Pacific Journal of Mathematics

QUATERNION ALGEBRAS, ARITHMETIC KLEINIAN GROUPS AND Z-LATTICES

Donald G. James

Volume 203 No. 2 April 2002

QUATERNION ALGEBRAS, ARITHMETIC KLEINIAN GROUPS AND Z-LATTICES

Donald G. James

Let K be a quadratic extension of Q, B a quaternion algebra over Q and $A = B \otimes_Q K$. Let \mathcal{O} be a maximal order in A extending an order in B. The projective norm one group $P\mathcal{O}^1$ is shown to be isomorphic to the spinorial kernel group O'(L), for an explicitly determined quadratic Z-lattice L of rank four, in several general situations. In other cases, only the local structures of \mathcal{O} and L are given at each prime. Both definite and indefinite lattices are covered. Some results for quadratic global field extensions K/F and maximal S-orders are given. There is a description of the F-quaternion subalgebras of A, and also of their norm one groups as stabilizer subgroups and as unitary groups. Conjugacy classes of the Fuchsian subgroups of $P\mathcal{O}^1$ corresponding to stabilizer subgroups are studied.

1. Introduction.

The Bianchi groups were described as the spinorial kernel groups O'(L) of certain specific rank four indefinite lattices L over \mathbf{Z} in $[\mathbf{6}]$. This enabled local-global techniques on these orthogonal groups to be used, to classify up to conjugacy, the maximal Fuchsian subgroups of the Bianchi groups. Later, in $[\mathbf{5}]$, this was generalized to $SL(2,D_S)$ where D_S is the ring of S-integers in a global field K, a quadratic extension of F, and used to classify up to conjugacy the unitary subgroups of $SL(2,D_S)$. This approach utilized a connection between the norm one group in the split quaternion algebra $\mathbf{M}(2,K)$ and a spinor orthogonal group O'(V) over F. These techniques will now be extended to the corresponding norm one groups of S-orders \mathcal{O}_S in quaternion algebras A over global fields K. This work has evolved from questions asked by C. Maclachlan and W. Plesken about the Fuchsian subgroups of arithmetic Kleinian groups.

Let K/F be a quadratic extension of global fields, let B be a quaternion algebra over F and $A = B \otimes_F K$. For a Dedekind set of prime spots S for F (see [10]), let R_S be the ring of S-integers in F, and D_S its integral closure in K. For several explicit maximal S-orders \mathcal{L}_S in B we construct an exact

sequence

$$1 \to \{\pm 1\} \to \mathcal{O}_S^1 \xrightarrow{\Phi} \mathcal{O}'(L) \to 1$$

where \mathcal{O}_S^1 is the multiplicative group of elements with norm one in the order $\mathcal{O}_S = \mathcal{L}_S \otimes_{R_S} D_S$, and O'(L) is the spinor kernel group of a S-lattice L in a quadratic space V over F that is explicitly determined by \mathcal{O}_S . In particular, the sequence is exact when S contains no dyadic primes so that 2 is a unit in R_S (see Theorem 5.1). Several rational examples with $F = \mathbf{Q}$, for explicit global orders \mathcal{O} and the corresponding Kleinian groups and **Z**-lattices L, are given in §6. Since the arguments still hold in the split case we get new proofs of results in [5] and [6] on Hilbert modular and Bianchi groups. Other results where Φ is surjective are given, but \mathcal{O} and L are only described locally. In particular, the dyadic primes give several difficulties. It appears necessary to assume that \mathcal{O} is a maximal order to show Φ surjective (see Theorem 6.3) and other examples in §6). The proofs showing Φ surjective use localization arguments and are independent of whether the underlying quadratic forms are definite or indefinite. The stabilizer subgroups $\operatorname{Stab}(v, O'(V))$, for anisotropic $v \in V$, are isomorphic to the projective norm one groups of the F-quaternion subalgebras of A; these groups are also unitary groups (see $\S 4$).

For K an imaginary quadratic field and $R_S = \mathbf{Z}$, the discrete groups $\operatorname{Stab}(v, O'(L))$ give examples of Fuchsian subgroups of the arithmetic Kleinian groups $P\mathcal{O}^1$. The conjugacy classes of these groups are studied in the final section using the local-global method of [6] (see also [9]).

2. Quaternion algebras.

Let F be a field, with characteristic not two, and $K = F(\alpha)$ where $\alpha \notin F$ and $\alpha^2 \in F$. Then $K = \{a + \alpha b | a, b \in F\}$ has a galois automorphism $\overline{a + \alpha b} = a - \alpha b$. If we let β^J denote the standard conjugate of β in a quaternion algebra B over F, then the F-linear mapping

$$\tau: B \otimes_F K \to B \otimes_F K$$

induced by $\tau(\beta \otimes x) = \beta^J \otimes \overline{x}$ is a conjugate linear map of the K-space $A = B \otimes_F K$ and an anti-homomorphism with respect to multiplication of the quaternion algebra A. Thus, for $\beta, \gamma \in A$ and $a, b \in K$,

$$\tau(a\beta + b\gamma) = \bar{a}\tau(\beta) + \bar{b}\tau(\gamma) \text{ and } \tau(\beta\gamma) = \tau(\gamma)\tau(\beta).$$

The norm form $n: A \to K$ is defined by $n(\beta) = \beta \beta^J$ where now J is the extension of the standard conjugation to A over K. Then $\tau(\beta^J) = \tau(\beta)^J$ so that $n(\tau(\beta)) = \overline{n(\beta)}$.

Let $V = \{v \in A | \tau(v) = v\}$. If 1, i, j, ij = k is a standard basis of B, then V is a 4-dimensional F-space with basis $\{1, \alpha i, \alpha j, \alpha k\}$. Moreover, this is an

orthogonal basis with respect to the restriction of the norm form, so that V is a quadratic space with symmetric bilinear form

$$f(v, w) = n(v + w) - n(v) - n(w) = vw^{J} + wv^{J}$$

for $v, w \in V$. Note that

$$f(v, w) = \tau(f(v, w)) = \tau(vw^{J} + wv^{J}) = f(v^{J}, w^{J}).$$

If $B=(\frac{a,b}{F})$ so that $i^2=a,j^2=b,ji=-ij,$ and $\alpha^2=-d\in F,$ then V diagonalizes with f-matrix $\langle 2,2ad,2bd,-2abd\rangle$.

Let $A_F^* = \{\beta \in A | n(\beta) \in F^*\}$ and note that the anisotropic vectors of V lie in A_F^* . Define ϕ_β on V by

$$\phi_{\beta}(v) = n(\beta)^{-1} \beta v \tau(\beta).$$

Then $\phi_{\beta} \in O(V)$, the orthogonal group of V, and $\Phi : A_F^* \to O(V)$, with $\Phi(\beta) = \phi_{\beta}$, defines a homomorphism.

Now suppose that $\beta \in \text{Ker } \Phi$. Then $n(\beta)^{-1}\beta v\tau(\beta) = v$ for all $v \in V$. Since $1 \in V$, we have that $\tau(\beta) = \beta^J$ and hence $\beta \in B$. For $v = \alpha i, \alpha j, \alpha k$, the equality $\beta v\beta^{-1} = v$ then implies that $\beta \gamma = \gamma \beta$ for all $\gamma \in B$. Thus $\beta \in Z(B)$. Conversely if $\beta \in Z(B)$, then $\beta \in \text{Ker } \Phi$. Hence $\text{Ker } \Phi = F^*$.

The group O(V) is generated by reflections ρ_y , for y an anisotropic vector in V, where for each $v \in V$,

$$\rho_y(v) = -yv^J(y^J)^{-1} = v - f(y, v)n(y)^{-1}y.$$

Then $\rho_{y_1}\rho_{y_2}(v) = y_1y_2^{-1}vy_2^J(y_1^J)^{-1} = n(y_1y_2^J)^{-1}(y_1y_2^J)v\tau(y_1y_2^J)$. Thus $\rho_{y_1}\rho_{y_2} = \phi_{\beta}$ for $\beta = y_1y_2^J$. Since SO(V) consists of products of an even number of reflections, it follows that $SO(V) \subseteq \Phi(A_F^*)$. If the image of A_F^* properly contained SO(V) then each reflection would lie in the image. In particular, $\rho_{\alpha i} = \phi_{\beta}$ for some $\beta \in A_F^*$, and

$$n(\beta)^{-1}\beta v\tau(\beta) = -\alpha i v^J ((\alpha i)^J)^{-1} = i v^J i^{-1}.$$

As before, taking v = 1, we obtain $\beta \in B$. Therefore, $i\beta v^J = vi\beta$ for all $v \in V$, and hence $\beta = 0$. This contradiction shows that $\rho_{\alpha i}$ is not in the image of A_F^* , and we have an exact sequence

$$1 \to F^* \to A_F^* \xrightarrow{\Phi} SO(V) \to 1.$$

Clearly Φ restricted to the norm one group A^1 has kernel $\{\pm 1\}$. Let Θ denote the spinor norm on SO(V). If $\beta = y_1 y_2^J$ as above, then

$$\Theta(\phi_{\beta}) = \Theta(\rho_{y_1})\Theta(\rho_{y_2}) = n(y_1)n(y_2) = n(\beta)$$

viewed in F^*/F^{*^2} . More generally, since SO(V) consists of products of an even number reflections, $\Theta(\phi_\beta) = n(\beta)$ for $\phi_\beta \in SO(V)$. Given $\varphi \in O'(V)$ the spinorial kernel, there exists $\beta \in A_F^*$ with $\Phi(\beta) = \varphi$. Since $\Theta(\varphi) = 1$ we have $n(\beta) \in F^{*2}$ so we may choose $\beta \in A^1$. Thus $\Phi(A^1) = O'(V)$. This

establishes the following generalization of results in [5, 6] where only the split case $A = \mathbf{M}(2, K)$ was treated.

Theorem 2.1. With notation as above, the following sequence is exact

$$1 \to \{\pm 1\} \to A^1 \stackrel{\Phi}{\to} O'(V) \to 1.$$

Other forms of this result are given in [2, p. 32] and [3, §7.3B]. The argument above is a variation of one by Colin Maclachlan, and is derived from that in [6] by avoiding a choice of basis.

3. S-orders and integral groups.

Now assume that F is a global field, with characteristic not two, and let S be a Dedekind set of prime spots for F and R_S the ring of S-integers in F (see [10]). Denote the integral closure of R_S in $K = F(\alpha)$ by D_S . Let B be a quaternion algebra over F and $A = B \otimes_F K$. Next let \mathcal{L} be an S-order in B so that $\mathcal{L}^J = \mathcal{L}$. Then $\mathcal{O}_S = \mathcal{L} \otimes_{R_S} D_S$ is an S-order in A and $\tau(\mathcal{O}_S) = \mathcal{O}_S$. Put $L = \mathcal{O}_S \cap V$. Since \mathcal{O}_S is a finitely generated D_S -module and D_S is a finitely generated R_S -module, L is a lattice over R_S . Note that $1, \alpha i, \alpha j, \alpha k \in L$ if $\alpha \in D_S$ and $a, b \in R_S$.

Define a subgroup of A_F^* by

$$A_L = \{ \beta \in A_F^* | \beta L = L\tau(\beta^J) \}.$$

Then there is a homomorphism

$$\Phi: A_L \to SO(L)$$

given by $\Phi(\beta) = \phi_{\beta}$, where $\phi_{\beta}(v) = n(\beta)^{-1}\beta v\tau(\beta) \in L$ for all $v \in L$. This follows since $\phi_{\beta}(L) = L$ if and only if $\beta v\tau(\beta) \in \beta\beta^{J}L$, that is, $\beta v \in \tau(\beta^{J}L) = L\tau(\beta^{J})$ for all $v \in L$. The kernel of Φ is

Ker
$$\Phi = \{\beta \in A_L | \beta v = v\tau(\beta^J) \text{ for all } v \in L\} = F^*$$

and so we have an exact sequence

$$1 \to F^* \to A_L \xrightarrow{\Phi} SO(L).$$

Next we show that this mapping Φ is locally surjective (under an assumption at dyadic primes). For non-dyadic primes $p \in S$ the local group $O(L_p)$ is generated by integral symmetries, even without going to the completion in the localization L_p (see [10, §92.4]). Hence we can modify the argument for the surjectivity of A_F^* onto SO(V). Let L_p be the local lattice over the local ring $R_p \subseteq F$ (not completed) at a non-dyadic prime $p \in S$. Define, for $v \in L_p$,

$$\rho_y(v) = v - f(v, y)n(y)^{-1}y = -yv^J(y^J)^{-1}$$

where $y \in L_p$ satisfies $f(L_p, y) \subseteq n(y)R_p \neq 0$. Then $\rho_y \in O(L_p)$, and $SO(L_p)$ is generated by pairs of such integral symmetries. As before, for

anisotropic $y_1, y_2 \in L_p$, put $\beta = y_1 y_2^J$ so that $\rho_{y_1} \rho_{y_2} = \phi_{\beta}$. Note that the condition $y_1 y_2^J L_p = L_p \tau(y_2 y_1^J)$ follows from the restrictions on y_1 and y_2 assumed for integral symmetries. Now we have a local exact sequence

$$1 \to F^* \to A_{L_p} \xrightarrow{\Phi} SO(L_p) \to 1$$

where $A_{L_p} = \{\beta \in A_F^* \mid \beta L_p = L_p \tau(\beta^J)\}$. Next restrict to the local exact sequence

$$1 \to \{\pm 1\} \to A^1_{L_p} \xrightarrow{\Phi} O'(L_p) \to 1$$

where $A_{L_p}^1 = \{\beta \in A_{L_p} \mid n(\beta) = 1\}$. The map Φ remains surjective. For given $\varphi \in O'(L_p)$, there exists $\beta \in A_{L_p}$ such that $\Phi(\beta) = \varphi$. Since $\Theta(\varphi) = 1$, we have $n(\beta) = F^{*^2}$ and hence we may choose $\beta \in A_{L_p}^1$.

Theorem 3.1. Let $\mathcal{O}_S = \mathcal{L} \otimes_{R_S} D_S$ be the S-order in A defined above, and assume S contains no dyadic primes. Then, for $L = \mathcal{O}_S \cap V$, the following sequence is exact

$$1 \to \{\pm 1\} \to A_L^1 \xrightarrow{\Phi} O'(L) \to 1.$$

Proof. The local surjectivity established above can be used to show global surjectivity onto O'(L) as follows. For $v \in V$ we have $v \in L$ if and only if $v \in L_p$ for all $p \in S$ (see [10]). Let $\beta \in A^1$. Then

$$\begin{split} \beta \in A_L^1 &\iff \beta L \tau(\beta) = L \\ &\iff \beta L_p \tau(\beta) = L_p \text{ for all } p \in S \\ &\iff \beta \in A_{L_p}^1 \text{ for all } p \in S. \end{split}$$

Let $\varphi \in O'(L) \subseteq O'(V)$, so there exists $\beta \in A^1$ such that $\Phi(\beta) = \varphi$. Since φ is in $O'(L_p)$, there exists $\beta_p \in A^1_{L_p}$ such that $\Phi(\beta_p) = \varphi$. Then $\beta \beta_p^{-1} \in \text{Ker } \Phi = \{\pm 1\}$, so that $\beta \in A^1_{L_p}$ for each prime $p \in S$. Therefore, $\beta \in A^1_L$.

To handle dyadic primes, and study the primes where A is ramified, we go to the completions. Let \mathcal{P} , over the prime $p \in S$, be a prime where A is ramified or a dyadic prime, let $K_{\mathcal{P}}$ be the completion of K at \mathcal{P} , and F_p the completion of F at p. The corresponding complete local rings of integers are denoted by $D_{\mathcal{P}}$ and R_p .

Ramified primes. When A is ramified at \mathcal{P} , $A_{\mathcal{P}} = A \otimes_K K_{\mathcal{P}}$ is a division ring and, necessarily, $B_p = B \otimes_F F_p$ is also a division ring. Then $\nu(\beta) = \operatorname{ord}_{\mathcal{P}} n(\beta)$ defines a discrete valuation on $A_{\mathcal{P}}$, and

$$\mathcal{O}_{\mathcal{P}} = \{ \beta \in A_{\mathcal{P}} | \nu(\beta) \ge 0 \}$$

is the unique maximal order of $A_{\mathcal{P}}$, assuming \mathcal{O}_S is locally maximal at \mathcal{P} (see Lemma 1.5 in [12, p. 34]). Put $V_p = \{v \in A_{\mathcal{P}} \mid \tau(v) = v\}$, an anisotropic quadratic space over F_p , and

$$L_p = V_p \cap \mathcal{O}_{\mathcal{P}} = \{ v \in V_p | n(v) \in R_p \}.$$

Then L_p is a maximal R_p -lattice in the sense of Eichler, and the integral group $O(L_p) = O(V_p)$ (see [10, §91A, 91:15]). It follows that $O(L_p)$ is generated by integral symmetries. Moreover, if $\beta \in A_{L_p}^1$ then $n(\beta) = 1$ so that $\beta \in \mathcal{O}_{\mathcal{P}}$, trivially. Hence $A_{L_p}^1 \subseteq \mathcal{O}_{\mathcal{P}}^1$.

By arguments similar to those above for non-dyadic primes, but now with A replaced by $A_{\mathcal{P}}$, and $A_{L_p}^1$ modified accordingly, we get the following exact sequence for the completed groups

$$1 \to \{\pm 1\} \to A^1_{L_p} \stackrel{\Phi}{\to} O'(L_p) \to 1.$$

Dyadic primes. We still need to consider dyadic primes \mathcal{P} where A is not ramified. Eichler transformations E(u,x) are now needed since there are cases in rank four where $O(L_p)$ is not generated by symmetries (see [11]). Let $u, x \in V_p$ satisfy n(u) = 0 and $f(u, x) = ux^J + xu^J = 0$, and put $\beta = 1 - xu^J \in A^1_{\mathcal{P}}$. Then, for $v \in V_p$,

$$\phi_{\beta}(v) = \beta v \tau(\beta) = E(u, x)(v)$$

where

$$E(u, x)(v) = v - f(u, v)x + f(x, v)u - n(x)f(u, v)u$$

since $xu^Jv + vu^Jx = f(u,v)x - f(x,v)u$ and $xu^Jvu^Jx = -n(x)f(u,v)u$. We need the integrality conditions $f(u,L_p)x \subseteq L_p$, $f(x,L_p)u \subseteq L_p$ and $n(x)f(u,L_p)u \subseteq L_p$ to get $E(u,x) \in O'(L_p)$. Then $\Phi(A_{L_p}^1) = O'(L_p)$ follows whenever $SO(L_p)$ is generated by integral Eichler transformations and double symmetries. In particular, Theorem 4.1 in [5] establishes this for the groups $SO(L_p)$ associated with the maximal orders $\mathbf{M}(2,\mathcal{O}_{\mathcal{P}})$ in the dyadic split case where $A_{\mathcal{P}} \cong \mathbf{M}(2,K_{\mathcal{P}})$, but nice generators for the general dyadic case are not known when L_p is not unimodular (see [11]).

Theorem 3.2. Let $\mathcal{O}_S = \mathcal{L} \otimes_{R_S} D_S$ be the S-order in A defined above and put $L = \mathcal{O}_S \cap V$. Assume the complete local group $SO(L_p)$ is generated by integral Eichler transformations and double symmetries at all dyadic $p \in S$. Then the sequence

$$1 \to \{\pm 1\} \to A_L^1 \xrightarrow{\Phi} O'(L) \to 1$$

is exact.

The proof is essentially the same as for Theorem 3.1.

Theorem 3.3. Let \mathcal{O}_S be an S-order in A with $\tau(\mathcal{O}_S) = \mathcal{O}_S$. Then

$$\mathcal{O}_S^1 \subseteq A_L^1$$
.

Proof. Let $\beta \in \mathcal{O}_S^1$ so that $n(\beta) = \beta \beta^J = 1$. If $v \in L$ we must prove $\beta v \in L\tau(\beta^J)$, that is, $\beta v\tau(\beta) \in L = \mathcal{O}_S \cap V$. Since $\tau(\mathcal{O}_S^1) = \mathcal{O}_S^1$, we have $\beta v\tau(\beta) \in \mathcal{O}_S$ because $v \in \mathcal{O}_S$. Also $\tau(\beta v\tau(\beta)) = \beta v\tau(\beta) \in V$.

We give several examples in §§5,6 where $\mathcal{O}_S^1 = A_L^1$, but this is not true in general, as shown by 6.3 and the other examples in §6.

4. Stabilizer subgroups and quaternion subalgebras.

Let F be any field with $2 \neq 0$ and $K = F(\alpha)$ with $\alpha^2 = -d \in F^*$. As before, assume $A = B \otimes_F K$. Take $v \neq 0$ in V. Then, for $\beta \in A^1$, its image $\Phi(\beta)$ is in $\operatorname{Stab}(v, O'(V)) = \{\phi \in O'(V) | \phi(v) = v\}$ if and only if $\phi_{\beta}(v) = \beta v \tau(\beta) = v$, or equivalently $\beta v = v \tau(\beta^J)$. Define

$$A(v) = \{ \beta \in A \mid \beta v = v\tau(\beta^J) \}.$$

Then A(v) is a F-subalgebra of A with $A(v)^{J} = A(v)$. Moreover,

$$\Phi(A(v)^1) = \operatorname{Stab}(v, O'(V)).$$

In particular, A(1) = B and $\Phi(B^1) = \text{Stab}(1, O'(V))$.

Theorem 4.1. Let $v \in V$ with $n(v) \neq 0$. Then A(v) is a quaternion algebra over the field F with conjugation J induced from A. If $V = Fv \perp W$ then $A(v) \cong C^+(W)$, the even Clifford algebra of W.

Proof. Expand v to an orthogonal basis v, v_1, v_2, v_3 of V and let $\beta_1 = v_2v_3^J, \beta_2 = v_3v_1^J$ and $\beta_3 = v_1v_2^J$. Since $v_iv_j^J + v_jv_i^J = f(v_i, v_j) = 0$ for $i \neq j$, it follows that $\beta_i^J = -\beta_i$ and $\beta_i\beta_j = -\beta_j\beta_i$. Also,

$$\beta_1 \beta_2 = v_2 v_3^J v_3 v_1^J = -n(v_3) \beta_3,$$

$$\beta_1^2 = v_2 v_3^J v_2 v_3^J = -v_2 v_3^J v_3 v_2^J = -n(v_2)n(v_3).$$

There are similar results for β_2^2 and β_3^2 . Also $\phi_{\beta_1} = \rho_{v_2}\rho_{v_3}$. Hence $\phi_{\beta_i}(v) = v = n(\beta_i)^{-1}\beta_i v \tau(\beta_i)$ and consequently $\beta_i \in A(v)$. If we show that $1, \beta_1, \beta_2, \beta_3$ are linear independent over F and span A(v), it follows that A(v) is the quaternion algebra $(\frac{-n(v_1v_2), -n(v_2v_3)}{F}) \cong C^+(W)$ (see [2, p. 29] or [10, §54]). Assume that $a_0 + a_1\beta_1 + a_2\beta_2 + a_3\beta_3 = 0$ with $a_i \in F$. Multiply through on the right by v_1 and use $\beta_1v_1 = v_1\tau(\beta_1^J)$ and $\beta_iv_1 = -v_1\tau(\beta_i^J)$ for i = 2, 3. Simplifying, subtracting and repeating variations of this shows that all $a_i = 0$. Finally, note that $\alpha, \alpha\beta_i \notin A(v)$ and A is eight dimensional over F to complete the proof.

For example, $A(\alpha i)$ has F-basis $1, i, \alpha j, \alpha k$ and $A(\alpha i) = \left(\frac{a, -db}{F}\right)$.

Theorem 4.2. Let $Q \subset A$ be a quaternion F-subalgebra of A with conjugation induced from A. Then Q = A(v) for some $v \in V$ with $n(v) \neq 0$.

Proof. Let $1, \beta_1, \beta_2, \beta_3$ be a standard basis for Q over F with $\beta_i^J = -\beta_i$, $n(\beta_i) = a_i \in F^*$, and $\beta_1\beta_2 = a\beta_3$. If $\Phi(\beta_1) = \pm I$, then $\Phi(\beta\beta_1) = \Phi(\beta_1\beta)$ for all $\beta \in Q$ with $n(\beta) \in F^*$, and we get contradictions such as $(\beta_1 + \beta_2)\beta_1 = \pm \beta_1(\beta_1 + \beta_2)$. Since $\beta_i\beta_j = -\beta_j\beta_i$ for $i \neq j$, the three maps $\Phi(\beta_i)$ form a set of mutually commuting, extremal, non-central involutions in SO(V). Hence there exists an orthogonal basis v_1, v_2, v_3, v of V with $\Phi(\beta_1) = \rho_{v_2}\rho_{v_3}$, $\Phi(\beta_2) = \rho_{v_1}\rho_{v_3}$ and $\Phi(\beta_3) = \Phi(\beta_1)\Phi(\beta_2) = \rho_{v_1}\rho_{v_2}$. Since $\Phi(\beta_i)(v) = v = n(\beta_i)^{-1}\beta_i v \tau(\beta_i)$, it follows that $\beta_i \in A(v)$. Hence Q = A(v) since both algebras are four dimensional over F.

The group $A(v)^1 = \{\beta \in A^1 | \beta v \tau(\beta) = v\}$ can be viewed as a subgroup of a unitary group. The special case a = -b = 1, where B is the matrix algebra $\mathbf{M}(2, F)$, was considered in [5, §5]. We now give a very different approach.

For fixed $v \neq 0$ in V, set $f_v(x,y) = xv\tau(y)$ for $x,y \in A$. Then $f_v(ax,by) = af_v(x,y)b^J$ for $a,b \in B$. Define $h: A \times A \to B$ by

$$h(x,y) = f_v(x,y) + f_v(y,x)^J.$$

Then $h(x,y)^J = h(y,x) = \tau(h(x,y))$ so that $h(x,y) \in B$ and $h(x,x) \in F$. Thus h is an hermitian form on the B-module A (see [3, §5.1B]). Note that h is singular when n(v) = 0 since then $h(v^J, A) = 0$.

Let U(A,h) be the unitary group of this form. For $\beta \in A(v)^1$, so that $\beta v \tau(\beta) = v$, define a linear map $\psi_{\beta} : A \to A$ by $\psi_{\beta}(x) = x\beta$. Then, for $x, y \in A$,

$$h(\psi_{\beta}(x), \psi_{\beta}(y)) = h(x\beta, y\beta) = h(x, y)$$

and hence $\psi_{\beta} \in U(A, h)$. Hence $\Psi(\beta) = \psi_{\beta}$ defines an anti-monomorphism $\Psi : A(v)^1 \to U(A, h)$.

To determine the image of Ψ first note that $n(\psi_{\beta}(x)) = n(x)$ and also $f_v(\psi_{\beta}(x), \psi_{\beta}(y)) = f_v(x, y)$ for all $x, y \in A$. Therefore, define the special unitary group SU(A, h) to consist of those $\psi \in U(A, h)$ with the two properties $n(\psi(x)) = n(x)$ and $f_v(\psi(x), \psi(y)) = f_v(x, y)$ for all $x, y \in A$.

Theorem 4.3. Assume h is non-singular. Then the map

$$\Psi: A(v)^1 \to SU(A,h)$$

is an anti-isomorphism.

Proof. It remains to show that Ψ is surjective. Let $\psi \in SU(A, h)$ and put $\psi(1) = \beta \in A$. Then $n(\beta) = n(\psi(1)) = 1$ so that $\beta \in A^1$. From $f_v(\psi(1), \psi(1)) = f_v(1, 1)$ we get $\beta v \tau(\beta) = v$, so that $\beta \in A(v)^1$. Replacing ψ by $\psi_{\beta J} \psi$ we may assume that $\beta = 1$. Since ψ is B-linear and $1, \alpha$ is a

basis of A over B, it now suffices to show $\psi(\alpha) = \alpha$. Put $\gamma = \psi(\alpha)$. From $f_v(\alpha, \alpha) = f_v(\gamma, \gamma)$ and $n(\gamma) = -d$ it follows that $v\tau(\gamma) = -\gamma^J v$. Then $f_v(\alpha, 1) = f_v(\gamma, 1)$ yields $\alpha v = \gamma v$. Hence $\alpha = \gamma$ provided $n(v) \neq 0$.

5. Norm one groups.

Let F be a global field with $2 \neq 0$, and let S be a Dedekind set of prime spots for F that contains no dyadic primes. For $a, b \in R_S$, let $B = \left(\frac{a,b}{F}\right)$ and take $\mathcal{L}_S = R_S 1 + R_S i + R_S j + R_S k = R_S[i,j]$, an order in B. Let $K = F(\alpha)$ with $\alpha^2 = -d \in R_S$, and assume that locally $0 \leq \operatorname{ord}_p(abd) \leq 1$ for all $p \in S$. Note that $D_S = R_S[\alpha]$ since 2 is a unit in R_S . Denote by R_p the localization of R_S at $p \in S$, with completion not assumed, and by $D_{\mathcal{P}}$ the localization of D_S at a prime \mathcal{P} over p.

Theorem 5.1. Let $\mathcal{O}_S = \mathcal{L}_S \otimes_{R_S} D_S$ be an S-order in A, with \mathcal{L}_S as above, and assume S excludes all dyadic primes. Then $\mathcal{O}_S^1 = A_L^1$ where

$$L = \mathcal{O}_S \cap V = R_S 1 \perp R_S \alpha i \perp R_S \alpha j \perp R_S \alpha k \cong \langle 2, 2ad, 2bd, -2abd \rangle$$

and there exists an exact sequence

$$1 \to \{\pm 1\} \to \mathcal{O}_S^1 \xrightarrow{\Phi} O'(L) \to 1.$$

Proof. Since $\mathcal{O}_S^1 \subseteq A_L^1$ by 3.3, it remains to prove $A_L^1 \subseteq \mathcal{O}_S$; then the result follows from 3.1. Let

$$\beta = x + yi + zj + wk \in A_L^1.$$

It suffices to prove that $\beta \in \mathcal{O}_{\mathcal{P}}$, the localization of \mathcal{O}_S at \mathcal{P} , for all primes \mathcal{P} over $p \in S$, by using $\beta v \tau(\beta) \in L$ for all $v \in L$, and

$$n(\beta) = \beta \beta^{J} = x^{2} - ay^{2} - bz^{2} + abw^{2} = 1.$$

Let $Tr: K \to F$ denote the trace. Taking $v = \alpha i$ gives

$$\beta\alpha i\tau(\beta) = \alpha(x+yi+zj+wk)(\overline{x}i-a\overline{y}-\overline{z}k-a\overline{w}j)$$

$$= -a\mathrm{Tr}(\alpha x\overline{y}+\alpha bz\overline{w})+(x\overline{x}-ay\overline{y}+bz\overline{z}-abw\overline{w})\alpha i$$

$$-a\mathrm{Tr}(x\overline{w}+y\overline{z})\alpha j-\mathrm{Tr}(x\overline{z}+ay\overline{w})\alpha k\in L.$$

Similar results, but with different sign patterns, follow for $v = 1, \alpha j, \alpha k$. Thus, $x\bar{x} + ay\bar{y} - bz\bar{z} - abw\bar{w}$, $\text{Tr}(x\bar{y} - bz\bar{w})$, $b\text{Tr}(x\bar{w} - y\bar{z}) \in R_S$ follow from $v = \alpha j$. Hence $x\bar{x}, ay\bar{y}, bz\bar{z}$ and $abw\bar{w}$ are in R_S . Also, $a\text{Tr}(x\bar{y})$, $b\text{Tr}(x\bar{z}), ab\text{Tr}(y\bar{w}), ab\text{Tr}(y\bar{w})$ and $ab\text{Tr}(z\bar{w})$ are in R_S .

First let $p \in S$ be a prime that is either inert or ramified in K with \mathcal{P} the prime ideal in K over p. Then $\operatorname{ord}_{\mathcal{P}} x = \operatorname{ord}_{\mathcal{P}} \overline{x}$. Hence $x \in \mathcal{D}_{\mathcal{P}}$ since $x\overline{x} \in R_S$. Similarly y, z, w, are all locally integral at \mathcal{P} since $0 \leq \operatorname{ord}_p ab \leq 1$. Note also, if p is ramified in K, then $\operatorname{ord}_p d = 1$ so that ab is a unit in $R_{\mathcal{P}}$. Thus $\beta \in \mathcal{O}_{\mathcal{P}}$.

Finally let $p \in S$ be a prime that splits in K into two ideals \mathcal{P} and $\overline{\mathcal{P}}$. Consider first $a \in R_p$ a unit. Assume locally $x \notin D_{\mathcal{P}}$, so that $\overline{x} \in \mathcal{P}$ then follows from $x\overline{x} \in R_S$. Since $x\overline{y} + y\overline{x} \in R_S$ it follows that locally $\overline{y} \in \mathcal{P}$ (for if $\overline{y} \notin \mathcal{P}$, then $y\overline{x}$ and y are not locally integral, forcing $\overline{y} \in \mathcal{P}$). If, however, ordpa = 1, we still get $\overline{y} \in D_{\mathcal{P}}$ from $a(x\overline{y} + y\overline{x}) \in R_S$. Hence $a\overline{y} \in \mathcal{P}$. Similarly, $b\overline{z}$, $ab\overline{w} \in \mathcal{P}$ which contradicts $1 = \overline{n(\beta)}$. Thus $x \in D_{\mathcal{P}}$. Likewise $y, z, w \in D_{\mathcal{P}}$. Therefore $\beta \in \mathcal{O}_{\mathcal{P}} \cap \mathcal{O}_{\overline{\mathcal{D}}}$, completing the proof.

This result generalizes Theorem 4.2 in [5]. The theorem applies to the rational function field $F = \mathbf{F}(X)$ where \mathbf{F} is a finite field with characteristic not two. Let $B = \left(\frac{a,b}{\mathbf{F}(X)}\right)$ where $a,b \in \mathbf{F}[X] = R_S$. Then $\mathcal{L} = \mathbf{F}[X,i,j]$ is an order in B. For $K = F(\alpha)$ with $\alpha^2 = d \in \mathbf{F}[X]$ and abd square-free, Theorem 5.1 then holds. In particular, one can take $d \in \mathbf{F}$ with $\mathbf{K} = \mathbf{F}(\alpha)$ a quadratic extension of \mathbf{F} so that $D_S = \mathbf{K}[X]$ and $\mathcal{O} = \mathbf{K}[X,i,j]$.

Theorem 5.2. Let $B = (\frac{a,b}{\mathbf{Q}})$ and \mathcal{L}_S be as in 5.1. Then

$$P\mathcal{L}_S^1 \cong O'(M)$$

is a subgroup of $P\mathcal{O}_S^1$, where M is the R_S -lattice with f-form $\langle a, b, -ab \rangle$.

Proof. Let d be a unit in R_S such that $\alpha \notin R_S$. From the previous section, $\Phi(B_L^1) = \operatorname{Stab}(1, O'(L)) = O'(M)$ where $M \cong \langle a, b, -ab \rangle$ after scaling out 2d. Since $\mathcal{O}_S \cap B = \mathcal{L}_S$, we have $\mathcal{L}_S^1 \subseteq B_L^1 \subseteq A_L^1 = \mathcal{O}_S^1$ and so $\mathcal{L}_S^1 = B_L^1$. Thus $P\mathcal{L}_S^1 \cong O'(M)$.

This generalizes [3, §7.3A] where a = b = 1 and $\mathcal{L}_S^1 = SL(2, R_S)$.

6. Kleinian groups and Z-lattices.

We now consider the rational case where $F = \mathbf{Q}$, $R_S = \mathbf{Z}$ and $B = \left(\frac{a,b}{\mathbf{Q}}\right)$ with a,b square-free integers. Let $K = \mathbf{Q}(\alpha)$ with $\alpha^2 = -d$ a square-free integer. When $d \equiv 1,2 \mod 4$, so that 2 is ramified in K, the integers $\mathbf{Z}_K = \mathbf{Z}[\alpha]$; but for $d \equiv 3 \mod 4$, so that 2 is inert or split in K, $\mathbf{Z}_K = \mathbf{Z}[\omega]$ with $\omega = (1+\alpha)/2$. The next result generalizes the isomorphism theorems for Hilbert modular and Bianchi groups in $[\mathbf{5}, \mathbf{6}]$, since $\mathcal{O}^1 = SL(2, \mathbf{Z}_K)$ when a = -b = 1.

Theorem 6.1. Let $B = \left(\frac{a,b}{\mathbf{Q}}\right)$ with $a \equiv 1 \mod 4$ and $ab \neq 0$ square-free. Then $\mathcal{L} = \mathbf{Z}[1, (1+i)/2, j, (j+k)/2]$ is a maximal order in B. For $K = \mathbf{Q}(\alpha)$ with $\alpha^2 = -d$ and (ab,d) = 1, put $\mathcal{O} = \mathcal{L} \otimes_{\mathbf{Z}} \mathbf{Z}_K$ and $L = \mathcal{O} \cap V$. Then $\mathcal{O}^1 = A_L^1$, and the sequence

$$1 \to \{\pm 1\} \to \mathcal{O}^1 \xrightarrow{\Phi} O'(L) \to 1$$

is exact when $d \equiv 1, 2 \mod 4, a \equiv 1 \mod 8$, b is odd, and

$$L = \mathbf{Z}1 \perp \mathbf{Z}\alpha i \perp (\mathbf{Z}\alpha j + \mathbf{Z}\alpha (j+k)/2)$$

$$\cong \begin{pmatrix} 2 & 0 \\ 0 & 2ad \end{pmatrix} \perp bd \begin{pmatrix} 2 & 1 \\ 1 & (1-a)/2 \end{pmatrix}.$$

The sequence is also exact when $d \equiv 3 \mod 4$ with b odd, or when $d \equiv 3 \mod 8$, $a \equiv 1 \mod 8$ with b even, but now

$$L = (\mathbf{Z}1 + \mathbf{Z}(1+\alpha i)/2) \perp (\mathbf{Z}\alpha j + \mathbf{Z}\alpha(j+k)/2)$$

$$\cong \begin{pmatrix} 2 & 1 \\ 1 & (1+ad)/2 \end{pmatrix} \perp bd \begin{pmatrix} 2 & 1 \\ 1 & (1-a)/2 \end{pmatrix}.$$

Proof. We already know $\mathcal{O}^1 \subseteq A_L^1$. It remains to prove $A_L^1 \subseteq \mathcal{O}$, and then the result follows from 3.2 since the complete group $O(L_2)$ is generated by symmetries and Eichler transformations (see [5, 10]). Let $\beta = x + yi + zj + wk \in A_L^1$. It suffices to prove that $\beta \in \mathcal{O}_{\mathcal{P}}$, the localization of \mathcal{O} at \mathcal{P} , for all finite primes \mathcal{P} of K. The odd primes are treated as in 5.1. It remains to show $x \pm y, z \pm w$ are integral at each dyadic prime \mathcal{P} , for then

$$\beta = (x - y) + 2y(1 + i)/2 + (z - w)j + 2w(j + k)/2 \in \mathcal{O}_{\mathcal{P}}.$$

As in 5.1, $x\overline{x} - ay\overline{y} + bz\overline{z} - abw\overline{w}$ and traces like $a\text{Tr}(x\overline{w} + y\overline{z})$ are now in $2^{-1}\mathbf{Z}$. Similar results, but with different sign patterns, are obtained by taking $v = 1, \alpha j$ and αk . Hence $8x\overline{x}, 8ay\overline{y}, 8bz\overline{z}$ and $8abw\overline{w}$ are in \mathbf{Z} . Also, $4a\text{Tr}(x\overline{y}), 4b\text{Tr}(x\overline{z}), 4ab\text{Tr}(x\overline{w}), 4ab\text{Tr}(y\overline{z}), 4ab\text{Tr}(y\overline{w})$ and $4ab\text{Tr}(z\overline{w})$ are all in \mathbf{Z} , as are traces like $4ab\text{Tr}(\alpha x\overline{w})$. From the coefficient of αj in $\beta \alpha k \tau(\beta)$ we also have

(1)
$$2a\operatorname{Tr}(x\overline{y} + bz\overline{w}) \in \mathbf{Z}.$$

Adding the coefficients of αj and αk in $\beta \alpha (j+k)\tau(\beta) \in 2L$ gives

(2)
$$2(x\overline{x} + ay\overline{y}) + \text{Tr}((a+1)x\overline{y} + b(a-1)z\overline{w}) \in \mathbf{Z}$$

and subtracting these two coefficients gives

(3)
$$2b(z\overline{z} + aw\overline{w}) - \text{Tr}((a-1)x\overline{y} + b(a+1)z\overline{w}) \in \mathbf{Z}.$$

From the αk coefficient of $\beta \alpha (j + k) \tau(\beta) \in 2L$, we have

(4)
$$x\bar{x} + ay\bar{y} + bz\bar{z} + abw\bar{w} + \text{Tr}(x\bar{y} - bz\bar{w}) \in \mathbf{Z}.$$

First consider 2 inert in K so that $d \equiv 3 \mod 8$. Then 2x, 2y are locally integral at 2, and hence in $\mathbf{Z}[\omega]$ since, for example, $8x\overline{x} \in \mathbf{Z}$ and $\operatorname{ord}_2 x = \operatorname{ord}_2 \overline{x}$. Since $a \equiv 1 \mod 4$, it follows from (2) that $2(x+y)(\overline{x}+\overline{y})$ is locally integral at 2. Therefore $x \pm y \in \mathbf{Z}[\omega]$. Then $\beta \beta^J = 1$ gives $b(z^2 - aw^2) \in \mathbf{Z}[\omega]$. For b odd we have $z \pm w \in \mathbf{Z}[\omega]$ and hence $\beta \in \mathcal{O}^1$, since $2z, 2w \in \mathbf{Z}[\omega]$. For b even and $a \equiv 1 \mod 8$, from (4) and since $(x+y)(\overline{x}+\overline{y})$ is integral, it follows that $b(z\overline{z}+w\overline{w}-\operatorname{Tr}(z\overline{w}))=b(z-w)(\overline{z}-\overline{w})$ is integral. Hence z-w is integral, and similarly, from (1) and (4), z+w is integral. Thus $\beta \in \mathcal{O}^1$.

Next consider 2 ramified in K so that $2\mathbf{Z}_K = \mathcal{P}^2$ and $a \equiv 1 \mod 8$ (so that, in essence, a = 1). By combining the coefficients of 1 and αi in $\beta \alpha (j + k) \tau(\beta) \in 2L$, we have $\alpha b(x + y)(\overline{w} - \overline{z})$ is locally integral, since $4b \operatorname{Tr}(\alpha x \overline{w} - \alpha y \overline{z})$ and $8\alpha b y \overline{w}$ are locally integral. Since b is odd, it follows that either x + y or z - w is locally integral. A similar calculation, using $\beta \alpha (j - k) \tau(\beta) \in 2L$, gives either x - y or z + w is integral at \mathcal{P} . From (4), as with 2 inert, if x + y is locally integral, so is z - w, and conversely. Similarly for the pair x - y and z + w. Now all four are integral and $\beta \in \mathcal{O}^1$.

Finally consider $d \equiv 7 \mod 8$ so that 2 splits in K and $2\mathbf{Z}_K = \mathcal{PP}$. From (2), $2(x+y)(\bar{x}+\bar{y})$ is locally integral, and hence either $\operatorname{ord}_{\mathcal{P}}(x+y) \geq 0$ or $\operatorname{ord}_{\mathcal{P}}(\bar{x}+\bar{y}) \geq 0$. Since $4a\operatorname{Tr}(x\bar{y}) \in \mathbf{Z}$, also $\operatorname{ord}_{\mathcal{P}}(x-y) \geq 0$ or $\operatorname{ord}_{\mathcal{P}}(\bar{x}-\bar{y}) \geq 0$. A similar argument, using the coefficients of 1 and αi in $\beta(1+\alpha i)\tau(\beta) \in 2L$, and $\alpha^2 \equiv 1 \mod 8$, shows that $2(x-y)(\bar{x}+\bar{y})$ is integral at \mathcal{P} ; hence $\operatorname{ord}_{\mathcal{P}}(x-y) \geq 0$ or $\operatorname{ord}_{\mathcal{P}}(\bar{x}+\bar{y}) \geq 0$. Now either $x \pm y$ are both locally integral at \mathcal{P} , or $\bar{x} \pm \bar{y}$ are both integral at \mathcal{P} so that $x \pm y$ are locally integral at $\overline{\mathcal{P}}$. Since b is odd, from (3) either $z \pm w$ are both integral at \mathcal{P} , or both are integral at $\overline{\mathcal{P}}$. If $x \pm y, z \pm w$ are all locally integral at \mathcal{P} , then $\beta \in \mathcal{O}^1_{\mathcal{P}}$. Assume, therefore, $x \pm y, \bar{z} \pm \overline{w}$ are locally integral at \mathcal{P} . Since $4(x\bar{x}+bz\bar{z}), 4b\text{Tr}(x\bar{z}) \in \mathbf{Z}$, it follows that $4(x+z)(\bar{x}+\bar{z})$ is locally integral at \mathcal{P} and hence 2(x+z) is integral at \mathcal{P} or $\overline{\mathcal{P}}$. In the first case, 2z is now integral at \mathcal{P} ; from $n(\beta) = 1$ we then have $z \pm w$ integral at \mathcal{P} , and again $\beta \in \mathcal{O}_{\mathcal{P}}^1$. In the second case, 2x is integral at $\overline{\mathcal{P}}$ so that $\beta \in \mathcal{O}_{\overline{\mathcal{P}}}^1$. By symmetry, we may now assume $\beta \in \mathcal{O}_{\mathcal{D}}^1$. But $\beta \tau(\beta) \in L \subseteq \mathcal{O}$ so that $\tau(\beta) \in \beta^J \mathcal{O}^1 \subseteq \mathcal{O}^1_{\mathcal{P}}$. Hence $\beta \in \tau(\mathcal{O}^1_{\mathcal{P}}) = \mathcal{O}^1_{\overline{\mathcal{P}}}$.

Remarks. Let B be a quaternion algebra over a number field F with \mathcal{L}_S a maximal S-order in B. Let $A = B \otimes_F K$ for a quadratic extension K/F. Assume the order $\mathcal{O}_S = \mathcal{L}_S \otimes_{R_S} D_S$ is maximal and put $L = \mathcal{O}_S \cap V$. Then is $A_L^1 = \mathcal{O}_S^1$ so that $\Phi: \mathcal{O}_S^1 \to O'(L)$ is surjective? The main difficulty is with the dyadic primes since 5.1 essentially covers non-dyadic primes. As observed in §3, for primes \mathcal{P} where A is ramified, $A_{L_p}^1 \subseteq \mathcal{O}_{\mathcal{P}}$ since $\mathcal{O}_{\mathcal{P}}$ is now maximal. In general, the order \mathcal{O} and the lattice L will have to be given locally. In particular, 5.1 can be easily generalized by giving \mathcal{O}_S and L locally, but then the explicitness of the global data is lost. Also, what is the index $[O'(L):\Phi(\mathcal{O}_S^1)]$ when \mathcal{O}_S is not maximal? The orders in 5.1 and 6.1 are maximal although the proofs only use this indirectly. Some restrictions on the orders \mathcal{L}_S and \mathcal{O}_S are necessary as the following examples show. Similar examples could be given with the values of a, b, d changed modulo 8 since this has little effect dyadically, and the odd primes are well behaved when abd is square-free.

Example 1. Let a=1=-b and $\mathcal{L}'=\mathbf{Z}[1,i,j,k]\subset\mathcal{L}$, as in 6.1, so that \mathcal{L}' is not maximal. Take d=3 and $\beta=x+yi+\bar{x}j+\bar{y}k$ in A with $2x=1+\omega,2y=1-\omega$ and $\omega=(1+\alpha)/2$. Then $n(\beta)=1$ and $\beta\notin\mathcal{O}'=\mathcal{L}'\otimes_{\mathbf{Z}}\mathbf{Z}[\omega]$.

However, from $x\bar{x} = 3/4$, $y\bar{y} = 1/4$, $\text{Tr}(x\bar{y}) = 0$ and $2\text{Tr}(\alpha y\bar{x}) = 3$ it can be checked that $\beta \in A_{L'}$ where $L' = \mathbf{Z} + \mathbf{Z}\alpha i + \mathbf{Z}\alpha j + \mathbf{Z}\alpha k = \mathcal{O}' \cap V$. Hence $\mathcal{O}'^1 \neq A_{L'}^1$.

Example 2. Let d=a=1, b=-2 and $\beta=(j+\alpha k)/2$ with \mathcal{O}, L as in 6.1. Then $n(\beta)=1, \beta\tau(\beta)=\alpha i, \ \beta\alpha i\tau(\beta)=1, \beta\alpha j\tau(\beta)=\alpha j$ and $\beta\alpha k\tau(\beta)=-\alpha k$. Hence $\beta\in A_L^1$. Put $\pi=\alpha-1$ so that $\pi\bar{\pi}=2$. Then $\beta=2^{-1}(j+k)+\bar{\pi}^{-1}k\notin\mathcal{O}$ and $A_L^1\neq\mathcal{O}^1$. Since $\mathcal{O}[\beta]=\mathbf{Z}_K[(1+i)/2,\beta,k/\pi]$ is an order, \mathcal{O} is not maximal in A.

The next three theorems extend our approach to other explicit situations.

Theorem 6.2. Let $B = \left(\frac{a,b}{\mathbf{Q}}\right)$ with $a \equiv 3 \mod 4$, b even, and ab square-free. Then $\mathcal{L} = \mathbf{Z}[1, i, (1+i+j)/2, (j+k)/2]$ is a maximal order in B. Let $K = \mathbf{Q}(\alpha)$ with $\alpha^2 = -d \equiv 5 \mod 8$ and (ab, d) = 1. Put $\mathcal{O} = \mathcal{L} \otimes_{\mathbf{Z}} \mathbf{Z}_K$ and

$$L = \mathcal{O} \cap V = \mathbf{Z} 1 + \mathbf{Z} \alpha i + \mathbf{Z} \alpha (j+k)/2 + \mathbf{Z} (1 + \alpha i + \alpha j)/2$$

$$\cong \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2ad & 0 & ad \\ 0 & 0 & (1-a)bd/2 & bd/2 \\ 1 & ad & bd/2 & (1+ad+bd)/2 \end{pmatrix}.$$

Then $\mathcal{O}^1 = A_L^1$, and the following sequence is exact

$$1 \to \{\pm 1\} \to \mathcal{O}^1 \xrightarrow{\Phi} \mathcal{O}'(L) \to 1.$$

Proof. Locally, for odd primes the proof is essentially the same as in 5.1, but again 2 needs careful treatment. Let $\beta \in A_L^1$ be as in 6.1. Then (1)–(4) still hold since they are derived from $\alpha(j+k) \in 2L$. Also 2 is inert in $\mathbf{Z}_K = \mathbf{Z}[\omega]$, and hence $2x, 2y, 4z, 4w \in \mathbf{Z}_K$ as in 6.1. Again from (1) and (2), since $a \equiv 3 \mod 4$, $x \pm y$ are integral at 2, and $x^2 - y^2 \in \mathbf{Z}_K$. It follows from $n(\beta) = 1$ that $(a-1)y^2 + bz^2 - abw^2$ is integral. Therefore, ord₂z = -2 if and only if $\operatorname{ord}_2 w = -2$. Moreover, if 2z and 2w are integral, then $2(y^2 + z^2 + w^2) \in \mathbf{Z}_2$ so that y + z + w is integral. Therefore,

$$\beta = x - y + 2y \frac{1 + i + j}{2} + (z - y - w)j + 2w \frac{j + k}{2} \in \mathcal{O}^1.$$

Finally $\operatorname{ord}_2 z = -2$ is not possible. For let $4z \equiv z_0 + 2z_1 \mod 4$ where $z_i \in \{0, 1, \omega, \overline{\omega}\}$ (the residue class field is \mathbf{F}_4), with a similar 2-adic expression for 4w. Then $(4z)^2 \equiv z_0^2 \mod 4$. Since $8bz^2 \equiv 8abw^2 \mod 4$, it follows that $z_0^2 \equiv -w_0^2 \mod 4$, and then $z_0 = w_0 = 0$, completing the proof.

Note that $dL = -a^2b^2d^3$. Locally at odd p, $L_p \cong \langle 1, ad, bd, -abd \rangle$. At the prime 2, the vectors 1 and $(1 + \alpha i + \alpha j)/2$ span a binary even unimodular lattice J_0 with discriminant $dJ_0 = (a+b)d$ which splits $L_2 = J_0 \perp J_1$ where J_1 is the 2-modular even lattice spanned by αk and $\alpha(bi - aj - ak)/2$, with discriminant $dJ_1 = -4(a+b)$. Since $a+b \equiv 1,5 \mod 8$, either J_0 or J_1 is

isotropic in the completion when $d \equiv 3 \mod 8$. Thus A is not dyadically ramified when $d \equiv 3 \mod 8$ (see [10, §58.7]). Again the dyadic condition for 3.2 follows as in [5].

Example 3. The analogue of 6.2 fails when d=1. Take b=2a=-2 and $\beta=1+(j+\alpha k)/2$. Then $n(\beta)=1$ and $\beta\in A_L^1$ where now $L=\mathcal{O}\cap V$ is as in 5.1. But $\beta\notin\mathcal{O}^1$, and again \mathcal{O} is not maximal.

In Example 3, and also in the next result, B is ramified at the dyadic prime, but A is not dyadically ramified, and Φ is not surjective. The algebra B is ramified at the prime 2 whenever the Hilbert symbol $(a,b)_2 = -1$; for example when $a \equiv b \equiv 3 \mod 4$.

Theorem 6.3. Let $B = \left(\frac{a,b}{\mathbf{Q}}\right)$ with $a \equiv b \equiv 3 \mod 4$, ab square-free, and with a, b not both negative. Then $\mathcal{L} = \mathbf{Z}[i, j, (1+i+j+k)/2]$ is a maximal order in B. Let $K = \mathbf{Q}(\alpha)$ with $\alpha^2 = -d \equiv 2, 3 \mod 4$ and abd square-free. Then for $\mathcal{O} = \mathcal{L} \otimes_{\mathbf{Z}} \mathbf{Z}_K$ and

$$L = \mathcal{O} \cap V = \mathbf{Z}1 \perp \mathbf{Z}\alpha i \perp \mathbf{Z}\alpha j \perp \mathbf{Z}\alpha k \cong \langle 2, 2ad, 2bd, -2abd \rangle$$

the index

$$[A_L^1:\mathcal{O}^1] = [O'(L):\Phi(\mathcal{O}^1)] = 2.$$

Proof. Let $\beta \in A_L^1$ be as in 6.1. Locally, for odd primes the proof is essentially the same as in 5.1 and $\beta \in \mathcal{O}_{\mathcal{P}}$ at all non-dyadic primes. The condition in 3.2 on $SO(L_2)$ follows from [5, 11]. The prime 2 is ramified in \mathbf{Z}_K with $2\mathbf{Z}_K = \mathcal{P}^2$. Since L has an orthogonal basis, $x\bar{x} \pm ay\bar{y} \pm bz\bar{z} \pm abw\bar{w} \in \mathbf{Z}$ for all choices of an even number of negative signs. Hence, for example, $4x\bar{x} \in \mathbf{Z}$ and therefore $2x, 2y, 2z, 2w \in \mathbf{Z}_K$. Also, all traces such as $2a\mathrm{Tr}(x\bar{y})$ and $2b\mathrm{Tr}(x\bar{z})$ are in \mathbf{Z} . Since $a \equiv 3 \mod 4$,

$$2(x-y)(\bar{x}+\bar{y}) = 2(x\bar{x}-y\bar{y}) - 4y\bar{x} + 2\operatorname{Tr}(x\bar{y}) \in \mathbf{Z}$$

and thus $\pi(x-y) \in \mathbf{Z}_{\mathcal{P}}$ where $\mathcal{P} = \pi \mathbf{Z}_{\mathcal{P}}$. Similarly, $\pi(x-z)$ and $\pi(x-w)$ are in $\mathbf{Z}_{\mathcal{P}}$. Let $2x \equiv x_0 + x_1\pi + 2x_2 \mod 2\mathcal{P}$ where $x_0, x_1, x_2 \in \{0, 1\}$. Then

$$(2x)^2 \equiv x_0^2 + x_1^2 \pi^2 + 2x_0 x_1 \pi + 4x_2^2 + 4x_0 x_2 \mod 4\mathcal{P}$$

with similar expressions for 2y, 2z and 2w. Then $x_0 = y_0 = z_0 = w_0$ follows from $\pi(x - y) \in \mathbf{Z}_{\mathcal{P}}$ and similar facts. Put

$$s_i = s_i(\beta) = x_i + y_i + z_i + w_i.$$

Substituting into $4n(\beta) \equiv 4 \mod 4\mathcal{P}$ gives $s_1 \equiv 0 \mod 2$. If $x_0 = 1$, since $(1-a)(1-b) \equiv 4 \mod 8$, we get the stronger result $4|s_1$, so that $x_1 = y_1 = z_1 = w_1$. Thus $x - w, y - w, z - w \in \mathbf{Z}_K$ and

$$\beta = (x - w) + (y - w)i + (z - w)k + 2w(1 + i + j + k)/2 \in \mathcal{O}.$$

It remains to consider β with $x_0 = 0$ and $s_1(\beta) = 2$. Use the surjectivity argument in [6, 4.1B] to construct various $\gamma \in A_L^1$ with $s_1(\gamma) = 2$ so that

each $\gamma \notin \mathcal{O}^1$. The assumptions ensure that the norm form is indefinite so that the strong approximation theorem can be applied. Thus, if $x_1 = y_1 = 1$ for β , we can find $\gamma \in A_L^1$ with $x_1(\gamma) = z_1(\gamma) = 1$. Then $s_0(\beta \gamma) = 4$ and as above $\beta \gamma \in \mathcal{O}^1$. It easily follows if $\beta, \beta' \in A_L^1$ with $\beta, \beta' \notin \mathcal{O}^1$, then $\beta' \in \beta \mathcal{O}^1$. Hence $[A_L^1 : \mathcal{O}^1] = 2$.

The order $\mathcal{O} = \mathcal{L} \otimes_{\mathbf{Z}} \mathbf{Z}_K$ in 6.3 is not maximal. By enlarging to a maximal order we can get Φ surjective, but then both \mathcal{O} and L have to be prescribed locally.

Theorem 6.4. Let $K = \mathbf{Q}(\alpha)$ with $\alpha^2 = -d \equiv 2 \mod 4$, and let A be the quaternion algebra $\left(\frac{a,b}{K}\right)$ where $a,b \in \mathbf{Z}$ with ab(a+b)d square-free, $a \equiv b \equiv 3 \mod 4$ and $a+b \equiv d \mod 8$. Let \mathcal{O} be the maximal order in A with localizations

$$\mathcal{O}_{\mathcal{P}} = \mathbf{Z}_{\mathcal{P}}[1, (i+j)/\alpha, (j+k)/\alpha, (1+i+j+k)/2]$$

at the dyadic prime $\mathcal{P} = \alpha \mathbf{Z}_K + 2\mathbf{Z}_K$, and $\mathcal{O}_{\mathcal{Q}} = \mathbf{Z}_{\mathcal{Q}}[i,j]$ for each odd prime \mathcal{Q} . Put $L = \mathcal{O} \cap V$. Then $\mathcal{O}^1 = A^1_L$ and the following sequence is exact

$$1 \to \{\pm 1\} \to \mathcal{O}^1 \xrightarrow{\Phi} \mathcal{O}'(L) \to 1.$$

Proof. It remains to check the result locally at the dyadic prime where

$$L_{\mathcal{P}} = \mathcal{O}_{\mathcal{P}} \cap V = \mathbf{Z}_{\mathcal{P}} \mathbf{1} \perp \mathbf{Z}_{\mathcal{P}} \alpha^{-1} (i+j) \perp \mathbf{Z}_{\mathcal{P}} \alpha^{-1} (bi-aj) \perp \mathbf{Z}_{\mathcal{P}} \alpha k.$$

Let a+b=cd where $c\in \mathbf{Z}_{\mathcal{P}}$. Put $i'=(i+j)/\alpha, j'=(bi-aj)/\alpha\in\mathcal{O}_{\mathcal{P}}$ so that $i'^2=-c\equiv 3 \mod 4, j'^2=-abc\equiv 3 \mod 4$ and i'j'=ck=k'=-j'i'. Let $\beta=x+yi'+zj'+wk'\in A_L^1$ and repeat the line of argument in 6.3 to show $\beta\in\mathcal{O}_{\mathcal{P}}$. As before $2x,2y,2z,2w,\alpha(x-y),\alpha(x-z),\alpha(x-w)$ are all in $\mathbf{Z}_{\mathcal{P}}$. From $n(\beta)=1$ we again conclude that $s_0(\beta)=4$ when $x_0=1$, and hence $\beta\in\mathcal{O}^1$. Finally consider $x_0=y_0=z_0=w_0=0$ and $s_1(\beta)=2$. But now $(i'+j')/\alpha=((1+b)i+(1-a)j)/\alpha^2\in\mathcal{O}_{\mathcal{P}}$ since a,b are odd. Then $(1+k')/\alpha\in\mathcal{O}_{\mathcal{P}}$. Also, if $\gamma=(1+i')/\alpha$, then $\gamma(i'+j')/\alpha=(-c+i'+j'+k')/\alpha^2\in\mathcal{O}_{\mathcal{P}}$ (as already shown in the $x_0=1$ case). Since $n((i'+j')/\alpha)=-c(1+ab)/d$ is invertible in $\mathbf{Z}_{\mathcal{P}}$, it follows that $\gamma\in\mathcal{O}_{\mathcal{P}}$. Thus $(1+j')/\alpha\in\mathcal{O}_{\mathcal{P}}$ and hence $\beta\in\mathcal{O}^1$, completing the proof.

When $d = \pm 2$ with a + b = cd, the order and lattice in 6.4 can be given globally, since now $\mathcal{O} = \mathbf{Z}_K[1, (i+j)/\alpha, (j+k)/\alpha, (1+i+j+k)/2]$ and

$$L = \mathcal{O} \cap V = \mathbf{Z}1 \perp \mathbf{Z}\alpha^{-1}(i+j) \perp \mathbf{Z}\alpha^{-1}(bi-aj) \perp \mathbf{Z}\alpha k$$

$$\cong \langle 2, 2c, 2abc, -2abd \rangle.$$

In general, the global lattice L in 6.4 need not have an orthogonal basis. For the special case where a=b=-1, c=1 and $\alpha^2=2$, the definite **Z**-lattice L diagonalizes uniquely as $\langle 2,2,2,4 \rangle$. It follows that |O'(L)|=24 and $|\mathcal{O}^1|=48$, as in [12, p. 141].

Theorem 6.5. Let $B = \left(\frac{a,b}{\mathbf{Q}}\right)$ and \mathcal{L} be as in 6.1 with $a \equiv 1 \mod 4$, and ab square-free. Then the sequence

$$1 \to \{\pm 1\} \to \mathcal{L}^1 \xrightarrow{\Phi} O'(M) \to 1$$

is exact, where

$$M \cong (2a) \perp b \begin{pmatrix} 2 & 1 \\ 1 & (1-a)/2 \end{pmatrix}$$
.

The proof is the same as for Theorem 5.2 (take d=1 if $a\equiv 1 \mod 8$ with b odd, otherwise take d=3 and scale M). There is a similar result for the order $\mathcal L$ in Theorem 6.2. Note, for a and b both negative, the group O'(M) is finite since the underlying quadratic form is then definite. For example, for a=-3 and b=-1, both $P\mathcal L^1$ and O'(M) can be shown directly to be cyclic groups of order 6.

7. Fuchsian subgroups.

Again assume that F is a global field and $L = \mathcal{O}_S \cap V$. Define

$$A_L(v) = A_L \cap A(v)$$

where $v \in L$ is primitive. Then, assuming the dyadic conditions in 3.2,

$$\Phi(A_L(v)^1) = \operatorname{Stab}(v, O'(L)).$$

Therefore $\Phi(B_L^1) = \text{Stab}(1, O'(L))$ where $B_L^1 = \{\beta \in B^1 \mid \beta L = L\beta\}.$

Let $K = \mathbf{Q}(\sqrt{-d})$ with d > 0 so that K is an imaginary quadratic number field. Assume a > 0 in $B = \left(\frac{a.b}{\mathbf{Q}}\right)$ so that the space V has signature (3,1). Take $v \in V$ with n(v) = D > 0. Then $V = Fv \perp W$ with W an indefinite space. Now $A(v) \cong C^+(W)$ is a quaternion algebra over \mathbf{Q} with an indefinite norm, and $A_L(v)^1$ is an infinite Fuchsian subgroup of the arithmetic Kleinian group A_L^1 , since $\mathrm{Stab}(v,O'(L))$ is infinite when D > 0. The conjugacy classes of these non-elementary Fuchsian subgroups correspond to the orbits of primitive $v \in L$ under the action of O'(L), with the length n(v) = D an invariant of an orbit. The number of orbits is finite for fixed D > 0, and can be determined via a product formula by using the strong approximation theorem to relate the global orbits under O'(L) to local orbits under $O'(L_p)$, provided the local structure of L_p is known, as in $[\mathbf{6}]$. We now give another example of this. See $[\mathbf{8},\mathbf{9}]$ for more connections between quaternion algebras, arithmetic Kleinian groups and Fuchsian groups.

Let $N(L_p, D)$ denote the number of spinor equivalence classes of primitive representations of D, and N(L, D) the corresponding global number.

Theorem 7.1. Let $L_p = J_0 \perp J_1$ where J_0 is unimodular of rank two and J_1 is p-modular of rank two. Assume either p is odd, or p = 2 with J_0, J_1 both even lattices. Then:

- 1. $N(L_p, D) = 0$ when $\operatorname{ord}_p D \geq 2$ and J_0, J_1 are both anisotropic.
- 2. $N(L_p, D) = 2$ when J_0 is hyperbolic with p|D, and either J_1 is hyperbolic or $\operatorname{ord}_p D = 1$.
- 3. $N(L_p, D) = 1$ otherwise, including (p, D) = 1.

Proof. Let $v \in L_p$ be primitive with n(v) = D. When (p, D) = 1, we may assume $v \in J_0$. The group $O(L_p)$ acts transitively on such v with the same norm, and since rank two even modular components have isometries with spinor norms of all possible values (see [10, §92:5]), it follows that $N(L_p, D) = 1$. When p|D, v can be embedded in either J_0 or J_1 , and these two possibilies are not equivalent under the action of O(L) (see [4], [7]). Therefore $N(L_p, D) \leq 2$, since not all these primitive representations of D need exist.

If J_0 is hyperbolic, then J_0 primitively represents all D. Otherwise, J_0 only primitively represent units. Likewise, if J_1 is hyperbolic, then J_1 primitively represents all D with $\operatorname{ord}_p D \geq 1$; otherwise only the values D with $\operatorname{ord}_p D = 1$ are represented primitively. This then converts into the values given for $N(L_p, D)$.

For the lattices in 6.1 and 6.2 with p odd and p|b so that (p,d)=1, the local discriminants $dJ_0=ad$ and $dJ_1=-p^2a$. Hence J_0 is hyperbolic when $(\frac{-ad}{p})=1$, and J_1 is hyperbolic when $(\frac{a}{p})=1$. For p=2, the even lattice J_0 in 6.1 or 6.2 is isotropic only when the discriminant $dJ_0=ad\equiv -1 \mod 8$, and J_1 is isotropic only when $2^{-2}dJ_1=-a\equiv -1 \mod 8$. When the two even Jordan components of L_p in 6.1 are anisotropic, the lattice L_p is maximal and anisotropic. Then, for odd p, $(\frac{-d}{p})=1$ so that p splits in the extension $K=\mathbf{Q}(\alpha)$ into \mathcal{P} and $\overline{\mathcal{P}}$. The space V_p is now anisotropic over \mathbf{Q}_p if and only if the norm form of $A_{\mathcal{P}}$ is anisotropic (see $[\mathbf{10}, \S 58:7]$), so that A is then ramified at \mathcal{P} . We already observed in $\S 3$ that $N(L_p, D) \leq 1$ for these p since L_p is a maximal lattice. The algebra A can not ramify at any other odd prime since the norm form is isotropic.

Some other values for $N(L_p, D)$ are given in [6, §5]. Note, however, in [6] we consider n(v) = dD and a slightly different form of primitivity. The general problem for p = 2 splits into many cases. For an analogue of 7.1 with J_0 or J_1 odd, use Proposition 10 in [4] together with Theorem 3.14 in [1] to get at spinor equivalence.

Theorem 7.2. Let L be the lattice in Theorem 6.1, 6.2 or 6.4. Assume d, D > 0 and either a or b is positive. Then almost all $N(L_p, D) = 1$ and

$$N(L,D) = \prod_{p} N(L_{p}, D).$$

The proof is the same as for Theorem 4.1 in [6], since the sign assumptions ensure that the strong approximation theorem can be applied.

The number of conjugacy classes of the subgroups $\operatorname{Stab}(v,O'(L))$ with n(v)=D, under the action of O'(L), is also N(L,D). To determine the number of conjugacy classes of the maximal Fuchsian subgroups corresponding to $\operatorname{Stab}(\pm v,O'(L))$ it is necessary to also take into account the action of -I on the local $O'(L_p)$ orbits, as in $[\mathbf{6}]$.

Acknowledgement. The author is grateful to the Marsden Fund for the opportunity to attend the Tolaga Bay, N.Z. Conference on *Discrete groups and hyperbolic manifolds*. The present work is a consequence of this meeting.

References

- A. Earnest and J. Hsia, Spinor norms of local integral rotations II, Pacific J. Math., 16 (1975), 71-86, MR 85m:11022, Zbl 0334.10012.
- [2] M. Eichler, Quadratische Formen und Orthogonale Gruppen, Springer-Verlag, Heidelberg, 1952, MR 14,540a, Zbl 0049.31106.
- [3] A.J. Hahn and O.T. O'Meara, The Classical Groups and K-Theory, Springer-Verlag, New York, 1989, MR 90i:20002, Zbl 0683.20033.
- [4] D.G. James, Integral invariants for vectors over local fields, Pacific J. Math., 15 (1965), 905-916, MR 32 #2379, Zbl 0135.02001.
- [5] ______, Conjugacy classes of $SU(h, \mathcal{O}_S)$ in $SL(2, \mathcal{O}_S)$, Trans. Amer. Math. Soc., **351** (1999) 825-835, MR 99d:11038, Zbl 0913.11017.
- [6] D.G. James and C. Maclachlan, Fuchsian subgroups of Bianchi groups, Trans. Amer. Math. Soc., 348 (1996) 1989-2002, MR 97i:20061, Zbl 0874.11037.
- [7] D.G. James and S.M. Rosenzweig, Associated vectors in lattices over valuation rings, Amer. J. Math., 90 (1968), 295-307, MR 36 #3754, Zbl 0155.38201.
- [8] C. Maclachlan, Fuchsian subgroups of the groups PSL(2, O_d), Low-Dimensional Topology and Kleinian Groups, ed. D.B.A. Epstein, LMS Lecture Notes Series, 112 (1986), 305-311, MR 89a:11049, Zbl 0613.20031.
- [9] C. Maclachlan and A.W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc., 102 (1987), 251-257, MR 88j:20040, Zbl 0632.30043.
- [10] O.T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963, MR 27 #2485, Zbl 0107.03301.
- [11] O.T. O'Meara and B. Pollak, Generators of local integral orthogonal groups, Math. Z., 87 (1965), 385-400; 93 (1966), 171-188, MR 30 #3923, Zbl 0161.02303; MR 34 #248, Zbl 0134.26404.

[12] M-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer Lecture Notes in Math., **800** (1980), MR 82i:12016, Zbl 0422.12008.

Received June 19, 2000.

DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
E-mail address: james@math.psu.edu