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The steady motion of viscoelastic fluids is investigated in a
three-dimensional exterior domain. Results concerning exis-
tence, uniqueness and asymptotic behaviour are obtained us-
ing appropriately constructed function spaces in which the el-
ements are defined as a sum of the main asymptotic term and
of the remainder living in a proper weighted Sobolev space.
The equations are written as a coupled system that, at the
first stage, can be studied as two linear problems composed
of a Stokes system and a transport equation. Finally, a stan-
dard contraction argument provides existence and uniqueness
of solutions for the original nonlinear coupled set of equations,
when the data are sufficiently small.

1. Introduction.

The well-posedness of the equations governing the steady motion of incom-
pressible viscoelastic fluids in two- and three-dimensional exterior domains
has been investigated recently in several articles, cf. [7, 8, 22, 23, 32, 26].
These studies, as most of the other related works on viscoelastic fluids of
differential and rate type, see e.g., [2, 28, 9, 3, 25] and all the references
quoted therein, are crucially based on the mixed structure of the equations of
motion. In fact, the equations form a system of nonlinear PDE’s of elliptic-
hyperbolic type which can most naturally be studied by suitably decoupling
the elliptic and hyperbolic parts of the equations.

In this paper, we are concerned with the asymptotic behaviour of steady
solutions for the equations of incompressible, homogeneous viscoelastic flu-
ids in an exterior domain Ω ⊂ R3. We assume that the flow domain Ω is
an open and connected set, exterior to a compact set B ⊂ R3, with a suffi-
ciently smooth boundary ∂Ω. Moreover, we suppose that the interior of B
is nonempty and contains the origin of coordinates.

We shall focus on two particular models for viscoelastic fluids, namely:

Oldroyd-B fluid, where the extra-stress tensor TE = pI+T, with T denoting
the Cauchy stress and p the hydrostatic pressure, is related to the rate of
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deformation tensor D(v) = 1
2(∇v + (∇v)T ) by, cf. [24]

TE + λ1

(
∂

∂t
TE + v · ∇TE −∇vTE −TE(∇v)T

)
= 2µ0

(
D(v) + λ2

(
∂

∂t
D(v) + v · ∇D(v)−∇vD(v)−D(v)(∇v)T

))
.

Second-grade fluid of Rivlin-Ericksen type, in which the extra-stress obeys
the constitutive law, cf. [4, 31]

TE = 2µD(v) + 2α1

( ∂

∂t
D(v) + v · ∇D(v)

+ (∇v)TD(v) + D(v)∇v
)

+ 4α2D2(v).

Here, µ, λ1, λ2, α1 and α2 stand for material coefficients, µ0, µ > 0 are
the fluid viscosities, λ1 > 0 is the relaxation time, λ2 the retardation time
(0 < λ2 < λ1), and α1 > 0 and α2 are called the normal stress moduli
(α1 + α2 = 0)1 .

Attaching the system of coordinates to B, assuming that the fluid adheres
to the fixed boundary of B and is at rest at infinity, and recalling the laws
for the balance of linear momentum and for the conservation of mass, one
obtains the following set of equations using the constitutive relation for the
Oldroyd-B fluid

−ν0(1− ω)∆v +∇p = ∇ · τ + v · ∇v + f

∇ · v = 0
in Ω,

v = v∗, v∗ · n = 0 on ∂Ω,

lim
|x|→∞

v(x) = 0

τ + λ1v · ∇τ = 2ν0 ωD(v) + N1(τ ,∇v) in Ω.

(1.1)

Here, v = (v1, v2, v3) is the velocity field, p the associated pressure and τ
denotes the elastic part of the extra stress, i.e., TE = 2ν0(1− ω)D(v) + τ ,
where ν0 = µ0/ρ (ρ is the fluid density) and ω = 1 − λ2/λ1. Furthermore,
f is a prescribed vector field corresponding to the exterior body force, the
nonlinear term N1(τ ,∇v) is given by

N1(τ ,∇v) = λ1

(
(∇v)τ + τ (∇v)T

)
(1.2)

and n denotes the unit outward normal vector.

1We tacitly assume the validity of all these thermodynamic conditions but point out
that the mathematical results we prove here for second-grade fluids can be obtained with-
out the restrictions α1 > 0 and α1 + α2 = 0.
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For the second-grade fluid the equations of motion take the form



−ν∆v − αv · ∇∆v +∇p = f +∇ ·
(
2α(∇v)TD(v)− v ⊗ v

)
∇ · v = 0 in Ω,

v = v∗, v∗ · n = 0 on ∂Ω,

lim
|x|→∞

v(x) = 0

(1.3)

where ν is the kinematic viscosity coefficient, α = α1 is redefined after
division by the constant density and ⊗ denotes the usual dyadic product.

The solvability of system (1.3) can be studied in the following decomposed
form 

−∆v +∇π = ∇ · z

∇ · v = 0
in Ω,

v = v∗, v∗ · n = 0 on ∂Ω,

lim
|x|→∞

v(x) = 0

νz + αv · ∇z = N2(∇v, π, z)− v ⊗ v + F in Ω,

(1.4)

with π denoting a modified pressure, z standing for an auxiliary tensor-
valued variable and F being a tensor field such that f = ∇ · F . Moreover,
the nonlinear term N2(∇v, π, z) is given by

N2(∇v, π, z) = α
(
z(∇v)T + 2(∇v)TD(v)− π(∇v)T

)
.(1.5)

It is straightforward to show, see e.g., [23], that a sufficiently regular solution
of (1.4) solves the original problem (1.3) with the pressure p given by

p = νπ + αv · ∇π.(1.6)

Moreover, it is a standard matter to prove that f can be written in a
divergence-form without loss of generality (see also Lemma 5.2 for the same
result in the functional setting of this paper).

The analysis of both systems (1.4) and (1.1) reduces to the study of the
Stokes system 

−∆v +∇π = ψ

∇ · v = 0
in Ω,

v = v∗, v∗ · n = 0 on ∂Ω,
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for given vector fields ψ and v∗, and of the transport equation

νz + αv · ∇z = g in Ω,

for a given tensor function g and a vector field v, solenoidal in Ω and tan-
gential on ∂Ω.

Problem (1.3) has been recently studied in two different works, cf. [8, 23].
In [8] the authors showed that provided the data is small enough there exists
a solution to (1.3) such that

v ∈ L6(Ω)3, ∇v ∈ W 2,2(Ω)3×3, ∇p ∈ L2(Ω)3, (p− p0) ∈ L6(Ω),

for some constant p0. Here and in all that follows, we use the standard nota-
tions Lq(Ω), Wm,q(Ω) and Cm,δ(Ω), respectively for the Lebesgue, Sobolev
and Hölder spaces.

In [23] existence and uniqueness were proven, for small data, in a more
restricted class of physically reasonable solutions. As for the Navier-Stokes
equations, by physically reasonable one refers to sufficiently regular solutions
having the decay, see [5, 6]

v(x) = O(|x|−1), ∇v(x) = O(|x|−2), p(x) = O(|x|−2).

The analysis of [23], based on the integral representation of the solution
of the Stokes problem and on the L2(Ω)-estimates of the weakly singular
integrals appearing in the representation formula, does not provide, however,
optimal decay rates for the higher order derivatives of the solution (v, p).
Moreover, with this method one cannot specify the asymptotic behaviour
of the solution as |x| → ∞. In particular, the method fails when applied
to Equations (1.1) where the unknown functions are linearly related both
through the Stokes and the transport equation.

Let us recall that the Navier-Stokes equations are not solvable in classical
weighted Sobolev spaces while considering the convective term v · ∇v as a
perturbation of the Stokes problem. On the other hand, if one studies these
equations in a function space in which the elements are defined as a sum of
two parts, one of them containing the main asymptotics, then the Navier-
Stokes problem is well-posed, see [17, 18]. We also refer to [15, 16, 20]
where these weighted spaces with detached asymptotics were applied to the
study of the Navier-Stokes equations in other unbounded domains.

In this paper, we shall prove that problems (1.3) and (1.1) are well-posed
in appropriately constructed weighted Sobolev spaces with detached asymp-
totics. In particular, we obtain accurate information about the asymptotic
behaviour of the solutions. Let us point out that, although we consider
here only two particular fluid models, our results remain valid for more gen-
eral fluids of the Oldroyd and Rivlin-Ericksen type, for example for all the
models studied in [25, 32]. For the mechanical background of the rate and
differential type viscoelastic fluids, we refer to [31, 29, 27, 10].
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Our paper is organized as follows. In Section 2, we study the Stokes op-
erator in weighted spaces with detached asymptotics. In Section 3, we anal-
yse the Newtonian and non-Newtonian nonlinear terms in these weighted
Sobolev spaces. The transport equation is studied in Section 4 and, finally,
in Section 5 we prove existence and uniqueness for the equations of vis-
coelastic fluids (1.1) and (1.3), using the results of the previous sections and
a fixed point argument.

2. Regarding the Stokes problem.

We shall begin by studying the Stokes system in weighted Sobolev spaces.
In order to apply the general theory for elliptic boundary-value problems
in domains with conical points, see e.g., [19], we consider the problem with
completely non-homogeneous right-hand side. After introducing the spaces,
we recall the values of the weight, summability and regularity indices for
which the Stokes operator is an isomorphism. Since the convective term
v ·∇v appearing in the nonlinear equations (1.1) and (1.3) is not continuous
in the range space of the Stokes operator for those values of the indices,
we construct particular function spaces in which the convective term can be
treated. We end the section by re-analyzing the Stokes operator in these
weighted Sobolev spaces with detached asymptotics.

2.1. The Stokes operator in weighted Lq-spaces. We shall use the
following standard notation for the weighted Sobolev spaces. By V l,q

β (Ω) we
denote the closure of C∞

0 (Ω) with respect to the weighted norm

‖u;V l,q
β (Ω)‖ =

l∑
k=0

‖rβ−l+kDk
xu;Lq(Ω)‖,

where l ∈ N0 = N∪{0} , β ∈ R, q ∈ (1,∞) and Dk
xu stands for the system of

all k-th order derivatives of the function u. Let Wm,q(Ω), with m ∈ Z, q ∈
(1,∞), be the standard Sobolev space and W l−1/q,q(∂Ω) denote the trace
space on ∂Ω of functions both equipped with the usual norms. Since ∂Ω is
compact and the origin of coordinates lays inside R3 \Ω, the trace space for
V l,q

β (Ω) coincides with W l−1/q,q(∂Ω), for all β ∈ R.
We associate to the Stokes problem{

−∆v +∇p = f , −∇ · v = g in Ω,

v = h on ∂Ω,
(2.1)

the mapping S l,q
β : Dl,q

β V (Ω) 7→ Rl,q
β V (Ω) defined by

(v, p) 7→ (f , g,h) = S l,q
β (v, p),(2.2)
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where

Dl,q
β V (Ω) ≡ V l+1,q

β (Ω)3 × V l,q
β (Ω),

Rl,q
β V (Ω) ≡ V l−1,q

β (Ω)3 × V l,q
β (Ω)×W l+1−1/q,q(∂Ω)3.

The mapping S l,q
β is continuous for any q ∈ (1,∞), l ∈ N and β ∈ R.

The following theorem can be derived from the general results proved in
[11, 13, 14], see also [19] §3.6, [30, 17, 18].

Theorem 2.1. The mapping (2.2) is an isomorphism if and only if

β − l ∈
(

1− 3
q
, 2− 3

q

)
.(2.3)

Regarding the asymptotics of solutions, we recall the next theorem dating
back to Kondratiev [11] and Maz’ya, Plamenevskii [14] (see also Theorems
4.2.1, 6.4.3 and Remark 4.1.5 in [19]).

Theorem 2.2. Let (f , g,h) ∈ Rl,q
γ V (Ω) ⊂ Rl,q

β V (Ω) with

γ − l ∈
(

2− 3
q
, 3− 3

q

)
.(2.4)

Then the solution (v, p) ∈ Dl,q
β V (Ω) can be expressed in the asymptotic form

(v, p) = (v0, p0) + (ṽ, p̃),

where (ṽ, p̃) ∈ Dl,q
γ V (Ω) and

(v0(x), p0(x)) = b1E1(x) + b2E2(x) + b3E3(x),(2.5)

with Ej denoting the j–th column of the fundamental matrix of the Stokes
operator in R3 and bj ∈ R, j = 1, 2, 3. Moreover, the following estimate holds

‖(ṽ, p̃);Dl,q
γ V (Ω)‖+ |b1|+ |b2|+ |b3| ≤ c ‖(f , g,h);Rl,q

γ V (Ω)‖.

2.2. The auxiliary problem on the unit sphere S2. In order to inves-
tigate the properties of the Stokes operator S l,q

β in a more detailed way, let
us consider the following Stokes system in the complete cone R3 \ {0}

−∆v0 +∇p0 = f0, −∇ · v0 = g0, in R3 \ {0}(2.6)

where
v0(x) = rλV(θ), p0(x) = rλ−1P (θ);

f0(x) = rλ−2F(θ), g0(x) = rλ−1G(θ),
(2.7)
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V, P,F and G are functions on the sphere S2, r = |x|, θ = |x|−1x ∈ S2 and
λ ∈ C. Recall that Ω can be viewed as a domain with a conical point at
infinity and that at large distances Ω coincides with the complete cone.

Substituting (2.7) into (2.6) and separating the radial variable, one ob-
tains a system of differential equations written on the sphere in a compact
form as, see e.g., [12]

S(λ)(V, P ) = (F, G) on S2.(2.8)

Remark 2.1.
(1) Note that the linear combination (2.5) is of the form (2.7)1 with λ =

−1. Moreover, (v0, p0) solves the homogeneous Stokes system (2.6).
(2) If λ = 0 then any power solution of the type (2.7)1 to the homogeneous

Stokes system (2.6) has the form V = const, P = 0.

Remark 2.2. The bounds for the difference β − l in (2.3) can be obtained
heuristically by requiring that any linear combination (2.5) belongs to the
space Dl,q

β V (Ω) while (c, 0) 6∈ Dl,q
β V (Ω) for any c ∈ R3 \ {0}.

Lemma 2.1 (see Lemma 3.5.9 [19]). The following Green’s formula is valid
for all smooth functions V, P and W, Q defined on the sphere S2

(S(λ)(V, P ), (W, Q))S2 = ((V, P ), S(−1− λ)(W, Q))S2 ,

where (·, ·)S2 stands for the inner product in L2(S2) and λ is the complex
conjugate of λ.

Let us consider system (2.8) with λ = −1. By virtue of the Green’s
formula, the operators S(−1) and S(0) are formally adjoint. Furthermore,
by Remark 2.1(2)

ker S(0) = {(V, P ) : P = 0,V is constant} .

Hence, defining the domain and range spaces for the Stokes operator on the
unit sphere by

Ds,qW (S2) = W s+1,q(S2)3 ×W s,q(S2)

Rs,qW (S2) = W s−1,q(S2)3 ×W s,q(S2),

one obtains the following assertion.

Lemma 2.2. Let (F, G) ∈ Rs,qW (S2), with s ∈ N0. System (2.8), with
λ = −1, has a solution (V, P ) ∈ Ds,qW (S2) if and only if the compatibility
condition ∫

S2

F(θ) dsθ = 0(2.9)

is satisfied.2

2Observe that (2.9) implies three scalar compatibility conditions.
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Remark 2.3. The solution (V(θ), P (θ)) is defined up to an addendum
b1E1(θ) + b2E2(θ) + b3E3(θ) where Ej(θ) denotes the trace of Ej(x) on
the sphere S2. This follows from Theorem 2.2 and Remark 2.1.

Let us denote from now on by Rs,qW (S2)⊥ the subspace of Rs,qW (S2)
consisting of functions that satisfy the compatibility condition (2.9).

2.3. The weighted spaces with detached asymptotics. Let D
l,q
γ V (Ω)

denote a weighted Sobolev space of vector functions (v, p) admitting the
representation

(v, p) = (r−1V(θ), r−2P (θ)) + (ṽ, p̃),(2.10)

with

(V, P ) ∈ Dl+1,qW (S2), (ṽ, p̃) ∈ Dl,q
γ V (Ω),(2.11)

and where the weight index γ satisfies condition (2.4). The norm in D
l,q
γ V (Ω)

is defined by

‖(v, p);Dl,q
γ V (Ω)‖ = ‖(ṽ, p̃);Dl,q

γ V (Ω)‖+ ‖(V, P );Dl+1,qW (S2)‖.

One easily proves the following result.

Lemma 2.3. For any (v, p) ∈ D
l,q
γ V (Ω) it holds (v, p) ∈ Dl,q

β V (Ω), with β

satisfying (2.3). Furthermore, the estimate

‖(v, p);Dl,q
β V (Ω)‖ ≤ c‖(v, p);Dl,q

γ V (Ω)‖

is valid.

Now, let us consider the Stokes problem (2.1) in the weighted space with
detached asymptotics D

l,q
γ V (Ω). The range R

l,q
γ V (Ω) of the Stokes operator

S
l,q
γ acting on the domain D

l,q
γ V (Ω) is composed of triples (f , g,h) having

the asymptotic form3

f(x) = r−3F(θ) + f̃(x), g(x) = r−2G(θ) + g̃(x)

and the finite norm

‖(f , g,h);Rl,q
γ V (Ω)‖ = ‖(f̃ , g̃,h);Rl,q

γ V (Ω)‖+ ‖(F, G);Rl+1,qW (S2)‖.

Theorem 2.3. Let (f , g,h) ∈ R
l,q
γ V (Ω). Problem (2.1) has a solution (v, p)

∈ D
l,q
γ V (Ω) if and only if the compatibility condition (2.9) is valid. This

solution is unique and the estimate

‖(v, p);Dl,q
γ V (Ω)‖ ≤ c‖(f , g,h);Rl,q

γ V (Ω)‖(2.12)

holds.

3Observe that h has compact support.
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Proof. First, we look for a particular solution of the system (2.8) at λ = −1.
Due to Lemma 2.2 and Remark 2.3 there exists a continuous inverse operator
R for the mapping

S(−1) : Dl+1,qW (S2) → Rl+1,qW (S2)⊥.

We set (V̂, P̂ ) = R(F, G) and conclude that

‖(V̂, P̂ );Dl+1,qW (S2)‖ ≤ c‖(F, G);Rl+1,qW (S2)‖.(2.13)

Next, we consider the Stokes problem (2.1) with the right-hand side

(f , g,h) = (f̃ , g̃,h− r−1V̂).

Note that since V̂ ∈ W l+2,q(S2)3, we have (f̃ , g̃,h − r−1V̂) ∈ Rl,q
γ V (Ω) ⊂

Rl,q
β V (Ω) and

‖(f̃ , g̃,h− r−1V̂);Rl,q
γ V (Ω)‖(2.14)

≤ ‖(f̃ , g̃,h);Rl,q
γ V (Ω)‖+ c ‖V̂;W l+2,q(S2)3‖

≤ c ‖(f , g,h);Rl,q
γ V (Ω)‖.

Hence, from Theorems 2.1 and 2.2 it follows that Problem (2.1) with the
right-hand side (f̃ , g̃,h− r−1V̂) admits a unique solution (v̂, p̂) ∈ Dl,q

β V (Ω)
which can be expressed in the form

(v̂, p̂) =
3∑

j=1

b̂jEj(x) + (ṽ, p̃)(2.15)

and satisfies the estimate

‖(ṽ, p̃);Dl,q
γ V (Ω)‖+

3∑
i=1

|b̂j | ≤ c ‖(f̃ , g̃,h− r−1V̂);Rl,q
γ V (Ω)‖.(2.16)

Now, let us set

(V(θ), P (θ)) = (V̂(θ), P̂ (θ)) +
3∑

i=1

b̂jEj(θ),(2.17)

and observe that the sum (v, p) = (r−1V̂, r−2P̂ )+(v̂, p̂) is of the form (2.10)
and belongs to D

l,q
γ V (Ω). Estimate (2.12) follows directly from Formulae

(2.15) and (2.17), and from estimates (2.13), (2.14), (2.16). The uniqueness
is a consequence of the properties of the operator S l,q

β , see Theorem 2.1 and
Lemma 2.3.

It remains to verify that the compatibility condition (2.9) is necessary.
This follows from Lemma 3.5.11 in [19] which states that if (2.9) is not true
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then the solution (v, p) ∈ Dl,q
β V (Ω) takes the form

(v(x), p(x)) = log r
3∑

j=1

bjEj(x) + (r−1V(θ), r−2P (θ)) + (ṽ(x), p̃(x)),

(2.18)

where (V, P ) ∈ Dl,qW (S2), (ṽ, p̃) ∈ D
l,q
γ V (Ω) and b = (b1, b2, b3) is a non-

trivial vector in R3. Clearly, the solution given by (2.18) does not belong to
D

l,q
γ V (Ω). �

3. Estimating the nonlinearities.

The convective term v · ∇v can be shown to be continuous in the weighted
Sobolev space V l−1,q

γ (Ω), when v ∈ V l+1,q
γ , provided γ − l ≥ 2 − 3

q . How-
ever, as seen in the previous section for these values of γ, l and q, the
Stokes problem is not uniquely solvable. Here, we shall justify the choice
of the weighted space with detached asymptotics D

l,q
γ V (Ω) by showing that

(v · ∇v, 0, 0) ∈ R
l,q
γ V (Ω) and that, moreover, the convective term satisfies

the compatibility condition (2.9). We start by recalling embedding results
in weighted Sobolev spaces.

Let l ≥ 0 be an integer, α ∈ (0, 1), and β ∈ (−∞,∞). By Λl,α
β (Ω) we de-

note the weighted Hölder space, i.e., the space of continuously differentiable
functions up to the order l, for which the norm

‖u; Λl,α
β (Ω)‖ =

l∑
k=0

sup
x∈Ω

|x|β−l−α+k|Dk
xu(x)|

+ sup
x∈Ω

|x|β sup
y∈Ω

|x−y|< 1
2
|x|

{|x− y|−α|Dl
xu(x)−Dl

yu(y)|}


is finite.

Lemma 3.1. Let u ∈ V l,q
β (Ω).

(i) If ql ≤ 3, with q ≤ t < 3q
3−ql , then u ∈ V 0,t

β−l− 3
t
+ 3

q

(Ω) and the estimate∥∥∥∥u;V 0,t

β−l− 3
t
+ 3

q

(Ω)
∥∥∥∥ ≤ c

∥∥∥u;V l,q
β (Ω)

∥∥∥
holds.

(ii) If ql > 3 and m + α ≤ l− 3
q with α ∈ (0, 1), then u ∈ Λm,α

m+α+β−l+ 3
q

(Ω)

and ∥∥∥∥u; Λm,α

m+α+β−l+ 3
q

(Ω)
∥∥∥∥ ≤ c

∥∥∥u;V l,q
β (Ω)

∥∥∥ .
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Proof. See Maz’ya and Plamenevskii [14], Section 6.6 in Nazarov and Plame-
nevskii [19] and Borchers and Pileckas [1]. �

3.1. The convective term.

Lemma 3.2. Let (vi, 0) ∈ D
l,q
γ V (Ω), with i = 1, 2, l ≥ 1, 3

2 < q < ∞ and
γ − l ∈ (2 − 3

q , 3 − 3
q ). Then (v1 · ∇v2, 0, 0) ∈ R

l,q
γ V (Ω) and the following

estimate holds

‖(v1 · ∇v2, 0, 0);Rl,q
γ V (Ω)‖ ≤ c ‖(v1, 0);Dl,q

γ V (Ω)‖ ‖(v2, 0);Dl,q
γ V (Ω)‖.

(3.1)

Proof. Let us note that we can clearly assume that Ω = R3 \ B1. In view of
the representation formula (2.10) one has

v1 · ∇v2 =
1
r
V1(θ) · ∇x

(
1
r
V2(θ)

)
+ ṽ1(x) · ∇x

(
1
r
V2(θ)

)
(3.2)

+
1
r
V1(θ) · ∇xṽ2(x) + ṽ1(x) · ∇xṽ2(x).

Writing V1(θ) = (V 1
r (θ),V1

θ(θ)), one easily sees that

1
r
V1(θ) · ∇x

(
1
r
V2(θ)

)
=

1
r3

(
− V 1

r (θ) + V1
θ(θ)∇θ

)
V2(θ) =

1
r3

F(θ),

and by Sobolev embeddings one obtains the estimate

‖F;W l,q(S2)3‖ ≤ c ‖V1;W l+2,q(S2)3‖ ‖V2;W l+2,q(S2)3‖.(3.3)

Now let us estimate the second term on the right-hand side of (3.2). We
may write for all k = 0, . . . , l − 1

∥∥∥∥rγ−l+1+kDk
x

(
ṽ1(x) · ∇x

(
1
r
V2(θ)

))
;Lq(Ω)3

∥∥∥∥q
(3.4)

=
∫ ∞

1
r2 dr

∫
S2

r(γ−l+1+k)q
∣∣∣Dk

x

(
r−2

(
− ṽ1

r (r, θ) + ṽ1
θ(r, θ)∇θ

)
V2(θ)

)∣∣∣q dsθ

≤ c ‖V2;Ck+1(S2)3‖q
∑
j≤k

∫ ∞

1
r(γ−l−1+j)q

∫
S2

|Dj
xṽ

1(r, θ)|q r2 dsθ dr

≤ c ‖V2;C l,q(S2)3‖q ‖ṽ1;V l+1,q
γ (Ω)3‖q,

where, for simplicity, ṽ1 denotes the solution written either in Cartesian or
spherical coordinates and where we have set ṽ1(r, θ) = (ṽ1

r (r, θ), ṽ
1
θ(r, θ)).

From (3.4) it follows that

∥∥∥∥ṽ1(x) · ∇x

(
1
r
V2(θ)

)
;V l−1,q

γ (Ω)3
∥∥∥∥ ≤ c ‖V2;W l+2,q(S2)3‖ ‖ṽ1;V l+1,q

γ (Ω)3‖.

(3.5)
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On the other hand, we readily get for all k = 0, . . . , l − 1∥∥∥∥rγ−l+1+kDk
x

(
1
r
V1(θ) · ∇xṽ2(x)

)
;Lq(Ω)3

∥∥∥∥q

(3.6)

≤ c ‖V1;Ck(S2)3‖q
∑
j≤k

∫ ∞

1
r(γ−l+j)q|Dj

x(∇xṽ2(x))|q r2 dsθ dr

≤ c ‖V1;W l+1,q(S2)3‖q
∑

j≤k+1

∫ ∞

1
r(γ−l+j)q

∫
S2

|Dj
xṽ

2(x)|q r2 dsθ dr

≤ c ‖V1;W l+1,q(S)3‖q ‖ṽ2;V l,q
γ (Ω)3‖q.

Finally, let us note that ṽ ∈ V l+1,q
γ (Ω)3 if and only if rγ−l−1+3/qṽ(r, θ) ∈

W l+1,q(Q1)3, where Q1 = (1,∞)×S2. In fact, see also Section 3.5.1 in [19],
we can write for all k = 0, . . . , l + 1∫ ∞

1
r(γ−l−1+k)q

∫
S2

|Dk
x ṽ|q r2 dr dsθ

'
∑

j+p≤k

∫ ∞

1

∫
S2

r(γ−l−1)q+3
∣∣(rDr)j Dp

θ ṽ
∣∣q dr

r
dsθ

'
∑

j+p≤k

∫ ∞

1

∫
S2

∣∣∣(rDr)j Dp
θ(r

γ−l−1+3/qṽ)
∣∣∣q dr

r
dsθ,

where the symbol a ' b means that c b ≤ a ≤ C b with some positive
constants c and C. Hence, using the Euler change of variables t = log r, we
conclude that∫ ∞

1
r(γ−l−1+k)q

∫
S2

|Dk
x ṽ(r, θ)|q r2 dr dsθ

'
∑

j+p≤k

∫ ∞

1

∫
S2

∣∣∣Dj
t Dp

θ

(
e(γ−l−1+3/q)tṽ(et, θ)

)∣∣∣q dt dsθ

'
∑

j+p≤k

∫ ∞

1

∫
S2

∣∣∣e(γ−l−1+3/q)t Dj
t Dp

θ ṽ(et, θ)
∣∣∣q dt dsθ,

which implies that ‖ṽ;V l+1,q
γ (Ω)3‖ ' ‖rγ−l−1+3/qṽ(r, θ);W l+1,q(Q1)3‖.

Now, let

v̂(t, θ) = rγ−l−1+3/qṽ(r, θ)
∣∣∣
r=et

(3.7)

and consider the term ṽ1 · ∇xṽ2. One easily sees that

rγ−l+1+3/qṽ1 · ∇xṽ2

' r2−(γ−l−1+3/q) rγ−l−1+3/qṽ1 · (∂r, r
−1∇θ)(rγ−l−1+3/qṽ2)

= e−(γ−l−2+3/q)tv̂1(t, θ) · (∂t,∇θ)v̂2(t, θ).
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Now, since v̂i ∈ W l+1,q(Q1)3, i = 1, 2, q > 3
2 and γ − l > 2 − 3/q, one

concludes using embedding results that

e−(γ−l−2+3/q)tv̂1(t, θ) · ∇xv̂2(t, θ) ∈ W l−1,q(Q1)3.

Consequently ṽ1 · ∇xṽ2 ∈ V l−1,q
γ (Ω)3 and

‖ṽ1 · ∇xṽ2;V l−1,q
γ (Ω)3‖ ≤ c ‖ṽ1;V l+1,q

γ (Ω)3‖ ‖ṽ2;V l+1,q
γ (Ω)3‖.(3.8)

From (3.3), (3.5), (3.6) and (3.8) one concludes that (v1 · ∇v2, 0, 0) ∈
R

l,q
γ V (Ω) and that estimate (3.1) holds. �

Next, let T
l,q
γ (Ω) denote the space of tensor functions z admitting the

representation

z(x) = r−2Z(θ) + z̃(x),

with

‖z;Tl,q
γ (Ω)‖ = ‖z̃;V l,q

γ (Ω)3×3‖+ ‖Z;W l+1,q(S2)3×3‖.

Lemma 3.3. Let (v, 0) ∈ D
l,q
γ V (Ω), with l ≥ 1, 3

2 < q < ∞ and γ − l ∈
(2− 3

q , 3− 3
q ). Then v ⊗ v ∈ T

l,q
γ (Ω) and the following estimates holds

‖v ⊗ v;Tl,q
γ (Ω)‖ ≤ c‖(v, 0);Dl,q

γ V (Ω)‖2.

Proof. First, let us write

v(x)⊗ v(x) = r−2V(θ)⊗V(θ)

+ r−1
(
V(θ)⊗ ṽ(x) + ṽ(x)⊗V(θ)

)
+ ṽ(x)⊗ ṽ(x).

Now, since q > 3
2 , one readily gets by Sobolev embeddings

‖V(θ)⊗V(θ);W l+1,q(S2)3×3‖ ≤ c‖V(θ);W l+2,q(S2)3‖2,

‖r−1
(
V(θ)⊗ ṽ(x) + ṽ(x)⊗V(θ)

)
;V l,q

γ (Ω)3×3‖

≤ c‖V(θ);W l+2,q(S2)3‖ ‖ṽ;V l+1,q
γ (Ω)3‖.

In order to show that ṽ(x)⊗ ṽ(x) ∈ V l,q
γ (Ω)3×3, we observe that

rγ−l+3/qṽ(r, θ)⊗ ṽ(r, θ) ' r−(γ−l−2+3/q) rγ−l−1+3/qṽ ⊗ (rγ−l−1+3/qṽ).

Hence, defining v̂(t, θ) as in (3.7), taking into account that γ − l > 2− 3/q
and q > 3

2 and using Sobolev embeddings, one easily sees that

rγ−l+3/qṽ(r, θ)⊗ ṽ(r, θ) ' e−(γ−l−2+3/q)tv̂(t, θ)⊗ v̂(t, θ) ∈ W l,q(Q1)3×3.

This implies that ṽ(x)⊗ ṽ(x) ∈ V l,q
γ (Ω)3×3. �
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Lemma 3.4. Assume that the vector function F(θ) ∈ W l−1,q(S)3 satisfies

r−3F(θ) = ∇ ·
(
r−2G(θ)

)
(3.9)

with some G ∈ W l,q(S)3×3. Then
∫

S2 F(θ) dsθ = 0.

Proof. Consider, for arbitrary R > 0, the integral

I =
∫ 2R

R

∫
S2

r−3F(θ)r2 dr dsθ = ln 2
∫

S2

F(θ) dsθ.

In view of (3.9), one obtains

I =
∫

B2R\BR

∇ ·
(
r−2G(θ)

)
dx(3.10)

=
∫

∂(B2R\BR)
r−2G(θ) · n ds

=
∫

S2
2R

r−2G(θ) · x

|x|
dsx −

∫
S2

R

r−2G(θ) · x

|x|
dsx

where n denotes the unit outward normal vector. Since the integrands in
the last two integrals in (3.10) are homogeneous functions of order −2 in r,
these two integrals are equal to each other and one concludes that I = 0. �

Corollary 3.1. Let (v, 0) ∈ D
l,q
γ V (Ω), with l ≥ 1, 3

2 < q < ∞ and γ − l ∈
(2 − 3

q , 3 − 3
q ). Then the convective term v · ∇v satisfies the compatibility

condition (2.9).

Proof. By Lemma 3.2, it holds (v · ∇v, 0, 0) ∈ R
l,q
γ V (Ω) with the main

asymptotic term given by
1
r3

(−Vr(θ) + Vθ(θ)∇θ)V(θ) =
1
r
V(θ) · ∇

(
1
r
V(θ)

)
.

On the other hand, since ∇ ·v = 0 implies that ∇ ·
(
r−1V(θ)

)
= 0, one can

write
1
r
V(θ) · ∇

(
1
r
V(θ)

)
= ∇ ·

(
1
r2

V(θ)⊗V(θ)
)

,

and the previous lemma applies. �
3.2. Non-Newtonian nonlinearities. In order to estimate the nonlinear
terms N1(τ ,∇v) and N2(∇v, π, z) defined in (1.2) and (1.5), we need the
following lemma.

Lemma 3.5. Let g,h ∈ T
l,q
γ (Ω), with l ≥ 2, q > 3

2 and assume that γ − l ∈
(2− 3

q , 3− 3
q ). Then, gh ∈ V l,q

γ (Ω)3×3 and the estimate∥∥∥gh;V l,q
γ (Ω)3×3

∥∥∥ ≤ c
∥∥∥g;Tl,q

γ (Ω)
∥∥∥∥∥∥h;Tl,q

γ (Ω)
∥∥∥

holds.
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Proof. Since g,h ∈ T
l,q
γ (Ω), we can write

g(x) = r−2G(θ) + g̃(x), h(x) = r−2H(θ) + h̃(x),

where G,H ∈ W l+1,q(S2)3×3 and g̃, h̃ ∈ V l,q
γ (Ω)3×3. Now, using the fact

that γ − l < 3− 3
q , one readily obtains

r−2G(θ) ∈ V l+1,q
γ (Ω)3×3 ↪→ Λ

l+1− 3
q
−α,α

γ (Ω)3×3,

with α ∈ (0, 1), and where the last embedding follows from Lemma 3.1 (ii).
In particular, there exists α ∈ (0, 1) such that r−2G(θ) ∈ C l−1,α

0 (Ω)3×3. In
the same manner, one easily verifies the inclusions

V l,q
γ (Ω) ↪→ Λ

l− 3
q
−α,α

γ (Ω) ↪→ C l−2,α
0 (Ω),(3.11)

for some α ∈ (0, 1). Moreover, it holds

‖r−2G(θ);C l−1,α
0 (Ω)3×3‖ ≤ c ‖r−2G(θ);V l+1,q

γ (Ω)3×3‖

≤ c ‖G(θ);W l+1,q(S2)3×3‖,

‖g̃;C l−2,α
0 (Ω)3×3‖ ≤ c ‖g̃;V l,q

γ (Ω)3×3‖.

Since l ≥ 2, it follows that the terms r−2G(θ)h̃(x), r−2H(θ)g̃(x), and
r−2G(θ)r−2H(θ) belong to V l,q

γ (Ω)3×3. Finally, since q > 3
2 one obtains

from Lemma 3.1 (i) the embedding V 1,q
γ (Ω) ↪→ V 0,2q

γ−1+ 3
2q

(Ω), which together

with (3.11) shows that g̃h̃ ∈ V l,q
γ (Ω)3×3, for all l ≥ 2. �

Now, observe that if (v, p) ∈ D
l,q
γ V (Ω) then in particular ∇v ∈ T

l,q
γ (Ω)

and p is a scalar function having the same asymptotic structure, and regu-
larity and decay properties as functions in T

l,q
γ (Ω). Hence, by the previous

lemma one arrives at the following two corollaries.

Corollary 3.2. Let l ≥ 2, q > 3
2 and γ− l ∈ (2− 3

q , 3− 3
q ) and assume that

(v, 0) ∈ D
l,q
γ V (Ω) and τ ∈ T

l,q
γ (Ω). Then N1(τ ,∇v) ∈ V l,q

γ (Ω)3×3 and

‖N1(τ ,∇v);V l,q
γ (Ω)3×3‖ ≤ c ‖(v, 0);Dl,q

γ V (Ω)‖ ‖τ ;Tl,q
γ (Ω)‖.

Corollary 3.3. Let l ≥ 2, q > 3
2 and γ− l ∈ (2− 3

q , 3− 3
q ) and assume that

(v, π) ∈ D
l,q
γ V (Ω) and z ∈ T

l,q
γ (Ω). Then N2(∇v, π, z) ∈ V l,q

γ (Ω)3×3 and

‖N2(∇v, π, z);V l,q
γ (Ω)3×3‖

≤ c
(
‖(v, π);Dl,q

γ V (Ω)‖2 + ‖(v, π);Dl,q
γ V (Ω)‖ ‖z;Tl,q

γ (Ω)‖
)
.
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4. Regarding the transport equation.

Let us start by considering a model transport equation

z + λ1v · ∇z = g in Ω(4.1)

in usual Sobolev spaces, where v is a solenoidal vector field satisfying v = v∗,
with v∗ · n = 0 on ∂Ω. The following lemma was proved in [21].

Lemma 4.1. Let g ∈ W l,q(Ω)3×3, with l ≥ 2 and 3
2 < q < ∞. Moreover,

assume that v ∈ C l−1(Ω)3 and Dl
xv ∈ L3(Ω)3.

There exists ε > 0 such that provided

‖v;C l−1(Ω)3‖ + ‖Dl
xv;L3(Ω)3‖ ≤ ε,

problem (4.1) admits a unique solution z ∈ W l,q(Ω)3×3 and the estimate

‖z;W l,q(Ω)3×3‖ ≤ c ‖g;W l,q(Ω)3×3‖
is valid.

Next, let us consider the transport equation (4.1) in the space T
l,q
γ (Ω).

Let us assume that g ∈ T
l,q
γ (Ω) and write

g(x) = r−2G(θ) + g̃(x).

One can clearly predict that z has the asymptotic form

z(x) = r−2G(θ) + z̃(x).

Now, let us prove that the remainder z̃, satisfying the transport equation

z̃ + λ1v · ∇z̃ = g̃ − λ1v · ∇(r−2G(θ)) in Ω,(4.2)

belongs to the space V l,q
γ (Ω)3×3.

Remark 4.1. In order to be able to handle the term λ1v · ∇(r−2G(θ))
on the right hand side of (4.2), we need to assume here that the main
asymptotic part defined on the sphere is more regular than the remainder.
This assumption, which is only possible because Z(θ) = G(θ), affects the
definitions of all the function spaces with detached asymptotics, see e.g.,
(2.10), (2.11).

Lemma 4.2. Let g ∈ T
l,q
γ (Ω), with l ≥ 2, q > 3

2 and assume that the weight
index γ satisfies (2.4). Moreover, let (v, 0) ∈ D

l,q
γ V (Ω), with

‖(v, 0);Dl,q
γ V (Ω)‖ ≤ ε,

for some ε > 0. Then, if ε is chosen sufficiently small, problem (4.2) admits
a unique solution z̃ ∈ V l,q

γ (Ω)3×3 and the estimate

‖z̃;V l,q
γ (Ω)3×3‖ ≤ c ‖g;Tl,q

γ (Ω)‖(4.3)

holds.
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Proof. First, let us observe that since γ − l < 3 − 3
q , it holds r−1V(θ) ∈

V l+1,q
γ−1 (Ω)3. Therefore, it follows that v ∈ V l+1,q

γ−1 (Ω)3 and

‖v;V l+1,q
γ−1 (Ω)3‖ ≤ c‖(v, 0);Dl,q

γ V (Ω)‖.

Now, Lemma 3.1 (ii), provides the embedding V l+1,q
γ−1 (Ω) ↪→ Λ

l− 3
q
−α,α

γ−2 (Ω),
with α ∈ (0, 1). Since q > 3

2 , one easily sees that there exists α ∈ (0, 1) such
that v ∈ C l−1,α

0 (Ω)3. Moreover, one obtains from Lemma 3.1 (i) the embed-
dings V 1,q

γ−1(Ω) ↪→ V 0,3

γ−l−2+ 3
q

(Ω) ↪→ L3(Ω), with the last inclusion following

from the fact that γ − l − 2 + 3
q > 0. Hence, it holds

‖Dl
xv;L3(Ω)3‖ ≤ c‖Dl

xv;V 1,q
γ−1(Ω)3‖ ≤ c‖v;V l+1,q

γ−1 (Ω)3‖

and one concludes that

‖Dl
xv;L3(Ω)3‖+ ‖v;C l−1,α

0 (Ω)3‖ ≤ c‖(v, 0);Dl,q
γ V (Ω)‖.

Next, let us write ĝ = g̃ − λ1v · ∇(r−2G(θ)) and observe that

v · ∇(r−2G(θ)) = r−3

(
−2vr(r, θ) + vθ(r, θ)

∂

∂θ

)
G(θ),

where v(r, θ) = (vr(r, θ), vθ(r, θ)). On the other hand, since v ∈ V l+1,q
γ−1 (Ω)3

it follows that r−3v ∈ V l+1,q
γ+2 (Ω)3. In particular, it holds r−3v ∈ W l+1,q(Ω)3.

Recalling that for l ≥ 2 and q > 3
2 the spaces W l,q(Ω)3 form a Banach

algebra, one obtains

‖v · ∇(r−2G(θ));V l,q
γ (Ω)3×3‖ ≤ c‖r−3v;W l+1,q(Ω)3‖ ‖G(θ);W l+1,q(Ω)3×3‖

≤ c ‖v;V l+1,q
γ−1 (Ω)3‖ ‖G(θ);W l+1,q(Ω)3×3‖.

Hence, one concludes that ĝ ∈ V l,q
γ (Ω)3×3 and

‖ĝ;V l,q
γ (Ω)3×3‖ ≤ c (‖g̃;V l,q

γ (Ω)3×3‖+ ‖v;V l+1,q
γ−1 (Ω)3‖ ‖G;W l+1,q(S)3×3‖)

≤ c ‖g;Tl,q
γ (Ω)‖.

Now, since q > 3
2 it follows from (2.4) that γ > l. Hence, it holds

ĝ ∈ W l,q(Ω)3×3. Therefore, in view of Lemma 4.1 one deduces that, for
sufficiently small ε > 0, there exists a unique solution z̃ ∈ W l,q(Ω)3×3 to
problem (4.2).

Next, let Rt be a function such that

Rt(r) =

{
r, r < t

t, r > t.



478 S.A. NAZAROV, A.SEQUEIRA, AND J.H. VIDEMAN

Multiplying Equation (4.2) by Rq(γ−l) z̃|z̃|q−2 and integrating over Ω (note
that all integrals converge) yields∫

Ω
R

q(γ−l)
t |z̃|q dx + λ1

∫
Ω

R
q(γ−l)
t z̃|z̃|q−2v · ∇z̃ dx

=
∫

Ω
Rγ−l

t ĝ R
(q−1)(γ−l)
t z̃|z̃|q−2 dx,

where |z̃| =
( ∑3

i,j=1 z2
ij

)1/2
. Integrating by parts and using Hölder inequal-

ity, it follows that∫
Ω

R
q(γ−l)
t |z̃|q dx ≤ c ‖v;C l−1,α

0 (Ω)3‖
∫

Ωt

R
q(γ−l)−1
t |z̃|q dx

+
(∫

Ω
R

q(γ−l)
t |ĝ|q dx

)1/q (∫
Ω

R
q(γ−l)
t |z̃|q dx

)(q−1)/q

.

Hence, for ‖v;C l−1,α
0 (Ω)3‖ sufficiently small, one deduces that(∫

Ω
R

q(γ−l)
t |z̃|q dx

)1/q

≤ c

(∫
Ω

R
q(γ−l)
t |ĝ|q dx

)1/q

,

and letting t →∞, one gets

‖z̃;Lq
γ(Ω)3×3‖ ≤ c ‖ĝ;Lq

γ(Ω)3×3‖.(4.4)

In the same manner, differentiating Equation (4.1) with respect to x, one
obtains

‖Dk
xz̃;L

q
γ(Ω)3×3‖(4.5)

≤ c
(
‖z̃;V k−1,q

γ (Ω)3×3‖+ ‖Dk
xĝ;Lq

γ(Ω)3×3‖
)
, ∀ k = 1, . . . , l − 1,

if ‖v;C l−1,α
0 (Ω)3‖ is chosen sufficiently small.

Finally, in order to estimate the Lq
γ(Ω)-norm of Dl

xz̃, one first extends z̃,v
and ĝ continuously to R3, then applies the operator Dl

x to the equation in
R3 and finally mollifies the resulting equation in order to integrate by parts
in the term

∫
Ω Rq(γ−l) z̃ |z̃|q−2 v · ∇Dl

xz̃ dx. The standard properties of the
mollifier then yield the estimate

‖Dl
xz̃;L

q
γ(Ω)3×3‖ ≤ c

(
‖z̃;V l−1,q

γ (Ω)3×3‖+ ‖Dl
xĝ;V l,q

γ (Ω)3×3‖
)
,(4.6)

provided ‖v;C l−1,α
0 (Ω)3‖+ ‖v;L3(Ω)3‖ is chosen small enough. From (4.4),

(4.5) and (4.6), one concludes that

‖z̃;V l,q
γ (Ω)3×3‖ ≤ c ‖ĝ;V l,q

γ (Ω)3×3‖.

�
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5. Considering the equations of viscoelastic fluids.

We are now ready to announce the main results. Since the structure of
the decomposed problems (1.1) and (1.4) is very similar, we shall give the
detailed proofs only for the Oldroyd-B fluid. For the second-grade fluid
equations, we concentrate on the question of presenting the results in terms
of the original variables (v, p) of the starting problem (1.3).

5.1. Oldroyd-B fluid.

Theorem 5.1. Let (f , 0,v∗) ∈ R
l,q
γ V (Ω)⊥, with l ≥ 2, 3

2 < q < ∞, γ − l ∈
(2− 3

q , 3− 3
q ) and

‖(f , 0,v∗);Rl,q
γ V (Ω)‖ ≤ ε.

There exists ω0 ∈ (0, 1) such that for all ω ∈ (0, ω0] and for sufficiently small
ε > 0, problem (1.1) admits a unique solution

(
(v, p), τ

)
∈ D

l,q
γ V (Ω) ×

T
l,q
γ (Ω) satisfying the estimate

‖(v, p);Dl,q
γ V (Ω)‖+ ‖τ ;Tl,q

γ (Ω)‖ ≤ c ‖(f , 0,v∗);Rl,q
γ V (Ω)‖.(5.1)

Proof. Take
(
(ϕ, ξ),ψ

)
∈ D

l,q
γ V (Ω) × T

l,q
γ (Ω), where ϕ is solenoidal in Ω,

and consider the Stokes problem

−ν0(1− ω)∆v +∇p = ∇ ·ψ +ϕ · ∇ϕ+ f

∇ · v = 0
in Ω

v = v∗, v∗ · n = 0 on ∂Ω

lim
|x|→∞

v(x) = 0.

(5.2)

Observe that (∇ ·ψ, 0, 0) ∈ R
l,q
γ V (Ω) and

‖(∇ ·ψ, 0, 0);Rl,q
γ V (Ω)‖ ≤ ‖ψ;Tl,q

γ (Ω)‖.

Therefore, since Lemmas 3.2 and 3.4, and Corollary 3.1 show that

(∇ ·ψ +ϕ · ∇ϕ, 0, 0) ∈ Rl,q
γ V (Ω)⊥,

one concludes from Theorem 2.3 that there exists a unique solution (v, p) ∈
D

l,q
γ V (Ω) to problem (5.2) satisfying the estimate

(5.3)
‖(v, p);Dl,q

γ V (Ω)‖

≤ c

1− ω

(
‖(f , 0,v∗);Rl,q

γ V (Ω)‖+ ‖ψ;Tl,q
γ (Ω)‖+ ‖(ϕ, ξ);Dl,q

γ V (Ω)‖2
)
.
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Next, consider the transport equation

τ + λ1v · ∇τ = 2ν0 ωD(v) + N1(ψ,∇ϕ) in Ω(5.4)

where (v, 0) ∈ D
l,q
γ V (Ω) is the solution of the Stokes system (5.2). Since

D(v) ∈ T
l,q
γ (Ω), one sees by Corollary 3.2 and Lemma 4.2 that if the norm

‖(v, 0);Dl,q
γ V (Ω)‖ is chosen sufficiently small then there exists a unique so-

lution τ ∈ T
l,q
γ (Ω) to problem (5.4) such that

‖τ ;Tl,q
γ (Ω)‖(5.5)

≤ c
(
ω ‖(v, 0);Dl,q

γ V (Ω)‖+ ‖(ϕ, 0);Dl,q
γ V (Ω)‖ ‖ψ;Tl,q

γ (Ω)‖
)
.

Now, let us set

Bε =
{(

(ϕ, ξ),ψ
)

: ‖(ϕ, ξ);Dl,q
γ V (Ω)‖+ ‖ψ;Tl,q

γ (Ω)‖ ≤ ε
}

and assume that
(
(ϕ, ξ),ψ

)
∈ Bε. Estimates (5.3) and (5.5) imply that for

sufficiently small ε one may define a mapping

A :
(
(ϕ, ξ),ψ

)
∈ Dl,q

γ V (Ω)× Tl,q
γ (Ω) −→

(
(v, p), τ

)
∈ Dl,q

γ V (Ω)× Tl,q
γ (Ω)

through problems (5.2) and (5.4). Taking estimates (5.3) and (5.5) into
account, one also sees that there exist ω0 ∈ (0, 1) and ε0 > 0 such that, for
all ω ∈ (0, ω0] and ε ∈ (0, ε0], the mapping A maps the ball Bε into itself.

Next, take (
(ϕ1, ξ1),ψ1

)
,
(
(ϕ2, ξ2),ψ2

)
∈ Bε,

with ε ∈ (0, ε0] and let
(
(v1, p1), τ 1

)
and

(
(v2, p2), τ 2

)
be the corresponding

solutions to problems (5.2) and (5.4). Setting

ϕ = ϕ1 −ϕ2, ξ = ξ1 − ξ2, ψ = ψ1 −ψ2,

v = v1 − v2, p = p1 − p2,

one easily sees that (v, p) satisfies a Stokes problem for which Lemma 2.3
provides the estimate

‖(v, p);Dl−1,q
γ−1 V (Ω)‖(5.6)

≤ c

1− ω

(
‖ψ;Tl−1,q

γ−1 (Ω)‖+ ε‖(ϕ, ξ);Dl−1,q
γ−1 V (Ω)‖

)
.

In particular, note that since l ≥ 2, the term

ϕ1 · ∇ϕ1 −ϕ2 · ∇ϕ2 = ϕ1 · ∇ϕ+ϕ · ∇ϕ2

can be directly estimated in R
l−1,q
γ−1 V (Ω) by Lemma 3.2 where l, γ are changed

to l − 1, γ − 1 (note that condition (2.4) still remains valid).
Now, set τ = τ 1− τ 2 and observe that τ satisfies the following transport

equation

τ + λ1v1 · ∇τ = 2ν0 ωD(v)− λ1v · ∇τ 2 + N1(ψ1,∇ϕ1)−N1(ψ2,∇ϕ2).
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As in Lemma 2.3, for (v, 0) ∈ D
l−1,q
γ−1 V (Ω) and τ 2 ∈ T

l,q
γ (Ω), we conclude

that

v ∈ V l,q
β−1(Ω)3, τ 2 ∈ V l,q

β (Ω)3×3,

for any β− l ∈ (1− 3
q , 2− 3

q ). Moreover, embeddings of Lemma 3.1 (ii) yield

v ∈ Λ
l− 3

q
−α,α

β−1 (Ω)3, τ 2 ∈ Λ
l− 3

q
−α,α

β (Ω)3×3,(5.7)

where α ∈ (0, 1) is chosen in such a way that l− 3
q−α becomes a nonnegative

integer. To prove that v · ∇τ 2 ∈ V l−1,q
γ−1 (Ω)3×3, we need to verify that

rγ−l+k Dk
x (v · ∇τ 2) ∈ Lq(Ω),

for k = 0, . . . , l − 1, or equivalently

rγ−l+k Ds
x v · Dk−s

x ∇τ 2 ∈ Lq(Ω),(5.8)

with s = 0, . . . , k.
First, let l ≥ 3. Since q > 3

2 , from (5.7) it follows that

v ∈ Λl−2,α

β−3+ 3
q
+α

(Ω)3, ∇τ 2 ∈ Λ0,α

β−l+ 3
q
+α+1

(Ω)3×3×3.

Thus, if s ≤ l − 2, then

r
β−3+ 3

q
−(l−2)+s |Ds

x v(x)| is bounded in Ω.

Therefore, it suffices to prove that

rγ−l+kr
−(β−1+ 3

q
−l+s)

Dk−s
x ∇τ 2 ∈ Lq(Ω).(5.9)

Now, since τ 2 ∈ V l,q
β (Ω)3×3 it follows in particular that

rβ−l+k−s+1 Dk−s
x ∇τ 2 ∈ Lq(Ω), k = 0, . . . , l − 1, s = 0, . . . , k.

On the other hand, fixing β = γ − 1 and recalling that γ − l ≥ 2 − 3
q , one

easily sees that

γ − l + k −
(

β − 1 +
3
q
− l + s

)
≤ β − l + k − s + 1,

and (5.9) follows. If s = k = l − 1, one gets from (5.7) that

r
β−l+ 3

q
+1 |∇ τ 2(x)| is bounded in Ω.

Hence, it remains to be shown that

rγ−l+(l−1)r
−(β−l+ 3

q
+1)

Dl−1
x v ∈ Lq(Ω).(5.10)

Since rβ−1−l+(l−1) Dl−1
x v ∈ Lq(Ω) and since for β = γ − 1 it holds β − 2 ≥

γ−1−(β− l+ 3
q +1), inclusion (5.10) is valid. Hence, (5.8) has been verified

for l ≥ 3.
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For l = 2, the result is proven in a similar way, except for the inclusion

rγ−1 Dx v · ∇τ 2 ∈ Lq(Ω),(5.11)

for which one uses the embeddings of Lemma 3.1 (i), namely

∇v ∈ V 1,q
β−1(Ω) ↪→ V 0,2q

β−2+ 3
2q

(Ω), ∇τ 2 ∈ V 1,q
β (Ω) ↪→ V 0,2q

β−1+ 3
2q

(Ω).

Observing that

rγ−1Dxv · τ 2 = r
γ−2β+2− 3

q r
β−2− 3

2q Dxv · rβ−1− 3
2q∇τ 2

and that for β = γ − 1 it holds γ − 2β + 2 − 3
q ≤ 0, one easily sees using

Hölder’s inequality that (5.11) is valid. Hence, one concludes that v ·∇τ 2 ∈
V l−1,q

γ−1 (Ω)3×3 and

‖v · ∇τ 2;V
l−1,q
γ−1 (Ω)3×3‖ ≤ c ‖(v, 0);Dl−1,q

γ−1 V (Ω)‖ ‖τ 2;Tl,q
γ (Ω)‖.

In a similar manner, see also Lemma 3.5 and Corollary 3.2 which yield
the result for l ≥ 3, one shows that

‖N1(ψ1,∇ϕ1)−N1(ψ2,∇ϕ2);V
l−1,q
γ−1 (Ω)‖

≤ c
(
‖ψ1;T

l,q
γ (Ω)‖ ‖(ϕ, ξ);Dl−1,q

γ−1 V (Ω)‖

+ ‖(ϕ2, ξ2);Dl,q
γ V (Ω)‖ ‖ψ;Tl−1,q

γ−1 (Ω)‖
)
.

Hence, in view of Lemma 4.2 one finally concludes that∥∥∥τ ;Tl−1,q
γ−1 (Ω)

∥∥∥ ≤ c
(
(ω + ε) ‖(v, 0);Dl−1,q

γ−1 V (Ω)‖(5.12)

+ ε(‖(ϕ, ξ);Dl−1,q
γ−1 V (Ω)‖+ ‖ψ;Tl−1,q

γ−1 (Ω)‖)
)
,

where we have taken into account that
(
(ϕ1, ξ1),ψ1

)
,
(
(ϕ2, ξ2),ψ2

)
∈ Bε

and that A(Bε) ⊂ Bε.
Estimates (5.6) and (5.12) together show that, for small enough ω > 0

and ε > 0, the mapping A is a contraction in the topology of D
l−1,q
γ−1 V (Ω)×

T
l−1,q
γ−1 (Ω). Let us point out once more that the space D

l−1,q
γ−1 V (Ω)×T

l−1,q
γ−1 (Ω)

naturally includes the original product space D
l,q
γ V (Ω) × T

l,q
γ (Ω). Conse-

quently, A has a unique fixed point
(
(v, p), τ

)
∈ D

l,q
γ V (Ω) × T

l,q
γ (Ω), i.e.,

problem (1.1) has a unique solution
(
(v, p), τ

)
∈ D

l,q
γ V (Ω) × T

l,q
γ (Ω). Esti-

mate (5.1) follows from (5.3) and (5.5) written for the fixed point. �

5.2. Second-grade fluid. Using Theorems 2.3 and 4.2, Lemma 3.3 and
Corollary 3.3 and arguing in a similar way as in the proof of Theorem 5.1,
one obtains the following result.
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Theorem 5.2. Let F ∈ T
l,q
γ (Ω) and v∗ ∈ W l+1−1/q,q(∂Ω), with l ≥ 2, 3

2 <

q < ∞ and γ− l ∈ (2− 3
q , 3− 3

q ). There exists a positive constant ε > 0 such
that if

‖F ;Tl,q
γ (Ω)‖+ ‖v∗;W l+1−1/q,q(∂Ω)‖ ≤ ε,

then problem (1.4) admits a unique solution
(
(v, π), z

)
∈ D

l,q
γ V (Ω)×T

l,q
γ (Ω)

satisfying the estimate

‖(v, π);Dl,q
γ V (Ω)‖+ ‖z;Tl,q

γ (Ω)‖

≤ c
(
‖F ;Tl,q

γ (Ω)‖+ ‖v∗;W l+1−1/q,q(∂Ω)‖
)
.

In order to come back to the original variables, we need the following two
auxiliary results.

Lemma 5.1. Let (v, π) ∈ D
l,q
γ V (Ω), with l ≥ 2, 3

2 < q < ∞ and γ−l ∈ (2−
3
q , 3− 3

q ). The function p defined by (1.6) has the asymptotic representation

p(x) = r−2P (θ) + p̃(x),

where P ∈ W l+1,q(S2) and p̃ ∈ V l−1,q
γ−1 (Ω). Moreover, it holds

‖P ;W l+1,q(S2)‖+ ‖p̃;V l−1,q
γ−1 (Ω)‖

≤ c
(
‖(v, π);Dl,q

γ V (Ω)‖+ ‖(v, π);Dl,q
γ V (Ω)‖2

)
.

Proof. Since (v, π) ∈ D
l,q
γ V (Ω), one can write

v(x) = r−1V(θ) + ṽ(x), π(x) = r−2Π(θ) + π̃(x),

with V ∈ W l+2,q(S2)3, ṽ ∈ V l+1,q
γ (Ω)3, Π ∈ W l+1,q(S2) and π̃ ∈ V l,q

γ (Ω).
On the other hand, since γ − l > 2 − 3

q , one easily shows that r−1V(θ) ∈
V l+1,q

γ−1 (Ω)3, ∇x(r−2Π(θ)) ∈ V l,q
γ (Ω)3 and ∇π̃ ∈ V l−1,q

γ (Ω)3. Using the em-
beddings of Lemma 3.1, one concludes that v · ∇π ∈ V l−1,q

γ (Ω), provided
l ≥ 2, q > 3

2 and γ − l > 2− 3
q . �

Lemma 5.2. Let (f , 0, 0) ∈ R
l,q
γ V (Ω)⊥, with l ≥ 2, 3

2 < q < ∞ and γ − l ∈
(2− 3

q , 3− 3
q ). There exists a tensor function F ∈ T

l,q
γ (Ω) such that ∇·F = f .

Moreover, it holds

‖F ;Tl,q
γ (Ω)‖ ≤ c‖(f , 0, 0);Rl,q

γ V (Ω)‖.(5.13)
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Proof. Let us consider the following auxiliary problem for the Laplace op-
erator in a three-dimensional exterior domain{

−∆w = f in Ω

w = h on ∂Ω,
(5.14)

with some given vector functions f and h. In other words, we consider the
Dirichlet problem for the scalar Poisson equation for each of the components
w1, w2 and w3 of w. Let us associate to problem (5.14) a mapping

Ll,q
β : V l+1,q

β (Ω)3 −→ V l−1,q
β (Ω)3 ×W l+1−1/q,q(∂Ω)3

defined by w 7→ (f ,h) = Ll,q
β w. In a similar way as for the Stokes operator

(see Remark 2.1), one can show that any nontrivial power solution rλW(θ)
of the Laplace equation

−∆w = 0, in R3 \ {0}(5.15)

has an integer exponent λ, while for λ = 0 and λ = −1, W becomes a
constant vector. Now, using standard techniques described, e.g., in [19],
we conclude that the operator Ll,q

β is an isomorphism if and only if β − l ∈
(1− 3

q , 2− 3
q ) (cf. Theorem 2.1 and Remark 2.2). Next, as in Section 2.3, we

introduce the asymptotic forms

f(x) = r−3F(θ) + f̃(x), F ∈ W l,q(S2)3, f̃ ∈ V l−1,q
γ (Ω)3,

w(x) = r−1W(θ) + w̃(x), W ∈ W l+2,q(S2)3, w̃ ∈ V l+1,q
γ (Ω)3

or, equivalently, suggest that (f , 0,h) ∈ R
l,q
γ V (Ω) and (w, 0) ∈ D

l,q
γ V (Ω).

Arguing as in the proof of Theorem 2.3 and recalling that any power solution
r0W(θ) of Equation (5.15) is constant, we see that provided condition γ−l ∈
(2− 3

q , 3− 3
q ) is satisfied, the mapping

Dl,q
γ V (Ω) 3 (w, 0) 7−→ (−∆w,w|∂Ω) ∈ Rl,q

γ V (Ω)⊥

is an isomorphism. Here, as before, R
l,q
γ V (Ω)⊥ denotes the subspace of

functions in R
l,q
γ V (Ω) satisfying the compatibility condition (2.9). Moreover,

the estimate

‖(w, 0);Dl,q
γ V (Ω)‖ ≤ c‖(f , 0,h);Rl,q

γ V (Ω)‖

is valid. Now, taking h = 0 and F = −∇w in (5.14) and observing that
∇w ∈ T

l,q
γ (Ω), with

‖∇w;Tl,q
γ (Ω)‖ ≤ c‖(w, 0);Dl,q

γ V (Ω)‖,

leads to the statement of the Lemma. �
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Remark 5.1. Clearly, the representation of F in the previous Lemma is
not unique; e.g., one can change the Dirichlet condition to the Neumann
one. However, one can show by direct estimations that the solution (v, p)
to the original problem (1.3) is unique, see [23].

Now, let us formulate the main theorem.

Theorem 5.3. Let (f , 0,v∗) ∈ R
l,q
γ V (Ω)⊥, with l ≥ 2, 3

2 < q < ∞ and
γ − l ∈ (2− 3

q , 3− 3
q ). There exists a positive constant ε > 0 such that if

‖(f , 0,v∗);Rl,q
γ V (Ω)‖ ≤ ε,

then problem (1.3) has a unique solution (v, p) admitting the asymptotic
representation

v(x) = r−1V(θ) + ṽ(x), p(x) = r−2P (θ) + p̃(x),

with V ∈ W l+2,q(S2)3, ṽ ∈ V l+1,q
γ (Ω)3, P ∈ W l+1,q(S2) and p̃ ∈ V l−1,q

γ−1 (Ω).
Moreover, this solution satisfies the following estimate

‖V;W l+2,q(S2)3‖+ ‖ṽ;V l+1,q
γ (Ω)3‖+ ‖P ;W l+1,q(S2)‖+ ‖p̃;V l−1,q

γ−1 (Ω)‖

≤ c ‖(f , 0,v∗);Rl,q
γ V (Ω)‖.

Remark 5.2. Typically, the original pressure function p in the equations of
the second-grade fluid is always less regular than the pressure in the Navier-
Stokes equations with the same right-hand side. This results from definition
(1.6) of p in terms of the solution of the decomposed problem (1.4). Notice,
however, that in the solution obtained in Theorem 5.3 we “lose” regularity
only in the remainder part p̃ and not in the main asymptotic term P .
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Collège de France Seminars, Pitman Research Notes in Mathematics, 109, Pitman,
Boston, (1984), 178-197, MR 86b:76011, Zbl 0577.76012.

[3] V. Coscia and G.P. Galdi, Existence, uniqueness and stability of regular steady
motions of a second-grade fluid, Int. J. Non-Linear Mech., 29 (1994), 493-506,
MR 95j:76006, Zbl 0815.76006.

[4] J.E. Dunn and R.L. Fosdick, Thermodynamics, stability and boundedness of fluids
of complexity 2 and fluids of second grade, Arch. Rational Mech. Anal., 56 (1974),
191-252, MR 50 #3738, Zbl 0324.76001.

http://www.ams.org/mathscinet-getitem?mr=93j:35129
http://www.emis.de/cgi-bin/MATH-item?0772.76021
http://www.ams.org/mathscinet-getitem?mr=86b:76011
http://www.emis.de/cgi-bin/MATH-item?0577.76012
http://www.ams.org/mathscinet-getitem?mr=95j:76006
http://www.emis.de/cgi-bin/MATH-item?0815.76006
http://www.ams.org/mathscinet-getitem?mr=50:3738
http://www.emis.de/cgi-bin/MATH-item?0324.76001


486 S.A. NAZAROV, A.SEQUEIRA, AND J.H. VIDEMAN

[5] R. Finn, Estimates at infinity for stationary solutions of the Navier-Stokes equa-
tions, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 3 (1959), 387-418,
MR 29 #3770, Zbl 0106.39402.

[6] , On the exterior stationary problem for the Navier-Stokes equations, and
associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), 363-406,
MR 32 #298, Zbl 0149.44606.

[7] G.P. Galdi and K.R. Rajagopal, Slow motion of a body in a fluid of second grade, Int.
J. Engng. Sci., 35 (1997), 33-54, MR 98i:76005, Zbl 0908.76007.

[8] G.P. Galdi, A. Sequeira and J.H. Videman, Steady motions of a second-grade fluid
in an exterior domain, Adv. Math. Sci. Appl., 7 (1997), 977-995, MR 98j:35151,
Zbl 0894.76002.
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