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Assume that a finite group G has a unique minimal nor-
mal subgroup, say N . We prove that if the order of N is
large enough then the following is true: If d randomly chosen
elements generate G modulo N , then these elements almost
certainly generate G itself.

1. Introduction.

For any finite group G, let d(G) be the smallest cardinality of a generating
set of G and let φG(d) denote the number of d-basis, that is, ordered d-tuples
(g1, . . . , gd) of elements of G that generate G. The number PG(d) = φG(d)

|G|d
gives the probability that d randomly chosen elements of G generate G.

Suppose that N is a normal subgroup of G with d(G/N) ≤ d and choose
g1, . . . , gd such that G = 〈g1, . . . , gd, N〉. It was noticed by Gaschütz [10] that
the cardinality of the set Ωg1,...,gd

= {(n1, . . . , nd) ∈ Nd | 〈g1n1, . . . , gdnd〉 =
G} is independent on the choice of g1, . . . , gd; namely |Ωg1,...,gd

| = φG(d)
φG/N (d) .

Let PG,N (d) = PG(d)
PG/N (d) = φG(d)

φG/N (d)|N |d ; this number is the probability that a
d-tuple generates G, given that it generates G modulo N. By the previous
remark PG,N (d) is also the probability that, given g1, . . . , gd generating G
modulo N, d randomly chosen elements n1, . . . , nd of N satisfy the condition
G = 〈g1n1, . . . , gdnd〉.

In the last years many results have been proved about the probability
of generating finite simple groups. By a classical result of Dixon [9] two
elements chosen at random from the symmetric group Sym(n) will almost
certainly generate a subgroup containing the alternating group Alt(n). Kan-
tor and Lubotzky [14] proved an analogous result for classical groups and
for small exceptional groups. Liebeck and Shalev [15] finished the proof of
the following theorem: If S is a finite nonabelian simple group and G is an
almost simple group with S ≤ G ≤ AutS, then the probability P (G) that
two randomly chosen elements of G generate a subgroup containing S tends
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to 1 as |S| → ∞. From the proof of this theorem it can be easily deduced a
stronger result (see Proposition 2.7):

min
h1,h2∈Aut S

P〈S,h1,h2〉,S(2) → 1 as |S| → ∞.

Note that the previous sentence can be viewed as a slight generalisation of
the theorem of Liebeck and Shalev about the asymptotic behaviour of P (G);
indeed P (G) coincides with the average

∑
(x,y)∈G2

P〈x,y,S〉,S(2)

|G|2 .

In this paper we want to study PG,N (d) in the more general case when
N is the unique minimal normal subgroup of G. The main result is the
following.

Theorem 1.1. Assume that a finite group G has a unique minimal normal
subgroup N and that d ≥ d(G). Then PG,N (d) → 1 as |N | → ∞.

In [17] it was proved that if G is a noncyclic finite group with a unique
minimal normal subgroup N , then d(G) = max{2, d(G/N)}. Combining
this result with the previous theorem we deduce:

Corollary 1.2. There exists an absolute constant γ such that if G is a
noncyclic finite group with a unique minimal normal subgroup N and d ≥
max{2, d(G/N)}, then φG(d)

φG/N (d) ≥ γ|N |d.

Our interest in computing φG(d)
φG/N (d) for a finite group G with a unique

minimal normal subgroup N is motivated by the following considerations.
Let G0 = G/N and for any positive integer t define Gt =

{
(g1, . . . , gt) ∈

Gt
∣∣ g1 ≡ · · · ≡ gt mod N

}
. In [8] it is proved that for any nontrivial

finite group H there exist a finite group G with a unique minimal normal
subgroup and an integer t such that Gt is an epimorphic image of H and
d(H) = d(Gt) > d(Gt−1). Hence results on the generation of groups Gt allow
us to prove more general results on the generation of finite groups. On the
other hand to compute d(Gt) we need to know φG(d)/φG/N (d) ([8] Theorem
2.7) and this can be bounded using Corollary 1.2.

An example of how Corollary 1.2 can be applied to solve questions about
the generation of finite groups is described in Section 3. Suppose that p and
q are distinct primes, let P be a nontrivial p-group, Q a nontrivial q-group
and assume that d(Q) ≤ d(P ) = d. By [16] Theorem C, any finite group
H containing P and Q and generated by them can be generated by d + 2
elements. Moreover from the results in [4] it can be easily deduced that
d(P o Q) = d + 1. Let P q Q be the profinite free product of P and Q,
i.e., the completion of the free product P ∗Q in the profinite topology, and
let dt(P qQ) be the smallest cardinality of a topological generating set for
PqQ; dt(PqQ) = maxH d(H) where H runs over the set of finite epimorphic
images of P ∗ Q so, by the previous remarks, d + 1 ≤ dt(P q Q) ≤ d + 2.
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It remains open the question to determine the exact value of dt(P qQ). In
this paper we solve this problem when d is large enough, proving:

Theorem 1.3. Let γ be the constant which appears in Corollary 1.2. Sup-
pose that p and q are two distinct primes, P is a nontrivial finite p-group,
Q is a nontrivial finite q-group. If max{d(P ), d(Q)} ≥ 1 − log3 γ, then
dt(P qQ) = max{d(P ), d(Q)}+ 1.

This follows from:

Theorem 1.4. Let γ be the constant which appears in Corollary 1.2. Sup-
pose that d ≥ 1 − log3 γ and that p and q are two distinct primes. If P is
a p-group, Q is q-group, and P and Q can be generated by d elements then
d(H) ≤ d + 1 for any finite group H generated by P and Q.

2. Proof of Theorem 1.1.

Suppose that G is a finite group with a unique minimal normal subgroup,
N and let d(G) ≤ d. We have to prove that φG(d)

φG/N (d)|N |d → 1 as |N | → ∞.

We first recall a result due to Gaschütz [10]:

Proposition 2.1. Let U be a normal subgroup of a finite group H and let
h1, . . . , hm ∈ H be such that H = 〈h1, . . . , hm, U〉. If d(H) ≤ m, then there
exist elements u1, . . . , um of U such that H = 〈h1u1, . . . , hmum〉. More-
over the cardinality of the set Ωh1,...,hm = {(u1, . . . , um) ∈ Um | H =
〈h1u1, . . . , hmum〉} is independent of the choice of h1, . . . , hm and it is equal
to φH(m)

φH/U (m) .

We choose d elements g1, . . . , gd generating G, and consider the set Ω =
Ωg1,...,gd

= {(n1, . . . , nd) ∈ Nd | 〈g1n1, . . . , gdnd〉 = G}. Our aim is to show
that |Ω|

|N |d = φG(d)
φG/N (d)|N |d → 1 as |N | → ∞.

Suppose that N is abelian. If N lies in the Frattini subgroup, then
φG(d)

φG/N (d) = |N |d. Otherwise N has a complement, K say. The kernel
of the action of K on N is a normal subgroup of G, so by the unique-
ness of N that kernel must be trivial, the action must be faithful. So,
by [13] Theorem B, |H1(K, N)| ≤ |N |

2
3 . If G is cyclic then G=N has

prime order and φG(d)
φG/N (d) = |N |d − 1. If G is noncyclic then d ≥ 2 and,

by [11], φG(d)
φG/N (d) = |N |d − |N ||H1(K, N)| ≥ |N |d − |N |

5
3 . In both the cases

φG(d)
φG/N (d)|N |d → 1 as |N | → ∞.

For the remaining part of this section we assume that N is a nonabelian
minimal normal subgroup of G, so N = Sn, where S is a nonabelian simple
group; furthermore, the hypothesis that N is the unique minimal normal
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subgroup of G implies that G ≤ AutSn = Aut S oSym(n) (the wreath prod-
uct of Aut S with the symmetric group of degree n). So the elements of G are
of the kind g = (h1, . . . , hn)σ, with hi ∈ AutS and σ ∈ Sym(n). The map
π : G → Sym(n) which sends g = (h1, . . . , hn)σ to σ is a homomorphism;
since N is a minimal normal subgroup of G, Gπ is a transitive subgroup of
Sym(n). Let Γ = (AutS)n be the base of the wreath product Aut S oSym(n)
and let πi : Γ → AutS be the projection on the i-th factor. Moreover for
any 1 ≤ i ≤ n denote with Si the subset of Sn = N consisting of the ele-
ments x = (x1, . . . , xn) with xj = 1 for each j 6= i. Set Ni = NG(Si) and let
φi : Ni → AutS be the map induced by the conjugation action of Ni on S.

If w = (n1, . . . , nd) is an element of Nd we denote by Hw the subgroup
〈g1n1, . . . , gdnd〉 of G. We will make a frequent use of the following remarks:

Lemma 2.2. Given a subgroup H of G, let ΩH = {w ∈ Nd | Hw ≤ H}.
Then |ΩH | ≤ |H ∩N |d.

Proof. Suppose that w = (n1, . . . , nd) and w = (n1, . . . , nd) are two elements
of ΩH . Then (gini)−1(gini) = n−1

i ni ∈ H ∩N for 1 ≤ i ≤ d.

Lemma 2.3. Suppose that M1 and M2 are two different maximal subgroups
of G. If M1 ∩N = M2 ∩N then either M1 ≥ N or M1 ∩N = 1.

Proof. If M1∩N = M2∩N then M1∩N is a normal subgroup of 〈M1,M2〉 =
G; by the minimality of N either M1 ∩N = N or M1 ∩N = 1.

To prove the theorem we need some preliminary results, concerning the
cardinality of the following subsets of Nd:

Ω1 = {w ∈ Nd | (N1 ∩Hw)φ1 ≥ S},
Ω2 = {w ∈ Nd | Hw ∩N = 1},
Ω3 = {w ∈ Nd | Hw ∩ Γ = 1},
Ω4 = {w ∈ Nd | Hw 6= G and (Hw ∩N)π1 = S},
Ω5 = {w ∈ Nd | Hw ∩N 6= 1 and (Hw ∩N)π1 6= S}.

To study these subsets we need the following results, which depend on
the classification of finite simple groups:

Proposition 2.4 (Borovik, Pyber and Shalev, Theorem 1.4 [3]). There
exists an absolute constant c > 0 such that a finite group H has at most
|H|c maximal solvable subgroups.

Proposition 2.5 (Babai, Goodman and Pyber, Prop. 2.10 [2]). There ex-
ists an absolute constant α < 1 such that, for any nonabelian finite simple
group S, every solvable subgroup of S has order at most |S|α.

Proposition 2.6. If S is a finite nonabelian simple group then |Out S| ≤√
|S|.
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Proof. Compare the values of |S| and |Out S| given in [6] Tables 5 and 6.

Proposition 2.7. If S is a finite nonabelian simple group then there exists
a positive constant cs such that P〈S,h1,h2〉,S(2) ≥ cs for every pair of elements
h1, h2 in AutS. Moreover cs → 1 as |S| → ∞.

Proof. By [7] Theorem 1, for any h1, h2 ∈ AutS there are s1, s2 ∈ S with
〈h1, h2, S〉 = 〈h1s1, h2s2〉; hence P〈S,h1,h2〉,S(2) > 0. Therefore

cs = min
h1,h2∈Aut S

P〈S,h1,h2〉,S(2) > 0.

It remains to prove that cs → 1 as |S| → ∞. Given a pair (h1, h2) of elements
of Aut S, consider the subgroup G = 〈S, h1, h2〉 of Aut S. Let M be the set
of subgroups of G which are maximal with respect to not containing S; by
[14] and [15] ∑

M∈M
|G : M |−2 tends to 0 as |S| → ∞.

On the other hand it follows from a result due to Gaschütz ([11], Satz 1)
that

PG,S(2) ≥ 1−
∑

M∈M∗

|G : M |−2

where M∗ is the set of maximal subgroups of G not containing S. As
M∗ ⊆M

PG,S(2) ≥ 1−
∑

M∈M∗

|G : M |−2 ≥ 1−
∑

M∈M
|G : M |−2,

hence PG,S(2) → 1 as |S| → ∞.

Now we can start to study the subsets Ωi, 1 ≤ i ≤ 5.

Lemma 2.8. Let α and c be the constants which appear in the statements
of Proposition 2.4 and Proposition 2.5; then

(a) |Ω2| ≤ min{|N |5, |S|α|AutS|c|N |1+α(d−1)+ 1−α
2 },

(b) |Ω3| ≤ |N |
3
2 .

Proof. a) First of all, we observe that by Lemma 2.2 for each complement
H of N there is at most a unique w ∈ Nd such that Hw = H, thus the
cardinality of Ω2 can be bounded by the number of complements of N in G.

Denote K = S2 × · · · × Sn and notice that NG(K) is isomorphic to a
subgroup of AutS× (Aut S o Sym(n− 1)) and NG(K)/K to a subgroup of
AutS × (Out S o Sym(n− 1)).

To estimate the cardinality of the set of complements of N in G we apply
the following result, proved by Gross and Kovács ([12] Corollary 4.4) and
by Aschbacher and Scott ([1] Theorem 2): G splits over N if and only if
NG(K)/K splits over N/K ∼= S and there is a one-to-one correspondence



434 ANDREA LUCCHINI AND FIORENZA MORINI

between the coniugacy classes of complements of N in G and of N/K in
NG(K)/K.

Suppose that NG(K)/K splits over N/K. It is well-known that the num-
ber of complements of N/K in NG(K)/K equals the cardinality of the set
Der(Y, N/K) of derivations from a complement Y of N/K in NG(K)/K to
N/K. Since δ ∈ Der(Y, N/K) is uniquely determined from the knowledge
of yδ

1, . . . , y
δ
s with 〈y1, . . . , ys〉 = Y , we obtain that |Der(Y, N/K)| ≤ |S|d(Y ).

Therefore our aim is now to bound d(Y ).
First of all, we notice that Y ≤ Out S× (Out S o Sym(n− 1)) and, in

particular, there is an homomorphism π from Y to Sym(n− 1) with kerπ ≤
(Out S)n. Now d(Y ) ≤ d(Y π) + d(ker π). It turns out to be d(Y π) ≤ n− 1,
since every subgroup of Sym(n − 1) can be generated by n − 1 elements,
and d(ker π) ≤ 3n because any subgroup of Out S can be generated by
3 elements [7]. Thus, d(Y ) ≤ 4n − 1 and, consequently, |Der(Y, N/K)| ≤
|S|4n−1 < |N |4. Therefore, by the theorem of Gross and Kovács, Aschbacher
and Scott, the coniugacy classes of complements of N in G are at most |N |4.

It is clear that every complement X of N in G has index |N | and so there
are at most |N | coniugates of X in G. Using these facts we conclude that the
number of complements of N in G is at most |N |5 and hence |Ω2| ≤ |N |5.

To obtain the second bound of |Ω2| we will use again the theorem proved
by Gross and Kovács, Aschbacher and Scott, but in this case we will estimate
the number of complements of N/K ∼= S in NG(K)/K as follows.

Define t = n(d − 1) + 1; since d(G) ≤ d and |G : NG(K)| = n, from the
Nielsen-Schreier Theorem we deduce d(NG(K)) ≤ t. A permutation group
of degree s > 3 can be generated by [ s

2 ] elements, where [ s
2 ] denotes the

integer part of s
2 (this is a theorem by P.M. Neumann, announced in [18]; a

proof has been published in [5]). In particular, since NG(K)π ≤ Sym(n−1),
d(NG(K)π) ≤ [n

2 ]. Note that K ≤ NG(K) ∩ ker π and that NG(K)∩ker π
K is

a normal subgroup of NG(K)
K with d

(
NG(K)/K

NG(K)∩ker π/K

)
= d(NG(K)π) ≤ [n

2 ].

Take α1, . . . , α[n
2
] generating NG(K)

K modulo NG(K)∩ker π
K . Since d(NG(K)/K)

≤ d(NG(K)) ≤ t, by Proposition 2.1, there exist β1, . . . , βt ∈ NG(K)∩ker π
K

such that NG(K)
K =

〈
α1β1, . . . , α[n

2
]β[n

2
], β[n

2
]+1 . . . , βt

〉
. Let u = t − [n

2 ] and

take γ1 = β[n
2
]+1, . . . , γu = βt, γu+1 = α1β1, . . . , γt = α[n

2
]β[n

2
];

NG(K)
K =

〈γ1, . . . , γt〉 and γi ∈ NG(K)∩ker π
K for every i ≤ u.

Now assume that NG(K)/K splits over N/K. For any complement Y of
N/K in NG(K)/K there is a map δ : {γ1, . . . , γt} → N/K ∼= S such that
Y = 〈γ1γ

δ
1 , . . . , γuγδ

u, . . . , γtγ
δ
t 〉. Consider the subgroup Y = 〈γ1γ

δ
1 , . . . , γuγδ

u〉
of Y ; if we identify NG(K)/K with a subgroup of Aut S×(Out SoSym(n−1)),
we have Y ≤ AutS× (Out S)n−1; in particular the elements γi’s, 1 ≤ i ≤ u,
can be written in the form γi = (hi, ki) with hi ∈ AutS and ki ∈ (Out S)n−1;
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moreover, if xi ∈ S is the image of γi under δ, γiγ
δ
i = (hixi, ki). Let ρ1 and

ρ2 be the projections of Y onto AutS and (Out S)n−1, respectively. Since
the third term (OutS)(3) of the derived series of Out S is trivial, it turns out
to be Y

(3) ≤ S∩Y = 1 and, as consequence, Y
(3) = 1. Notice also that Y

(3)

is isomorphic to Y
(3)

ρ1 = 〈h1x1, . . . , huxu〉(3); this implies that the elements
x1, . . . , xu must be chosen in such a way as to make 〈h1x1, . . . , huxu〉 a
solvable subgroup of Aut S. Hence the next step is to estimate the number
of the suitable choices for x1, . . . , xu ∈ S. Of course, h1x1, . . . , huxu must
belong to R, a maximal solvable subgroup of AutS. By Proposition 2.4,
AutS has at most |AutS|c maximal solvable subgroups. Moreover, fixed
a maximal solvable subgroup R of AutS, the number of (x1, . . . , xu) ∈ Su

such that (h1x1, . . . , huxu) ∈ Ru is at most |R ∩ S|u and such number can
be bounded by |S|αu using Proposition 2.5.

At this point we can state that the number of the choices for the suitable
elements x1, . . . , xu of S is at most |S|αu|AutS|c.

Finally, since it is possible to choice γδ
i , i > u, in at most |S| different

ways the complements of S in NG(K)/K are at most

|S|αu−u+t|AutS|c, where αu− u + t ≤ n(α(d− 1) + 1−α
2 ) + α.

At this point of the proof we can repeat the same arguments used for the
first bound of |Ω2| and conclude that

|Ω2| ≤ |N ||S|n(α(d−1)+ 1−α
2

)|S|α|AutS|c ≤ |N |1+α(d−1)+ 1−α
2 |S|α|AutS|c.

b) Notice that if G ∩ Γ > N then, for any w ∈ Nd, G ∩ Γ = HwN ∩ Γ =
N(Γ ∩ Hw) > N , hence Hw ∩ Γ 6= 1. But then Ω3 6= ∅ implies G ∩ Γ = N
and Ω3 = {w ∈ Nd | Hw ∩N = 1}. Therefore, the cardinality of Ω3 can be
bounded estimating again the number of complements of N in G. Precisely,
we can repeat the same arguments used above to prove |Ω2| ≤ |N |5. But
in this case because of G ∩ Γ = N any complement of N/K in NG(K)/K
turns out to be isomorphic to a subgroup of Sym(n− 1) and, in particular,
d(Y ) ≤ [n

2 ]. It follows |Der(Y, N/K)| ≤ |S|
n
2 and arguing from analogy with

the previous case we deduce that

|Ω3| ≤ |N ||S|
n
2 ≤ |N |

3
2 .

Lemma 2.9. |Ω4| ≤ |N |
d
2
+ 19

20 .

Proof. Let w ∈ Ω4. Notice that Hw ∩ N is a normal subgroup of Hw and
Gπ = (Hw)π is a transitive subgroup of Sym(n); this implies (Hw∩N)πi = S
for each 1 ≤ i ≤ n. But then, there exists a maximal subgroup M of G
containing Hw such that (M ∩ N)πi = S for every 1 ≤ i ≤ n. This means
that M ∩ N =

∏
B∈Φ DB, where Φ is an imprimitive system of Gπ and,

for every block B ∈ Φ, DB is a full diagonal subgroup of
∏

j∈B Sj (that is,
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if B = {i1, . . . , ir}, there exists Ψ = (ϕ2, . . . , ϕr) ∈ (Aut S)r−1 such that
DB = {(x, xϕ2 , . . . , xϕr) | x ∈ S} ≤ Si1 × · · · × Sir).

In the following, we will denote with D the set {
∏

B∈Φ DB | Φ an imprim-
itive system of Gπ}. By Lemma 2.2 if M is a maximal subgroup of G with
M ∩N = U ∈ D then the number of w ∈ Nd with Hw ≤ M is at most |U |d.
Moreover, by Lemma 2.3, for every U ∈ D there exists at most a unique
maximal subgroup M of G satisfying M ∩N = U . Therefore

|Ω4| ≤
∑
U∈D

|U |d

so we have to estimate
∑

U∈D |U |d.
Using again that Gπ acts transitively on {1, . . . , n}, every element U =

DB1 × · · · ×DBt of D can be uniquely determined only from the knowledge
of B = B1, the block which contains 1, and Ψ1, . . . ,Ψt. Note that |U | = |S|t
and Ψi ∈ (Aut S)|B|−1, 1 ≤ i ≤ t. As t = n

|B| ≤
n
2 and, by Proposition 2.6,

|AutS| ≤ |S|
3
2∑

U∈D
|U |d =

∑
B

|S|
nd
|B| |AutS|n−

n
|B| ≤

∑
B

|S|
n
2

d+ 3
4
n =

∑
B

|N |
d
2
+ 3

4 .

The different choices for B are at most 2n−1 and 2n−1 ≤ (60
1
5 )n ≤ |S|

n
5 ≤

|N |
1
5 . So we conclude

|Ω4| ≤
∑
B

|N |
d
2
+ 3

4 ≤ 2n−1|N |
d
2
+ 3

4 ≤ |N |
d
2
+ 19

20 .

Lemma 2.10. |Ω1| ≥ cs|N |d.

Proof. Define ∆1 = {(n1, n2) ∈ N2 | (N〈g1n1,g2n2〉(S1))φ1 ≥ S}.
Of course, |Ω1| ≥ |∆1||N |d−2, therefore the proof is concluded if we will

show that |∆1| ≥ cs|N |2. Let g1 = (α1, . . . , αn)ρ and g2 = (β1, . . . , βn)σ
with ρ, σ ∈ Sym(n) and αi, βi ∈ AutS. Consider ρ and σ as products of
disjoint cycles (including cycles of length 1) and consider in particular the
cycles (r1, . . . , rt) and (s1, . . . , su) with r1 = s1 = 1 of ρ and σ respectively.

Suppose n1 = (x1, . . . , xn) ∈ N and n2 = (y1, . . . , yn) ∈ N , and define
g1 = g1n1 and g2 = g2n2. It turns out to be gt

1, g
u
2 ∈ N1, (gt

1)φ1 = h1x1 and
(gu

2)φ1 = h2y1 with h1 = αr1xr2αr2 . . . xrtαrt , h2 = βs1ys2βs2 . . . ystβst .
We notice that in order to find (n1, n2) ∈ ∆1, we can choose x2, . . . , xn

and y2, . . . , yn arbitrarily, while x1, y1 must be selected in such a way as
to make 〈h1x1, h2y1〉 = 〈h1, h2, S〉 ≥ S. By Proposition 2.7 there exist at
least cs|S|2 ways to choose the elements x1, y1 ∈ S, so we conclude that
|∆1| ≥ cs|N |2.

Lemma 2.11. Ω1 \ (Ω3 ∪ Ω4) ⊆ Ω.
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Proof. Suppose that w ∈ Ω1 \ (Ω3 ∪ Ω4). As w ∈ Ω1 \ Ω3, (Hw ∩ Γ)π1 is
a nontrivial subgroup of AutS normalized by (N1 ∩ Hw)φ1 ≥ S, therefore
(Hw ∩N)π1 = S; on the other hand w /∈ Ω4, so Hw = G.

Lemma 2.12. |Ω|
|N |d → 1 as |S| → ∞.

Proof. By Lemmas 2.8, 2.9, 2.10 and 2.11

|Ω|
|N |d

≥ |Ω1| − |Ω3| − |Ω4|
|N |d

≥ cs −
|N |

3
2

|N |d
− |N |

d
2
+ 19

20

|N |d
.

Since d ≥ 2, by Proposition 2.7 we conclude
|Ω|
|N |d

≥ cs −
1

|N |
1
2

− 1

|N |
1
20

≥ cs −
2

|S|
1
20

→ 1 as |S| → ∞.

We have to prove that |Ω|
|N |d → 1 when |N | = |S|n → ∞. By the previous

lemma this is true if |S| → ∞. It remains to discuss the case when |S| is
bounded, say |S| ≤ µ, and n →∞.

Lemma 2.13. Let ε and µ be two positive real numbers. There exists n1

such that if n ≥ n1 and |S| ≤ µ then |Ω2|
|N |d ≤

ε
3 .

Proof. By Lemma 2.8 and Proposition 2.6, and noticing that |S| ≥ 60, we
deduce

|Ω2|
|N |d

≤ |S|α|AutS|c|N |1+α(d−1)+ 1−α
2

|N |d
≤ µα+ 3c

2 |N |(1−α)( 3
2
−d)

≤ µα+ 3c
2

60(1−α)(d− 3
2
)n

and this bound tends to 0 as n tends to infinity, since d ≥ 2.

Lemma 2.14. Let ε and µ be two positive real numbers. There exists n2

such that if n ≥ n2 and |S| ≤ µ then |Ω5|
|N |d ≤

ε
3 .

Proof. Denote by M the set of all maximal subgroups of G such that
1 < (M ∩ N)π1 < S. For each w ∈ Ω5, there exists a maximal subgroup
M ∈M such that Hw ≤ M . By Lemma 2.2, selected M ∈M, the elements
w of Nd such that Hw ≤ M are at most |M ∩N |d, so it follows

|Ω5| ≤
∑

M∈M
|M ∩N |d.

Define H = (M ∩N)π1. For any 1 ≤ i ≤ n, G contains an element of the
form (α1i, . . . , αni)σ with 1σ = i. Since G = MN, there are x1i, . . . , xni in
S such that (α1ix1i, . . . , αnixni)σ ∈ M and this implies

(M ∩N)πi = ((M ∩N)π1)α1ix1i = (Hα1i)x1i .
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Set X = (M ∩N)π1×· · ·× (M ∩N)πn; since M ∩N ≤ X and M normalizes
X, we have M ≤ MX < G. Therefore, by the maximality of M , it turns
out to be

M ∩N = H ×Hα12x12 × · · · ×Hα1nx1n .

By Lemma 2.3, if M1,M2 ∈ M with M1 6= M2 then M1 ∩N 6= M2 ∩N . It
follows

|Ω5| ≤
∑

H,x12,...,x1n

|H ×Hα12x12 × · · · ×Hα1nx1n |d

where H runs in the set of proper subgroups of S and x1i, 2 ≤ i ≤ n, is a
coset representative of NS(Hα1i) in S. Hence x1i can be chosen in at most
|S : NS(Hα1i)| ≤ |S : H| different ways and

|Ω5| ≤
∑
H<S

|H|nd |S|n−1

|H|n−1
.

In particular
|Ω5|
|N |d

≤
∑
H<S

(
|H|
|S|

)n(d−1)+1

.

Notice that H < S and so |H|
|S| ≤

1
2 . Moreover, since |S| ≤ µ, the number of

subgroups of S can be bounded by an integer δ (i.e., δ = 2µ). At this point
we can conclude that

|Ω5|
|N |d

≤ δ

2n(d−1)+1

and such bound tends to 0 as n tends to infinity, since d ≥ 2.

Lemma 2.15. Let ε and µ be two positive real numbers. There exists n3

such that if n ≥ n3 and |S| ≤ µ then |Ω4|
|N |d ≤

ε
3 .

Proof. This is an immediate consequence of Lemma 2.9.

Now we can complete the proof of our theorem. We are assuming that
N = Sn for a suitable nonabelian simple group S and a suitable integer n.
We have to show that if ε is a fixed positive real number then there exists
an integer ν such that |Ω|

|N |d ≥ 1− ε if |N | ≥ ν.

By Lemma 2.12 there exists µ such that |Ω|
|N |d ≥ 1− ε if |S| ≥ µ. For these

choices of ε and µ take n1, n2 and n3 as in Lemmas 2.13, 2.14, 2.15 and let
ν = µmax{n1,n2,n3}. Suppose |N | = |S|n ≥ ν. If |S| ≥ µ then |Ω|

|N |d ≥ 1− ε by
the definition of µ. Otherwise it must be n ≥ max{n1, n2, n3}. In that case,
since Nd \ (Ω2 ∪Ω4 ∪Ω5) ⊆ Ω, applying Lemmas 2.13, 2.14, 2.15 we deduce

|Ω|
|N |d

≥ 1− |Ω2|
|N |d

− |Ω4|
|N |d

− |Ω5|
|N |d

≥ 1− ε.
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3. Proof of Theorem 1.4.

To prove Theorem 1.4 we apply the same arguments that have already been
used to prove Theorem 9 in [16]; so we give only a sketch of the proof,
omitting some details that can be found in [16].

Suppose that H is a minimal counterexample. There exist a finite group
G with a unique minimal normal subgroup N and an integer t ≥ 2 such that
H ∼= Gt; moreover N is nonabelian. Let C = CAut G(G/N) denote the group
of those automorphisms of G that act trivially on G/N. By [8] Theorem 2.7
and Corollary 1.2, d(Gt) > d + 1 implies

t >
φG(d + 1)

|C|φG/N (d + 1)
≥ γ|N |d+1

|C|
.(1)

By hypothesis Gt = 〈P,Q〉 and P = 〈α1, . . . , αd〉, Q = 〈β1, . . . , βd〉. De-
note by π1 : Gt → G the projection onto the first factor and let ai = αiπ1,
bj = βjπ1, 1 ≤ i, j ≤ d. Let ∆ be the set of elements (x1, ..., xd, y1, ..., yd)
in G2d such that 〈x1, . . . , xd, y1, . . . , yd〉 = G, 〈x1, . . . , xd〉 is a p-group,
〈y1, . . . , yd〉 is a q-group, xi ≡ ai mod N and yj ≡ bj mod N, 1 ≤ i, j ≤ d.

As it is noted in Section 2 of [16], Gt = 〈P,Q〉 implies t ≤ |∆|
|C| . By the proof

of [16] Lemma 6, |∆| ≤ |N ||N |d−1
p |N ||N |d−1

q . The normal subgroup N is a
direct product of isomorphic nonabelian simple groups, so |N | is divided by
at least three different primes and by 4; in particular |N |p|N |q ≤ |N |

3 . We
deduce

t ≤ |N |d+1

3d−1|C|
.(2)

Comparing (1) and (2) we conclude γ < 1
3d−1 which is false since d ≥

1− log3 γ.
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