

[ukm]
df
= [xkxk+1 . . . xm], 1 ≤ k ≤ m ≤ n.(32)

The following statements are valid.
1. The values of [ukm] in UP (g) form a PBW-generators set.
2. Each of the super-letters (32) has infinite height in UP (g).
3. The values of all non-hard in UP (g) super-letters equal zero.
4. The following relations with (23) form the Groebner–Shirshov relations

system for UP (g):

[u0]
df
= [xkxm] = 0, 1 ≤ k < m− 1 < n;

[u1]
df
= [xkxk+1 . . . xmxk+1] = 0, 1 ≤ k < m ≤ n;

[u2]
df
= [xkxk+1 . . . xmxkxk+1 . . . xm+1] = 0, 1 ≤ k ≤ m < n.

(33)

5. If p11 6= 1 then the generators xi, the constants 1 − g, g ∈ G, and,
in the case that p11 is a primitive t-th root of 1, the elements xt

i, x
tlk
i

form a basis of the space gP = L(UP (g)) generated by skew primitive
elements. Here l is the characteristic of the ground field.

6. If p11 = 1 then the elements (32) and, in the case l > 0, their lk-th
powers, together with 1− g, g ∈ G form a basis of gP .

By Corollary 2.5 the relations (11) with a Cartan matrix A of type An

admit a quantification if and only if

pii = p11, pii+1pi+1i = p−1
11 ; pijpji = 1, i− j > 1.(34)

In this case the quantified relations (16) take up the form

xix
2
i+1 = pii+1(1 + pi+1i+1)xi+1xixi+1 − p2

ii+1pi+1i+1x
2
i+1xi,(35)

x2
i xi+1 = pii+1(1 + pii)xixi+1xi − p2

ii+1piixi+1x
2
i ,(36)

xixj = pijxjxi, i− j > 1.(37)

Definition 7.2. We introduce the congruence u ≡k v on G〈X〉. This con-
gruence means that the value of u − v in U b

P (g) belongs to the subspace
generated by values of all words with the initial letters xi, i ≥ k.

Clearly, this congruence admits right multiplication by arbitrary polyno-
mials as well as left multiplication by the independent of xk−1 ones (see
(37)). For example, by (35) and (36) we have

xix
2
i+1 ≡i+1 0; xixi+1xi ≡i+1 αx2

i xi+1, α 6= 0.(38)

Lemma 7.3. If y = xi, m + 1 6= i > k or y = x2
i , m + 1 = i > k then

ukmy ≡k+1 0.(39)
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Proof. Let y = x2
m+1, m + 1 > k. By (38) and (37) we have that ukmy =

uk m−1xmx2
m+1 ≡m+1 0. If y = xi and m + 1 6= i > k then we get ukmy =

αuk i−1xixi+1xi ui+2m ≡i+1 βuk i−1x
2
i ui+1m ≡k+1 0 by the above case. �

Lemma 7.4. The brackets in [ukm] are left-ordered, [ukm] = [xk[uk+1m]].

Proof. The statement immediately follows from the properties 6s and 2s. �

Lemma 7.5. If a nonassociative word [[ukm][urs]] is standard then k = m ≤
r; or r = k + 1, m ≥ s; or r = k, m < s.

Proof. By definition, ukm > urs if and only if either k < r; or k = r, m < s.
If k = m then ukm = xk and m ≤ r. If k 6= m then [ukm] = [xk[uk+1m]].
Therefore uk+1m ≤ urs, i.e., either k + 1 > r; or k + 1 = r and m ≥ s. The
former case contradicts k < r while the latter one does k = r. Thus only the
possibilities set in the lemma remain. �

Lemma 7.6. If [w] = [[ukm][urs]], n ≥ 1 is a standard nonassociative word
then the constitution of [w]h does not equal the constitution of any super-
word in less than [w] super-letters from B.

Proof. The inequalities at the last column of the following tableaux are valid
for all [u] ∈ B that are less than the super-letters located on the same row,
where as above degi(u) means the degree of u in xi.

[xkuk+1s] degk(u) ≤ degs+1(u);
[xkurs], k ≤ r 6= k + 1 degk(u) ≤ degk+1(u);
[ukmuk+1s], m ≥ s degk(u) ≤ degm+1(u);
[ukmuks], m < s degk(u) ≤ degm+1(u).

(40)

If all super-letters of a super-word U satisfy one of these inequalities then U
does as well. Clearly, no one of the super-letters in the first column satisfies
the degree inequality on the same row. Finally, by Lemma 7.5 the first
column contains all standard nonassociative words of the type [[ukm][urs]].

�

Lemma 7.7. If p11 6= 1 then the values of [ukm]h, k < m, h ≥ 1 are not
skew primitive, in particular they are nonzero.

Proof. The sub-algebra generated by x2, . . . xn is defined by the Cartan ma-
trix of the type An−1. This allows us to use induction on n. If n = 1 then
the lemma is correct in the sense that [ukm]h = xh

1 6= 0.
Let n > 1. If k > 1 then we may use the inductive supposition directly.

Consider the decomposition ∆([u1m]) =
∑

u(1) ⊗ u(2). Since

[u1m] = x1[u2m]− p(x1, u2m)[u2m]x1,(41)

we have
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∆([u1m]) = (x1 ⊗ 1 + g1 ⊗ x1)∆([u2m])(42)

− p(x1, u2m)∆([u2m])(x1 ⊗ 1 + g1 ⊗ x1).

Therefore the sum of all tensors u(1)⊗u(2) with deg1(u(2)) = 1, degk(u(2)) =
0, k > 1 has the form εg1[u2m] ⊗ x1, where ε = 1 − p(x1, u2m)p(u2m, x1)
since [u2m]g1 = p(u2m, x1)g1[u2m]. By (34) we have pijpji = 1 for i− 1 > j.

Therefore ε = 1− p12p21 = 1− p−1
11 6= 0.

This implies that in the decomposition ∆([u1m]h) =
∑

v(1)⊗v(2) the sum
of all tensors v(1) ⊗ v(2) with deg1(v(2)) = h, degk(v(2)) = 0, k > 1 equals
εh[u2m]h ⊗ xh

1 . Thus [u1m]h is not skew primitive in UP (g). �

Proof of Theorem An. Let us show firstly that B satisfies the conditions of
Lemma 4.8. By Lemma 4.7 [w] = [[ukm][urs]] is non-hard if the value of
ukmurs is a linear combination of lesser words. For k = m, r = k + 1 we
have [w] = [uks] ∈ B. If k = m, r > k + 1 then the word xkurs can be
diminished by (36) or (37). If k 6= m then by Lemma 7.5 the word ukmurs

has a sub-word of the type u1 or u2. Thus we need show only that the values
in UP (g) of u1 and u2 are linear combinations of lesser words.

The word u1 has such a representation by Lemma 7.3. Consider the word
u2. Let us show by downward induction on k that

ukmuk m+1 ≡k+1 γuk m+1ukm, γ 6= 0.(43)

If k = m then one may use (36) with i = k. Let k < m. Let us transpose
the second letter xk of u2 as far to the left as possible by (37). We get

u2 = αxkxk+1xkxk+2 · · ·xmxk+1 · · ·xm+1, α 6= 0.

By (36) we have

u2 ≡k+1 βx2
k(xk+1xk+2 · · ·xmxk+1 · · ·xm+1), β 6= 0.

Let us apply the inductive supposition to the word in the parentheses. Since
xi, i > k + 1 commutes with x2

k according to the formulae (37), we get

u2 ≡k+1 γx2
kxk+1xk+2 · · ·xm+1xk+1 · · ·xm.

Now it remains to replace the underlined sub-word according to (36) and
then to transpose the second letter xk to its former position by (37).

(Note. For the diminishing of u1, u2 we did not use, and we could not use,
the relation [xn−1x

2
n] = 0 since degn(u1) ≤ 1, degn(u2) ≤ 1.)

Thus B satisfies the conditions of Lemma 4.8. Since none of [ukm] has
sub-words (30), Lemmas 7.1 and 4.8 show that the first statement is correct.

If [ukm] has a finite height h then the value of the polynomial [ukm]h

in UP (g) is a linear combination of words in hard super-letters that are
less than [ukm]. However by Lemma 7.6 this linear combination is trivial,
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[ukm]h = 0, since the defining relations are homogeneous. By Lemma 7.7
the second statement is correct for p11 6= 1.

Similarly consider the skew primitive elements. Since both the defining
relations and the coproduct are homogeneous, all the homogeneous com-
ponents of a skew primitive element are skew primitive itself. Therefore it
remains to describe all skew primitive elements homogeneous in each xi. Let
T be such an element. By Lemma 4.9 we have

T = [u]h +
∑

αiWi,

where [u] is a hard super-letter, u = ukm, and Wi are super-words in less
than [u] super-letters from B. By the homogeneity all Wi have the same
constitution as [ukm]h does. However by Lemma 7.6 there exist no such
super-words. This means that the only possible case is T = [ukm]h. Thus,
by Lemma 7.7 the fifth statement is valid as well.

If p11 = 1 then pijpji = pii = 1 for all i, j. So we are under the conditions
of Example 1, that is U b

P (g) is the universal enveloping algebra of the color
Lie algebra gcol. Further, [ukm] ∈ gcol and [ukm] are linearly independent
in gcol since they are hard super-letters and no one of them can be a linear
combination of the lesser ones. Let us complete B to a homogeneous basis B′

of gcol. Then by the PBW theorem for the color Lie algebras the products
bn1
1 · · · bnk

k , b1 < . . . < bk form a basis of U(gcol) = U b
P (g). However, the

monotonous restricted words in B form a basis of U b
P (g) also. Thus B′ = B

and all hard super-letters have the infinite height.
In particular, we get that the second statement is valid in complete extent.

Moreover, if p11 = 1 then p(ukm, ukm) = 1, thus for l = 0 all homogeneous
skew primitive elements became exhausted by [ukm], while for l > 0 the
powers [ukm]l

k
are added to them (of course, here l 6= 2 since −1 6= pii = 1).

So we have proved all statements, but the third and fourth ones. These
statements will follow Theorem 5.2 and Lemma 5.3 if we prove that all
non-hard super-letters [[ukm][urs]] equal zero in UP (g). By the homogeneous
definition, [[ukm][urs]] is a linear combination of super-words in lesser hard
super-letters. However, by Lemma 7.6, there exist no such super-words of
the same constitution. Therefore, by the homogeneity, the above linear
combination equals zero. �

Theorem Bn. Let g be of the type Bn, and pii 6= −1, 1 ≤ i < n, p
[3]
nn

df
= p2

nn + pnn + 1 6= 0. Denote by B the set of the super-letters given below:

[ukm]
df
= [xkxk+1 . . . xm], 1 ≤ k ≤ m ≤ n;

[wkm]
df
= [xkxk+1 . . . xn · xnxn−1 . . . xm], 1 ≤ k < m ≤ n.

(44)

The following statements are valid.
1. The values of (44) in UP (g) form the PBW-generators set.
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2. Every super-letter [u] ∈ B has infinite height in UP (g).
3. The relations (23) with the following ones form a Groebner–Shirshov

system for UP (g).

[u0]
df
= [xkxm] = 0, 1 ≤ k < m− 1 < n;

[u1]
df
= [ukmxk+1] = 0, 1 ≤ k < m ≤ n, k 6= n− 1;

[u2]
df
= [ukmuk m+1] = 0, 1 ≤ k ≤ m < n;

[u3]
df
= [wkmxk+1] = 0, 1 ≤ k < m ≤ n, k 6= m− 2;

[u4]
df
= [wkk+1xk+2] = 0, 1 ≤ k < n− 1;

[u5]
df
= [wkmwk m−1] = 0, 1 ≤ k < m− 1 ≤ n− 1;

[u6]
df
= [u2

knxn] = 0, 1 ≤ k < n.

(45)

4. If p11 6= 1 then the generators xi and their powers xt
i, x

tlk
i , such that pii

is a primitive t-th root of 1, together with the constants 1 − g, g ∈ G
form a basis of gP = L(UP (g)). Here l is the characteristic of the
ground field.

5. If pnn = p11 = 1 then the elements (44) and, for l > 0, their lk-th
powers, together with 1−g, g ∈ G form a basis of gP . If pnn = −p11 =
−1 then [ukn]2, [ukn]2lk are added to them.

Recall that in the case Bn the algebra U b
P (g) is defined by (35), (36), (37)

where in (35) the last relation, i = n− 1, is replaced with

xn−1x
3
n = pn−1np[3]

nnxnxn−1x
2
n − p2

n−1npnnp[3]
nnx2

nxn−1xn + p3
n−1np3

nnx3
nxn−1.

(46)

By Corollary 2.5 we get the existence conditions

pii = p11, pii+1pi+1i = p−1
11 = p−2

nn , 1 ≤ i ≤ n− 1; pijpji = 1, i− j > 1.

(47)

The relations (35) and (46) show that

xix
2
i+1 ≡i+1 0, i < n− 1; xn−1x

3
n ≡n 0,(48)

while the relations (36) imply

xixi+1xi ≡i+1 αx2
i xi+1, α 6= 0.(49)

By means of these relations and (37), (46) we have

xn−2xn−1x
2
nxn−1xn ≡n−1 0.(50)

Lemma 7.8. The brackets in [wkm] are set by the recurrence formulae:

[wkm] = [xk[wk+1m]], if 1 ≤ k < m− 1 < n;
[wkk+1] = [[wkk+2]xk+1], if 1 ≤ k < n.

(51)

Here by the definition wk n+1 = ukn.
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Proof. It is enough to use the property 6s and then 1s and 2s. �

Lemma 7.9. The nonassociative word [[wkm][wrs]] is standard only in the
following two cases: 1) s ≥ m > k + 1 = r; 2) s < m, r = k.

Proof. If [[wkm][wrs]] is standard then wkm > wrs and by (51) either wk+1 ≤
wrs, or m = k+1 and xk+1 ≤ wrs. The inequality wkm > wrs is correct only
in two cases: k < r or k = r, m > s. We get four possibilities:

1) k < r, k < m− 1, wk+1m ≤ wrs;
2) k < r, m = k + 1, xk+1 ≤ wrs;
3) k = r, m > s, k < m− 1, wk+1m ≤ wrs;
4) k = r, m > s, m = k + 1, xk+1 ≤ wrs.

Only the first and third ones are consistent since in the second case xk+1 ≤
wrs implies k + 1 > r, while in the fourth case r < s and k = r < s < m =
k +1. If now we decode wk+1m ≤ wrs in the first and third cases, we get the
two possibilities mentioned in the lemma. �

Lemma 7.10. The nonassociative word [[ukm][wrs]] is standard only in the
following two cases: 1) k = r; 2) k = m < r.

Proof. The inequality ukm > wrs means k ≤ r. Since [ukm] = [xk[uk+1m]],
for k 6= m we get uk+1m ≤ wrs, so k + 1 > r and k = r. If k = m 6= r then
xm > wrs and m < r. �

Lemma 7.11. The nonassociative word [[wkm][urs]] is standard only in the
following two cases: 1) r = k + 1 < m; 2) r = k + 1 = m = s.

Proof. The inequality wkm > urs implies r > k. If k < m − 1 then by the
first formula (51) we have wk+1m ≤ urs that is equivalent to k + 1 ≥ r.
Therefore r = k + 1 < m. If k = m − 1 then by the second formula (51)
we get xk+1 ≤ urs, i.e., either k + 1 > r or k + 1 = r = s. The former case
contradicts r > k while the latter one is mentioned in the lemma. �

Lemma 7.12. If [u], [v] ∈ B then one of the statements below is correct.
1) [[u][v]] is not a standard nonassociative word;
2) uv contains a sub-word of one of the types u0, u1, u2, u3, u4, u5, u6;
3) [[u][v]] ∈ B.

Proof. The proof results from Lemmas 7.5, 7.9, 7.10, 7.11. �

Lemma 7.13. If a super-word W equals one of the super-letters [u1]–[u6]
or [ukm]h, [wkm]h, h ≥ 1 then its constitution does not equal the constitution
of any super-word in less than W super-letters from B.

Proof. The proof is akin to Lemma 7.6 with the following tableaux:

[ukm], [ukmxk+1], [ukmuk m+1] degk(u) ≤ degm+1(u);
[wkm], [wkmxk+1], [wkmwk m−1] 2degk(u) ≤ degm−1(u);
[wkk+1xk+2] degk(u) = 0;
[u2

knxn] degk(u) ≤ degn(u).

(52)
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�

Lemma 7.14. If y = xi, m− 1 6= i > k or y = x2
i , m− 1 = i > k then

wkmy ≡k+1 0.(53)

Proof. If i < m− 1 then by means of (37) it is possible to permute y to the
left beyond x2

n and use Lemma 7.3 with m′ = n−1. If y = x2
i , m−1 = i > k

then by the above case, i < m− 1, we get

wkmy = wk m+1xmx2
m−1 = wk m+1xm−1(αxmxm−1 + βxm−1xm) ≡k+1 0,

(54)

where for m = n by definition wk n+1 = ukn, and uknxn−1 ≡n−1 0.
If y = xi, i = m > k then for m = n one may use the second equality

(48). For m < n we have wkmy = wk m+1y1 where y1 = x2
m. Therefore for

k < n− 1 we may use (54) with m + 1 in place of m. For k = n− 1 we have
wkmxn = xn−1x

3
n ≡n 0.

Finally, if y=xi, i>m>k then by (37) we have wkmy=αwki+1xixi−1xi·v.

For i = n one may use (50), while for i < n, changing the underlined word
according to (35), we may use the above considered cases: m′−1 = i′, where
m′ = i + 1, i′ = i; and i′ < m′ − 1, where m′ = i + 1, i′ = i− 1. �

Another interesting relation appears if we multiply (46) by xn−1 from the
left and subtract (36) with i = n− 1 multiplied from the right by x2

n:

xn−1xnxn−1x
2
n ≡n αxn−1x

2
nxn−1xn,(55)

in which case α = pn−1np
[3]
nn 6= 0.

Lemma 7.15. For k < s < m ≤ n the following relation is valid.

wkmwks ≡k+1 εwkswkm, ε 6= 0.(56)

Proof. Let us use downward induction on k. For this we first transpose the
second letter xk of wkmwks as far to the left as possible by means of (37),
and then change the onset xkxk+1xk according to (49). We get

wkmwks ≡k+1 αx2
k(wk+1mwk+1s), α 6= 0.(57)

For k + 1 < s we apply the inductive supposition to the word in the
parentheses and then by (49) and (37) transpose xk to its former position.

The case k+1 = s, the basis of the induction on k, we prove by downward
induction on s.

Let k + 1 = s = n− 1. Then m = n. Let us first show that

xn−1x
2
nxn−1xnxnxn−1 ≡n αxn−1x

2
nx2

n−1x
2
n + βxn−1xnx2

n−1x
3
n, α 6= 0.

(58)
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For this in the left hand side we transpose the first letter xn by means of
(55) to the penultimate position, and then replace the ending x3

nxn−1 by
(46). We get a linear combination of three words. One of them equals the
second word of (58), while two other have the following forms.

xn−1xnxn−1xnxn−1x
2
n, xn−1xnxn−1x

2
nxn−1xn.

The former word by (36) transforms into the form (58). The latter one, after
the application of (55) and the replacing of xn−1xnxn−1 by (36), will have
an additional term xn−1x

3
nx2

n−1xn to which it is possible to apply (48). The
direct calculation of the coefficients shows that α = pn−1npnn 6= 0.

Now let us multiply (58) by x2
n−2 from the left and use (36) with i = n−2.

We get that wn−2 nwn−2 n−1 with respect to ≡n−1 equals

γxn−2xn−1x
2
nxn−2x

2
n−1x

2
n + δxn−2xn−1xnxn−2x

2
n−1x

3
n, γ 6= 0.(59)

Let us apply (48) and then (49) and (48) to the second word. We get that
this word with respect to ≡n−1 equals zero. The first word after application
of (36) takes up the form

εwn−2 n−1wn−2 n + ε′wn−2 nx2
n−1xn−2x

2
n, ε 6= 0.

Thus, by Lemma 7.14, the basis of the induction on s is proved.
Let us carry out the inductive step. Let k +1 = s < n−1. If m > s+1 =

k + 2 then by the inductive supposition on s we may write

(60) wkmwks = (wkmwkk+2)xk+1 ≡k+1 αwkk+2wkmxk+1 =
βwkk+2xkxk+1xk+2xk+1wk+3 m.

Taking into account (53) we may neglect the words starting with x2
k+1, xk+2

while transforming the underlined part:

xkxk+1xk+2xk+1 ≡ γxkx
2
k+1xk+2 ≡ δxk+1xkxk+1xk+2.(61)

In this way (60) is transformed into (56).
If m = s + 1 = k + 2 < n then the relation (57) takes up the form

wkmwks ≡k+1 αx2
k(wk+1k+2wk+1k+3)xk+2xk+1.

Let us apply the inductive supposition with k′ = k+1, s′ = k+2, m′ = k+3
to the word in the parentheses. We get

wkmwks ≡k+1 αε−1x2
kwk+1k+3wk+1k+3x

2
k+2xk+1,

or after an evident replacement

wkmwks ≡k+1 γx2
kwk+1k+3wk+1k+2 · xk+1xk+2 + δx2

kw
2
k+1k+3xk+1x

2
k+2.

In both terms we may transpose one letter xk to its former position by means
of (49) and (37). We get

wkmwks ≡k+1 γ′wkk+3wkk+1xk+2 + δ′w2
kk+3xk+1x

2
k+2.(62)
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It is possible to apply (56) with m′ = k +3, s′ = k +1 to the first term since
the case m > s + 1 is completely considered. Therefore it is enough to show
that the second term equals zero with respect to ≡k+1 . When we transpose
the third letter xk+1 as far to the left as possible we get the word

wkk+3xkxk+1xk+2xk+1wk+3 k+3x
2
k+2.(63)

Taking into account (53) we may neglect the words starting with xk+1 while
transforming the underlined part:

xkxk+1xk+2xk+1 ≡ xk+2xkx
2
k+1 ≡ xk+2xk+1xkxk+1.(64)

Therefore the word (63) equals wkk+1wkk+3x
2
k+2 with respect to ≡k+1 and

it remains only to apply Lemma 7.14 twice. �

Lemma 7.16. The set B satisfies the conditions of Lemma 4.8.

Proof. By Lemmas 7.12 and 4.7 it is sufficient to show that in U b
P (g) all

words of the form u0, . . . , u6 are linear combinations of lesser ones. The
words u0 are diminished by (37). The words u1, u2 have been presented in
this way, without using [xn−1x

2
n] = 0, in the proof of the above theorem. The

relation (53) shows that u3 ≡k+1 0, u4 ≡k+1 0. Lemma 7.15 with s = m− 1
yields the necessary representation for u5.

Let us prove by downward induction on k that

u6
df
= u2

knxn ≡k+1 εuknxnukn, ε 6= 0.

For k = n − 1 this equality takes up the form (55). Let k < n − 1. Let
us transpose the second letter xk of u2

knxn as far to the left as possible by
means of (37) and then apply (35). We get

u2
knxn ≡k+1 αx2

k(u
2
k+1nxn), α 6= 0.

We may apply the inductive supposition to the term in the parentheses and
then by (35), (37) transpose one of xk’s to its former position. �

Lemma 7.17. If p11 6= 1 then the values of polynomials [v]h, where [v] ∈ B,
v 6= xi h ≥ 1 are not skew primitive, in particular, they are nonzero.

Proof. Note that for n > 2 the sub-algebra generated by x2, . . . xn is defined
by the Cartan matrix of the type Bn−1. This allows us to carry out the
induction on n with additional supposition that the statements 1 and 2
of Theorem Bn are valid for lesser values of n. It is convenient formally
consider the one generated sub-algebras 〈xi〉 as algebras of the type B1. In
this case for n = 1 the lemma and the statements 1 and 2 are correct in
the evident way. If v starts with xk 6= x1 then we may directly use the
inductive supposition. If v = u1m, one may literally repeat the arguments
of Lemma 7.7 starting at the formula (41). Let v = w1m. If m > 2 then by
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Lemma 7.8 we have w1m = [x1[w2m]]. This provides a possibility to repeat
the same arguments of Lemma 7.7 with w in place of u.

Consider the last case v = w12. By Lemma 7.8 we have

[w12] = [w13]x2 − p(w13, x2)x2[w13],(65)

[w13] = x1[w23]− p(x1, w23)[w23]x1.(66)

Applying the coproduct first to (66) then to (65) we may find the sum Σ
of all tensors w(1) ⊗ w(2) of ∆([w12]) with deg1(w(2)) = 1, degk(w(2)) = 0,
k > 1 (in much the same way as (42)):

Σ = (εg1[w23]⊗ x1)(x2 ⊗ 1)− p(w13, x2)(x2 ⊗ 1)(εg1[w23]⊗ x1)(67)

= εg1([w23]x2 − p(w13, x2)p(x2, x1)x2[w23])⊗ x1.

For n > 2, taking into account first the bicharacter property of p, then
the equality [x2[w23]] = x2[w23]− p(x2, w23)[w23]x2, and next the following
relations pijpji = 1, i− j > 1; p−1

11 = p12p21 = p−1
22 = p23p32, we may write

Σ = εg1(−p(w13, x2)p21[x2w23] + (1− p−1
11 )[w23] · x2)⊗ x1.(68)

Consider the left hand side of this tensor on applying the inductive sup-
position. Note that x2w23 is a standard word and [x2w23] equals [x2[w23]].
This super-letter is non-hard in UP (g) since x2w23 contains the sub-word
x2

2x3. Thus [x2w23] is a linear combination of monotonous non-decreasing
super-words in lesser super-letters. Among these super-words there is no
[w23] · x2 since x2 > x2w23. On the other hand, [w23] · x2 is a monotonous
non-decreasing super-word and hence its value in UP (g) is a basis element.
Therefore for n > 2 the left hand side W of Σ is nonzero.

For n = 2, by the definition w23 = x2, w13 = x1x2, and the equality (67)
takes up the form Σ = εg1(1− p12p22p21)x2

2 ⊗ x1. Since 1 6= p−1
11 = p12p21 =

p−2
22 , we get (1 − p12p22p21) = 1 − p−1

22 6= 0. Therefore in this case Σ 6= 0 as
well.

By [23, Corollary 10] and the inductive supposition the sub-algebra gen-
erated by x2, . . . , xn has no zero divisors. In particular W h 6= 0 and Σh 6= 0
in any case.

It remains to note that for n > 1 the sum of all tensors w(1) ⊗ w(2) of
∆([w12]h) such that deg1(w(2)) = h, degk(w(2)) = 0, k > 1 equals Σh, hence
[w12]h can not be skew-primitive. �

Proof of Theorem Bn. Since none of ukm, wkm contains sub-words (30), Lem-
mas 7.16, 7.1, 4.8 imply the first statement.

If [v] ∈ B is of finite height then by Lemma 7.13 and the homogeneous
version of Definition 4.4 we have [v]h = 0. For p11 6= 1 this contradicts
Lemma 7.17.
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Along similar lines, by Lemma 4.9, every skew primitive homogeneous
element has the form [v]h. This, together with Lemma 7.17, proves the
fourth statement and, for p11 6= 1, the second one too.

If p11 = 1 then by (47) we have p2
nn = 1, pii = 1, i < n. Besides, pijpji = 1

for all i, j. This means that the skew commutator is a quantum Lie operation.
Hence all elements of B are skew primitive. In the case pnn = 1 these
elements span a color Lie algebra, while in the case pnn = −1 they span
a color Lie super-algebra. Now as in Theorem An, we may use the PBW -
theorem for the color Lie super-algebras.

The third statement will follow Theorem 5.2 and Lemmas 5.3, 7.12 if
we prove that all super-letters (45) are zero in UP (g). We have already
proved that these super-letters are non-hard. Therefore it remains to use
the homogeneous version of Definition 4.3 and Lemma 7.13. �

Theorem Cn. Suppose that g is of the type Cn, and pii 6= −1, 1 ≤ i ≤ n,

p
[3]
n−1n−1 6= 0. Denote by B the set of the following super-letters:

[ukm]
df
= [xkxk+1 . . . xm], 1 ≤ k ≤ m ≤ n;

[vkm]
df
= [xkxk+1 . . . xn · xn−1 . . . xm], 1 ≤ k < m < n;

[vk]
df
= [uk n−1ukn], 1 ≤ k < n.

(69)

The statements given below are valid.

1. The values of the super-letters (69) in UP (g) form the PBW-generators
set.

2. Each of these super-letters has the infinite height in UP (g).
3. The following relations with (23) form a Groebner–Shirshov system for

UP (g).

[u0]
df
= [xkxm] = 0, 1 ≤ k < m− 1 < n;

[u1]
df
= [ukmxk+1] = 0, 1 ≤ k < m ≤ n, (k, m) 6= (n− 2, n);

[u2]
df
= [ukmukm+1] = 0, 1 ≤ k ≤ m < n− 1;

[w3]
df
= [vkmxk+1] = 0, 1 ≤ k < m < n, k 6= m− 2;

[w4]
df
= [vkk+1xk+2] = 0, 1 ≤ k < n− 1;

[w5]
df
= [vkmvkm−1] = 0, 1 ≤ k < m− 1 ≤ n− 1;

[w6]
df
= [u3

k n−1xn] = 0, 1 ≤ k < n.

(70)

4. If p11 6= 1 then the generators xi and their powers xt
i, x

tlk
i , such that

pii is a primitive t-th root of 1 together with the constants 1− g, g ∈ G
form a basis of gP = L(UP (g)). Here l is the characteristic of the
ground field.
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5. If p11 = 1 then the elements (69) and in the case of prime characteristic
l theirs lk-th powers, together with the constants 1 − g, g ∈ G form a
basis of gP .

In the case Cn the algebra U b
P (g) is defined by the same relations (35),

(36), (37), where in (36) the last relation, i = n− 1, is replaced with

x3
n−1xn = pn−1np

[3]
n−1n−1x

2
n−1xnxn−1 +(71)

− p2
n−1npn−1n−1p

[3]
n−1n−1xn−1xnx2

n−1 + p3
n−1np3

n−1n−1xnx3
n−1.

By Corollary 2.5 we get the existence conditions

pii = p11, pi−1ipii−1 = p−1
11 , 1 < i < n,(72)

pn−1npnn−1 = p−1
nn = p−2

n−1n−1; pijpji = 1, i− j > 1.

Therefore the following relations are correct

xix
2
i+1 ≡i+1 0, 1 ≤ i < n;(73)

xixi+1xi ≡i+1 αx2
i xi+1, 1 ≤ i < n− 1, α 6= 0;(74)

xn−1xnx2
n−1 ≡n αx3

n−1xn + βx2
n−1xnxn−1, α, β 6= 0.(75)

The left multiplication by xn−2 of the last relation implies

xn−2xn−1xnx2
n−1 ≡n−1 0.(76)

Lemma 7.18. The brackets in [vkm], [vk] are set according to the following
recurrence formulae, where by the definition vkn = ukn.

[vkm] = [xk[vk+1m]], if 1 ≤ k < m− 1 < n− 1;
[vkk+1] = [[vkk+2]xk+1], if 1 ≤ k < n− 1;
[vk] = [[uk n−1][ukn]], if 1 ≤ k < n.

(77)

Proof. It is enough to use the properties 6s, 1s and 2s. �

Lemma 7.19. If [u], [v] ∈ B then one of the following statements is valid.
1) [[u][v]] is not a standard nonassociative word;
2) uv contains a sub-word of one of the types u0, u1, u2, w3, w4, w5, w6;
3) [[u][v]] ∈ B.

Proof. The first two formulae (77) coincide with (51) up to replacement of v
with w provided k + 1 6= n > m. Obviously for m < n the inequality vkm >
vrs is equivalent to wkm > wrs, while vkm > urs is equivalent to wkm > wrs.
Hence Lemmas 7.9, 7.10, 7.11 are still valid under the replacement of w with
v:

[[vkm][vrs]] is standard ⇔ s ≥ m > k + 1 = r ∨ (s < m&r = k);
[[ukm][vrs]] is standard ⇔ k = r ∨ k = m < r;
[[vkm][urs]] is standard ⇔ r = k + 1 < m ∨ r = k + 1 = m = s.

(78)
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Further, vk > vr if and only if k < r, and under this condition [[vk][vr]] is
not standard since ukn > ur n−1urn.

In a similar manner vk > urm is equivalent to k < r, while vk > vrm is
equivalent to k ≤ r. Therefore none of the words [[vk][urm]], [[vk][vrm]] is
standard since ukn > urm and ukn > vrm, respectively.

For the remaining two cases we have only two possibilities

[[ukm][vr]] is standard ⇔ r = k ≤ m < n;
[[vkm][vr]] is standard ⇔ r = k + 1&k < m− 1.

(79)

The treatment in turn of the eight possibilities (78), (79) proves the lemma.
�

Lemma 7.20. If a super-word W equals one of the super-letters (70) or
[v]h, [v] ∈ B, h ≥ 1, then its constitution does not equal the constitution of
any word in less then W super-letters from B.

Proof. The proof is akin to Lemma 7.6 with the following tableaux:

[ukm]h, [ukmxk+1], [ukmukm+1] degk(u) ≤ degm+1(u);
[vkm]h, [vkmxk+1], [vkmvkm−1] 2degk(u) ≤ degm−1(u);
[vkk+1xk+2] degk(u) = 0;
[vk]h degk(u) ≤ degn(u);
[u3

kn−1xn] degk(u) ≤ 2degn(u).

(80)

�

Lemma 7.21. If y = xi, m− 1 6= i > k or y = x2
i , m− 1 = i > k then

vkmy ≡k+1 0.(81)

Proof. For i < m−1, we may transpose y by means of (37) to the left across
x2

n and then use Lemma 7.3 with m′ = n− 1.
If y = x2

i , m− 1 = i > k then by the above case, i < m− 1, we get

vkmy = vkm+1xmx2
m−1 = vkm+1xm−1(αxmxm−1 + βxm−1xm) ≡k+1 0,

(82)

where by definition vkn = ukn and uknxn−2 ≡n−2 0, while n− 2 = i > k.
If y = xi, i = m > k then for m = n− 1 we may use the inequality (76),

while for m < n−1 we have vkmy = vkm+1y1 where y1 = x2
m. Hence we may

use (82) replacing m by m + 1.
If y = xi, i > m > k then by (37) we get vkmy = αvki+1xixi−1xi · w.

Changing the underlined by (35), we may apply the previously considered
cases: m′−1 = i′, where m′ = i+1, i′ = i; and i′ < m′−1, where m′ = i+1,
i′ = i− 1. �
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If we multiply (71) by xn from the right and subtract (35) with i = n− 1
multiplied from the left by x2

n−1, then by means of p−2
n−1n−1 = pnn−1pn−1n =

p−1
nn we get

x2
n−1xnxn−1xn ≡n pn−1n(p[3]

n−1n−1xn−1xnx2
n−1xn − pn−1n−1x

2
n−1x

2
nxn−1).

(83)

Let us first multiply this relation by x2
n−2 from the left and then apply (35) to

the underlined sub-word. Taking into account the relation x2
n−2x

3
n−1 ≡n−1 0,

we get that the left hand side of the multiplied (83) equals pn−1npnn(1 +
pnn)−1x2

n−2x
2
n−1x

2
nxn−1 up to≡n−1, i.e., it is proportional to the second term

of the right hand side. As a result the relation below with α = p−1
n−1n−1(1 +

pnn) 6= 0 is correct.

x2
n−2x

2
n−1x

2
nxn−1 ≡n−1 αx2

n−2xn−1xnx2
n−1xn.(84)

Lemma 7.22. If k < s < m ≤ n and as above vkn = ukn then

vkmvks ≡k+1 εvksvkm, ε 6= 0.(85)

Proof. Let us use downward induction on k. For this we first transpose the
second letter xk of vkmvks as far to the left as possible by means of (37),
and then change the onset xkxk+1xk according to (74). We get

vkmvks ≡k+1 αx2
k(vk+1mvk+1s), α 6= 0.(86)

For k + 1 < s we may apply the inductive supposition to the word in the
parentheses, and then transpose xk to its former position by (74), (37).

For k + 1 = s we will use downward induction on s.
Let k + 1 = s = n− 1. In this case m = n and (86) becomes:

vn−2 nvn−2 n−1 ≡n−1 βx2
n−2(xn−1xnxn−1xnxn−1).

Let us replace the underlined part according to (35). Since x2
n−2xn−1x

2
n ≡n

0, we may continue by (84):

≡n−1 β1x
2
n−2x

2
n−1x

2
nxn−1 ≡n−1 β2x

2
n−2xn−1xnx2

n−1xn ≡n−1

β3xn−2xn−1xn−2xnx2
n−1xn ≡n−1 β4xn−2xn−1xnxn−2x

2
n−1xn.

With the help of (35) we get

= εvn−2 n−1vn−2 n + β5xn−2xn−1xnx2
n−1xn−2xn, ε 6= 0.

By (75) and (73) we see that the second term equals zero up to ≡n−1.
The inductive step on s coincides the inductive step on s in Lemma

7.15 up to replacing both the citations of Lemma 7.14 with the citations
of Lemma 7.21 and w with v. �

Lemma 7.23. The set B satisfies the Lemma 4.8 conditions.
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Proof. According to Lemma 4.7 and Lemma 7.12 it is sufficient to show that
words of the form u0, u1, u2, w3, w4, w5, w6 are linear combinations of lesser
words in UP (g). The words u0 are diminished by (37). The words u1, u2

have been diminished in Theorem An since in the case Cn the words u2 are
independent of xn, while u1 depends on xn only if u1 = xn−1x

2
n. The relation

(81) shows that w3 ≡k+1 0, w4 ≡k+1 0. Lemma 7.22 with s = m − 1 gives
the required representation for u5.

Consider the words w6. For k = n−1 the relation (71) defines the required
decomposition. Let k < n − 1. Since x1, . . . , xn−1 generate a sub-algebra
of the type An−1, the decomposition of u3

k n−2xn−1 in the basis defined by
Lemma 4.7 has the form

u3
k n−2xn−1 =

∑
αum1s1um2s2 · · ·umtst ,(87)

where um1s1 ≤ um2s2 ≤ . . . ≤ umtst , that is m1 ≥ m2 ≥ . . . ≥ mt, and
si ≥ si+1 if mi = mi+1. In particular, if m1 = k then m2 = . . . = mt = k
and, due to the homogeneity, t = 3, s1 = n− 1, s2 = s3 = n− 2. Therefore

u3
k n−2xn−1 ≡k+1 εuk n−1u

2
k n−2.(88)

Along similar lines, the following relations are valid as well

u3
k n−2x

2
n−1 ≡k+1 µu2

k n−1uk n−2, u2
k n−2x

3
n−1 ≡k+1 0.(89)

Now let us multiply (35) with i = n− 2 by xn−1 from the right, and then
add to the result the same relation multiplied by pn−2 n−1(1+pn−1n−1)xn−1

from the left. We get the following relation with α = p2
n−2 n−1p

[3]
n−1n−1 6= 0,

xn−2x
3
n−1 = αx2

n−1xn−2xn−1 + βx3
n−1xn−2.(90)

Further, we may write

u3
k n−1 = β1uk n−2uk n−3xn−1xn−2xn−1uk n−1, β1 6= 0,(91)

where for k = n − 2 the term uk n−3 is absent. Let us apply (35) with
i = n − 2 to the underlined word. Since uk n−2uk n−3x

2
n−1 ≡n−1 0, we have

got

u3
k n−1 ≡n−1 β2u

2
k n−2uk n−3x

2
n−1xn−2xn−1.(92)

Let us apply (90). Taking into account the second of (89) we get

u3
k n−1 ≡k+1 β3u

3
k n−2x

3
n−1.(93)

Let us multiply this relation from the right by xn. By (71) we have

u3
k n−1xn ≡k+1 αu3

k n−2xn−1xnx2
n−1 + βu3

k n−2x
2
n−1xnxn−1.(94)

By means of (88) and (89) we have got

u3
k n−1xn ≡k+1 α1uk n−1xnu2

k n−2x
2
n−1 + β1u

2
k n−1xnuk n−2xn−1,

and both of these words are less than u3
k n−1xn. �
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Lemma 7.24. If p11 6= 1 then the values of [v]h, where [v] ∈ B, v 6= xi,
h ≥ 1 are not skew primitive. In particular they are nonzero.

Proof. Note that for n > 3 the algebra generated by x2, . . . xn is a sub-
algebra of the type Cn−1. Therefore we may use induction on n with ad-
ditional supposition that the theorem statements 1 and 2 are valid for the
lesser values of n. We will formally consider the sub-algebra generated by
xn−1, xn as an algebra of the type C2, and the sub-algebra generated by xn

as an algebra of type C1. In this case for n = 1 the present lemma and the
statements 1 and 2 are valid in obvious way.

If the first letter xk of v is less than x1 then we may use the inductive
supposition directly. If v = u1m then one may literally repeat arguments of
Lemma 7.7 starting at (41).

If v = v1m and n > 3 then we may repeat arguments of Lemma 7.17
starting at (65) up to replacing w with v. For n = 3 in these arguments the
formula (68) assumes the form

Σ = εg1(−p(v13, x2)p21[x2
2x3] + (1− p−1

11 )[x2x3] · x2)⊗ x1.(95)

Therefore the left component of the tensor Σ is a nonzero linear combination
of the basis elements. For n = 2 the set B has no elements v1m at all.

Consider the last case, v = v1 = [u2
1n−1xn]. Let Sk be the sum of all

tensors of ∆([ukn]) =
∑

u(1) ⊗ u(2) with degn(w(1)) = 1, degk(w(1)) = 0,
k < n. Evidently Sn = xn ⊗ 1. Let us show by downward induction on k
that Sk = (1− p−1

11 )g(ukn−1)xn ⊗ [ukn−1] at k < n. We have

∆([ukn]) = ∆(xk)∆([uk+1n])− p(xk, uk+1n)∆([uk+1n])∆(xk).(96)

Consequently,

Sk = (gk ⊗ xk)Sk+1 − p(xk, uk+1n)Sk+1(gk ⊗ xk).(97)

This implies the required formula since by (72) at k < n− 1 we have

p(xk, uk+1n)p(xn, xk) = p(xk, uk+1n−1),

while at k = n− 1 we have p(xn−1, xn)p(xn, xn−1) = p−1
11 .

In a similar manner, consider the sum S of all tensors of ∆([u2
knxn]) =∑

w(1) ⊗ w(2) with degn(w(1)) = 1, degi(w(1)) = 0, at i < n,

∆([[u1n−1][u1n]]) = ∆([u1n−1])∆([u1n])− p(u1n−1, u1n)∆([u1n])∆([u1n−1]).
(98)

Since we know S1, we may calculate S:

S = (g(u1n−1)⊗ [u1n−1])S1 − p(u1n−1, u1n)S1(g(u1n−1)⊗ [u1n−1])(99)

= (1− p−1
11 )g(u2

1n−1)xn ⊗ (1− p(u1n−1, u1n)p(xn, u1n−1))[u1n−1]2.
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By (72), using the bicharacter property of p, we have

1− p(u1n−1, u1n)p(xn, u1n−1)

= 1− p(u1n−1, u1n−1)pn−1npnn−1

= 1− pn−1n−1p
−2
n−1n−1 = 1− p−1

11 6= 0.

Because of this, S 6=0 and the sum of all tensors w(1)⊗w(2) with degn(w(1)) =
h, degk(w(1)) = 0, k < n of the basis decomposition of ∆([v1]h) equals
Sh 6= 0. Therefore [v1]h is not skew primitive. �

Proof of Theorem Cn. For the first statement it will suffice to prove that
all super-letters (69) are hard in UP (g). Since none of ukm, vkm contains a
sub-word (30), Lemma 7.1 implies that [ukm], [vkm] are hard.

If [vk] is not hard then, by the homogeneous version of Definition 4.3, its
value is a polynomial in lesser hard super-letters. In line with Lemmas 7.23
and 4.8, all hard super-letters belong to B. Therefore, by Lemma 7.20,
[vk] = 0. Since degn(vk) = 1 and degn−1(vk) = 2, the equality [vk] = 0 is
valid in the algebra C ′ which is defined by all relations of UP (g), except ones
of degree greater than 1 in xn and ones of degree greater than 2 in xn−1,
that is in the algebra defined by (35), (36) with i < n− 1, and (37). These
relations do not reverse the order of xn−1 and xn in monomials since none of
them has both xn−1 and xn. This implies that the sum of all monomials of
[vk] = [ukn−1] · [ukn]− p(ukn−1, ukn)[ukn] · [ukn−1] in which xn is prefixed to
xn−1 equals zero in the above defined algebra C ′, that is [ukn] · [ukn−1] = 0.
Especially, this equality is valid in UP (g). Since, by Theorem 4.5, the super-
word [ukn] · [ukn−1] is a basis element, the first statement is proved.

If [v] ∈ B is of finite height then, by Lemma 7.20 and the homogeneous
version of Definition 4.4, we have [v]h = 0. For p11 6= 1 this contradicts
Lemma 7.24. In a similar manner, according to Lemma 4.9, every skew prim-
itive homogeneous element has the form [v]h. This, together with Lemma
7.24, proves the fourth statement and, for p11 6= 1, the second one too. If
p11 = 1 then according to (72) we have pii = pijpji = 1 at all i, j. In partic-
ular, the skew commutator is a quantum Lie operation. Hence all elements
of B are skew primitive. These elements span a color Lie algebra. Now, as
in Theorem An, we may use the colored PBW theorem.

The third statement will follow from Theorem 5.2 and Lemmas 5.3, 7.19
provided we note that all super-letters (70) are zero in UP (g). We have
proved already that these super-letters are non-hard. So it remains to use
first the homogeneous version of Definition 4.3 and then Lemma 7.27. �
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Theorem Dn. Let g be of the type Dn, and pii 6= −1, 1 ≤ i ≤ n. Denote
by B the set of the following super-letters:

[ukm]
df
= [xkxk+1 . . . xm], 1 ≤ k ≤ m < n;

[ekm]
df
= [xkxk+1 . . . xn−2 · xnxn−1 . . . xm], 1 ≤ k < m ≤ n,

[en−1n]
df
= xn.

(100)

The statements given below are valid.

1. The values of (100) in UP (g) form the PBW-generators set.
2. Each of the super-letters (100) has infinite height in UP (g).
3. The relations (23) together with the following ones form a Groebner–

Shirshov system for UP (g).

[u0]
df
= [xkxm] = 0, 1 ≤ k < m− 1 < n, (k, m) 6= (n− 2, n);

[u1]
df
= [ukmxk+1] = 0, 1 ≤ k < m < n;

[u′1]
df
= [xn−2x

2
n] = 0,

[u2]
df
= [ukmuk m+1] = 0, 1 ≤ k ≤ m < n− 1;

[v3]
df
= [ekmxk+1] = 0, 1 ≤ k < m ≤ n, n− 1 6= k 6= m− 2;

[v4]
df
= [ekk+1xk+2] = 0, 1 ≤ k < n− 2;

[v′4]
df
= [en−3 n−2xn] = 0,

[v5]
df
= [ekmek m−1] = 0, 1 ≤ k < m− 1 ≤ n− 1;

[v6]
df
= [ukmekn] = 0, 1 ≤ k ≤ m < n, n− 2 ≤ m.

(101)

4. If p11 6= 1, then the generators xi, their powers xt
i, x

tlk
i , such that pii

is a primitive t-th root of 1, together with the constants 1 − g, g ∈ G
form a basis of gP = L(UP (g)). Here l = char(k).

5. If p11 = 1, then the elements of B and, for l > 0, their lk-th powers
together with the constants 1− g, g ∈ G form a basis of gP .

In the case Dn the algebra U b
P (g) can be defined by the condition that

the sub-algebras Un−1 and Un generated, respectively, by x1, . . . , xn−1 and
x1, . . . , xn−2, x

′
n−1 = xn are quantum universal enveloping algebras of the

type An−1, and by the only additional relation

[xn−1xn] = 0.(102)

The existence conditions take up the form

pii = pnn = p11, pi+1ipii+1 = pn−2npnn−2 = p−1
11 , if 1 ≤ i < n,(103)

pn−1npnn−1 = pijpji = 1, if i− j > 1&(i, j) 6= (n, n− 2).
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Lemma 7.25. The brackets in (100) are set up by the recurrence formulae

[ekm] = [xk[ek+1m]], if 1 ≤ k < m− 1 < n, k 6= n− 1;
[ekk+1] = [[ekk+2]xk+1], if 1 ≤ k < n− 1.

(104)

Proof. It is enough to use the properties 6s, 1s, and 2s. �

Lemma 7.26. If [u], [v] ∈ B, then one of the statements below is correct.
1) [[u][v]] is not a standard nonassociative word;
2) uv contains a sub-word of one of the types u0, u1, u

′
1, u2, v3, v4, v

′
4, v5, v6;

3) [[u][v]] ∈ B.

Proof. The formulae (104) coincides with (51) at k 6= n− 1 up to replacing
e by w. The inequality ekm > ers is set up by the same conditions, k <
r∨ (k = r&m < s), as the inequality wkm > wrs does. Likewise ukm > ers is
set up by the same condition, k ≤ r, as ukm > wrs does. Therefore Lemmas
7.9, 7.10, 7.11 remain valid with e in place of w:

[[ekm][ers]] is standard ⇔ s ≥ m > k + 1 = r ∨ (s < m&r = k);
[[ukm][ers]] is standard ⇔ k = r ∨ k = m < r;
[[ekm][urs]] is standard ⇔ r = k + 1 < m ∨ r = k + 1 = m = s.

(105)

By looking over all of these possibilities we get the lemma statement. �

Lemma 7.27. If a super-word W equals one of the super-letters (101) or
[v]h, [v] ∈ B, h ≥ 1 then its constitution does not equal the constitution of
any super-word in less than W super-letters from B.

Proof. The proof is similar to the one of Lemma 7.6 with the tableaux

[ukm]h, [ukmxk+1], [ukmuk m+1] degk(u) ≤ degm+1(u);
[ekm]h, [ekmxk+1], [ekmek m−1], m < n 2degk(u) ≤ degm−1(u);
[ekn]h, [eknxk+1], [eknek n−1] degk(u) ≤ degm−1(u);

[ekk+1xk+2] degk(u) = 0;
[en−3n−2xn] degn−3(u) = 0;
[uk n−2ekn] degk(u) ≤ degn−1(u) + degn(u);
[uk n−1ekn] degk(u) ≤ degn(u).

(106)

Lemma 7.28. If y = xi, m− 1 6= i > k or y = x2
i , m− 1 = i > k then

ekmy ≡k+1 0.(107)

Proof. If i < m− 1, m 6= n, or m = n, i < n− 2, then with the help of (37)
and (102) it is possible to permute y to the left beyond xn and then to use
Lemma 7.3 for Un−1.

If m = n, i = n− 2 then we may use Lemma 7.3 for Un.
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If y = x2
i , m− 1 = i > k then for m < n by the above case we get

ekmy = ek m+1xmx2
m−1 = ek m+1xm−1(αxmxm−1 + βxm−1xm) ≡k+1 0.

(108)

For m = n we have eknx2
n−1 = αuk n−2x

2
n−1xn ≡n−1 0 since the underlined

part belongs to Un−1.
If y = xi, i = m > k then for m = n we may use Lemma 7.3 applied to

Un; for m = n − 1 we may use the same lemma applied to Un−1 provided
that beforehand we permute xn with y by (102); for m < n− 1 we may first
rewrite ekmy = ek m+1y1, where y1 = x2

m, and then use (108) with m + 1 in
place of m.

If y = xi, i > m > k then for i < n we have ekmy = αeki+1xixi−1xi · v.

Replacing the underlined word by (35) in Un−1, we may use the previously
considered cases: m′ − 1 = i′, where m′ = i + 1, i′ = i; and i′ < m′ − 1,
where m′ = i + 1, i′ = i− 1. For i = n, and m = n− 1 we have ek n−1xn =
αuk n−2x

2
nxn−1 and one may apply Lemma 7.3 to Un. Finally, for i = n and

m < n− 1 we get

ekmxn = β1uk n−2xnxn−1xn−2xn · v = β2uk n−2xn−1xnxn−1xn · v =

β3uk n−2xn−1xn−2x
2
n · v + β4uk n−2xn−1x

2
nxn−2 · v.

One may apply first Lemma 7.3 for Un−1 to the underlined sub-word of the
first term, and then, after (102), Lemma 7.3 for Un to the second term. �

Lemma 7.29. If k < s < m ≤ n then ekmeks ≡k+1 εeksekm, ε 6= 0.

Proof. Let us carry out downward induction on k. The largest value of k
equals n− 2. In this case s = n− 1, m = n and we have

xn−2xn · xn−2xnxn−1 ≡n x2
n−2x

2
nxn−1 = αx2

n−2xn−1x
2
n ≡n−1(109)

βxn−2xn−1xn−2x
2
n ≡n εxn−1xn · xn−1xn−2xn.

Let us first transpose the second letter xk of ekmeks as far to the left as
possible by (37), and then replace the onset xkxk+1xk by (38). We get

ekmeks ≡k+1 αx2
k(ek+1mek+1s), α 6= 0.(110)

For k + 1 < s it suffices to apply the inductive supposition to the word in
the parentheses and then by (38) and (37) to put xk to the proper place.

For k + 1 = s one may use downward induction on s. The basis of this
induction, s = n−1, has been proved, see (109). For k < n−3 the inductive
step on s coincides with the one of Lemma 7.15 with e in place of w since
in this case the active variables xk, xk+1 q-commute with xn. If k = n − 3
then in consideration of Lemma 7.15 the variable xk+1 = xn−2 is transposed
across xn twice: In (60) and in the second word of (62).
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In (60) with k = n− 3 we have s = n− 2, m = n; and (60) becomes

en−3nen−3n−2 ≡n−2 βen−3n−1xn−3xn−2xnxn−2.(111)

In view of Lemma 7.28, we may transform the underlined part in Un ne-
glecting the words starting with x2

n−2 and xn in much the same way as in
(61), with xn in place of xk+1. So (111) reduces to the required form.

The second word of (62) with k = n−3 assumes the form e2
n−3nxn−2x

2
n−1 =

en−3nxn−3xn−2xnxn−2x
2
n−1. By Lemma 7.3 applied to Un, the underlined

word is a linear combination of words starting with xn−2 and xn. However,
by Lemma 7.28 both en−3nxn−2 and en−3nxn equal zero up to ≡n−2 . �

Lemma 7.30. The set B satisfies the conditions of Lemma 4.8.

Proof. By Lemmas 7.26 and 4.7 one need show only that in U b
P (g) the words

(101) are linear combinations of lesser ones. The words v6 with m = n− 2,
and u0, u1, u′1, u2 have the required decomposition since they belong either
to Un−1 or to Un. Lemma 7.28 shows that v3 ≡k+1 0, v4 ≡k+1 0, v′4 ≡k+1

0. Lemma 7.29 with s = m − 1 yields the required representation for v5.
Consider v6 with m = n− 1. Let us prove by downward induction on k that

uk n−1ekn ≡k+1 εeknuk n−1, ε 6= 0.

For k = n − 1 this equality assumes the form (102). Let k < n − 1. Let us
transpose the second letter xk of uk n−1ekn as far to the left as possible in
Un−1. After an application of (35) we get

uk n−1ekn ≡k+1 αx2
k(uk+1n−1ek+1n), α 6= 0.

It suffices to apply the inductive supposition to the term in the parentheses,
and then by (35) and (37) for Un to move xk to the proper place. �

Lemma 7.31. If p11 6= 1 then the values of [v]h, where [v] ∈ B, v 6= xi,
h ≥ 1 are not skew primitive, in particular they are nonzero.

Proof. One need consider only super-letters that belong neither to Un−1 nor
to Un. That is [ekm] with m < n. We use induction on n.

For n = 3 the algebra of the type D3 reduces to the algebra of the type
A3 with a new ordering of variables x2 > x1 > x3. Therefore we may use
Theorem An, after the decomposition below of e12 in the PBW-basis:

[[x1x3]x2] = −p12p32[x2[x1x3]] + β[x1x3] · x2.

Let n > 3. If k > 1 then the inductive supposition works. For k = 1,
m > 2 we have e1m = [x1[e2m]], and one may repeat the arguments of
Lemma 7.7 with e in place of u starting at (41). If m = 2 then we may repeat
the arguments of Lemma 7.17 with e on place of w starting at (65). �

Proof of Theorem Dn. For the first statement it will suffice to prove that all
super-letters (100) are hard in U b

P (g).
Since none of ukm contains sub-words (30), [ukm] are hard.
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Suppose [ekm] is non-hard. By Lemmas 7.30 and 4.8 all hard super-letters
belong to B. Thus, by Lemma 7.27, we get [ekm] = 0. Since degn(ekm) =
degn−1(ekm) = 1, the equality [ekm] = 0 is also valid in the algebra D′ de-
fined by the same relations as U b

P (g) is, except [xn−2x
2
n] = 0 and [xn−2x

2
n−1]

= 0. Let us equate to zero all monomials in all the defining relations of
D′, except [xn−1xn]. Consider the algebra R′ defined by (102) and by the
resulting system of monomial relations. It is easy to verify that the men-
tioned relations system Σ of R′ is closed under the compositions. Since ekm

contains none of leading words of Σ, the super-letter [ekm] is nonzero in R′,
and so in D′ too. This contradiction proves the first statement.

If [v] ∈ B is of finite height then by Lemma 7.27 and the homogeneous
version of Definition 4.4 we have [v]h = 0. For p11 6= 1 this contradicts
Lemma 7.31. In a similar manner, by Lemma 4.9, every skew primitive
homogeneous element has the form [v]h. This, together with Lemma 7.31,
proves both the fourth statement and the second one with p11 6= 1.

If p11 = 1 then by (103) we have pii = pijpji = 1 for all i, j. This means
that the skew commutator itself is a quantum Lie operation. Hence all
elements of B are skew-primitive. These elements span a color Lie super-
algebra. Now, as in Theorem An, one may use the PBW theorem for color
Lie super-algebras.

For the third statement it will suffice to show that all super-letters (101)
are zero in UP (g). We have proved already that they are non-hard. Therefore
it remains to use the homogeneous version of Definition 4.3 and Lemma 7.27.

�

8. Conclusion.

We see that in all Theorems An–Dn the lists of hard super-letters are inde-
pendent of the parameters pij . Therefore if we put pij = 1, we get a basis
of the ground Lie algebra g. It is easy to see that this basis coincides with
the basis defined by Lalonde and Ram in [28, Figure 1]. This fact signi-
fies that the Lalonde–Ram basis of the ground Lie algebra with the skew
commutator in place of the Lie operation coincides with the set of all hard
super-letters of an arbitrary quantification. It is very interesting to clarify
how general this statement is. On the one hand, this does not hold without
exception for all quantum enveloping algebras since in Theorems An–Dn a
restriction does exist. If pii = −1, 1 ≤ i < n, n > 2 then it is easy to see by
means of Diamond Lemma that the sets of hard super-letters are infinite,
while the ground Lie algebra is of finite dimension. On the other hand, this
is not a specific property of Lie algebras defined by the Serre relations. By
the Shirshov theorem [40] any Lie polynomial can be reduced to a linear
combination of standard nonassociative words.
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Corollary 8.1. If g is defined by the only relation f = 0, where f is a
linear combination of standard nonassociative words, then the set of all hard
in UP (g) super-letters coincides with the Hall–Shirshov basis of g with the
skew commutator in place of the Lie operation.

Proof. The only relation f∗ = 0 forms a Groebner–Shirshov system since,
according to 1s, none of onsets of its leading word, say w, coincides with a
proper terminal of w. Consequently, a super-letter [u] is hard if and only if
u does not contain w as a sub-word. We see that this criteria is independent
of pij as well. �

Furthermore, the third statement of Theorem An shows that U b
P (g) can

be defined by the following relations in the PBW-generators Xu = [u].

[Xu, Xv] = 0, u > v, [[u][v]] /∈ B
[Xu, Xv] = Xuv, [[u][v]] ∈ B.

(112)

This is an argument in favor of considering the super-letters PBW-generators
k[G]-module as a quantum analogue of a Lie algebra. However in the cases
Bn, Cn, Dn the defining relations in the PBW-generators became more
complicated. For example,

Bn : [[uk n−1][wkn]] = α[ukn]2, α 6= 0 if pnn 6= 1;
Cn : [[uk n−2][vk n−1]] = α[vk] + β[ukn] · [uk n−1], β 6= 0 if p11 6= 1;
Dn : [[uk n−2][ek n−1]] = α[ekn] · [uk n−1], α 6= 0 if p11 6= ±1.

(113)

Also it is interesting that for p11 6= 1 the algebra gP turns out to be very
simple in structure. Only unary quantum Lie operations can be nonzero.
Other ones may be defined, but due to the homogeneity their values equal
zero. In particular, if pt

11 6= 1 then without exception all quantum Lie oper-
ations have zero values. This provides reason enough to consider UP (g) =
U(gP ) as an algebra of ‘commutative’ quantum polynomials or quantum
‘symmetric’ algebra. This statement is still retained for a large class of
the quantum universal enveloping algebras of homogeneous components of
other Kac–Moody algebras defined by the Gabber–Kac relations (11) (see
M. Rosso [38, Theorem 15, and Remark 1])1 . One may note that if a semi-
group generated by pijpji does not contain 1, then G〈x1, . . . , xn〉 itself is a
‘commutative’ quantum polynomial algebra merely since in this case there
exists no nonzero quantum Lie operation at all. In another extreme case
when pijpji = 1 for all i, j, the ‘commutative’ quantum variables commute
by xixj = pijxjxi (see [38, Example 1, p. 409]).

1We note, howerever, that Proposition 17 and Corollary 18 of [38] are wrong: The
quantum shuffles may have finite heights.
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