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Let U and V be vector spaces over a field F. Linear op-
erators T1, . . . , Tn : U → V are locally linearly dependent
if T1u, . . . , Tnu are linearly dependent for every u ∈ U . We
extend and unify known results on locally linearly dependent
operators and present two applications of these new results,
one in algebra and one in functional analysis.

1. Introduction.

Let T be a linear operator defined on a complex vector space X and let n
be a positive integer. Kaplansky [4] proved that T is algebraic of degree at
most n if and only if for every x ∈ X the vectors x, Tx, . . . , Tnx are linearly
dependent. One consequence of Kaplansky’s result is that if X is a Banach
space and T : X → X a bounded linear operator, then T is algebraic if and
only if for every x ∈ X there exists a positive integer n (depending on x)
such that x, Tx, . . . , Tnx are linearly dependent.

Let U and V be vector spaces over a field F. Linear operators T1, . . . , Tn :
U → V are locally linearly dependent if T1u, . . . , Tnu are linearly dependent
for every u ∈ U . In view of Kaplansky’s result it is natural to study the
global consequences of local dependence. Amitsur [1] proved that for every
n-tuple of locally linearly dependent operators T1, . . . , Tn : U → V there
exist scalars α1, . . . , αn, not all zero, such that S = α1T1 + . . . + αnTn

satisfies

rank S ≤
(

n + 1
2

)
− 1.

Aupetit [2, p. 87] proved that if U and V are complex vector spaces then S
can be chosen so that

rank S ≤ n− 1.

It is easy to see that this estimate is sharp (see [3]). Brešar and Šemrl [3]
extended Aupetit’s result to the case where F is an arbitrary infinite field.
We will show that the same conclusion holds also for finite fields.

For technical reasons it is sometimes convenient to deal with the linear
spaces spanned by n-tuples of locally linearly dependent operators. For
linear spaces U and V over a field F we denote by L(U, V ) the set of all
linear operators from U into V . In case U = V we write L(U) = L(U,U). A
subspace S ⊂ L(U, V ) is locally linearly dependent if for every u ∈ U there
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exists a nonzero S ∈ S such that Su = 0. In Section 2 we prove that if S
is an n-dimensional locally linearly dependent subspace of L(U, V ) then S
contains a nonzero operator of rank at most n − 1. When F has at least
n+2 elements we give a stronger result: If S contains an operator of rank at
least n, then S must contain a nonzero operator of rank at most n− 2. We
also show that if F is infinite and S ⊂ L(U) is a locally linearly dependent
n-dimensional space of pairwise commuting operators, then S contains a
nonzero square-zero operator of rank at most n− 1.

Let X and Y be (real or complex) Banach spaces. We denote by B(X, Y )
and BF (X, Y ) the set of all linear bounded operators from X into Y and the
set of all linear bounded finite rank operators from X into Y , respectively.
If S ⊂ B(X, Y ) is a linear subspace then we write SF = S ∩ BF (X, Y )
and we say that a linear subspace is nontrivial if it contains nonzero ele-
ments. Müller [7] extended the second part of Kaplansky’s result on locally
algebraic operators by proving that if S ⊂ B(X, Y ) is a locally linearly de-
pendent space of countable dimension then SF is nontrivial. Brešar and
Šemrl [3] provided a short proof of this statement. Larson [5] proved that
if S ⊂ B(X, Y ) is a locally linearly dependent subspace of countable dimen-
sion satisfying a certain “finite dimensional support” condition then SF is
nontrivial and locally linearly dependent. We will unify and extend these
results.

It turns out that some of the results in Section 2 do not depend on the
linearity of the space S but rather on S being an algebraic set. We briefly
remark on these nonlinear extensions in Section 3.

We believe that problems concerning locally linearly dependent operators
are interesting by themselves. However, they are also important because of
applications. Amitsur studied them in order to obtain results on rings satis-
fying generalized polynomial identities [1]. Larson’s motivation for studying
them were problems concerning reflexivity and linear interpolation [5], while
Brešar and Šemrl used the results on locally linearly dependent operators to
characterize commuting pairs of continuous derivations d, g of a Banach al-
gebra A with the property that (dg)(x) is quasi-nilpotent for every x ∈ A [3].
In the last section our new results will be applied to obtain an improvment of
Amitsur’s result on rings satisfying generalized polynomial identities and to
get a shorter proof of the above mentioned result on derivations. Recall that
a linear mapping d : A → A is called a derivation if d(xy) = xd(y) + d(x)y
for all x, y ∈ A.

Let us fix the notation. If A is any finite set then |A| denotes its cardinal-
ity. For a nonzero vector u belonging to a vector space U we denote by [u]
the one-dimensional space spanned by u. Finally, PU = {[u] : u ∈ U \ {0} }
denotes the projective space of U .
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2. Locally linearly dependent operators.

We begin this section with a statement which will help us reduce some prob-
lems concerning locally linearly dependent operators to the finite-dimensio-
nal case.

Proposition 2.1. Let U and V be vector spaces over a field F, S an n-di-
mensional subspace of L(U, V ), and k a positive integer. Then there exists
a positive integer t ≤

(
k+n−1

k

)
and rank k idempotents P1, . . . , Pt ∈ L(U)

and Q1, . . . , Qt ∈ L(V ) such that every T ∈ S of rank at least k satisfies
rank (QiTPi) = k for some i, 1 ≤ i ≤ t.

Proof. Let {uα}α∈I and {vβ}β∈J be fixed Hamel bases of U and V , respec-
tively. Operators in L(U, V ) will be identified with matrices with respect
to these two bases. To each subset I0 ⊂ I with |I0| = k we can asso-
ciate an idempotent whose range is span {uα}α∈I0 and whose null space
is span {uα}α∈I\I0 . So, to prove our statement, it suffices to find subsets
I1, . . . , It ⊂ I, J1, . . . , Jt ⊂ J , each of cardinality k, such that for every
T ∈ S of rank at least k we have det T [Ji|Ii] 6= 0 for some i, 1 ≤ i ≤ t. Here
T [Ji|Ii] denotes the k × k submatrix of T determined by Ji × Ii.

The subsets {Ii}t
i=1 and {Ji}t

i=1 are constructed inductively as follows:
Suppose {Ii}l

i=1 and {Ji}l
i=1 have already been chosen. If for any T ∈ S

with rank T ≥ k there exists an i, 1 ≤ i ≤ l, such that det T [Ji|Ii] 6= 0 then
let t = l. Otherwise there is an Tl+1 ∈ S with rank at least k such that
det Tl+1[Ji|Ii] = 0 for all i = 1, . . . , l. We can find Il+1 ⊂ I and Jl+1 ⊂ J ,
both of cardinality k, such that det Tl+1[Jl+1|Il+1] 6= 0.

Let S1, . . . , Sn be a basis of S and define for every positive integer l ≤ t
(apriori t might be infinite) a homogeneous polynomial fl of degree k by

fl(x1, . . . , xn) = det

(
n∑

i=1

xiSi[Jl|Il]

)
.

Let al = (al1, . . . , aln) be coordinates of Tl with respect to the basis {S1, . . . ,
Sn}, that is, Tl =

∑n
i=1 aliSi. It follows from our inductive construction that

fl(al) 6= 0, 1 ≤ l ≤ t, and fl(al′) = 0 whenever l′ > l. Consequently, the
polynomials {fl}t

l=1 are linearly independent: If
∑t

l=1 λlfl = 0 is a nontrivial
linear dependence and l′ = max{l : λl 6= 0} then

0 =
t∑

l=1

λlfl(al′) = λl′fl′(al′) 6= 0,

a contradiction. Since the dimension of the space of all homogenous poly-
nomials of degree k in n variables is

(
k+n−1

k

)
, we have t ≤

(
k+n−1

k

)
as de-

sired. �
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We now prove that every n-dimensional locally linearly dependent space
contains a nonzero operator of rank at most n− 1. In fact, we will prove a
slightly stronger result. An n-dimensional subspace S ⊂ L(U, V ) is locally
linearly dependent if dimSu = dim{Su : S ∈ S} ≤ n − 1 for every u ∈ U .
We say that S ⊂ L(U, V ) is c-locally linearly dependent if dimSu ≤ n − c
for every u ∈ U .

Theorem 2.2. Let U and V be vector spaces over a field F and let n, c
be positive integers with c ≤ n − 1. If S ⊂ L(U, V ) is a c-locally linearly
dependent subspace of dimension n then there exists a nonzero S ∈ S such
that rank S ≤ n− c.

Proof. In the case that F is an infinite field the proof is a direct adaptation of
the argument for the c = 1 case due to Brešar and Šemrl [3]. By induction
we may assume that dimSu = n − c for some u ∈ U . So, there exists
0 6= S ∈ S such that Su = 0. We will complete the proof of this case by
showing that the range of S is contained in Su. Suppose to the contrary
that Sv 6∈ Su for some v ∈ U . Let S1 be an (n − c)-dimensional subspace
of S such that S1u = Su. Then, by [3, Lemma 2.1] we can find a nonzero
scalar α such that

dimS1(u + αv) = n− c and Sv 6∈ S1(u + αv).

Then S(u + αv) = αSv 6∈ S1(u + αv), and consequently, dimS(u + αv) ≥
n− c + 1, a contradiction.

Assume now that F is a finite field and U is finite dimensional. Denote
|F| = q and dim U = m. Let

Z = {([u], [S]) ∈ PU × PS : Su = 0}.

On one hand, for every u ∈ U we have dim{S ∈ S : Su = 0} ≥ c hence

|Z| =
∑

[u]∈PU

|{[S] : Su = 0}| ≥ |PU |q
c − 1
q − 1

.

On the other hand, let r = min{rank S : S ∈ S \ {0}}. Then the null space
of every nonzero S ∈ S is at most (m− r)-dimensional therefore

|Z| =
∑

[S]∈PS

|{[u] : Su = 0}| ≤ |PS|q
m−r − 1
q − 1

.

Comparing these two inequalities we obtain (qm−1)(qc−1) ≤ (qn−1)(qm−r−
1). If m = dim U ≤ n − c then rank S ≤ n − c for all S ∈ S. Otherwise
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m ≥ n− c + 1 hence

qm−r > qm−r − 1 ≥ (qm − 1)(qc − 1)
qn − 1

=
(qm − 1)(qc − 1)

qm+c−1 − 1
qm+c−1 − 1

qn − 1

≥ (qm − 1)(qc − 1)
qm+c−1 − 1

qm+c−n−1 ≥ (q − 1)qm+c−n−1 ≥ qm+c−n−1.

It follows that r ≤ n− c.
It remains to consider the case that F is a finite field and U an infinite

dimensional vector space. Assume that rankS ≥ n − c + 1 for all nonzero
operators S ∈ S. Applying Proposition 2.1 with k = n − c + 1 we obtain
finitely many idempotents P1, . . . , Pt ∈ L(U) of rank n − c + 1 such that
for every nonzero S ∈ S there exists an i, 1 ≤ i ≤ t, such that rank SPi =
n − c + 1. Let U ′ =

∑t
i=1 PiU and for S ∈ S let S′ ∈ L(U ′, V ) denote the

restriction of S to U ′. It follows that S ′ = {S′ : S ∈ S} is an n-dimensional
c-locally linearly dependent subspace of L(U ′, V ) and rankS′ ≥ n − c + 1
for all nonzero S′ ∈ S ′, contradicting the finite-dimensional case. �

For a subspace S ⊂ L(U, V ) we denote by SF the space of all finite rank
operators in S. Larson [5, Proposition 2.3] proved that if S is finite di-
mensional locally linearly dependent, then SF is a nontrivial locally linearly
dependent subspace. Combining this with Theorem 2.2 we get the following
result.

Corollary 2.3. Let U and V be vector spaces over a field F. If S ⊂ L(U, V )
is a locally linearly dependent finite dimensional subspace then there exists
a nonzero S ∈ S such that rank S ≤ dimSF − 1.

Theorem 2.2 can be improved for sufficiently large fields. For simplicity
we only consider the c = 1 case.

Theorem 2.4. Let n be a positive integer and let F be a field with at least
n + 2 elements. Suppose that U and V are vector spaces over F and S ⊂
L(U, V ) is an n-dimensional locally linearly dependent space of operators. If
S contains an operator of rank at least n then there is a nonzero S ∈ S such
that rank S ≤ n− 2.

Proof. By an application of Proposition 2.1 we may assume that U and V
are finite dimensional. We will identify U with Fm, V with Fp, and L(U, V )
with Mp×m(F), the space of all p×m matrices. There is no loss of generality
in assuming that m > n.

To illustrate our approach we first give a simple proof of the theorem for
an algebraically closed field F. Consider the projective algebraic variety

Z = {([u], [S]) ∈ PU × PS : Su = 0}
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and let π1, π2 denote the projections of Z into PU and PS respectively. Since
S is locally linearly dependent the projection π1 is surjective, hence

dim Z ≥ dim PU.(1)

Let Z0 be an irreducible component of Z of maximal dimension then

dim Z = dim Z0 = dim π2(Z0) + min{dim π−1
2 ([S]) : [S] ∈ π2(Z0)}(2)

= dim π2(Z0) + dim PU −max{rank S : [S] ∈ π2(Z0)}.

Combining (1) and (2) we obtain

max{rank S : [S] ∈ π2(Z0)} ≤ dim π2(Z0).

If π2(Z0) = PS then max{rank S : S ∈ S} ≤ dim PS = n− 1, contradicting
our assumptions. Therefore, π2(Z0) 6= PS, hence

max{rank S : [S] ∈ π2(Z0)} ≤ dim π2(Z0) ≤ n− 2.

The proof of Theorem 2.4 for general infinite fields uses a similiar idea:
We will show that if S contains an operator of rank ≥ n then both U1 =⋃

rankS≥n P(ker S) and U2 =
⋃

rankS=n−1 P(ker S) are contained in proper
algebraic subsets of PU . Since F is infinite it will follow that there exists a
[u] ∈ PU − (U1 ∪U2). Let 0 6= S ∈ S such that Su = 0 then rankS ≤ n− 2.
We need some preliminaries.

Claim 1. Let x = (x1, . . . , xn), y = (y1, . . . , ym−n) be variables and let
fst(x), 1 ≤ s ≤ m, 1 ≤ t ≤ m− n, be homogeneous polynomials of the same
degree. Then there exists a nonzero homogeneous polynomial P (z1, . . . , zm)
such that

P

(
m−n∑
t=1

f1t(x)yt, . . . ,
m−n∑
t=1

fmt(x)yt

)
= 0.(3)

Proof. Introduce new variables ξ = (ξ1, . . . , ξm−n−1) and for 1 ≤ i ≤ m let
Fi(x, y) =

∑m−n
t=1 fit(x)yt, Gi(x, ξ) =

∑m−n−1
t=1 fit(x)ξt + fi,m−n(x). Since

G1(x, ξ), . . . , Gm(x, ξ) are polynomials in m − 1 variables there exists a
nonzero polynomial R(z1, . . . , zm) =

∑
γ rγzγ (where γ = (γ1, . . . , γm),

zγ = zγ1
1 · · · zγm

m ) such that R(G1(x, ξ), . . . , Gm(x, ξ)) = 0. Write |γ| =∑m
i=1 γi and let N = max{|γ| : rγ 6= 0}. By substituting ξi = yi/ym−n for

1 ≤ i ≤ m − n − 1 it is easy to check that P (z1, . . . , zm) =
∑

|γ|=N rγzγ

satisfies P (F1(x, y), . . . , Fm(x, y)) = 0. �

Claim 2. Let x = (x1, . . . , xn), y = (y1, . . . , ym−n+1) be variables and let
fst(x), 1 ≤ s ≤ m, 1 ≤ t ≤ m − n + 1, be homogeneous polynomials of
the same degree. Then for any nonzero homogenous polynomial g(x) there
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exists a nonzero homogeneous polynomial Q(z) ∈ F[z1, . . . , zm] such that

Q

(
m−n+1∑

t=1

f1t(a)yt, . . . ,
m−n+1∑

t=1

fmt(a)yt

)
= 0(4)

for any a ∈ Fn which satisfies g(a) = 0.

Proof. Introduce new variables ξ = (ξ1, . . . , ξm−n) and for 1 ≤ i ≤ m let
Fi(x, y) =

∑m−n+1
t=1 fit(x)yt, Gi(x, ξ) =

∑m−n
t=1 fit(x)ξt + fi,m−n+1(x). Since

G1(x, ξ), . . . , Gm(x, ξ), g(x) are m+1 polynomials in m variables there exist
polynomials Q0(z), . . . , Qk(z) ∈ F[z1, . . . , zm], not all of them zero, such
that

∑k
i=0 Qi(G1(x, ξ), . . . , Gm(x, ξ))g(x)i = 0. Since g(x) is homogenous

and nonzero we may assume that all the Qi’s are homogenous and Q0(z) 6=
0. As in Claim 1 it can be checked that Q0(F1(a, y), . . . , Fm(a, y)) = 0
whenever g(a) = 0. �

For an integer t, 1 ≤ t ≤ min{p, m}, we define At = {(I, J) : I ⊂
{1, . . . , p}, J ⊂ {1, . . . , m}, |I| = |J | = t}. Let S1, . . . , Sn be a basis of S
and denote S(x) = S(x1, . . . , xn) =

∑n
i=1 xiSi.

Claim 3. For any (I, J) ∈ An there exists a nonzero homogeneous form
PIJ(z) ∈ F[z1, . . . , zm] such that if a ∈ Fn and u ∈ Fm satisfy S(a)u = 0
then

PIJ(λu) = 0(5)

where λ = detS(a)[I|J ].

Proof. We may assume that I = {1, . . . , n} , J = {m− n + 1, . . . , m}. By
Cramer’s rule for any m−n+1 ≤ i ≤ m there exist homogenous polynomials
fij(x) , 1 ≤ j ≤ m−n, of degree n such that for any a ∈ Fn and u ∈ ker S(a)

det S(a)[I|J ]ui =
m−n∑
j=1

fij(a)uj .(6)

By defining fij(x) = δij det S(x)[I|J ] for 1 ≤ i, j ≤ m − n, Equation (6)
becomes valid for all 1 ≤ i ≤ m. According to Claim 1 there exists a nonzero
homogenous polynomial P (z1, . . . , zm) which satisfies (3). Combining (6)
and (3) it follows that P (detS(a)[I|J ]u) = 0 whenever S(a)u = 0. �

Claim 4. For every nonzero homogenous polynomial g(x) ∈ F[x1, . . . , xn]
and every (I ′, J ′) ∈ An−1 there exists a nonzero homogeneous form QI′J ′(z)
∈ F[z1, . . . , zm] such that if a ∈ Fn, u ∈ Fm satisfy g(a) = 0 and S(a)u = 0
then

QI′J ′(λu) = 0(7)

where λ = detS(a)[I ′|J ′].
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Proof. Let I ′ = {1, . . . , n − 1} , J ′ = {m − n + 2, . . . , m}. As in Claim 3
there exist homogenous polynomials fij(x) , 1 ≤ i ≤ m , 1 ≤ j ≤ m− n + 1
of degree n − 1 such that if a ∈ Fn , u ∈ Fm satisfy S(a)u = 0 then for all
1 ≤ i ≤ m

det S(a)[I ′|J ′]ui =
m−n+1∑

j=1

fij(a)uj .(8)

By Claim 2 there exists a homogenous polynomial Q(z1, . . . , zm) which satis-
fies (4) if g(a) = 0. Combining (8) and (4) it follows that Q(det S(a)[I ′|J ′]u)
= 0 whenever S(a)u = 0 and g(a) = 0. �

Now we are ready to prove the Theorem for infinite fields. Let {PIJ(z) :
(I, J) ∈ An} be the forms determined by Claim 3. Suppose that rankS0 ≥ n
for some S0 ∈ S. Then there exists an (I0, J0) ∈ An such that rankS0[I0|J0]
= n. Let g(x) = det(S(x)[I0|J0]). Clearly, g(x) is a nonzero homoge-
nous form in F[x1, . . . , xn]. Let {QI′J ′(z) : (I ′, J ′) ∈ An−1} be the forms
determined by Claim 4 and the above g(x). For any homogenous form
R(z) ∈ F[z1, . . . , zm] let V (R) = {[u] ∈ PU : R(u) = 0} denote the projec-
tive zero set of R(z).

Let 0 6= a ∈ Fn. If rankS(a) ≥ n then there exists an (I, J) ∈ An such
that det(S(a)[I|J ]) 6= 0. Hence, by (5), PIJ(u) = 0 for any u which satisfies
S(a)u = 0. It follows that⋃

{a∈Fn : rank S(a)≥n}

P(ker S(a)) ⊂
⋃

(I,J)∈An

V (PIJ).(9)

If on the other hand rankS(a) = n − 1 then there exists an (I ′, J ′) ∈
An−1 such that det(S(a)[I ′|J ′]) 6= 0. Since g(a) = 0 it follows by (7) that
QI′J ′(u) = 0 for any u ∈ ker S(a). Therefore⋃

{a∈Fn : rank S(a)=n−1}

P(ker S(a)) ⊂
⋃

(I′,J ′)∈An−1

V (QI′J ′).(10)

Let
R(z) =

∏
(I,J)∈An

PIJ(z)
∏

(I′,J ′)∈An−1

QI′J ′(z) .

Combining (9) and (10) we obtain⋃
{a∈Fn : rank S(a)≥n−1}

P(ker S(a)) ⊂ V (R).

Since R(z) is a nonzero homogenous form and F is infinite there exists a
[u] ∈ PU \ V (R). Let 0 6= a ∈ Fn be an n-tuple such that S(a)u = 0. Then
rank S(a) ≤ n− 2.
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It remains to consider the finite field case. Let F be the field with q
elements, q ≥ n + 2. Let

Z = {([u], [a]) ∈ PU × PFn : S(a)u = 0}

and suppose a0 ∈ Fn satisfies rank S(a0) ≥ n. Since S is locally linearly
dependent we have

|Z| =
∑

[u]∈PU

|{[a] : S(a)u = 0}| ≥ |PU | = qm − 1
q − 1

.

Let r = min{rank S : S ∈ S \ {0}}, let (I0, J0) ∈ An be such that
rank S(a0)[I0|J0] = n, and let g(x) = det(S(x)[I0|J0]). Clearly, if a ∈ Fn

satisfies rankS(a) ≤ n− 1 then g(a) = 0. Therefore

|Z| =
∑

[a]∈PFn

|P(ker S(a))| =

∑
{[a] : rank S(a)≤n−1}

|P(ker S(a))|+
∑

{[a] : rank S(a)≥n}

|P(ker S(a))| ≤

|{[a] : g(a) = 0}| qm−r − 1
q − 1

+ |PFn| qm−n − 1
q − 1

.

We need the following simple upper bound (see e.g., Theorem 6.15 in [6]).

Proposition 2.5. Assume that |F| = q. If h(x1, . . . , xk) ∈ F[x1, . . . , xk] is
a nonzero homogenous form of degree d′ ≥ 1 then

|{[a] ∈ PFk : h(a) = 0}| ≤ d′
qk−1 − 1

q − 1
.

Now g(x) is homogenous of degree n and satisfies g(a0) 6= 0. Combin-
ing Proposition 2.5 (with h = g , k = n and d′ = n) with the previous
inequalities we obtain

qm − 1
q − 1

≤ |Z| ≤ n
qn−1 − 1

q − 1
qm−r − 1

q − 1
+

qn − 1
q − 1

qm−n − 1
q − 1

.

It follows that

qm−r − 1 ≥ (qm − 1)(q − 1)− (qn − 1)(qm−n − 1)
n(qn−1 − 1)

≥

qm+1 − 2qm

nqn−1
=

qm−n+1(q − 2)
n

≥ qm−n+1

hence r ≤ n− 2 . �

Theorem 2.2 with c = 1 can be improved also in the case that F is an
infinite field and S consists of pairwise commuting matrices.
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Theorem 2.6. Let U be a vector space over an infinite field F and let n be a
positive integer. If S ⊂ L(U) is an n-dimensional locally linearly dependent
subspace of pairwise commuting matrices then there exists a nonzero S ∈ S
such that S2 = 0 and rank S ≤ n− 1.

Remarks. The special case when F is the field of complex numbers was
proved in [2, p. 87]. This result is important for applications (see the next
section). In fact, we will need, and therefore we will prove, a slightly stronger
statement as follows: Assume that S1, . . . , Sn : U → U are locally linearly
dependent operators satisfying SiSj = SjSi, 1 ≤ i, j ≤ n. Suppose also that
S1, . . . , Sn−1 are not locally linearly dependent. Then there exists scalars
α1, . . . , αn−1 such that S = α1S1 + . . . + αn−1Sn−1 + Sn is of square zero
and rankS ≤ n− 1.

Proof. We can find u ∈ U such that S1u, . . . , Sn−1u are linearly inde-
pendent. Then there exist scalars α1, . . . , αn−1 such that Su = (α1S1 +
. . . αn−1Sn−1 + Sn)u = 0. As in the proof of Theorem 2.2 we show that
the range of S is contained in the linear span of S1u, . . . , Sn−1u. Let
v ∈ U be any vector. Then there exist β1, . . . , βn−1 ∈ F such that Sv =
β1S1u+ . . .+βn−1Sn−1u. It follows that S2v = S(β1S1+ . . .+βn−1Sn−1)u =
(β1S1 + . . . + βn−1Sn−1)Su = 0. This completes the proof. �

We will conclude this section by unifying and extending the results of
Larson [5, Theorem 3.2] and Müller [7, Theorem 1].

Theorem 2.7. Let X and Y be Banach spaces and let S ⊂ B(X, Y ) be a
locally linearly dependent linear space of countable dimension. Then SF has
a nontrivial finite dimensional locally linearly dependent subspace.

Remark. Larson obtained this result under an additional “finite dimen-
sional support” assumption on SF . The above theorem is also an essential
improvment of Müller’s result. Namely, the conclusion of the result of Müller
is that S contains a nonzero finite rank operator. His result gives no infor-
mation how large is the space SF nor what is the minimal rank of nonzero
operators from S. Our result implies that either S contains an operator of
a small rank or the dimension of SF is large. More precisely, if the minimal
nonzero rank of operators from S is n, then SF is at least (n+1)-dimensional.
This follows directly from Theorems 2.2 and 2.7.

Proof. Let {Sk : k = 1, 2, . . . } be a basis of S and denote by Fn the set
of all vectors x ∈ X such that S1x, . . . , Snx are linearly dependent. Then
∪∞n=1Fn = X.

If {xm} is a sequence in Fn converging to x, then x ∈ Fn. For suppose
that for each m, αm

1 , . . . , αm
n are scalars, not all zero, such that αm

1 S1xm +
. . .+αm

n Snxm = 0. Divide these scalars by the one with the largest absolute
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value. We can thus assume that each one of them has absolute value at most
1 and one of them has absolute value equal to 1. Then a subsequence of the
sequence of n-tuples {(αm

1 , . . . , αm
n )} converges to an n-tuple (α1, . . . , αn);

it is not the zero n-tuple since at least one of α1, . . . , αn has modulus 1.
Re-label so that {(αm

1 , . . . , αm
n )} is such a subsequence. Then α1S1x+ . . .+

αnSnx = limm→∞(αm
1 S1xm + · · ·+ αm

n Snxm) = 0.
Thus, each Fn is closed and by the Baire category theorem there exists

a positive integer k such that Fk contains an open ball, say {x ∈ X :
||x − x0|| < ε}. We will show that Fk = X. Assume on the contrary that
there exists y ∈ X such that S1y, . . . , Sky are linearly independent. Then
the vectors S1(y + αx0), . . . , Sk(y + αx0) are linearly independent for all
but finitely many scalars α. Hence, S1(x0 + (1/α)y), . . . , Sk(x0 + (1/α)y)
are linearly independent for all but finitely many nonzero scalars α. This is
impossible since Fk contains {x ∈ X : ||x − x0|| < ε}. Hence, we have a
desired relation Fk = X.

So, the linear span of {S1, . . . , Sk} is a locally linearly dependent space.
We already know that then {S1, . . . , Sk}F is nontrivial and locally linearly
dependent [5, Proposition 2.3]. This completes the proof. �

3. Nonlinear locally linearly dependent sets of operators.

The methods of the previous section can be applied to some nonlinear sets
of operators that are locally linearly dependent. We will only consider the
finite-dimensional case, so operators will be identified with matrices. Let
p, q, n be positive integers and W = Fn the n-dimensional coordinate space.
Let x = (x1, . . . , xn) be a vector of variables and suppose S(x) = (sij(x))
is a p× q matrix of homogenous polynomials sij(x) ∈ F[x1, . . . , xn] of fixed
degree d. The set S = {S(a) : a ∈ W} is called an (n, d)-family in Mp×q(F).
S is locally linearly dependent if for any u ∈ Fq there exists a nonzero a ∈ W
such that S(a)u = 0.

Theorem 3.1. Suppose S ⊂ Mp×q(F) is a locally linearly dependent (n, d)-
family and |F| ≥ dn + 2. Then either there exists an 0 6= a ∈ W such that
rank S(a) ≤ n− 2 or rank S(a) = n− 1 for all 0 6= a ∈ W .

If d = 1 then S is a linear space of matrices. This special case coincides
with the finite-dimensional case of Theorem 2.4. The proof of the general
case goes through in almost the same way. Theorem 2.2 can be similarly
extended to this more general nonlinear setting.

4. Applications.

The aim of this section is to illustrate applicability of the results of Section 2
in algebra and functional analysis. We start by an improvment of Amitsur’s
result on rings satisfying generalized polynomial identities [1].
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Theorem 4.1. Let R be a primitive ring considered as a dense ring of linear
transformations on a vector space V over a division ring D with the cen-
ter C. Let R be a C-algebra satisfying a nontrivial generalized polynomial
identity of degree k which includes n C-independent elements (including 1).
Then R contains a finite rank transformation and D is finite over C with

(D : C) ≤ 4n−1

(
n− 1 + n

[
k

2

])2

.

Remark. Amitsur proved this result with a weaker estimate

(D : C) ≤ 4n−1

((
n + 1

2

)
− 1 + n

[
k

2

])2

.

Proof. We have proved that if T1, . . . , Tn are locally linearly dependent op-
erators between vector spaces over a field F, then there exists a nontrivial
linear combination of these operators of rank at most n−1. The same result
with essentially the same proof holds true if F is any infinite division ring.
As every finite division ring ring is commutative, this statement holds for all
division rings F. In fact, we can extend this as follows: Let U and V be left
vector spaces over a division ring F, V0 a finite-dimensional subspace of V ,
and let linear operators T1, . . . , Tn : U → V be locally linearly dependent
modulo V0. Then there exist α1, . . . , αn ∈ F, not all zero, such that

rank (α1T1 + . . . + αnTn) ≤ dim V0 + n− 1.

To verify this extension one simply considers locally linearly dependent op-
erators QT1, . . . , QTn : U → V/V0. Here, of course, Q : V → V/V0 is the
quotient map.

Amitsur proved this statement with the above estimate replaced by a
weaker one

rank (α1T1 + . . . + αnTn) ≤ dim V0 +
(

n + 1
2

)
− 1 .

To prove the theorem one has to follow step by step the proof of Amitsur
applying our better estimate instead of the Amitsur’s one. �

Our next application is to give a shorter and simpler proof of the char-
acterization of commuting pairs d, g of continuous derivations of a Banach
algebra such that dg(x) is quasi-nilpotent for every x ∈ A. An interested
reader can find some remarks on the background of this problem in [3,
p. 1259].

Theorem 4.2. Let A be a complex Banach algebra and d, g : A → A be
continuous derivations. If d and g commute, then the following are equiva-
lent.
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(i) dg(x) is quasi-nilpotent for every x ∈ A.
(ii) dg(x)3 lies in the radical of A for every x ∈ A.
(iii) if π is a continuous irreducible representation of A on a Banach space

X, then there exist linear operators A and B on X such that π(d(x)) =
[π(x), A], π(g(x)) = [π(x), B], x ∈ A, AB = BA = 0, and either
A2 = 0 or B2 = 0, unless πd = 0 or πg = 0.

Proof. This result has already been proved in [3]. We will just sketch the
first few steps of the proof since they are the same as in [3]. First one
can observe that the only nontrivial implication is (i) ⇒ (iii). Assume,
therefore, that (i) holds and that π is a continuous irreducible representation
of A on a Banach space X. Then B = π(A) ⊂ B(X) is a dense algebra of
bounded linear operators on X. Define D,G : B → B by D(π(x)) = π(d(x)),
G(π(x)) = π(g(x)). It turns out that these maps are well-defined and that
there exist a commuting pair of linear operators A and B on X such that
D(S) = [S, A] and G(S) = [S, B] for all S ∈ B. Note that D(S) = [S, A−λ]
for any scalar operator λ, and that a derivation cD, where c is any nonzero
complex number, satisfies the same assumption as D. Therefore, whenever
it will be suitable, we will replace A by A− λ or cA, and, of course, we will
do the same with B. Let us also point out that D and G, and consequently
A and B, appear symmetrically.

So, our basic assumption is that DG(S) = [[S, B], A] is quasi-nilpotent for
every S ∈ B and we have to prove that there exist scalars λ and µ such that
(A−λ)(B−µ) = 0 and either (A−λ)2 = 0 or (B−µ)2 = 0. In [3] this part
of the proof was long, involving tedious computations. Having new results
on locally linearly dependent operators we can now present a much simpler
and shorter proof. It will be broken up into a series of steps. Two of them
go through in exactly the same way as in [3]. We will include them for the
sake of completness. If f is a linear (not necessarily bounded) functional on
X and x ∈ X we denote by x ⊗ f a rank one operator (x ⊗ f)z = f(z)x,
z ∈ X. Note that every rank one operator on X can be written in this form.

Step 4.3. Let Y be a subspace of X invariant under both A and B and
assume that the restrictions of A and B to Y satisfy A|Y = B|Y . Then there
exists a complex number λ such that (A− λ)2|Y = 0.

Proof. Suppose there exists y ∈ Y such that y, Ay, and A2y are linearly
independent. Then, since B is a dense subalgebra of B(X), we can find S ∈ B
such that Sy = SAy = 0 and SA2y = y. It follows that [[S, B], A]y = y
contradicting the fact that [[S, B], A] is quasi-nilpotent. So, for every y ∈ Y
the vectors y, Ay, and A2y are linearly dependent. By Kaplansky’s theorem
on locally algebraic operators we have either A|Y = λI + N for some scalar
λ and some square-zero operator N , or A|Y = λP + µ(I − P ) for some
scalars λ, µ, λ 6= µ, and some idempotent P 6∈ {0, I}. Here, I denotes
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the identity operator on Y . In the first case the desired conclusion follows
trivially. In the second case there is no loss of generality in assuming that
A|Y = B|Y = P . Take a nonzero x from the range of P and a nonzero y from
the null space of P . Then we can find S ∈ B such that Sx = y and Sy = x.
Consequently, [[S, B], A](x + y) = x + y. This contradiction shows that the
second possibility cannot occur. This completes the proof of Step 4.3. �

Step 4.4. Let Y be a two-dimensional subspace of X invariant under both
A and B. Then there exist scalars λ and µ such that (A−λ)|Y (B−µ)|Y = 0
and either (A− λ)2|Y = 0 or (B − µ)2|Y = 0.

Proof. The conclusion follows directly if A|Y is a scalar operator. If not,
then because B|Y commutes with A|Y , we have B|Y = αA|Y + βI for some
scalars α and β. So, we may assume that A|Y = B|Y and complete the proof
using Step 4.3. �

Step 4.5. Let Y be a subspace of X invariant under both A and B and
assume that A2

|Y = 0. Then there exists a scalar λ such that A|Y (B−λ)|Y =
0.

Proof. It is easy to see that all we have to do is to prove that ABy belongs
to the linear span of Ay for every y ∈ Y . Assume that this is not true for a
certain y ∈ Y . Then we can find S ∈ B satisfying SAy = 0 and SABy = −y,
yielding [[S, B], A]Ay = Ay. We have Ay 6= 0 since otherwise ABy = BAy
would be 0, too. This contradiction completes the proof. �

Step 4.6. Let Y be a subspace of X invariant under both A and B. If
AB|Y = 0 then either A2

|Y = 0 or B2
|Y = 0.

Proof. Assume first that there are x, y ∈ Y such that A2x and B2y are
linearly independent. Then there is an S ∈ B such that SA2x = −y, SB2y =
−x, SAx ∈ Y , and SBy ∈ Y . But then [[S, B], A](Ax+By) = Ax+By 6= 0
since 0 6= A2x = A(Ax + By). Therefore, such x and y cannot exist. That
is, A2x and B2y are dependent for any x, y ∈ Y . If neither A2 nor B2 is
zero on Y , then there is w ∈ Y such that A2Y = B2Y = span {w}. Note
that there is y ∈ Y such that A2y = λw 6= 0 and B2y = µw 6= 0. However,
picking S ∈ B such that Sw = y, SAy ∈ Y , and SBy ∈ Y , we arrive at
[[S, B], A]2Ay = λµAy. With this contradiction the proof of this step is
completed. �

Step 4.7. Let Y be a subspace of X invariant under both A and B. If
AB|Y = I then there exist a nonzero scalar λ and a square-zero operator
M : Y → Y such that A|Y = λI +M and B|Y = 1

λI− 1
λ2 M . Here, I denotes

the identity operator on Y .

Proof. If there exists y ∈ Y such that y, Ay, and A2y are linearly indepen-
dent then we can find S ∈ B such that Sy = SA2y = 0 and SAy = Ay.
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It follows that [[S, B], A]Ay = 2Ay, a contradiction. By Kaplansky’s theo-
rem on locally algebraic operators A|Y is algebraic of degree at most two.
If A|Y = λI + M with M a square-zero (possibly zero) operator, then the
desired conclusion follows directly from the equation AB|Y = I. In the re-
maining case we have A = αP + β(I − P ) for some scalars α 6= β, α, β 6= 0,
and some idempotent P : Y → Y , P 6= 0, I. Then B = α−1P + β−1(I − P )
and we can find linearly independent vectors x and y belonging to the range
of P and I − P , respectively, and S ∈ B such that Sx = y and Sy = x.
It follows that x + y belongs to the eigenspace of [[S, B], A] corresponding
to the nonzero eigenvalue

(
2− α2+β2

αβ

)
. This contradiction completes the

proof of this step. �

Step 4.8. Assume that the operators A, B, and I are locally linearly de-
pendent. Then there exist scalars λ and µ such that (A−λ)(B−µ) = 0 and
either (A− λ)2 = 0 or (B − µ)2 = 0.

Proof. If the dimension of the linear span of A,B, I is 1 or 2 then we can
assume with no loss of generality that either A = B, or A = 0, or B = 0. So,
in this case we are done by Step 4.3. Step 4.4 gives the desired conclusion
if dim X ≤ 2. It remains to consider the case that A,B, I are linearly
independent and dim X > 2. Then, by Theorem 2.4 there exist scalars
α, β, γ such that αA + βB + γI = F is of rank one. Note that we can
assume with no loss of generality that γ = 0.

Assume first that one of scalars α, β, say α, is zero. Then B is of rank
one. If it is square-zero, then we complete the proof using Step 4.5. If not,
then after multiplying by an approprite constant, we can assume that B is
an idempotent of rank one. As A commutes with B it leaves the null space
and the range of B invariant. Hence, the one-dimensional range of B is
contained in an eigenspace of A corresponding to an eigenvalue λ. It follows
that (A− λ)B = 0, and hence, the desired conclusion follows from Step 4.6.

It remains to consider the case that both α and β are nonzero. In this
case we may assume that A = B + z ⊗ f for some z ∈ X and some linear
functional f on X. The null space of f is invariant for both A and B
because A and B commute. The restrictions of A and B to this common
invariant subspace coincide, and so, by Step 4.3, we may assume that both
these restrictions are square-zero. Let u ∈ X be a vector such that X is a
direct sum of the null space of f and the linear span of u and define a linear
operator T : X → X such that Tu = 0 and the restriction of T to the null
space of f coincides with the restriction of A to this subspace. Then T 2 = 0,
the range of T is contained in the null space of f , and A = T + x ⊗ f and
B = T + y ⊗ f for some x, y ∈ X. Applying AB = BA we get

Ty + f(y)x = Tx + f(x)y.
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Multiplying by T we arrive at

f(y)Tx = f(x)Ty.

We will consider three cases. If f(x) = f(y) = 0, then clearly A2B =
AB2 = 0. In case that there was x ∈ X such that ABx 6= 0 we would have
S ∈ B satisfying SABx = x, which would further imply [[S, B]A]ABx =
ABx, a contradiction. Therefore, AB = 0 in this case and one can complete
the proof using Step 4.6.

If f(x) = 0 and f(y) 6= 0 then Tx = 0 which yields AB = 0 and we are
done.

In the remaining case that both f(x) and f(y) are nonzero, we may assume
with no loss of generality that f(x) = 1. From the above equations we get
Ty = f(y)Tx, and consequently, (f(y)−1)Tx = y−f(y)x. Now, if f(y) = 1
then Tx = Ty, and consequently, x = y. Thus, A = B, and the desired
conclusion follows from Step 4.3. So, assume that f(y) 6= 1. Then Tx, and
hence Ty, belong to the linear span of x and y, which is then obviously
invariant under both A and B. Let us first consider the case that Tx is
nonzero. Since T 2 = 0, the vectors x and Tx are linearly independent.
Thus, the linear span of x and y is the same as the linear span of x and
Tx. Since ATx = BTx = 0, Step 4.4 implies that the restriction of A2 or
B2, say A2, to the linear span of x and y is zero. We already know that the
restriction of A2 to the null space of f is zero. So, A2 = 0 and we complete
the proof in this case using Step 4.5. We will show that the remaining case,
that Tx = 0 and hence Ty = 0, cannot occur. Namely, in this case x and
y would be linearly dependent. The operators A and B would have matrix
representations

A =
[
1 0
0 A′

]
and B =

[
α 0
0 A′

]
with respect to the decomposition of X into the direct sum of the linear
span of x and the null space of f . Here, A′ is the restriction of A to the
null space of f and α is a nonzero scalar. Take any nonzero z in the null
space of f such that A′z = 0. Then the linear span of x and z is invariant
under both A and B. The restrictions of (A − λ)2 and (B − µ)2 to this
two-dimensional subspace are both nonzero for any choice of scalars λ and
µ. This contradiction with Step 4.4 completes the proof. �

Step 4.9. If AB = N is a square-zero operator then there exist scalars λ
and µ such that (A−λ)(B−µ) = 0 and either (A−λ)2 = 0 or (B−µ)2 = 0.

Proof. The null space of N is invariant under both A and B and the re-
striction of AB to this subspace is the zero operator. So, by Step 4.6 one
of the restrictions of A or B to the null space of N , say the restriction of
A, is square-zero. It follows that A3B = A2(AB) = 0. Next we will see
that A2B = 0. If not, then we would have an x ∈ X with A2Bx 6= 0
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and S ∈ B such that SA2Bx = Ax. But then [[S, B], A]A2Bx = A2Bx, a
contradiction. The next step is to prove that there is a scalar λ such that
AB = λAB2. To this end it is enough to show that ABx belongs to the
linear span of AB2x for every x ∈ X. Assume this is not true for a given
x ∈ X. Then we can find S ∈ B such that SABx = x and SAB2x = 0,
which further yields [[S, B], A]ABx = ABx, a contradiction. Now, let x be
any vector from X. Then x = λBx + (x − λBx). We already know that
A2Bx = 0. Also, x − λBx belongs to the null space of N . The restriction
of A to this subspace is square-zero. So, A2x = 0. Applying Step 4.5 we
complete the proof. �

Now we are ready for the last step of the proof.

Step 4.10. If A, B, and I are not locally linearly dependent then there exist
scalars λ and µ such that (A − λ)(B − µ) = 0 and either (A − λ)2 = 0 or
(B − µ)2 = 0.

Proof. The operators AB, A, B, and I are locally linearly dependent. In-
deed, if this were not true then there would exist x ∈ X and S ∈ B such
that SABx = x and SAx = SBx = Sx = 0, and so, [[S, B], A]x = x. By
Theorem 2.6 and a remark following it we know that there exist scalars α,
β, and γ such that AB + αA + βB + γ = M is a square-zero operator of
finite rank. Replacing A by A + β and B by B + α, and then multiplying
A by an appropriate constant, we get AB = N or AB = I + N with N
being square-zero with finite rank. In the first case we complete the proof
applying the previous step. So, assume that AB = I + N . Let N have a
matrix representation

N =

0 0 0
I 0 0
0 0 0


with respect to a direct sum decomposition of X into two appropriate finite-
dimensional spaces X1, X2, and a subspace X3. The null space of N is
invariant for A and B and the restriction of AB to this subspace is the
identity operator. Applying Step 4.7 we can assume, after multiplying A
and B by appropriate constants, that the restriction of A to this subspace
is a sum of the identity and a square-zero operator, while B is a difference
of these two operators. Since A commutes with N we have

A =

A1 0 0
A2 A1 A3

A4 0 A5

 .

But [
A1 A3

0 A5

]
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is a sum of the identity and a square-zero operator. It follows that A1

is a sum of the identity and a square-zero operator, too. Consequently,
(A− I)4 = 0, and similarly, (B − I)4 = 0.

So, we may assume that A4 = B4 = 0. We will first prove that for every
x ∈ X the vector BA3x belongs to the linear span of A3x. Indeed, if this was
not true for some x then we would have S ∈ B such that SBA3x = −A2x
and SA3x = 0 implying that [[S, B], A]A3x = A3x 6= 0. So, BA3 = λA3

for some scalar λ. If A3 6= 0 then, since B is nilpotent, we necessarily have
λ = 0. So, in this case BA3 = 0. But, of course, this is true also in the case
that A3 = 0. We will next prove that for every x ∈ X the vector B2A2x
belongs to the linear span of BA2x. Indeed, if this was not true for some
x then we would have S ∈ B such that SB2A2x = −ABx and SBA2x = 0
implying that [[S, B], A]BA2x = BA2x 6= 0. As before we conclude that
B2A2 = 0 and we complete the proof using the previous step. �
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