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A natural L∞ functional calculus for an absolutely contin-
uous contraction is investigated. It is harmonic in the sense
that for such a contraction and any bounded measurable func-
tion φ on the circle, the image can rightly be considered as
φ̂(T ), where φ̂ is the solution of the Dirichlet problem for the
disk with boundary values φ. The main result shows that
if the functional calculus is isometric on H∞, then it is iso-
metric on all of L∞. As a consequence we obtain that if the
contraction has an isometric H∞ functional calculus and is in
class C00, then the range of the harmonic functional calculus
is a hyperreflexive subspace of operators. In particular, the
space of all Toeplitz operators with a bounded harmonic sym-
bol acting on the Bergman space of the disc is hyperreflexive.
Applications of these results to subnormal operators are also
presented.

1. Introduction.

Let H be a complex, separable Hilbert space and let B(H) be the algebra of
all bounded linear operators from H into itself. Assume T is a contraction
in B(H) that is absolutely continuous. That is, if T has a reducing subspace
on which it is unitary, then the spectral measure of this unitary is abso-
lutely continuous. It is a well-known result of Sz.-Nagy [14] that T has a
unitary dilation. That is, there is a Hilbert space K that contains H and
a unitary operator U on K such that Tn = PHUn|H for all n ≥ 0. (A
proof of this can be found in [10], p. 200. This book will serve as general
background for this paper as will [7].) This unitary, moreover, is absolutely
continuous. Therefore for any bounded Borel function φ, we can define the
operator φ(T ) ≡ Pφ(U)|H. If L∞ = L∞(∂ D) is the L∞-space of Lebesgue
measure on the circle, ∂ D, then this defines a map ξ : L∞ → B(H) given
by ξ(φ) = φ(T ). The properties of this map are summarized below. The
weak∗ topology on L∞ referred to in this result is the usual one it has as
the Banach space dual of L1; the weak∗ topology on B(H) is the one it has
as the dual of the trace class, B1.
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Theorem 1.1. ξ : L∞ → B(H) is a positive linear contraction that is weak∗

continuous.

The proof of this theorem is standard and almost immediate from the
definition of ξ. Note that ξ is not multiplicative unless T is unitary. When
this map ξ is restricted to the bounded analytic functions, H∞, then it is
called the Sz.-Nagy-Foias functional calculus for the operator T . It is the
functional calculus ξ : L∞ → B(H) that is the subject of this paper. Define
T (T ) to be the range of ξ.

This functional calculus was introduced in a more general setting in [11],
where many of its properties are deduced and some applications are pre-
sented. There is an overlap between [11] and the remainder of this section.

The reason that the functional calculus ξ is called the “harmonic func-
tional calculus” is the following. If p and q are analytic polynomials, then
ξ(p + q) = p(T ) + q(T )∗. Now p + q is the typical trigonometric polyno-
mial. If φ ∈ L∞, then there is a sequence of trigonometric polynomials {fn}
such that ‖fn‖∞ ≤ ‖φ‖∞ and fn → φ weak∗ in L∞. Indeed, one can take
the fn to be the Césaro sums of the Fourier series of φ. It follows that
fn(T ) → φ(T ) weak∗ in B(H). But on the open disk the trigonometric poly-
nomials {fn} converge uniformly on compact subsets of D to φ̂, the harmonic
extension of φ. This is more than a slight of hand. Indeed, as will be seen
below, in the case of many operators such as the Bergman shift, φ(T ) can be
equivalently defined in terms of φ̂. A further, more explicit connection with
harmonic functions can be seen by a consideration of absolutely continuous
contractions that are normal operators.

Let N be a normal operator on H that is an absolutely continuous con-
traction and let N =

∫
z dE(z) be its spectral decomposition. For vectors x

and y in H, let µx,y be the measure defined on cl D by µx,y(∆) = 〈E(∆)x, y〉.
Denote by µ̃x,y the sweep of µx,y to ∂ D. (See p. 311 of [9].) It follows that
µx,y is absolutely continuous on the circle and for every φ in L∞,∫

∂ D
φ dµ̃x,y =

∫
cl D

φ̂ dµx,y = 〈φ̂(N)x, y〉.

In particular, P (∆) = χ̂∆(N) defines a positive operator-valued measure on
the circle with P (∂ D) = 1. Call P the sweep of the spectral measure E.
By the Naimark Dilation Theorem (see p. 197 of [10]), there is a Hilbert
space K containing H and a spectral measure F on the circle with values in
B(K) such that P (∆) = PHF (∆)|H for every Borel subset ∆ of ∂ D.

Proposition 1.2. Let N be a normal operator that is an absolutely contin-
uous contraction and let N =

∫
z dE(z) be its spectral decomposition. If P is

the sweep of the spectral measure E, F is the minimal spectral measure with
values on B(K) that dilates P , H ⊆ K, then U =

∫
z dF (z) is the minimal

unitary dilation of N .
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Proof. Using the notation that preceded the statement of the proposition,
if x, y ∈ H and n ≥ 0, then 〈Unx, y〉 =

∫
zn d〈F (z)x, y〉 =

∫
zn dµ̃x,y =

〈Nnx, y〉, since zn is harmonic. Thus U is a unitary dilation. Now to show
that it is minimal.

Let L be the closed linear span of {UnH : n ∈ Z}. To show the minimality
of U it must be shown that L = K. But L is clearly a reducing subspace
for the unitary operator U , so F (∆)L ⊆ L for every Borel subset ∆ of ∂ D.
Now the fact that F is the minimal spectral measure that dilates P implies
that L =K . �

The next result is a corollary of the preceding proposition, but it can also
be proved directly.

Corollary 1.3. If N is a normal operator that is an absolutely continuous
contraction, then the functional calculus ξ : L∞ → B(H) is given by

ξ(φ) = φ̂(N) =
∫

φ̂ dE,

where φ̂ is the solution of the Dirichlet problem with boundary values φ.

Corollary 1.4. If S is a subnormal, absolutely continuous contraction on
H with minimal normal extension N on K, then ξ(φ) = PHφ̂(N)|H for every
φ in L∞.

In the case of a subnormal operator S as described in the preceding corol-
lary, there is a richer linear functional calculus. If µ is a scalar-valued
spectral measure for N , then we can define φ(S) = PHφ(N) for every φ
in L∞(µ). These operators {φ(S) : φ ∈ L∞(µ)} are sometimes called the
Toeplitz operators associated with the subnormal operator S. Indeed, if S is
the unilateral shift, then these are the classical Toeplitz operators. Extend-
ing results from the classical case to this more general setting seems almost
hopeless. There is evidence, however, that some results will extend from the
classical case to the Toeplitz operators with a harmonic symbol.

2. The functional calculus.

The key to the proof of the main result of this paper is a result of Tomiyama
and Yabuta [17], which we state here for reference. Recall the definition of
a uniform algebra and its Shilov boundary.

Proposition 2.1. Let η : C(X) → B(H) be a contractive linear represen-
tation such that η(1) = 1, and let A be a uniform algebra on X. If η is
isometric on A and X is a Shilov boundary of A, then η is an isometry on
C(X).

The main result of the paper is the following:
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Theorem 2.2. If T is an absolutely continuous contraction and if the func-
tional calculus ξ : L∞ → B(H) is isometric on H∞, then ξ is isometric on
L∞, T (T ) is weak∗ closed, and ξ is a weak∗ homeomorphism from L∞ onto
T (T ).

Proof. Let X be the maximal ideal space of L∞ and let γL : L∞ → C(X)
be the Gelfand map; so γL is an isometric isomorphism. We will consider
ξ ◦γ−1

L : C(X) → T (T ) and show that it is an isometry, which will complete
the proof. This is done by applying Proposition 2.1 to A = γL(H∞). Before
showing that the assumptions of Proposition 2.1 are fulfilled, we need some
notation.

Let M denote the maximal ideal space of H∞ and let γH : H∞ → C(M)
be the Gelfand map. Define ρ : X → M to be the restriction map, ρ(α) =
α|H∞. By [12], p. 174, ρ is a homeomorphism of X onto ρ(X) and ρ(X) is
the Shilov boundary of H∞.

Note that the diagram

L∞
γL−−−→ C(X)

i

x xρ∗

H∞ γH−−−→ C(M)

is commutative, where i is the inclusion map and ρ∗(g) = g ◦ ρ for g in
C(M). Indeed, for φ in H∞ and α in X, (ρ∗ ◦ γH(φ))(α) = γH(φ)(ρ(α)) =
ρ(α)(φ) = α(φ) = γL(φ)(α).

It is clear that A is norm closed and 1 ∈ A. To show that A is a uniform
algebra in C(X), it remains to show that A separates the points of X.
Let α1, α2 ∈ X, and assume that γL(φ)(α1) = γL(φ)(α2) for all φ in H∞.
Since the diagram commutes, this implies that ρ(α1)(φ) = γH(φ) ◦ ρ(α1) =
γH(φ) ◦ ρ(α2) = ρ(α2)(φ). Thus, by the definition of a homomorphism,
ρ(α1) = ρ(α2). But ρ is injective, so α1 = α2. Hence A is a uniform algebra.

Note that X is a boundary for A ⊂ C(X). If F is a proper closed subset
of X, then ρ(F ) is a proper closed subset of the Shilov boundary of H∞,
ρ(X). Hence there is φ in H∞ such that 1 = ‖γH(φ)‖ = ‖γH(φ)‖ρ(X) and
‖γH(φ)‖ρ(F ) < 1. If f = γL(φ) ∈ A, then, for α in X,

|f(α)| = |γL(φ)(α)| = |(ρ∗ ◦ γH(φ))(α)| = |γH(φ)(ρ(α))|.

Hence ‖f‖ = 1, but |f(α)| < 1 for α ∈ F . Thus F cannot be a boundary
for A and so X is the Shilov boundary for A. By Proposition 2.1, ξ is an
isometry.

Since ξ is weak∗ continuous (1.1), the fact that T (T ) = ξ(L∞) is weak∗

closed and that ξ is a weak∗ homeomorphism from L∞ onto T (T ) is a
standard consequence of the Krein-Smulian Theorem. (For example, see
[8], Proposition I.2.7.) �
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Some special cases of this result have appeared in the literature. In [13]
this theorem is shown for a class of weighted Bergman operators on the disk
(Theorem 10), though the proof there is not correct.

The standard terminology is that A is the set of all absolutely continuous
contractions for which the H∞ functional calculus is isometric. See [5]. So
the preceding theorem says that every contraction in class A has an isometric
harmonic functional calculus.

This section concludes with an application of this result to all subnormal
operators. Let S be a subnormal operator on H and let N be its minimal
normal extension acting on K. If µ is a scalar-valued spectral measure for
N , then a natural multiplicative, functional calculus for S is φ → φ(S) =
φ(N)|H for φ in P∞(µ), the weak∗ closure of the polynomials in L∞(µ). By
a result of Sarason [16], there is a “special” open set G and a decomposition
µ = µ∞ + µ0, µ0 ⊥ µ∞, such that P∞(µ) = L∞(µ0) ⊕H∞(G, µ∞), where
H∞(G, µ∞) is an isometric, weak∗ homeomorphic embedding of H∞(G)
onto P∞(µ∞) ⊆ L∞(µ∞). (Also see [8], p. 301.) The open set G is called
the Sarason hull of µ.

The next result gathers information about this. The reader can consult
[8] for details.

Theorem 2.3. Let S be a subnormal operator on H with minimal normal
extension N acting on K and scalar-valued spectral measure µ. If G is
the Sarason hull of µ and G1, G2, . . . are its components, then there is a
decomposition of µ, µ = µ0 + µ1 + · · · , where µn ⊥ µm for n 6= m, such that
the following hold:

(a) P∞(µ) = L∞(µ0)⊕ P∞(µ1)⊕ · · · ;
(b) the polynomials are weak∗ dense in L∞(µ0);
(c) for n ≥ 1, the identity map on polynomials extends to an isometric,

weak∗ homeomorphism of P∞(µn) onto H∞(Gn);
(d) there is a corresponding decomposition of the Hilbert space H as H =

H0 ⊕ H1 ⊕ · · · , where each Hn reduces S and, for n ≥ 0, the weak∗

closed algebra generated by Sn ≡ S|Hn and the identity is precisely
{f(S)|Hn : f ∈ P∞(µn)} = {f(Sn) : f ∈ P∞(µn)};

(e) for n ≥ 1, the set Gn is simply connected and if τ : Gn → D is a
Riemann map, then τ is a weak∗ generator of H∞(Gn) as an algebra
and τ−1 is a weak∗ generator of H∞(D) as an algebra;

(f) for n ≥ 1, µn is supported on cl Gn and µn|∂Gn is absolutely continu-
ous with respect to harmonic measure for Gn;

(g) the Riemann map τ : Gn → D extends to a subset of ∂Gn having full
harmonic measure and on this set is a one-to-one, measurable map
onto a subset of ∂ D having full measure such that its inverse is also
measurable.
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Remarks.
1. Condition (b) of this theorem says that S0 is a reductive normal op-

erator.
2. The statement in (e) means that the polynomials in τ are weak∗ dense

in H∞(Gn) and polynomials in τ−1 are weak∗ dense in H∞(D).
3. In light of (c) no distinction between P∞(µn) and H∞(Gn) will be

made. That is, when a function φ in P∞(µn) is considered, it will be
assumed that φ is a bounded analytic function on Gn.

4. Using the results from the statement of Theorem 2.3 it can be shown
that G is the set of all λ in C such that the map p → p(λ) defined
on polynomials extends to a weak∗ continuous homomorphism from
P∞(µ) into C.

5. If L∞(∂Gn) denotes the L∞ space of harmonic measure for Gn, then
(g) says that the restriction of τ to ∂Gn induces an isometric isomor-
phism and a weak∗ homeomorphism of L∞(∂ D) onto L∞(∂Gn).

As mentioned after Corollary 1.4, for a subnormal operator S there is
an additional linear functional calculus. Using the preceding notation, for
every φ in L∞(µ), define φ(S) ≡ PHφ(N). In the proposition below the
notation of Theorem 2.3 is used. If φ ∈ L∞(∂Gn) and φ̂ is the solution
of the Dirichlet problem for Gn with boundary values φ, then φ̂ can be
considered as an element of L∞(µn) by letting φ̂ be itself on Gn while being
φ on ∂Gn. Note that this makes sense in light of the fact that µn|∂Gn is
absolutely continuous with respect to harmonic measure. Also note that
‖φ̂‖L∞(µn) = ‖φ̂‖Gn .

Proposition 2.4. Let S be a subnormal operator and adopt the notation
in Theorem 2.3. If φ ∈ L∞(∂Gn), let φ̂ denote the solution of the Dirich-
let problem for Gn with boundary values φ. If ρ : L∞(µ0) ⊕ L∞(∂G1) ⊕
L∞(∂G2)⊕ · · · → B(H) is defined by

ρ(φ0 ⊕ φ1 ⊕ φ2 ⊕ · · · ) = φ0(S0)⊕ φ̂1(S1)⊕ φ̂2(S2)⊕ · · · ,

then ρ is a linear isometry, its range is weak∗ closed, and ρ is a weak∗

homeomorphism onto its image.

Proof. Since S0 is normal, it suffices to show that for n ≥ 1 and φ in
L∞(∂Gn), ‖φ̂(Sn)‖ = ‖φ̂‖Gn ≡ sup{|φ̂(z)| : z ∈ Gn}. If τ : Gn →
D is a Riemann map, then τ(Sn) is an absolutely continuous contraction
for which the H∞ functional calculus is isometric. Indeed, for f in H∞,
f ◦ τ ∈ H∞(Gn). Therefore by Theorem 2.3 we have that ‖f(τ(Sn))‖ =
‖f ◦ τ(Sn)‖ = ‖f ◦ τ‖Gn = ‖f‖D. By Theorem 2.2, for every bounded har-
monic function u on the disk, ‖u(τ(Sn))‖ = ‖u‖D. Taking u = φ̂ ◦ τ−1

implies that ‖φ̂(Sn)‖ = ‖(φ̂ ◦ τ−1)(τ(S))‖ = ‖φ̂ ◦ τ−1‖D = ‖φ̂‖Gn .
Again, the rest of the proposition follows from Proposition 2.7 of [8]. �
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3. Hyperreflexivity.

Recall that a subspace M of B(H) is said to be reflexive if every operator
B in B(H) satisfying Bx ∈ cl [Mx] for all x in H necessarily belongs to M.
For any B in B(H), let dist (B,M) denote the usual distance from B to
M in B(H), and let

α(B,M) = sup{‖Q⊥BP‖ : P,Q projections with Q⊥MP = (0)}.

The linear space M is called hyperreflexive if there is a constant C > 0
such that dist (B.M) ≤ C α(B,M) for every B in B(H). The smallest con-
stant C is called the hyperreflexive constant and is denoted by κ(M). (See
[10], Chapter 8, for the elementary properties of reflexive and hyperreflexive
subspaces.) It is straightforward that hyperreflexive subspaces are reflexive,
and reflexive spaces are weakly (WOT) closed.

If S is the unilateral shift on the Hardy space H2, it was shown in [1] (also
see [10], Prop. 56.8) that the space T (S) is far from being reflexive, though
it is WOT closed. Indeed, it is transitive. However, T (S) contains many
reflexive subspaces, for example A(S), the weakly closed algebra generated
by S. All the reflexive subspaces of T (S) were characterized in [1], where
it is also shown that every weak∗ closed subspace of T (S) is either reflexive
or transitive. Below we will show that T (T ) is hyperreflexive for all C00

contractions T in the class A.
Recall that B(H) is the Banach space dual of the trace class B1. If M is

a linear manifold in B(H), then the preannihilator of M is the space of
weak∗ continuous linear functionals ⊥M ≡ {L ∈ B1 : L(M) = (0)}. Let
QM = B1/⊥M. So the Banach space dual of QM is the weak∗ closure of
M. For any L in B1, [L] = [L]M denotes the coset in QM.

Now consider an absolutely continuous contraction T and the subspace
T (T ). Since ξ : L∞ → T (T ) is weak∗ continuous, there is a bounded linear
map θ : QT (T ) → L1such that ξ = θ∗. Thus for every L in B1 and φ in
L∞,

∫
φθ([L]) dm = 〈[L], ξ(φ)〉 = tr (Lξ(φ)). If x and y are vectors in H,

x ⊗ y is the rank one operator on H given by (x ⊗ y)(h) = 〈h, y〉x. Using

the notation of [6], let x
T· y ≡ θ(x⊗ y). So for every φ in L∞,

tr [ξ(φ)(x⊗ y)] =
∫

∂ D
φ

(
x

T· y
)

dm.

Denote by X0(M) the set of all [L] in QM such that there exist sequences
{xn}∞n=1, {yn}∞n=1 in H with ‖xn‖ ≤ 1 and ‖yn‖ ≤ 1 for all n such that

3.1.


(a) limn→∞ ‖[xn ⊗ yn]− [L]‖ = 0,

(b) limn→∞ ‖[xn ⊗ w]‖ = 0 for all w ∈ H,

(c) limn→∞ ‖[w ⊗ yn]‖ = 0 for all w ∈ H.
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Say that M has property X0,1 if the unit ball of QM is contained in the
closed convex hull of X0(M). (It was shown in [5] that X0(M) is in fact
absolutely convex and closed.)

Theorem 3.2. If T is a C00 contraction in the class A, then T (T ) is hy-
perreflexive with constant at most 3. Moreover, each weak∗ closed subspace
of T (T ) is hyperreflexive.

Proof. We will show that T (T ) has property X0,1. By Theorem 3.1 of [4],
this proves the hyperreflexivity of T (T ) with the constant 3. The last state-
ment of the theorem follows from hereditary behavior of the property X0,1.
Note also that the weak∗ and weak operator topologies coincide. (See [2],
Theorem 2.)

By [6], Lemma 4.2, the fact that T is a C00 operator implies that the
following is satisfied.

Condition 3.3. For any f in L1 with ‖f‖1 ≤ 1 there are sequences {xn},
{yn} in H with ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 such that for every w in H,∥∥∥f − xn

T· yn

∥∥∥
1
→ 0∥∥∥xn

T· w
∥∥∥

1
+

∥∥∥w
T· yn

∥∥∥
1
→ 0.

Let [L] be any weak∗ continuous linear functional on T (T ) with ‖[L]‖ ≤ 1.
Applying (3.3) to θ([L]) and using the hypothesis that ξ, and hence θ, is an
isometry, we get that

‖[L]− [xn ⊗ yn]‖ =
∥∥∥θ([L])− xn

T· yn

∥∥∥
1
→ 0,

Similarly
‖[xn ⊗ w]‖+ ‖[w ⊗ yn]‖ → 0 for every w in H.

This implies that ballQT (T ) ⊆ X0,1, so that T (T ) has property X0,1. �

Remark. Theorem 3.2 remains true if we assume that T is an absolutely
continuous contraction in the class A and Condition (3.3) is fulfilled.

This theorem has application to a large collection of subnormal operators.
Once again the notation introduced in connection with Theorem 2.3 is used.
Note that if S is a pure subnormal operator, then the reductive normal
summand in (2.3), S0, is not present. For an open set Ω, h∞(Ω) denotes the
bounded harmonic functions on Ω.

Theorem 3.4. Let S be a pure subnormal operator and adopt the notation
of Theorem 2.3 and Proposition 2.4. If µn(∂Gn) = 0 for all n ≥ 1, then

T = {φ̂1(S1)⊕ φ̂2(S2)⊕ · · · : φn ∈ L∞(∂Gn) for n ≥ 1}
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is hyperreflexive with constant at most 3. Moreover each weak∗ closed sub-
space of T is hyperreflexive with constant at most 3.

Proof. Let τn : Gn → D be a Riemann map. Recall that τn(Sn) is a con-
traction. Put Tn = {u(Sn) : u ∈ h∞(Gn)} and Mn = T (τn(Sn)).

Claim. Tn = Mn for all n ≥ 1.

Indeed, Mn = {v(τn(Sn)) : v ∈ h∞(D)}. Since h∞(Gn) = {v ◦ τn : v ∈
h∞(D)}, the claim is clearly true.

Theorem 2.3 (g) implies that the scalar-valued spectral measure for the
subnormal operator τn(Sn) is µn◦τ−1

n . Thus the assumption that µn(∂Gn) =
0 implies that τn(Sn) is a C00 contraction. Hence Theorem 3.2 implies that
Tn is hyperreflexive. More importantly for this proof, Condition (3.3) is
satisfied.

Let Qn be the predual of Tn. Since T =
⊕

n Tn, the predual of T is
Q =

⊕
nQn, where this direct sum is an `1 direct sum. That is, ‖[L]‖ =∑

n ‖[Ln]‖ for all [L] = ⊕n[Ln] in
⊕

nQn. Let ξn : L∞ → Tn be the harmonic
functional calculus for the contraction Tn = τn(Sn), ξn(φ) = φ̂(Tn), and let
θn : Qn → L1 be its predual.

Let [L] ∈ Q, ‖[L]‖ ≤ 1, let X be a finite subset of H, and let ε > 0; let
Xn be the set of n-th coordinates of the vectors in X. Using the fact that
each θn is an isometry, (3.3), when applied to Tn, implies there are vectors
xn, yn in Hn with ‖xn‖, ‖yn‖ < ‖[Ln]‖1/2 satisfying

‖[Ln]− [xn ⊗ yn]‖ < 2−nε

‖[xn ⊗ wn]‖+ ‖[wn ⊗ yn]‖ < 2−nε

for all wn in Xn. Put x = ⊕nxn and y = ⊕nyn. So ‖x‖, ‖y‖ ≤ 1. The reader
can verify that as elements of Q =

⊕
nQn, [x⊗ y]T = ⊕n[xn ⊗ yn]Tn . Thus

‖[L]− [x⊗ y]‖ =
∑

n

‖[Ln]− [xn ⊗ yn]‖ < ε.

Similarly, for w = ⊕wn in X, ‖[x⊗w]‖ =
∑

n ‖[xn⊗wn]‖ < ε and ‖[w⊗y]‖ <
ε.

Thus T has property X0,1. By Theorem 3.1 of [4], T is hyperreflexive
with constant at most 3. As mentioned in the proof of Theorem 3.2, the last
statement of the theorem follows from hereditary behavior of the property
X0,1. �

It is worth singling out the Bergman operators. For a bounded open set
Ω in the plane, L2

a(Ω) is the Bergman space of all analytic functions that
are square integrable with respect to area measure on Ω. The Bergman
operator for Ω is the operator S defined on L2

a(Ω) by (Sf)(z) = zf(z). This
is a subnormal operator, and, as for the general subnormal operator, we can



28 JOHN B. CONWAY AND MAREK PTAK

define φ(S)f ≡ P (φf) for f in L2
a(Ω) and φ in L∞(G). The next corollary

is a direct consequence of the preceding theorem.

Corollary 3.5. If S is the Bergman operator for the bounded open set Ω
and T is the weak∗ closure in B(L2

a(Ω)) of

{p(S) + q(S)∗ : p and q are analytic polynomials},

then every weak∗ closed subspace of T is hyperreflexive with constant at most
3.

The next result follows from the preceding corollary or directly from The-
orem 3.2. Indeed, it was the attempt to investigate this example that led
the authors to the results that are contained in this paper.

Corollary 3.6. If S is the Bergman operator for the unit disk D, then every
weak∗ closed subspace of

T = {u(S) : u ∈ h∞(D)}

is hyperreflexive with constant at most 3.

These results raise additional questions. The problem of whether the
general subnormal operator is hyperreflexive remains open. But if this is
settled, especially if it is settled affirmatively, there will be the question of
which subnormal operators S have the property that T (S), the weak∗ clo-
sure of {p(S) + q(S)∗ : p, q are analytic polynomials}, is reflexive or hyper-
reflexive. A rich collection of subnormal operators having these properties
is shown to exist in this paper. On the other hand, the unilateral shift has
neither. An interesting example to explore would be the operator defined as
multiplication by the independent variable on P 2(µ), where µ equals area
measure on the bottom half of the unit disk and arc length measure on the
top half of the unit circle.
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