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A generalization of the so-called Zolotarev polynomial is in-
vestigated though the theory of twists and that of generalized
Jacobian varieties. As an application, extremal properties,
rationality, and a relation with multigrades are revealed.

1. Introduction.

In the previous article [3], the author investigated Diophantine equations of
the form

(∗) X2 − f(x)Y 2 = 1

and found that the set of the polynomial solutions of (∗) can be described in
terms of the theory of twists and that of generalized Jacobian varieties. On
the other hand, there are several articles ([1], [7]) which relate the solutions
of (∗) with certain torsion points on the Jacobian variety of the hyperelliptic
curve y2 = f(x). One of the purposes of the present paper is to show that
our viewpoint reveals quite naturally the reason why the torsion points show
up in this connection. Another purpose is to generalize the notion of the so-
called Zolotarev polynomials and investigate the extremal property, which
is studied in [11], and the arithmetic properties of the generalized ones.
The original polynomials are investigated in [4] as the set of solutions of (∗)
when deg f = 4, in connection with the universal family the elliptic curves
y2 = f(x) with a specified torsion point, hence with the arithmetic of the
modular curve X1(N). Furthermore, it is pointed out in [10] that, when the
base field is the field of complex numbers, (∗) is related with certain planar
graphs through the notion of “dessins d’enfants”. In the present paper,
generalizing the method in [3], we will see the theory of twists provides us
with natural and unified viewpoint to investigate these types of problems
for polynomials f(x) of any degree.

The plan of this paper is as follows. In Section 2 we recall the definition
of twists and their fundamental properties. In Section 3, we will explain the
reason why the polynomial solutions of (∗) are related with torsion divisors
on the Jacobian variety of the hyperelliptic curve y2 = f(x), in terms of the
theory of twists and that of the generalized Jacobian varieties. Section 4
is devoted to the investigation of extremal properties of the solutions. It
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can be regarded as a generalization of some results in [2] where the authors
considered (∗), or rather a differential equation closely related to it from an
analytic viewpoint. In Section 5 the notion of rational Zolotarev polynomials
is introduced and its relation with the so-called multigrade is related. In
Section 6 several examples are given.

Thanks are due to the referee who pointed out several ambiguities in the
original version and let the author know appropriate references related to
the content of the present article.

2. Twist.

In this section we recall the main result of [3] which describes the set of
polynomial solutions of a certain type of Diophantine equation in terms of
the theory of twists.

Let k be an arbitrary field of characteristic 6= 2. Let C : y2 = f(x) denote
a hyperelliptic curve defined over k with f(x) ∈ k[x] a polynomial of even
degree. Let T ′ denote the curve over k(x) defined by the following equation:

T ′ : f(x)Y 2 = X2 − 1.(2.1)

Note that this can be regarded as a quadratic twist of the conic T : Y 2 =
X2 − 1 by the quadratic extension k(

√
f(x))/k(x). As for the set of all the

polynomial solutions of (2.1), the following theorem is proved in [3]:

Theorem 2.1 ([3, Theorem 3.1]). Let ∞1,∞2 denote the points above the
infinity of C, and put m = ∞1 + ∞2. Let J = J(C) denote the Jacobian
variety of C and let Jm denote the generalized Jacobian variety of C with
modulus m. Assume that there exists a k-rational branch point P0 on C.
Then there is a natural bijection between the set

Sol (T ′) = {(X(x), Y (x)) ∈ T ′; X(x), Y (x) ∈ k[x]}

of polynomial solutions of T ′ and the direct product

G = Hom k(Jm,G)× {±1}

of the group Hom k(Jm,Gm) of k-homomorphisms of Jm to the multiplica-
tive group Gm and the 2-torsion subgroup {±1} of Gm.

Remark. It follows from [9, Chapter V, Corollary 1 to Theorem 2] that
the map ϕm depends on the choice of the k-rational branch point P0. If
we take another branch point, then the polynomial solution (X(x), Y (x))
becomes the composition (X(ax + b), Y (ax + b)) of (X(x), Y (x)) and an
affine transformation x 7→ ax + b which keeps the polynomial f(x) (hence
the branch points of C) invariant. (Note that the equation of T ′ implies the
equality f(x) = (X(x)2 − 1)/Y (x)2.)



GENERALIZED ZOLOTAREV POLYNOMIALS 381

3. Character group of Jm.

In this section we will determine the structure of the character group
Hom k(Jm, Gm) explicitly.

For this purpose, we consider the following exact sequence:

0 → Lm → Jm → J → 0.

Here the kernel Lm is expressed as follows ([9, Chapter V, Section 3]). Let
UP denote the group of units in the local ring OP at P , and let U

(n)
P denote

the subgroup of UP whose elements consist of g with νP (1 − g) ≥ n. Then
we have Lm

∼= (U∞1/U
(1)
∞1 × U∞2/U

(1)
∞2)/∆, where ∆ denotes the image of

the diagonal mapping of Gm. Hence we can identify Lm with Gm via the
imbedding of the first factor. Therefore the exact sequence above yields the
following long exact cohomology sequence:

0 → Hom k(Jm,Gm) → Hom (Gm,Gm) d−→ Ext k(J,Gm) → · · · .

(Note that Hom k(J,Gm) = {0}.) The middle term Hom (Gm,Gm) is iso-
morphic to Z, generated by id the identity map, and the image of id under
the map d is, by the definition of d, equal to the class of Jm as an extension
of J by Gm. Moreover the group Ext k(J,Gm) is isomorphic to the group of
the k-rational points on the Picard group of J , hence naturally isomorphic
to the Mordel-Weil group J(k). Under this correspondence, the class of Jm

maps to (∞1)− (∞2). (One can check this by a diagram chasing or consult
[12] which deals with more general situations.) Summarizing we obtain the
following:

Proposition 3.1.

Hom k(Jm,Gm) ∼=

{
Z, if (∞1)− (∞2) is torsion in J(k),
{0}, otherwise.

In view of Theorem 2.1, this implies the following:

Corollary 3.1.1. There exists a nontrivial polynomial solution for T ′ if and
only if the divisor (∞1)− (∞2) is of finite order in the Jacobian variety J .

The next problem which arises naturally is to explicate the set of poly-
nomial solutions under the assumption that the divisor (∞1) − (∞2) is of
finite order. Let n denote its order in the Jacobian variety. Then it follows
from the above exact sequence and the existence of a natural isomorphism
Ext k(J,Gm) ∼= J(k) that [n]∗(Jm) is trivial as an extension of J by Gm,
where [n] denotes the n-th power endomorphism of Gm and [n]∗ the push-
forward morphism described in [9, Chapter VII, Section 1]. Therefore we
have the following commutative diagram of short exact sequences:



382 FUMIO HAZAMA

0 −−−→ Gm −−−→ Jm −−−→ J −−−→ 0

[n]∗

y α

y id

y
0 −−−→ Gm

i−−−→ [n]∗Jm −−−→ J −−−→ 0

and a retraction homomorphism r : [n]∗(Jm) → Gm such that r ◦ i = idGm .
Hence we see that the composite r◦α is the homomorphism which generates
Ker (d) ∼= Hom k(Jm,Gm) ∼= Z.

Now recall that an element D of J ∼= Pic 0(C) corresponds to the 2-cocycle
f under the isomorphism Ext k(J,Gm) ∼= Pic 0(C) by the following rule:

(f) = s−1(D)− p−1(D)− p−1
2 (D),

where s denotes the addition morphism of J × J and pi (i = 1, 2) denotes
the projection of J × J to its i-th factor (see [9, Chapter VII, Section 3]).
Suppose D is linearly equivalent to zero, therefore there exists a function h
on C such that D = (h). Then one can take δh, the coboundary of h, for
f . In this case, one can check easily that the generator of Hom k(Jm,Gm),
which corresponds bijectively to the set

{α ∈ Rat k(C,Gm); α(P0) = 1, and α has m for a modulus}
by the universal property of the generalized Jacobian variety, is given by the
rational map h itself. Hence we obtain the following:

Theorem 3.1. Notation being as above, suppose that the divisor (∞1) −
(∞2) on C has order n in the Jacobian variety J(C) and let h denote the
rational function on C such that n{(∞1) − (∞2)} = (h). Then the group
Hom k(Jm,Gm) is generated by the element which corresponds to h under
the bijection above. Hence the set of all the polynomial solutions of T ′ is
generated by h under the multiplication rule described in [3].

4. Extremal property.

From now on we consider the Diophantine equation f(x)Y 2 = X2 − r2

with r ∈ k. Since this curve is isomorphic to T ′ over k(x) by the map
(X, Y ) 7→ (X/r, Y/r), the results in the previous sections remain valid. But
when we analyze certain properties of each polynomial solution, this form
will be more convenient.

Definition 4.1. Suppose we are given a monic separable polynomial f(x) ∈
k[x] of degree 2g + 2. Then a monic polynomial X(x) ∈ k[x] of degree n is
said to be a generalized Zolotarev polynomial of degree n associated to f(x)
if there exist a polynomial Y (x) ∈ k[x] and an element r ∈ k such that

(4.1.1) f(x)Y (x)2 = X(x)2 − r2

holds.
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From now on until the end of this section, we assume the base field k
is R, the real number field. In order to justify the problem-setting in this
section, we quote a part of [2, p. 453]:

“The curve y, −1 ≤ x ≤ 1, consists of n−1 monotonic arcs varying between
+1 and −1, y = 1 for x = 1, and y = (−1)n−1 for x = −1. Such a curve
necessarily has n−1 roots in −1 ≤ x ≤ 1 and consequently one more outside
this interval. If this additional root is > 1, then y satisfies a differential
equation of the form

n2(1− y2) = (1− x2)y′2
(B − x)(C − x)

(A− x)2

where y′ = 0 for x = A, y = 1 for x = B, y = −1 for x = C, and
1 < A < B < C.”

Then they proceeded to consider some extremal properties which the
solutions of this equation share. Note that their problem corresponds to the
case f(x) = (x2 − 1)(x−B)(x− C) with g = 1 in our notation. Therefore,
in order to generalize their result to the case of arbitrary genus, it is natural
to assume the following conditions:

(i) f(x) is an arbitrary separable monic polynomial of degree 2g + 2 with
real coefficients such that it has only real zeros a1, . . . , a2g+2.

(ii) The generalized Zolotarev polynomial X(x) of degree n associated with
f(x) has n distinct real zeros.

Then we have the following:

Theorem 4.2. Let I denote the union of the closed intervals [a2i−1, a2i]
(i = 1, . . . , g + 1). Let X(x) denote a generalized Zolotarev polynomial of
degree n associated with f(x) so that the equation f(x)Y (x)2 = X(x)2 − r2

holds for some real polynomial Y (x) and for some positive real number r.
Then

min
p∈Pn

max{|p(x)|; x ∈ I} ≥ r,

where Pn denotes the set of monic real polynomials of degree n. Moreover
the equality holds if and only if p(x) = X(x).

Proof. Since f(x) ≤ 0 for any x ∈ I, it follows from the defining equation
f(x)Y (x)2 = X(x)2−r2 that |X(x)| ≤ r for any x ∈ I and that X(a1) = ±r
for i = 1, . . . , 2g + 2. Hence the generalized Zolotarev polynomial of degree
n satisfies the equality max{|X(x)|; x ∈ I} = r. To prove the converse we
need the following:

Lemma 4.2.1. The derivative X ′(x) has n−1 distinct real zeros b1, ..., bn−1

such that b1 ∈ (a2i, a2i+1) (1 ≤ i ≤ g) and that bi ∈ I (g + 1 ≤ i ≤ n− 1).
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Proof. By differentiating the defining Equation (4.1.1), we have

2XX ′ = f ′Y 2 + 2fY Y ′ = Y (f ′Y + 2fY ′).

Since X(x) and Y (x) are relatively prime, this equality implies that Y (x)
must divide X ′(x), namely there exists a polynomial S(x) of degree g with
X ′(x) = S(x)Y (x). (Recall that deg X = n deg Y = n − g − 1.) Equation
(4.1.1) implies that X(ai) = ±r for i = 1, . . . , 2g+2 and that |X(x)| cannot
become smaller than r for x /∈ I. Hence the g zeros of S(x) belong necessarily
to the compliment of I. Moreover no zero of Y (x) is in R−I. For otherwise
the number of zeros of X(x) would become smaller than n. This completes
the proof of the lemma.

Now suppose that a monic polynomial p(x) of degree n satisfies the in-
equality max{|p(x)|; x ∈ I} < r. Then q(x) = X(x)− p(x) is a polynomial
of degree less than n. Since |p(x)| < r holds for any x ∈ I, we see that

sign (q(ai)) = sign (X(ai)), 1 ≤ i ≤ 2g + 2

sign (q(bi)) = sign (X(bi)), g + 1 ≤ j ≤ n− 1.

Hence q(x) has as many real zeros as X(x), but this is impossible because
deg q(x) ≤ n−1 < n = deg X(x). This completes the proof of Theorem 4.2.

Next, we show that certain important polynomials do satisfy Conditions
(i) and (ii). Let u be a variable and put x = u + 1/u. Then, for any
positive integer n, there exists a monic polynomial tn(x) of degree n such
that tn(x) = un + 1/un. Note that these polynomials are related with the
usual Chebyshev polynomials Tn(x) by the relation 2Tn(x/2) = tn(x) for
each n. Moreover they have a multiplicative property:

tm(tn(x)) = tmn(x), m, n ≥ 1.

Hence we have a polynomial map of the hyperelliptic curve y2 = t2g+2(x)
to the conic y2 = x2− 2 (= t2(x)) defined by the rule: (x, y) 7→ (tg+1(x), y).
It follows from Theorem 2.1 that this map corresponds to a polynomial
solution of the Diophantine equation t2g+2(x)Y 2 = X2−2. Indeed it is easy
to see that (X, Y ) = (tg+1(x), 1) satisfies this equation. (Note also that, by
[3], this solution is primitive, namely, all the solutions are obtained from
this by the multiplication rule in [3].) Moreover, as it is well-known, all the
zeros of tn(x) are real and belong to the closed interval [−2, 2]. Actually
they are given by

2 cos
(2j − 1)π

2n
, j = 1, . . . , n.

Hence we obtain the following:

Proposition 4.1. For any g > 0, there exists a polynomial f(x) of degree
2g +2 and a generalized Zolotarev polynomial of degree g +1 associated with
f(x) for which both of Conditions (i) and (ii) are satisfied. More precisely,
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the “modified” Chebyshev polynomial tg+1(x) is a generalized Zolotarev poly-
nomial and have the extremal property stated in Theorem 4.2 with

I =
⋃

1≤i≤g+1

[
2 cos

(4i− 1)π
4g + 4

, 2 cos
(4i− 3)π
4g + 4

]
,

r =
√

2.

5. Rational Zolotarev polynomials and multigrades.

In this section we investigate the following arithmetic problem:

Does there exist a generalized Zolotarev polynomial X(x) of given degree n
if we impose the condition that the constant r, the zeros ai, 1 ≤ i ≤ 2g + 2
of f(x), and the branch points bj , g +1 ≤ j ≤ n− 1 over ±r of X(x) should
belong to a fixed number field k?

Let us call the minimal one in the set of such fields the definition field
of the generalized Zolotarev polynomial. Therefore the definition field of
the polynomial given in Proposition 4.1 is Q(

√
2, ζ4g+4 + ζ4g+4), where ζn

denotes a primitive n-th root of unity. The most interesting problem is,
consequently, whether or not a generalized Zolotarev polynomial defined
over Q exists for any degree n. Such a polynomial will be called a rational
Zolotarev polynomial. We will see that this is related with a classical object
known as multigrade. Let us recall the definition.

Definition 5.1. For an arbitrary positive integer n, the system of equations
x1 + · · ·+ xn = y1 + · · ·+ yn,

x2
1 + · · ·+ x2

n = y2
1 + · · ·+ y2

n,
...
xn−1

1 + · · ·+ xn−1
n = yn−1

1 + · · ·+ yn−1
n

is said to be a multigrade of degree n.

In order to formulate our result we define the multiplicity of a solu-
tion (x1, . . . , xn, y1, . . . , yn) = (c1, . . . , cn, d1, . . . , dn) of a multigrade as the
maximum of the times in which each rational number occurs in (c1, . . . , cn,
d1, . . . , dn). Our result is stated as follows:

Proposition 5.1. There is a bijective correspondence between the set of ra-
tional Zolotarev polynomials of degree n and the set of the rational solutions
of multigrades of degree n with multiplicity at most two.

Proof. Let X(x) be a rational Zolotarev polynomial of degree n associated
with a polynomial f(x) so that the following equation holds:

f(x)Y (x)2 = X(x)2 − r2
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for some r ∈ Q and a polynomial Y (x). It follows from the definition and
Lemma 4.2.1 that f(x) =

∏
1≤i≤2g+2(x−ai) and Y (x) =

∏
g+1≤j≤n−1(x−bj)

for some ai, bi ∈ Q in the notation of the previous section. Note that the
two sets {a1, . . . , a2g+2} and {bg+1, . . . , bn−1} have no common element, as
is seen in the proof of Theorem 4.1. Since the factors X(x)−r and X(x)+r
are relatively prime, we may assume (after renumbering if necessary) there
exists an integer m with m ≤ n− (g + 1) such that

X(x)− r =
∏

1≤i≤n−2m

(x− ai) ·
∏

g+1≤j≤g+m

(x− bj)2,

X(x) + r =
∏

n−2m+1≤i≤2g+2

(x− ai) ·
∏

g+m+1≤j≤n−1

(x− bj)2.

Therefore their difference∏
n−2m+1≤i≤2g+2

(x− ai) ·
∏

g+m+1≤j≤n−1

(x− bj)2

−
∏

1≤i≤n−2m

(x− ai) ·
∏

g+1≤j≤g+m

(x− bj)2

is a rational constant. This implies that, for each k with 1 ≤ k ≤ n− 1, the
k-th elementary symmetric function of

a1, . . . , an−2m, bg+1, bg+1, bg+2, . . . , bg+m, bg+m(5.1)

and that of

an−2m+1, . . . , a2g+2, bg+m+1, bg+m+1, bg+m+2, . . . , bn−1, bn−1(5.2)

coincides. Hence, for every k with 1 ≤ k ≤ n−1, the sum of k-th power of n
elements in (5.1) and that of n elements in (5.2) are equal. In other words,
the 2n rational number in (5.1) and (5.2) give rise to the rational solution
of the multigrade of degree n with multiplicity at most two. To prove the
converse, suppose that xi = ci (1 ≤ i ≤ n), yi = di (1 ≤ i ≤ n) constitute
a rational solution of the multigrade of degree n with multiplicity at most
two. Then by the reason explained above there exists a rational constant r
such that ∏

1≤i≤n

(x− ci)−
∏

1≤i≤n

(x− di) = 2r.

Let us put

X(x) =
∏

1≤i≤n

(x− ci)− r =
∏

1≤i≤n

(x− di) + r.

Then we have

X(x)2 − r2 = (X(x)− r)(X(x) + r) =
∏

1≤i≤n

(x− ci)
∏

1≤i≤n

(x− di).
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Since the multiplicity of the solution xi = ci (1 ≤ i ≤ n), yi = di (1 ≤ i ≤ n)
is assumed to be at most two, the product on the rightmost side can be
expressed as ∏

1≤i≤2g+2

(x− ai)

 ∏
g+1≤j≤n−1

(x− bj)

2

for some ai ∈ Q, 1 ≤ i ≤ 2g +2 and bj ∈ Q, g +1 ≤ j ≤ n− 1. Therefore, if
we put f(x) =

∏
1≤i≤2g+2(x− ai) and Y (x) =

∏
g+1≤j≤n−1(x− bj), we have

f(x)Y (x)2 = X(x)− r2,

hence X(x) is a rational Zolotarev polynomial of degree n. This completes
the proof of Proposition 5.1.

6. Examples.

It follows from Theorem 3.1 that the construction of a generalized Zolotarev
polynomial is equivalent to that of a hyperelliptic curve with a point which
becomes a torsion point on its Jacobian variety. For the latter task, there
are several article where the authors are interested in the existence of ra-
tional torsion points on the Jacobian variety of order as high as possible
(see [6]). In view of the results in Sections 4 and 5, however, it might be of
some interest to construct rational Zolotarev polynomials. Unfortunately,
the hyperelliptic curves constructed in [6] do not provide us with rational
Zolotarev polynomials. The purpose of this section is to give some examples
of them.

In view of the results of the previous sections, the simpliest nontrivial
examples of rational Zolotarev polynomials should come from the elliptic
curve

y2 + (1− c)xy − by = x3 − bx2, b = c + c2, c = (10− 2α)/(α2 − 9),

which has torsion structure Z/6Z × Z/2Z and on which (0, 0) is a torsion
point of order six (see [5, Table 3]). (Note that a generalized Zolotarev
polynomial of degree g + 1 associated with a polynomial of degree 2g + 2
falls in the class of “nondegenerate” ones investigated in [3], and such a
polynomial is easy to construct, even if we demand it to be a rational one.)
By the coordinate change{

X = 4x,

Y = 8
(
y + (1−c)x−b

2

)
,

it becomes an elliptic curve

E : Y 2 = X3 + (−3c2 − 6c + 1)X2 − 8c(1− c2)X + 16c2(1 + c)2
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with a torsion point P = (0,−4b) of order six. To find the Zolotarev poly-
nomial, we need a rational function h on E such that 3(P )− 3(−P ) = (h).
This can be readily found by the chord-tangent method as follows.

(P ) + (P )− (2P )− (∞) = (`1/`2),

with `1 = (1− c)X − Y − 4(c + c2), `2 = X − 4(c + c2),

(2P ) + (P )− (3P )− (∞) = (`3/`4),

with `3 = (1 + c)X − Y − 4(c + c2), `4 = X − 4c,

(3P ) + (3P )− 2(∞) = (X − 4c).

On the other hand, we have

3(P ) + 3(−P )− 6(∞) = (X3).

Combining these, we obtain

3(P )− 3(−P ) = (h),

where

h =
{(1− c)X − Y − 4(c + c2)}2{(1 + c)X − Y − 4(c + c2)}2

{X − 4(c + c2)}2(X − 4c)X3
.

Furthermore, in order to map the two points P,−P to the points above
infinity ∞1,∞2 of an elliptic quadratic curve, we change the coordinates by
the formula {

x = 1
X ,

y = Y
4c(c+1)X2 .

Then we have

E′ : y2 = x4 +
c− 1

2c(c + 1)
x3 − 3c2 + 6c− 1

16c2(c + 1)2
x2 +

1
16c2(c + 1)2

x

with
3(∞1)− 3(∞2) = (h̃),

where

h̃ =
{4(c + c2)x2 − (1− c)x + 4(c + c2)y}2{4(c + c2)x2 − (1 + c)x + 4(c + c2)y}2

{4(c + c2)x− 1}2(−4cx + 1)x2
.

Using the defining equation, this simplifies to

h̃ =
a2 + 64c2(c + 1)2y2 + 64c2(c + 1)2ay

−4cx + 1
,

with a = (4cx − 1)(2(c + 1)x + 1). Composing this with the isomorphism
Gm → T defined by t 7→ ((1+ t2)/2t, (1− t2)/2t), we obtain the polynomial
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solution (X(x), Y (x)) of T ′ corresponding to the torsion point (∞1)− (∞2)
of order three, where

X(x) = −32c(c + 1)2x3 + 8(−3c2 − 2c + 1)x2 + 8x + 1,

Y (x) = −16c(c + 1)(2(c + 1)x + 1).

Hence we obtain the primitive solution



X0(x) = x3 +
(3c− 1)
4c(c + 1)

x2 − 1
4c(c + 1)2

x− 1
32c(c + 1)2

= x3 +
(α + 3)(α− 3)(α2 + 6α− 39)

8(α− 5)(α− 1)2
x2 +

(α + 3)2(α− 3)2

8(α− 5)(α− 1)2
x

+
(α + 3)(α− 3)2

64(α− 5)(α− 1)2
.

Y0(x) = x +
1

2(c + 1)

= x +
(α + 3)(α− 3)

2(α− 1)2

of the Diophantine equation f(x)Y 2 = X2 − r2, where

f(x) = x4 +
c− 1

2c(c + 1)
x3 − 3c2 + 6c− 1

16c2(c + 1)2
x2 +

1
16c2(c + 1)2

x

= x

(
x +

(α + 3)(α− 3)
8(α− 5)

) (
x +

(α + 3)(α− 3)2

(α− 1)2(α− 5)

)
·
(

x +
(α + 3)2(α− 3)

8(α− 1)2

)
,

r =
1

32c(c + 1)2

=
(α + 3)3(α− 3)3

64(α− 1)4(5− α)
.

The rational solution of multligrade of degree 3 which corresponds to this
Zolotarev polynomial is found as follows. Since

X0(x)− r = x

(
x +

(α + 3)(α− 3)2

(α− 1)2(α− 5)

) (
x +

(α + 3)2(α− 3)
8(α− 1)2

)
,

X0(x) + r = x

(
x +

(α + 3)(α− 3)
8(α− 5)

) (
x +

(α + 3)(α− 3)
2(α− 1)2

)2

,
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we have (
(α + 3)(α− 3)

8(α− 5)

) (
x +

(α + 3)(α− 3)
2(α− 1)2

)2

− x

(
x +

(α + 3)(α− 3)2

(α− 1)2(α− 5)

) (
x +

(α + 3)2(α− 3)
8(α− 1)2

)
=

(α + 3)3(α− 3)3

32(α− 1)4(5− α)
.

This implies the equalities
(α + 3)(α− 3)

8(α− 5)
+

(α + 3)(α− 3)
2(α− 1)2

+
(α + 3)(α− 3)

2(α− 1)2

= 0 +
(α + 3)(α− 3)2

(α− 1)2(α− 5)
+

(α + 3)2(α− 3)
8(α− 1)2

,(
(α + 3)(α− 3)

8(α− 5)

)2

+
(

(α + 3)(α− 3)
2(α− 1)2

)2

+
(

(α + 3)(α− 3)
2(α− 1)2

)2

= 02 +
(

(α + 3)(α− 3)2

(α− 1)2(α− 5)

)2

+
(

(α + 3)2(α− 3)
8(α− 1)2

)
.

Remark. If one uses the one-parameter family of elliptic curves with torsion
structure Z/8Z × Z/2Z listed in [4, Table 3], then one obtains a primitive
rational Zolotarev polynomial of degree four in a similar way.

In [6], several examples of rational solutions of multigrades of degree up
to ten. (As far as the author knows, “ten” is the largest degree among
the known examples of the rational solutions.) We pick up some of these
examples and compute the corresponding rational Zolotarev polynomials
and hyperelliptic curves with torsion points.

(6.1) ([6, (4.4)]):

x2(x− 5)2 − (x + 1)(x− 2)(x− 3)(x− 6) = 36.

Multigrade: 
0 + 0 + 5 + 5 = (−1) + 2 + 3 + 6,

02 + 02 + 52 + 52 = (−1)2 + 22 + 32 + 62,

03 + 03 + 53 + 53 = (−1)3 + 23 + 33 + 63.

Rational Zolotarev polynomial:

X(x) = x4 − 10x3 + 25x2 − 18(−x2(x− 5)2 − 18).

Hyperelliptic curve (elliptic curve in this case):

y2 = (x + 1)(x− 2)(x− 3)(x− 6), g = 1,

the divisor (∞1)− (∞2) has order four.



GENERALIZED ZOLOTAREV POLYNOMIALS 391

Extremal property:

max
p∈P4

{|p(x)|; x ∈ [−1, 2] ∪ [3, 6]} ≥ 18, and

max
x∈[−1,2]∪[3,6]

{|X(x)|} = 18.

(6.2) ([8, (4.5)]):

x2(x + 7)2(x− 7)2− (x + 8)(x + 5)(x + 3)(x− 3)(x− 5)(x− 8)

= 5! · 23 · 3 · 5.

Multigrade:



0 + 0 + (−7) + (−7) + 7 + 7 = (−8) + (−5) + (−3) + 3 + 5 + 8,

02+ 02+ (−7)2+ (−7)2+ 72+ 72 = (−8)2+ (−5)2+ (−3)2+ 32 + 52+ 82,

03+ 03+ (−7)3+ (−7)3+ 73+ 73 = (−8)3+ (−5)3+ (−3)3+ 33 + 53+ 83,

04+ 04+ (−7)4+ (−7)4+ 74+ 74 = (−8)4+ (−5)4+ (−3)4+ 34+ 54+ 84,

05+ 05+ (−7)5+ (−7)5+ 75+ 75 = (−8)5+ (−5)5+ (−3)5+ 35+ 55+ 85.

Rational Zolotarev polynomial:

X(x) = x3(x + 7)2(x− 7)2 − 5! · 22 · 3 · 5.

Hyperelliptic curve:

y2 = (x + 8)(x + 5)(x + 3)(x− 3)(x− 5)(x− 8), g = 2,

the divisor (∞1)− (∞2) has order six.

Extremal property:

max
p∈P6

{|p(x)|; x ∈ [−8,−5] ∪ [−3, 3] ∪ [5, 8]} ≥ 5! · 22 · 3 · 5, and

max
x∈[−8,−5]∪[−3,3]∪[5,8]

{|X(x)|} = 5! · 22 · 3 · 5.

(6.3) ([8, (4.7)]):

(x2 − 52)(x2 − 142)(x2 − 232)(x2 − 242)

− (x2 − 22)(x2 − 162)(x2 − 212)(x2 − 252)

= 7! · 24 · 3 · 5 · 7 · 11 · 13.

Rational Zolotarev polynomial:

X(x) = (x2 − 52)(x2 − 142)(x2 − 232)(x2 − 242)− 7! · 23 · 3 · 5 · 7 · 11 · 13.
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Hyperelliptic curve:

y2 = (x2 − 52)(x2 − 142)(x2 − 232)(x2 − 242)

· (x2 − 22)(x2 − 162)(x2 − 212)(x2 − 252), g = 7,

the divisor (∞1)− (∞2) has order eight.

Extremal property:

max
p∈P8

{|p(x)|; x ∈ [−25,−24] ∪ [−23,−21] ∪ [−16,−14] ∪ [−5,−2]

∪ [2, 5] ∪ [14, 16] ∪ [21, 23] ∪ [24, 25]} ≥ 7! · 23 · 3 · 5 · 7 · 11 · 13,

the maximal of X(x) on this union is equal to

7! · 23 · 3 · 5 · 7 · 11 · 13.
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