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It is shown that a central extension of a Lie groupoid by
an Abelian Lie group A has a principal A-bundle structure
and the extended Lie groupoid is classified by an Euler es-
class. Then we prove that for a symplectic α-connected, αβ-
transversal or α-simply connected groupoid, there exists at
most one central S1-extension, the Euler es-class of which
corresponds to the Poisson cohomology class of the Poisson
manifold of units.

Introduction.

Central extensions of a Lie groupoid Γ by an Abelian Lie group A are Lie
groupoids and have principal A-bundle structures over Γ (see Lemma 2.1).
Using the groupoid cochains consisting of A-valued functions which are
smooth in an open neighborhood of the diagonal of the unit space Γ0 of
Γ, Weinstein and Xu [W-X, p. 161] defined an identity smooth cohomology
H∗

es(Γ;A).

Theorem 2.2. If a Lie groupoid Γ over Γ0 is generated by arbitrarily
small neighborhoods of the identity, then the isomorphism classes of central
extensions of Γ by an Abelian Lie group A are mapped isomorphically to the
cohomology group H2

es(Γ;A).

Let S1 denote the unit circle. Then the central extensions E of Γ by S1 are
principal S1-bundles over Γ. Suppose that Γ is a symplectic groupoid with a
symplectic form ω and let $ denote the Poisson tensor on the unit space Γ0

of Γ. Weinstein and Xu [W-X, pp. 162-170] constructed a homomorphism
Ψ : H∗

es(Γ;S1) → H∗
$(Γ0) where H∗

$(Γ0) is the Poisson cohomology of Γ0.
A Lie groupoid (Γ ⇒ Γ0, α, β) is called αβ-transversal if an α-fiber and a
β-fiber are transversal everywhere, providing a trivial vertex bundle. The
main result of the present paper is the following:

Theorem 3.2. Let ((Γ, ω) ⇒ Γ0, α, β) be a symplectic α-connected, αβ-
transversal or α-simply connected groupoid. Then there exists at most one
central S1-extension E of Γ, such that Ψ maps the groupoid Euler es-class
of E to the class of Poisson tensor $.
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It is emphasized that Theorem 3.2 includes a non α-simply connected
case. As a corollary of the theorem, if ((Γ, ω) ⇒ Γ0, α, β) is α-connected,
α-simply connected and quantizable, or if it is a “covering groupoid” of a
pair groupoid of a connected (not necessarily simply connected) quantizable
symplectic manifold then there exists a unique central S1-extension E of Γ,
the Euler es-class of which corresponds to the class of $. In the argument
of Theorem 3.2, a Riemannian metric of Γ plays an essential role. Thus
presumably the results only hold if Γ is Hausdorff. Moreover, E is a contact
groupoid (cf. [D, p. 437]). It is so in stronger senses by P. Libermann [L,
p. 39] and by Y. Kerbrat and Z. Souici-Benhammadi [K-SB, p. 81], too.

In Section 1, we define a central extension of a groupoid by an Abelian
group and review its classification by groupoid cohomology. Then we go
to the central extension in the Lie groupoid category. In Section 2, we get
a principal A-bundle structure on a central A-extension of a Lie groupoid
for the Abelian Lie group A. Then, by making use of a technique of V.S.
Varadarajan [Var, pp. 63-64], we prove that the groupoid Euler es-class
classifies the central A-extension of a Lie groupoid, that is Theorem 2.2. In
the last section, we examine the Weinstein-Xu homomorphism for H2

es(Γ;S1)
and get its injectivity for symplectic, α-simply connected or αβ-transversal
groupoid (Γ, ω) generated by arbitrarily small neighborhoods of Γ0, which
proves Theorem 3.2. Then we show that a central S1-extension E of a
quantizable symplectic groupoid ((Γ, ω) ⇒ Γ0, α, β) has a contact groupoid
structure if the symplectic groupoid (Γ, ω) ⇒ Γ0 satisfies the conditions on
fibers of Γand E corresponds to the Poisson class.

The author expresses his thanks to Professor A. Weinstein for discussions
during the preparation of the paper. He also thanks the referee for kind
comments on Theorem 2.2, Lemma 3.1 and others.

1. Central extensions of a groupoid.

We begin with algebraic arguments of groupoids without any topology or
measures. Let (Γ ⇒ Γ0, α, β) be a groupoid (cf. [B-W, Definition 8.5, p.
115], [Vai, p. 138] and [M, p. 2]) and A an Abelian group.Let p : Γ0×A →
Γ0 denote the first factor projection. By taking α = β = p and identifying
Γ0 with Γ0×{e} for the unit element e ∈ A, Γ0×A is regarded as a groupoid
on Γ0. A central extension (E ⇒ E0, α, β) of the groupoid Γ by the Abelian
group A is a sequence

Γ0 ×A
ι

� E
π
� Γ

where ι and π are injective and surjective groupoid morphisms over the iden-
tifying map Γ0

∼=→ E0 and its inverse respectively, satisfying the conditions

im(ι) = ker(π),(1.1)

(ι(α ◦ π(ξ), u))ξ = ξ(ι(β ◦ π(ξ), u))(1.2)
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for any ξ ∈ E and u ∈ A. (1.2) is abbreviated by uξ = ξu. Notice that π|E0

is injective.
We choose a section s of π such that s|Γ0 coincides with the identifying

map Γ0
∼=→ E0.

Lemma 1.1. The map s commutes with the maps α and β: For any x ∈ Γ,
we have α ◦ s(x) = s ◦ α(x) and β ◦ s(x) = s ◦ β(x).

Proof. Since we have (α ◦ s(x))s(x) = s(x), it follows that

π(α ◦ s(x))x = π(α ◦ s(x))(π ◦ s(x))

= π((α ◦ s(x))s(x))

= π ◦ s(x)
= x,

and hence π(α◦ s(x)) = α(x). By the bijectivity of π|E0 , one gets α◦ s(x) =
s ◦ α(x). A similar computation shows that β ◦ s(x) = s ◦ β(x). �

For x, y ∈ Γ with β(x) = α(y), the product s(x)s(y)s(xy)−1 is well-defined
in E by the above lemma. Since we have

π(s(x)s(y)s(xy)−1) = (π ◦ s(x))(π ◦ s(y))(π(s(xy)−1))

= xy(π ◦ s(xy))−1

= xy(xy)−1

= α(x) ∈ Γ0,

and since E is the central extension of Γ, it follows that

s(x)s(y)s(xy)−1 ∈ ι({α(x)} ×A) ⊂ E.

Therefore it determines an element µ(x, y) ∈ A. By direct computations,
it is shown that µ is a 2-cocycle on the groupoid Γ with coefficients in the
Abelian group A and the cohomology class [µ] ∈ H2(Γ;A) does not depend
on the choice of the section s : Γ → E. [µ] is called the groupoid Euler class
of the central extension E of Γ by A. One gets the following result on the
classification of central extension of a groupoid (see, e.g., [R, p. 13]).

Proposition 1.2. The isomorphism classes of central extensions of a group-
oid Γ over Γ0 by an Abelian group A are mapped isomorphically to the co-
homology group H2(Γ;A) by the groupoid Euler classes.

2. Lie groupoids.

A groupoid (Γ ⇒ Γ0, α, β) is called a Lie groupoid (cf. [B-W, pp. 115-116])
if Γ is a smooth manifold and the following properties are satisfied:

1) Γ0 is a smooth submanifold of Γ;
2) α and β are submersions;



492 HARUO SUZUKI

3) the multiplication is a smooth mapping

Γ2 = (α× β)−1(diagonal (Γ0 × Γ0)) → Γ

(notice that Γ2 is a smooth submanifold since α×β : Γ×Γ → Γ0×Γ0

is transversal to the diagonal by 2);
4) the inversion x 7→ x−1 : Γ

∼=→ Γ is a diffeomorphism.
A central extension (E ⇒ E0, α, β) of a Lie groupoid Γ by an Abelian Lie

group A is a sequence of Lie groupoids and smooth mappings

Γ0 ×A
ι

� E
π
� Γ

where ι and π are imbedding and submersion groupoid morphisms over
the diffeomorphism Γ0

∼=→ E0 and its inverse respectively, satisfying the
conditions (1.1) and (1.2).

Lemma 2.1. The central extension E of a Lie groupoid Γ by an Abelian
Lie group A is a principal A-bundle over Γ.

Proof. We define a smooth action “·” of the Abelian Lie group A on the
smooth manifold E by Equation (1.2), that is,

u · ξ = uξ = ξu

for any u ∈ A and ξ ∈ E. Since E is an extension of the Lie groupoid Γ by
A, A is mapped diffeomorphically onto each orbit by the action. Therefore
one gets a free A-action on E whose orbit space is Γ. By the standard
arguments of smooth transformation groups, E is a principal A-bundle over
Γ. �

Transitive groupoids by Mackenzie [M, Definition 3.1, p. 13] are just
extensions of the pair groupoid, which has a principal bundle structure. In
this sense any extension of Γ should be thought of as a “transitive groupoid
over Γ”.

The identity smooth groupoid cohomology H∗
es(Γ;A) is defined by the

groupoid cochains consisting of A-valued functions which are smooth in a
neighborhood of the diagonal of Γ0 (cf. [W-X, p. 161] and [T-W, p. 217]).
Since E|Γ0 is trivial, one can choose a section s : Γ → E which is smooth in
a neighborhood of Γ0 and gets the groupoid Euler es-class of the extension
E of Γ by A in H2

es(Γ;A). Let

Γn = {(x1, . . . , xn) ∈ Γn |β(xi) = α(xi+1), i = 1, . . . , n− 1}.
If for any neighborhood N of Γ0, we have⋃

n→∞
{m(Nn)} = Γ

where Nn = Nn ∩ Γn and m is the groupoid multiplication map, then we
say that Γ is generated by arbitrarily small neighborhoods of the identity.
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We notice that if the Lie groupoid Γ is α-connected, then it is generated by
arbitrarily small neighborhoods of the identity.

Theorem 2.2. If a Lie groupoid Γ over Γ0 is generated by arbitrarily small
neighborhoods of the identity, then the isomorphism classes of central ex-
tensions of Γ by an Abelian Lie group A are mapped ismorphically to the
cohomology group H2

es(Γ;A).

Proof. Let U be a sufficiently small open neighborhood of Γ0 generating
Γ. For any central A-extension E of Γ, the restriction E|U has a trivial
A-bundle structure. If two central A-extensions E(1) and E(2) correspond to
the same class of H2

es(Γ;A), multiplicative structures on E(1)|U and E(2)|U
are smoothly isomorphic since their Euler es-classes are represented by the
same 2-cocycle which is smooth on U . Let N denote a small neighborhood
of Γ0 such that N ⊂ E(1)|U ∩ E(2)|U . An arbitrary element ξ ∈ E(1) splits
to a finite product

ξ = ξ1 · · · ξk

with ξi ∈ N , i = 1, . . . , k. Let (Σi; sα,i, sβ,i) denote a local smooth bi-cross
section (cf. [Vai, 9.10. Definition, p. 146]) such that Σi ⊂ N and

sα,i ◦ α(ξi) = ξi, sβ,i ◦ β(ξi) = ξi

for i = 1, . . . , k.
Let W be a sufficiently small neighborhood of β(ξ) = β(ξk) in N . Ob-

viously, one can assume that W is of the form W1 × W2 where W1 is a
smooth coordinate neighborhood around β(ξk) in Γ0 and W2 is that around
β(ξk) in N ∩ α−1(β(ξk)). Then W1 ×W2 is a smooth coordinate system of
a neighborhood Wξ of ξ of ξ in E(1) by taking a smaller neighborhood W of
β(ξk) if necessary, since any element ξ ∈ Wξ has a product form

ξ = (sβ,1 ◦ α ◦ sβ,2 ◦ α ◦ ···. · · · ◦ α ◦ sβ,k ◦ β(ξ′)) · · ·
(sβ,k−1 ◦ α ◦ sβ,k ◦ β(ξ′))(sβ,k ◦ α(ξ′))ξ′

for ξ′ ∈ W. The algebraic isomorphism ϕ : E(1) → E(2) of Proposition 1.2
gives us local smooth bi-cross sections (ϕ(Σi);ϕ◦sα,i, ϕ◦sβ,i) around ϕ(ξi) ∈
N ⊂ E(2)|U and hence ϕ maps smoothly the coordinate meighborhood Wξ

of ξ in E(1) to that of ϕ(ξ) in E(2). Therefore the smooth multiplicative
structure of E(1)|U and E(2)|U is extended to a smooth isomorphism of E(1)

to E(2). That is, the Euler es-class maps isomorphism classes of central
A-extension of Γ injectively to H2

es(Γ;A).
The surjectivity is shown as follows: Let µ be a representative 2-cocycle

of an element of H2
es(Γ;A). Then one can assume that µ is smooth on the

neighborhood U of Γ0, and the groupoid multiplication on U ×A is defined
by the formula

(x1, u1)(x2, u2) = (x1x2, u1 + u2 − µ(x1, x2))
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for (x1, x2) ∈ Γ2∩(U×U) and u1, u2 ∈ A. Let V be a so small neighborhood
of Γ0 in Γ that V V −1 = m(Γ2∩ (V ×V −1)) ⊂ U . For an element x ∈ Γ, one
can find a coordinate neighborhood Ux around x of the form U0,α(x) × B

where U0,α(x) is an open ball around α(x) in Γ0 and B is an open ball around

the origin in Rdim(α−1(α(x))) such that (x0, 0)−1({x0}×B) ⊂ α−1(β((x0, 0)))∩
V for each x0 ∈ U0,α(x). For an element ξ = (x, u) of the abstract A-
extension E (= Γ×A as a set), we define a coordinate neighborhood around
ξ in E by Wξ = Ux × uD where D is an open ball around the identity e

in A and Ux ⊂ Γ is the coordinate neighborhood around x stated in the
above. The family {Wξ} define a fundamental system of neighborhoods in
E and E is a topological space. Suppose that W

ξ,ξ
′ = Wξ ∩ Wξ

′ 6= ∅ for

two elements ξ and ξ
′. W

ξ,ξ
′ is obviously an open submanifold of both Wξ

and W
ξ
′ . Let ξ = (x, u) be an arbitrary element of W

ξ,ξ
′ represented in Wξ.

We denote smooth α-fiber 0-sections in Ux and Ux′ by φ and φ′ respectively.
The coordinate transformation of ξ to W

ξ
′ is

(x′, u′) = (x′(x), u + µ((φ ◦ α(x))−1x, x−1(φ′ ◦ α(x)))

− µ((φ′ ◦ α(x))−1x, x−1(φ′ ◦ α(x))))

which is smooth in (x, u) since x′(x) is a smooth coordinate transformation in
the smooth manifold Γ and the second coordinate in the right side is smooth
too as we have (φ ◦ α(x))−1x ∈ α−1(β ◦ φ ◦ α(x)) ∩ V and (φ′ ◦ α(x))−1x ∈
α−1(β ◦ φ′ ◦α(x))∩ V so that (φ ◦α(x))−1φ′ ◦α(x) ∈ α−1(β ◦ φ ◦α(x))∩U .
Therefore the family {Wξ}ξ∈E of coordinate neighborhoods defines a smooth
structure on E and π : E → Γ is smooth.

We use a Lie groupoid version of the proof of [Var, Lemma 2.6.1, pp.
63-64] to prove the smoothness of groupoid operations of E. Obviously Γ
is a topological groupoid and A is a topological Abelian group. Since the
central A-extension E of Γ is a principal A-bundle over Γ by Lemma 2.1, the
algebraic groupoid multiplication formula shows that E|U is a topological
groupoid with respect to the manifold topology of E|U . By the definition of
the smooth structure on E, the left action of a local smooth bi-cross section
is smooth. Let U be a sufficiently small neighborhood of Γ0 in E such that
U ⊂ π−1(U) and let V be a sufficiently small neighborhood of Γ0 in E that

VV−1 = m(E2 ∩ (V × V−1)) ⊂ U .

We take a neighborhood N of Γ0 in E with N = N−1 and

NNN = m(E3 ∩ (N ×N ×N )) ⊂ V.

For an element ζ ∈ N , we take a bi-cross section (Σζ ; sα,ζ , sβ,ζ) such that
Σζ ⊂ N and

sα,ζ ◦ α(ζ) = ζ, sβ,ζ ◦ β(ζ) = ζ.
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Let Nβ(ζ) be a sufficiently small smooth coordinate neighborhood of β(ζ)
with Nβ(ζ) ⊂ N and,

β(Nβ(ζ)) ∩ α(Nβ(ζ)) ⊂ β(Σζ).

Then for any element ζ ∈ Nβ(ζ), the product

(sβ,ζ ◦ α(ζ))ζ(sβ,ζ ◦ β(ζ))−1 ∈ N

is well-defined and is smooth with respect to ζ.
Suppose that ζ = ζ1ζ2 with ζi ∈ N , i = 1, 2. We take local smooth

bi-cross sections (Σi; sα,i, sβ,i) such that Σi ⊂ N and

sα,i ◦ α(ζi) = ζi, sβ,i ◦ β(ζi) = ζi.

Now we take a sufficiently small smooth coordinate neighborhood Nβ(ζ) of
β(ζ) = β(ζ2) with Nβ(ζ2) ⊂ N , and

β(Nβ(ζ2)) ∩ α(Nβ(ζ2)) ⊂ β(Σζ2),

such that for ζ ∈ Nβ(ζ2),

(sβ,1 ◦ α ◦ sβ,2 ◦ α(ζ))(sβ,2 ◦ α(ζ))ζ(sβ,2 ◦ β(ζ))−1

· (sβ,1 ◦ α ◦ sβ,2 ◦ β(ζ))−1 ∈ N .

We set
sβ,ζ(z) = (sβ,1 ◦ α ◦ sβ,2(z))(sβ,2(z)),

for z ∈ Γ0 sufficiently close to β(ζ) = β(ζ2). It is a local smooth bi-cross
section around ζ, and

(sβ,ζ ◦ α(ζ))ζ(sβ,ζ ◦ β(ζ))−1

is smooth since Nβ(ζ) is sufficiently small. Now let ζ be an arbitrary element
of E. Since E is generated by N , ζ splits to a finite product

ζ = ζ1 · · · ζk

with ζi ∈ N , i = 1, . . . , k. By a back way induction on i and using the
argument in the above, one can find a small smooth coordinate neighborhood
Nβ(ζ) of β(ζ) = β(ζk) and a local bi-cross section sβ,ζ , around ζ such that

(sβ,ζ ◦ α(ζ))ζ(sβ,ζ ◦ β(ζ))−1 ∈ V

for ζ ∈ Nβ(ζ) and it is smooth.
Let ξ, η ∈ E with β(ξ) = β(η), then any elements in a smooth coordinate

neighborhoods around ξ and η are of the forms

ξ = (sβ,ξ ◦ α(ξ′))ξ′, η = (sβ,η ◦ (η′))η′
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where ξ′, η′ are in a sufficiently small smooth coordinate neighborhood Nβ(ξ)

of β(ξ) = β(η) ∈ Γ0 in E, and sβ,ξ, sβ,η are local smooth bi-cross sections
around ξ, η respectively. Suppose that β(ξ) = β(η), then we have

ξη−1 = (sβ,ξ ◦ α(ξ′))ξ′η′−1(sβ,η ◦ α(η′))−1

= (sβ,ξ ◦ α(ξ′))(sβ,η ◦ α(ξ′))−1[(sβ,η ◦ α(ξ′))ξ′η′−1(sβ,η ◦ α(η′))−1]

where the term in [ ] is smooth with respect to ξ′ and η′. Therefore its left
translation by the bi-cross section (sβ,ξ ◦α(ξ′))(sβ,η ◦α(ξ′))−1 is smooth and
hence ξη−1 is smooth with respect to ξ and η. In particular, the inversion
η 7→ η−1 is smooth by taking ξ = β(η), and any groupoid multiplication
ξη−1 is smooth in E too. �

3. Weinstein-Xu homomorphism for H2
es(Γ;S1).

The Lie algebroid A of a Lie groupoid (Γ ⇒ Γ0, α, β) is a vector bundle over
Γ0 whose sections consist of all left invariant fields on Γ, with the anchor
map ρ : A → TΓ0, given by

(ρ(X)f)(z) = X(β∗f)(z)

for z ∈ Γ0 and for all X ∈ Γ∞(A) and f ∈ C∞(Γ0). The bracket on
sections of A satisfies the axiom [φX, Y ] = φ[X, Y ] − (ρ(Y )φ)X for each
scalar function φ. Weinstein and Xu [W-X, pp. 162-166] introduced a
cohomology algebra homomorohism

Ψ : Hn
es(Γ; R) → Hn(A; R)

which is defined in cochain levels by

(Ψσ)(X1, . . . , Xn)(z) =
∑

(−1)τ(k1,...,kn)(Xk1 · · ·Xknσ)(z)

for z ∈ Γ0 and for any σ ∈ Cn
es(Γ; R), Xi ∈ Γ∞(A) (i = 1, . . . , n), where the

sum is over all the permutations (k1, . . . , kn) of (1, . . . , n) and τ(k1, . . . , kn)
is the sign of the permutation (k1, . . . , kn). The function (Xk1 · · ·Xknσ)(z)
on Γ0 is defined inductively on n: By fixing variables (x1, . . . , xn−1) ∈
Γn−1 (that is, xi ∈ Γ with β(xi) = α(xi+1), i = 1, . . . , n − 2), we regard
σ(x1, . . . , xn−1, xn) as a function of xn alone defined on an α-fiber, then by
applying Xkn on it and evaluating at xn = β(xn−1) we obtain a function of
n− 1 arguments defined on Γn−1.

Let Z denote the subgroup of integers in the group R of real numbers.
The circle S1 is identified with the quotient group R/Z. A cochain σ ∈
Cn

es(Γ;S1) ∼= Cn
es(Γ; R/Z) is represented by a cochain σ ∈ Cn

es(Γ; R) and
Ψσ ∈ Cn(A; R) does not depend on the choice of the representative σ of
σ. Therefore a cochain map Φ : Cn

es(Γ;S1) → Cn(A; R) is induced and
we get a homomorphism Ψ : Hn

es(Γ;S1) → Hn(A; R). If an α-fiber of a
central S1-extension E of Γ is an orientable S1-bundle, then E is called
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α-orientable. We take a Riemannian metric g on Γ and let gα denote the
restriction of g on each α-fiber. The vector bundle ker(α∗)|Γ0 has an open
neighborhood Uα∗ of Γ0 which is mapped diffeomorphically onto an open
neighborhood U of Γ0 in Γ by the exponential map in each fiber. We call
U an α-vector bundle neighborhood of Γ0. A Lie groupoid (Γ ⇒ Γ0, α, β) is
called a symplectic groupoid if Γ is a symplectic manifold with a symplectic
2-form ω such that the graph of the multiplication of Γ is a Lagrangian
submanifold of Γ×Γ× (−Γ) where −Γ is Γ endowed with −ω. It is denoted
by ((Γ, ω) ⇒ Γ0, α, β) or simply by (Γ, ω). Γ0 is a Lagrangian submanifold
of Γ (see, e.g., [Vai, 9.8. Proposition, p. 144]).

Lemma 3.1. Let ((Γ, ω) ⇒ Γ0, α, β) be a symplectic α-connected αβ-trans-
versal groupoid. The homomorphism Ψ : H2

es(Γ;S1) → H2(A; R) maps the
groupoid Euler es-classes of central S1-extensions of Γ, in an injective way.

Proof. An element of H2
es(Γ;S1) defines a central S1-extension E of Γ, by

Theorem 2.2 and E is a principal S1-bundle by Lemma 2.1. Moreover, since
an α-fiber of a symplectic groupoid (Γ, ω) ⇒ Γ0 gives us a local smooth
β-fiber section and since left actions of E preserve S1-bundle structures
of α-fibers, E is α-orientable. We take a connection 1-form θα on an α-
fiber of E, which is invariant by a left groupoid action. Since a β-fiber is
diffeomorphic to an α-fiber by the groupoid inversion, the 1-form θα on the
α-fiber induces a connection 1-form θβ on a β-fiber, which is invariant by
a right groupoid action. The 1-forms θα and θβ together define a family of
horizontal subspaces on E, that is a left (right) invariant connection 1-form
θE on E. Let ωE denote its curvature 2-form. We notice that θE |π−1(Γ0) = 0.
Let U ⊂ Γ be an α-vector bundle neighborhood of Γ0. One can assume that
each α-fiber in U is an open ball in (dim Γ0)-vector spaces. For x ∈ Γ we
define a piecewise smooth curve γx from x to α(x) in the α-fiber α−1(α(x))
such that γx is the line segment from x to α(x) for x ∈ U . We take the
horizontal lift γ̃x of γx starting from the point π−1(α(x)) ∈ E0

∼= Γ0. Then
the end point of γ̃x defines a section s : Γ → E which is smooth on the open
neighborhood U of Γ0. We get an extension 2-cocycle σ : Γ2 → S1 defined
by σ(x, y) = s(x)s(y)s(xy)−1. σ is smooth on Γ2 ∩ (U ×U) and vanishes on
(Γ0 × Γ) ∪ (Γ × Γ0), that is, σ is an identity smooth 2-cocycle in the sense
of Weinstein and Xu [W-X, p. 161]. Since E is α-orientable, σ(x, y) is the
total holonomy along the closed curve γx(xγy)γ−1

xy in α−1(α(x)), and hence
we have

σ(x, y) =
∫

D(α(x),x,y)
ωE (mod Z),

for x, y ∈ U , where D(α(x), x, y) is a surface surrounded by the closed curve
in the open ball α−1(α(x))∩U . For any point z ∈ Γ0 and any vectors X1, X2

over z in the Lie algebroid A → Γ0, we extend them locally to vector fields
of the tangent bundle TαU arising from the α-fibration on U , by the parallel
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displacement in the α-fiber α−1(z) ∩ U of z. By the groupoid left action,
these define local smooth sections on A, which are denoted by the same
symbols X1, X2.

In order to compute Ψσ(X1, X2)(z) = (X1X2σ − X2X1σ)(z), one can
assume that X1, X2 are linearly independent, or the right hand side of the
equation vanishes. Via the transformation of variables (x, y) 7→ (x, xy), we
restrict σ to the plane in α−1(z)∩U determined by the two vectors X1, X2,
and take the plane coordinate system (t1, t2) with coordinate vectors X1 and
X2. Let ∆(z, x, y) denote the triangle with vertices z = (0, 0), x = (t1, 0)
and xy = (t1, t2). Then ωE takes the form f(t1, t2)dt1 ∧ dt2 and we have

σ(x, y) =
∫

∆(z,x,y)
f(t1, t2)dt1 ∧ dt2 + o(t2) (mod Z),

since the difference area is E(D(z, x, y)−∆(z, x, y)) = o(t2) (mod Z). Sim-
ilarly we have E(D(z, x, y)−∆(z, x, y)) = o(t1) (mod Z) for x = (0, t2) and
xy = (t1, t2). From the estimation of f by Taylor expansion, it follows that

Ψσ(X1, X2)(z)− ωE(X1, X2)(z) = o(t1) + o(t2).

Since t1, t2 are arbitrary, one obtains Ψσ(X1, X2) = ωE(X1, X2). If X1, X2

are linearly dependent, then both sides vanish. Therefore we conclude that
Ψσ = ωE . Suppose that Ψ[σ] = 0. Then there exists a global left invariant
1-form φ along the α-fibers on Γ such that dφ = ωE by [W-X, Theorem 1.2,
p. 167]. Define a 1-cochain cφ ∈ C1(Γ;S1) by cφ(x) =

∫
γx

φ (mod Z) for
x ∈ Γ. Since φ is left invariant along α-fibers, we have

cφ(x) + cφ(y)− cφ(xy) =
∫

D(α(x),x,y)
ωE (mod Z)

= σ(x, y)

for x, y ∈ Γ2, by Stokes theorem, and hence σ = δcφ. �

If ((Γ, ω) ⇒ Γ0, α, β) is a symplectic groupoid, then the manifold Γ0 car-
ries a unique Poisson structure for which α is a Poisson map. The Lie alge-
broidA of the symplectic groupoid (Γ, ω) is the cotangent bundle T ∗Γ0 → Γ0

with the anchor map ρ : T ∗Γ0 → TΓ0 naturally induced from the Poisson
tensor $. For each n, Cn(A; R) is naturally isomorphic to Γ∞(∧nTΓ0), and
the Lie algebroid differential d turns out to the Poisson differential d$ for
the multi-vector fields over Γ0 by [H, Proposition 3.12.4, p. 86]. Hence the
Lie algebroid cohomology of A with trivial coefficients in R is isomorphic to
the Poisson cohomology of Γ0:H∗(A; R) ∼= H∗

$(Γ0) by [W-X, Lemma 2.1,
p. 169]. We examine central S1-extensions of symplectic groupoids which
correspond to the Poisson cohomology class of the unit space.

Theorem 3.2. Let ((Γ, ω) ⇒ Γ0, α, β) be a symplectic α-connected, αβ-
transversal or α-simply connected groupoid. Then there exists at most one
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central S1-extension E of Γ, such that Ψ maps the groupoid Euler es-class
of E to the class of Poisson tensor $.

Proof. By Theorem 2.2 the Euler es-class maps isomorphism classes of cen-
tral S1-extension of Γ ismorphically to the group H2

es(Γ;S1), since an α-
connected Lie groupoid is generated by arbitrarily small neighborhoods of
the identity. Suppose that E and E are central S1-extensions of the theorem.
Their Euler es-classes correspond to the class of the Poisson tensor $ on Γ0

under the homomorphism Ψ. If (Γ, ω) is αβ-transversal by Lemma 3.1 the
central S1-extension E of Γ with the Poisson condition on Ψ is isomorphic to
the central S1-extension E that is, E is the unique central S1-extension of Γ
with the Poisson condition on Ψ if it exists. If (Γ, ω) is α-simply connected,
a central S1-extension E of Γ is obviously α-orientable. Then by the proof
of Lemma 3.1, we get the same conclusion. �

Let (M,ω) be a connected symplectic manifold and let π̂ be a normal sub-
group of the fundamental group π1(M), with an Abelian quotient group. Let
Π̂(M) denote the space of homotopy classes of paths of M modulo π̂, rela-
tive to end points and let Π̂(M)0 denote the subspace of homotopy classes of
constant paths modulo π̂. Path compositions together with the starting and
the terminal point mappings define a Lie groupoid Π̂(M) ⇒ Π̂(M)0 ∼= M ,
which is called a reduced fundamental groupoid of M . We get a covering
map p : Π̂(M) → M ×M by taking a pair of the starting and the terminal
points of a path class. Obviously, the 2-form ωΠ̂ = p∗(ω,−ω) is a symplectic
structure on Π̂(M) and Π̂(M) ⇒ M is a symplectic groupoid with respect
to the 2-form ωΠ̂, which is αβ-transversal. For a symplectic groupoid (Γ, ω),
we denote the 2-cycle group of Γ (as a topological space) by Z2(Γ) and ω is
called an integral symplectic structure if Per(ω) = im (ω|Z2(Γ)) is contained
in the integral subgroup Z ⊂ R. Then the symplectic manifold (Γ, ω) is
called (pre)quantizable. Let E be a principal S1-bundle over the symplectic
manifold Γ. If the first Chern class c1(E) of E for the standard unitary rep-
resentation of S1 is represented by the symplectic form ω, ω is an integral
symplectic structure since c1(E) is an integral class. A prequantization of
a symplectic manifold (Γ, ω) is a principal S1-bundle π : E → Γ equipped
with a connection θ having curvature ω. (See, e.g., [B-W, Definition 7.2,
p. 95], [T-W, pp. 239-240] and [K-N, pp. 305-310].) If the symplectic
groupoid (Γ, ω) in Theorem 3.2 is α-simply connected and quantizable, or if
it is a reduced fundamental groupoid of a connected quantizable symplectic
manifold, then the prequantization bundle E has the connection without
holonomy over Γ0. Therefore it carries a structure of a central S1-extension
of Γ with the Euler es-class corresponding to the Poisson class by [W-X,
Theorem 3.1, pp. 174-180, Theorem 3.3, pp. 182-184]. From Theorem 3.2
we get immediately:
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Corollary 3.3. If the symplectic groupoid ((Γ, ω) ⇒ Γ0, α, β) is α-connect-
ed, α-simply connected and quantizable, or if it is a reduced fundamental
groupoid of a connected (not necessarily simply connected) quantizable sym-
plectic manifold then there exists a unique central S1-extension E, the Euler
es-class of which corresponds to the Poisson class of the unit space Γ0.

If we take π1(M) itself as the subgroup π̂, the groupoid Π̂(M) ⇒ M
coincides with the pair groupoid M × M ⇒ M and if we take π̂ = {1} ⊂
π1(M), the groupoid Π̂(M) ⇒ M coincides with the fundamental groupoid
Π(M) ⇒ M which is α-simply connected.

Let π : E → Γ be a prequantization of a symplectic manifold (Γ, ω)
equipped with a connection θ having curvature ω. Since ω is the curvature of
the connection θ, we have dθ = π∗ω and obviously θ∧(dθ)n = θ∧(π∗ωn) 6= 0
everywhere for dim Γ = 2n, that is, θ is a contact form. A contact structure
on a smooth manifold E is a hyperplane field H defined by the kernel of
local contact form. The manifold E equipped with the contact structure H
is called a contact manifold and is denoted by (E,H). If (E ⇒ E0, α, β)
is a Lie groupoid, the tangent groupoid of E, (TE ⇒ TE0, Tα, Tβ) is the
Lie groupoid with the inverse law X 7→ Tj(X) for the inversion mapping
j : E

∼=→ E and the product law Tm : (TE)2 = (Tα×Tβ)−1(diagonal (TE0×
TE0)) → TE, (X, Y ) 7→ X ⊕ Y = Tm(X, Y ). (E,H) is a contact groupoid
(see [D, p. 437]) if and only if (i) for X ∈ H, we have Tj(X) ∈ H, (ii)
for (X, Y ) ∈ (H × H) ∩ (TE)2, we have X ⊕ Y ∈ H. If π : E → Γ is a
prequantization of the symplectic groupoid (Γ, ω) ⇒ Γ0 with a connection
1-form θ without holonomy over Γ0 such that dθ = π∗ω, then E carries a
contact groupoid structure (E,H) with H = ker(θ) by [W-X, Theorem 3.1,
pp. 174-180]. Therefore we have:

Corollary 3.4. The central S1-extension E of the symplectic groupoid
((Γ, ω) ⇒ Γ0, α, β) in Corollary 3.3 is a contact groupoid if E corresponds
to the Poisson class.

A contact groupoid structure (E,H) is obtained on a central S1-extension
from the Poisson manifold Γ0, by [D, Théorème 6.1 (ii), pp. 454-457]. By
Theorem 3.2 we get E = E.

Remark 3.5. We have more strict notions of a contact groupoid by P.
Libermann [L, p. 39], and Y. Kerbrat and Z. Souici-Benhammadi [K-SB, p.
81]. Our contact groupoid E is not only Dazord’s but also Libermann’s and
Kerbrat-Souici-Benhammadi’s. The central S1-extension in Corollary 3.3
is obtained from a prequantization π : E → Γ with a connection θ such
that E is without holonomy over Γ0 and it satisfies Libermann’s conditions
(1), (2) by the proof of [W-X, Lemma 3.2, pp. 176-178]. Moreover, it is
a contact groupoid ((Γ, ω) ⇒ Γ0, θ, f) of Kerbrat-Souici-Benhammadi with
f = 1, again by [W-X, Lemma 3.2, p. 176].
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