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This paper gives a complete characterization of the spec-
tra of composition operators acting on H∞ in the case that
the symbol ϕ has an interior fixed point. This is done after
it proves that the essential norm of a composition operator
acting on H∞ is either 1 or 0.

1. Introduction.

Throughout this paper, D denotes the unit disk {z : |z| < 1}, ϕ denotes an
analytic self-map of D, Cϕ is the composition operator defined by Cϕ(f) =
f ◦ϕ, ‖Cϕ‖e and ρe represent the essential norm and essential spectral radius
of Cϕ respectively, and H(D) is the space of analytic functions on D.

The essential norm of an operator is the distance from the operator to
the space of compact operators. The essential norm of composition opera-
tor acting on H2, the Hardy space of analytic functions f on D such that∫ π
−π |f(eiθ)|2dθ <∞, was given by J. H. Shapiro in terms of the Nevanlinna

counting function [Sh1]. The spectrum of composition operator on H2 has
also been studied extensively. Kamowitz was the first to investigate spec-
trum of composition operator whose symbol is not an inner function and
has a fixed point in the disk. He proved in [Kam] that the spectrum of Cϕ
on H2 is the set {λ : |λ| ≤ ρe} ∪ {ϕ′(a)n : n ∈ N} ∪ {1} if ϕ is analytic in
a neighborhood of D, not an inner function and has an interior fixed point
a. Then Cowen and MacCluer proved in [CM1] the same conclusion in the
case that ϕ is univalent, not an automorphism and has an interior fixed
point. But a complete understanding of the spectrum of Cϕ on H2 is still
lacking. While much attention has been devoted to the study of H2, the
behavior of Cϕ acting on H∞, the space of bounded analytic functions on
D, has barely been discussed. It is the purpose of this paper to investigate
some properties of Cϕ acting on H∞.

There are two main results of this paper. One of the results, which is
stated as Theorem 1, is that the essential norm of Cϕ acting on H∞ is
either 1 or 0. This leads to the corollary that the essential spectral radius of
Cϕ on H∞ is also 1 or 0. Then the two theorems described in the previous
paragraph about the spectrum of Cϕ on H2, together with this corollary,
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suggest that if ϕ has an interior fixed point a, the spectrum of Cϕ on H∞

is D or the sequence {0, 1, ϕ′(a)n : n = 1, 2, . . . }. This is the second main
result, stated and proved below as Theorem 4. But unlike the theorems
about the spectrum of Cϕ acting on H2 previously referred to, this does
not require ϕ to be univalent or analytic in a neighborhood of D. It only
requires ϕ to have an interior fixed point.

2. Essential norm.

The essential norm of Cϕ on H∞ is defined to be

‖Cϕ‖e = inf{‖Cϕ −K‖ : K is compact operator on H∞}.

Clearly Cϕ is compact if and only if its essential norm is zero.
The next result shows that there is only one other possible value for the

essential norm of a composition operator on H∞.

Theorem 1. If Cϕ is not compact on H∞, then its essential norm is 1.

In order to prove this theorem, we need the following lemma, which was
first proved by Schwartz [Sch].

Lemma 2. Cϕ is compact on H∞ if and only if ϕ(D) is relatively compact
in D.

Proof of Theorem 1. We know that Cϕ is compact if and only if its essential
norm is 0. The main argument here is that the essential norm must be 1 if
Cϕ is not compact. Since ‖Cϕ(f)‖∞ = supz∈D |f ◦ ϕ(z)| ≤ supz∈D |f(z)| =
‖f‖∞, ‖Cϕ‖ ≤ 1, and hence ‖Cϕ‖e ≤ 1. It suffices to prove that ‖Cϕ‖e ≥ 1
if Cϕ is not compact on H∞.

Now assume Cϕ is not compact on H∞. By Lemma 2, supz∈D |ϕ(z)| = 1.
There exists a sequence {ak}∞k=1 ⊂ D such that ϕ(ak) → eiβ as k → ∞ for
some β ∈ R. Without loss of generality, let’s assume eiβ = 1. Let {rn}∞n=1

be a nonnegative sequence increasing to 1, and

ψn(z) =
z − rn
1− rnz

.

Then ‖ψn‖∞ = 1, ψn fixes 1 and −1 for all n ∈ N, and ψn(z) → −1 as
n → ∞ for all z ∈ D. Let K be a compact operator on H∞. We want to
show that ‖Cϕ − K‖ ≥ 1. Since K is compact and ‖ψn‖∞ = 1, there is a
subsequence {ψnj}∞j=1 and an f ∈ H∞ such that limj→∞ ‖Kψnj − f‖∞ = 0.
For ‖Cϕ−K‖ ≥ 1 to be true, it is enough to prove that lim supj→∞ ‖(Cϕ−
K)(ψnj )‖∞ ≥ 1. But

‖(Cϕ −K)(ψnj )‖∞ ≥ ‖Cϕ(ψnj )− f‖∞ − ‖Kψnj − f‖∞,
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which implies

lim sup
j→∞

‖(Cϕ −K)(ψnj )‖∞ ≥ lim sup
j→∞

‖Cϕ(ψnj )− f‖∞.

It suffices to prove that lim supj→∞ ‖Cϕ(ψnj )− f‖∞ ≥ 1.
The fact that ψn(z) → −1 as n → ∞ for all z ∈ D implies that ψnj ◦

ϕ(z) → −1 as j →∞, and hence limj→∞ |ψnj ◦ ϕ(z)− f(z)| = | − 1− f(z)|
for all z ∈ D. If there is z0 ∈ D such that | − 1 − f(z0)| ≥ 1, we have
‖ψnj ◦ ϕ− f‖∞ ≥ |ψnj ◦ ϕ(z0)− f(z0)| → | − 1− f(z0)| ≥ 1, which implies
lim supj→∞ ‖ψnj ◦ϕ−f‖∞ ≥ 1 as desired. Otherwise, |−1−f(z)| < 1 for all
z ∈ D. Then by the triangle inequality |1−f(z)| > 1 for all z ∈ D. Consider
the sequence {ak}∞k=1 ⊂ D which was obtained at the beginning of the proof.
We have limk→∞ ϕ(ak) = 1 and {f(ak)}∞k=1 is bounded since f ∈ H∞.
Then there is a subsequence {f(akj

)}∞j=1 converging to some ω ∈ C. By re-
indexing we may assume, without loss of generality that, limk→∞ f(ak) = ω.
Then by our assumption on f , |1−ω| = limk→∞ |1−f(ak)| ≥ 1. Since ψn is
continuous, ψn(1) = 1 and limk→∞ ϕ(ak) = 1, it follows that limk→∞ |ψn ◦
ϕ(ak)−f(ak)| = |1−ω| ≥ 1 for all n. Then ‖ψnj ◦ϕ−f‖∞ ≥ limk→∞ |ψnj ◦
ϕ(ak)−f(ak)| ≥ 1 for all j. Hence lim supj→∞ ‖ψnj ◦ϕ−f‖∞ ≥ 1 as desired.

If eiβ 6= 1, let Ψn(z) = eiβψn(e−iβz). The same proof holds with ψn
replaced by Ψn, and the boundary points 1 and −1 replaced by eiβ and
−eiβ respectively. This completes the proof of Theorem 1.

For the rest of this paper, ϕn will denote the nth iterate of ϕ, i.e., ϕ1 = ϕ
and ϕn = ϕ ◦ ϕn−1 for n > 1.

Definition ([CM2, p. 150]). If T is a bounded linear operator on a Hilbert
space, then the spectrum of the equivalence class in the Calkin algebra that
contains T is called the essential spectrum of T .

Corollary 3. The essential spectral radius of Cϕ on H∞ is either 1 or 0.
If Cϕn (= Cnϕ) is compact for some n ≥ 1, then ρe(Cϕ) = 0. Otherwise
ρe(Cϕ) = 1.

Proof. The conclusion follows immediately from Theorem 1 and the formula
that ρe(Cϕ) = limn→∞(‖Cnϕ‖e)1/n = limn→∞(‖Cϕn‖e)1/n.

3. Spectrum.

For Cϕ acting on H∞, the spectrum σ(Cϕ) is contained in D. This is because
the norm of Cϕ acting on H∞ is always 1, which implies the spectral radius
ρ(Cϕ) = limn→∞ ‖Cϕn‖1/n = 1.

Theorem 4. If ϕ is not a constant, not an automorphism, and ϕ(a) = a
for some a ∈ D, then

σ(Cϕ) = D, if ‖ϕn‖∞ = 1 for all n ∈ N
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and

σ(Cϕ) = {ϕ′(a)k : k = 1, 2, . . . } ∪ {0, 1}, if ‖ϕn‖∞ < 1 for some n ∈ N.

The proof of Theorem 4 will be given after some lemmas. Some ideas
and approaches used in the proof are suggested by the work of Kamowitz in
[Kam], and that of Cowen and MacCluer in [CM1].

The following lemma, Lemma 5, follows immediately from Koenigs’ The-
orem [Koe] (see also [Sh2, Chapter 6]), if we can show that the Koenigs’
function ξ of ϕ is in H∞ under the assumption of the Lemma. Since
ξ ◦ ϕ = ϕ′(a)ξ, which implies ξ ◦ ϕn = ϕ′(a)nξ, and hence ξ = ϕ′(a)−nξ(ϕn)
for all n ∈ N, we conclude that ξ is in H∞ under the assumption that
‖ϕn‖∞ < 1 for some n ∈ N.

Lemma 5. For ϕ as in Theorem 4, suppose ‖ϕn‖∞ < 1 for some n ∈ N. If
ϕ′(a) 6= 0, then {ϕ′(a)n, n = 0, 1, 2, . . . } is the set of eigenvalues of Cϕ on
H∞. If ϕ′(a) = 0, the only eigenvalue of Cϕ is 1.

Lemma 6. Let ϕ be the same as in Theorem 4 and suppose ‖ϕn‖∞ < 1 for
some n ∈ N. Then for Cϕ on H∞,

σ(Cϕ) = {ϕ′(a)k : k = 1, 2, . . . } ∪ {0, 1}.

Proof. Under the hypothesis that ‖ϕn‖∞ < 1, Cϕn = Cnϕ is compact, which
implies that Cϕ is not invertible and hence 0 is in the spectrum. Also, since
Cnϕ is compact, Cϕ is a Riesz operator. So its nonzero spectrum consists of
eigenvalues [Kön, p. 19-21], and the result follows from Lemma 5.

Lemma 7. Suppose ϕ(0) = 0. Then Hm = zmH∞ is an invariant subspace
of Cϕ and σ(Cm) ⊂ σ(Cϕ) where Cm = Cϕ|Hm.

Proof. It’s easy to see that Hm is invariant under Cϕ. Since ϕ(0) = 0,
ϕ(z) = zφ(z) for some φ ∈ H∞. Then if f ∈ H∞, Cϕ(zmf) = ϕm(f ◦ ϕ) ∈
Hm.

Suppose λ is in the spectrum of Cm. If λ is an eigenvalue of Cm, it must be
an eigenvalue of Cϕ and hence in the spectrum of Cϕ. If λ is not an eigenvalue
of Cm, then Cm−λI is one-one. But it is not invertible, and hence not onto.
So there exists f ∈ Hm with f /∈ (Cm−λI)(Hm). If we can show that Cϕ−λI
on H∞ is not onto, then it will follow that λ ∈ σ(Cϕ) and the conclusion
holds. Suppose to the contrary Cϕ−λI is onto. Then f ∈ (Cϕ−λI)(H∞) and
there is g ∈ H∞ with g /∈ Hm such that (Cϕ − λI)g = f . Let g = g1 + g2,
where g1 ∈ span(1, z, z2, . . . , zm−1) and g2 ∈ Hm. We have g1 6= 0 since
g /∈ Hm. Let f1 = (Cϕ − λI)g1 = f − (Cϕ − λI)g2. Then f1 ∈ Hm since
f, g2 ∈ Hm.

Also by the assumption that Cϕ − λI is onto, for each function zi, i =
1, 2, . . . ,m − 1, there exists hi ∈ H∞ such that (Cϕ − λI)hi(z) = zi. Let
hi = ki + li where ki ∈ span(1, z, z2, . . . , zm−1) and li ∈ Hm. The next
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step is to show that g1, k0, k1, . . . , km−1 are linearly independent. Suppose
βg1 +

∑m−1
i=0 αiki = 0 for some β and αi, i = 0, 1, . . . ,m − 1. Then βg1 +∑m−1

i=0 αihi = (βg1 +
∑m−1

i=0 αiki) +
∑m−1

i=0 αili =
∑m−1

i=0 αili ∈ Hm. So
(Cϕ − λI)(βg1(z) +

∑m−1
i=0 αihi(z)) = βf1(z) +

∑m−1
i=0 αiz

i ∈ Hm. Since
f1 ∈ Hm, we have αi = 0 for i = 0, 1, ...,m− 1. Then it follows that β = 0.
So g1, k0, k1, . . . , km−1 are linearly independent. But this is impossible since
{g1, k0, k1, . . . , km−1} ⊂ span(1, z, . . . , zm−1), which is only m dimensional.
So Cϕ − λI is not onto, and hence λ is in the spectrum of Cϕ.

Definition. We say the sequence of points {zk}Mk=K is an iteration sequence
for ϕ if ϕ(zk) = zk+1 for K ≤ k < M where K ≥ −∞ and M ≤ ∞.

Lemma 8 ([CM2, p. 292, Lemma 7.34]). If ϕ is not an automorphism and
ϕ(0) = 0, then given 0 < r < 1, there exists Mr with 1 ≤ Mr < ∞ such
that if {zk}∞−K is an iteration sequence with |zl| ≥ r for some l ≥ 0 and if
{wk}l−K is arbitrary, there is h ∈ H∞ such that h(zk) = wk for −K ≤ k ≤ l
and ‖h‖∞ ≤Mr sup{|wk| : −K ≤ k ≤ l}.
Lemma 9 ([CM2, p. 293, Lemma 7.35]). For ϕ in Lemma 8 and {zk} any
iteration sequence, there exists c < 1 such that |zk+1|/|zk| ≤ c whenever
|zk| ≤ 0.5.

Proof of Theorem 4. The statement in the case that ‖ϕn‖∞ < 1 for some
n ∈ N is the result of Lemma 6. Now suppose ‖ϕn‖∞ = 1 for all n ∈
N. We want to prove σ(Cϕ) = D. If the interior fixed point a 6= 0, let
τ(z) = (a − z)/(1 − az) and ψ = τ ◦ ϕ ◦ τ . Then τ−1 = τ , ψ(0) = 0 and
Cψ = Cτ ◦Cϕ ◦Cτ = Cτ ◦Cϕ ◦C−1

τ . Cϕ and Cψ are similar and hence have
the same spectrum. So without loss of generality, we can assume ϕ(0) = 0.

Since σ(Cϕ) ⊂ D and σ(Cϕ) is closed, it suffices to prove D−{0} ⊂ σ(Cϕ).
Let 0 6= λ ∈ D, Hm = zmH∞, and Cm = Cϕ|Hm . By Lemma 7, it suffices
to prove that λ is in the spectrum of Cm for some positive integer m. Since
Cm − λI is not onto if and only if (Cm − λI)∗ is not bounded from below,
it is enough to find a positive integer m with (Cm− λI)∗ not bounded from
below.

Let M be the constant Mr in Lemma 8 corresponding to r=0.25 and
suppose we have an iteration sequence {zk}∞−K with K ≥ 0 and |z0| > 0.5
(this sequence will be determined later on). Let n = max{k : |zk| ≥ 0.25}.
Then n ≥ 0 and |zk| < 0.25 < 0.5 for all k ≥ n+ 1. By Lemma 9, there is a
number c1 < 1 so that |zk+1| ≤ c1|zk| whenever k ≥ n+ 1. If zn ≤ 0.5, the
inequality also holds for k = n. If |zn| > 0.5, since |zn+1| < 0.25, we have
|zn+1| < 0.5|zn|. Let c = max{c1, 0.5}. Then |zk+1| ≤ c|zk| for all k ≥ n.
It follows that |zk| ≤ ck−n|zn| whenever k ≥ n. Since c < 1, there exists a
positive integerm such that cm/|λ| < 1/(2M+1) < 1. For thism, (Cm−λI)∗
is not bounded from below. To see that, let ε > 0 and we will construct a
bounded linear functional Lλ on Hm with ‖(Cm − λI)∗Lλ‖/‖Lλ‖ < ε.
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Let’s define Lλ by Lλ(f) =
∑∞

k=−K λ
−kf(zk) for f ∈ Hm. We will see

that Lλ is well-defined and indeed it is bounded.
For f ∈ Hm, z−mf(z) is analytic and ‖f‖∞ = ‖z−mf(z)‖∞. So

|f(zk)| = |zk|m|z−mk f(zk)| ≤ |zk|m‖z−mf(z)‖∞ = |zk|m‖f‖∞.

Then
∞∑

k=−K
|λ|−k|f(zk)| ≤ ‖f‖∞

∞∑
k=−K

|λ|−k|zk|m(1)

= ‖f‖∞

(
n∑

k=−K
|λ|−k|zk|m +

∞∑
k=n+1

|λ|−k|zk|m
)
.

For k > n, |zk| ≤ ck−n|zn| and so |zk|m ≤ (cm)k−n|zn|m. We see that
(2)

∞∑
k=n+1

|λ|−k|zk|m ≤
∞∑

k=n+1

(cm)k−n|zn|m

|λ|k−n|λ|n
=
|zn|m

|λ|n
∞∑

k=n+1

(
cm

|λ|

)k−n
<∞.

It follows that
∑∞

k=−K λ
−kf(zk) converges. Hence Lλ is well-defined and by

(1) it is bounded.
Now let’s estimate ‖(Cm−λI)∗Lλ‖

‖Lλ‖ . For f ∈ Hm,

〈f, (Cm − λI)∗Lλ〉 = 〈(Cm − λI)f, Lλ〉
= 〈f ◦ ϕ− λf, Lλ〉

=
∞∑

k=−K
λ−k(f ◦ ϕ(zk)− λf(zk))

=
∞∑

k=−K
(λ−kf(zk+1)− λ−(k−1)f(zk))

= −λK+1f(z−K).

Then

‖(Cm − λI)∗Lλ‖ = sup
0 6=f∈Hm

|〈f, (Cm − λI)∗Lλ〉|
‖f‖∞

= sup
0 6=f∈Hm

|λ|K+1|f(z−K)|
‖f‖∞

≤ |λ|K+1.

We also need a lower bound for ‖Lλ‖. If we apply Lemma 8 to the iteration
sequence {zk}∞−K with r=0.25, we can find a function h ∈ H∞ with ‖h‖∞ ≤
M , |h(zk)| = 1 and λ−kzmk h(zk) > 0 for −K ≤ k ≤ n. Let g(z) = zmh(z) ∈
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Hm. Then ‖g‖∞ ≤M and

Lλ(g) =
∞∑

k=−K
λ−kzmk h(zk)

=
n−1∑
k=−K

|λ|−k|zk|m + |λ|−n|zn|m +
∞∑

k=n+1

λ−kzmk h(zk).

By the estimate in (2) and because M ≥ 1 and cm/|λ| < 1/(2M + 1) from
the choice of m, we have∣∣∣∣∣

∞∑
k=n+1

λ−kzmk h(zk)

∣∣∣∣∣ ≤
∞∑

k=n+1

|λ|−k|zk|m|h(zk)|

≤M |λ|−n|zn|m
∞∑

k=n+1

(
cm

|λ|

)k−n

= M |λ|−n|zn|m
cm

|λ|

1− cm

|λ|

≤M |λ|−n|zn|m
1

2M+1

1− 1
2M+1

=
1
2
|λ|−n|zn|m.

This shows that

|Lλ(g)| ≥
n−1∑
k=−K

|λ|−k|zk|m + |λ|−n|zn|m −

∣∣∣∣∣
∞∑

k=n+1

λ−kzmk h(zk)

∣∣∣∣∣
≥

n−1∑
k=−K

|λ|−k|zk|m +
1
2
|λ|−n|zn|m ≥ 1

2
|z0|m.

Then

‖Lλ‖ ≥
|Lλ(g)|
‖g‖∞

≥ |z0|m

2M
≥ (0.5)m

2M
.

It follows that
‖(Cm − λI)∗Lλ‖

‖Lλ‖
≤ 2M |λ|K+1

0.5m
.

Since |λ| < 1, this is less than ε if we choose K sufficiently large. For the
chosen K, we can determine the iteration sequence {zk}∞−K . Since ‖ϕK‖∞ =
1 by assumption, there exists w ∈ D with |ϕK(w)| > 0.5. Let z−K = w and
zk+1 = ϕ(zk) for k > −K. Then |z0| = |ϕK(z−K)| > 0.5. The above
calculation follows, thus (Cm − λI)∗ is not bounded from below as desired.
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