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Let Γ be a finitely generated group having the property
that any action of any finite-index subgroup of Γ by homeo-
morphisms of the circle must have a finite orbit. (By a theo-
rem of É. Ghys, lattices in simple Lie groups of real rank at
least 2 have this property.) Suppose that such a Γ acts on a
compact manifold M by automorphisms of a codimension-one
C2 foliation, F . We show that if F has a compact leaf, then
some finite-index subgroup of Γ fixes a compact leaf of F . Fur-
thermore, we give sufficient conditions for some finite-index
subgroup of Γ to fix each leaf of F .

1. Introduction and statement of results.

The letter M will denote a compact, connected, boundaryless, smooth mani-
fold of dimension n. Let F be a Cr foliation of M by smooth leaves, r ≥ 2. It
will be assumed that F is a transversely oriented, codimension-one foliation.

Let Ds(M,F) denote the group of Cs automorphisms of F , s ≥ 0; that is,
the group of Cs diffeomorphisms of M that map leaves to leaves. The normal
subgroup consisting of automorphisms of F that send each leaf to itself will
be denoted Ds(M,F)0, and will be called the group of inner automorphisms
of the foliation. The quotient

Os(M,F) = Ds(M,F)/Ds(M,F)0

will be called the group of transverse automorphisms (or outer automor-
phisms) of F . When a group Γ acts by automorphisms of F so as to define
a homomorphism into Ds(M,F), the action will be called transversely finite
if Γ projects to a finite subgroup of Os(M,F).

The general question that motivates the results of the present paper can
be stated thus: Given (M,F), what groups can act by automorphisms of F
so that the action is not transversely finite, and what groups cannot? For
example, if F is the foliation by fibers of a product manifold M = B × L,
with leaves {b}×L, b ∈ B, then any group that acts nonfinitely on B by Cs-
diffeomorphisms also acts nonfinitely by outer-automorphisms of F (e.g., by
setting the action on L to be trivial). In this case, Os(M,F) is the group of
Cs-diffeomorphisms of B. If, on the other hand, M = Tn (the n-dimensional

31

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2002.204-1


32 R. FERES AND D. WITTE

flat torus) and F is the foliation by planes parallel to an irrational hyperplane
F ⊂ Rn, then it is an elementary fact that Os(M,F) is isomorphic to
H := (Γ n Rn)/(Γ0 n F ), where Γ is the stabilizer of F in GL(n, Z) and Γ0

is the subgroup of Γ that acts trivially on the quotient Rn/F . In this case,
only groups that admit homomorphisms with nonfinite image in H can have
nonfinite actions by outer-automorphisms of F . (Allowing big codimension,
it is quite easy to construct, say, topologically transitive foliated bundles,
with large groups of smooth outer-automorphisms.)

A more specific question that will be addressed here is the following: Sup-
pose that no (topological, say) action of a group Γ on the circle yields non-
trivial dynamics (that is, nonfinite action). Does Γ admit nontrivial “trans-
verse dynamics” on some codimension-one foliation of a compact manifold?
The two theorems given below provide support for the negative answer.

Theorem 1.1. Suppose that Γ is a finitely generated discrete group such
that every homomorphism from a finite-index subgroup of Γ into the group
of homeomorphisms of the circle has a finite orbit on the circle. Also suppose
that Γ acts by C0-automorphisms of (M,F).

If F has a closed leaf, then some closed leaf of F is fixed by some subgroup
of finite index in Γ.

By a bounded transverse invariant measure we mean a holonomy invariant
transverse measure that is finite on compact transversals.

Corollary 1.2. Suppose that Γ is a finitely generated discrete group such
that every homomorphism from a finite-index subgroup of Γ into the group of
homeomorphisms of the circle has a finite orbit on the circle. Also suppose
that Γ acts by C0-automorphisms of (M,F).

If F admits a bounded transverse invariant measure, then it also admits
a bounded transverse invariant measure µ that is invariant under Γ, such
that every leaf in the support of µ is sent to itself under the action of a
finite-index subgroup Γ′ of Γ.

The next theorem provides a class of foliations on which the Γ-action is
transversely finite. A foliation is said to be almost without holonomy if the
germinal holonomy groups of all the non-compact leaves are trivial [7, IV-
2.11, p. 251]. This is the case, for example, if the non-compact leaves are
simply connected.

Theorem 1.3. Suppose that Γ is a finitely generated discrete group such
that every homomorphism from a finite-index subgroup of Γ into the group
of homeomorphisms of the circle has a finite orbit on the circle.

If F is almost without holonomy, then every homomorphism of Γ into
D1(M,F) yields a transversely finite action.

It is rather likely that the assumption about the holonomy of F in The-
orem 1.3 can be greatly relaxed.
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The following theorem of É. Ghys [6] provides examples of groups that
satisfy the requirements of Theorems 1.1 and 1.3, that is, groups for which
every homomorphism into the group of homeomorphisms of the circle has a
finite orbit. Most of these examples were also established by M. Burger and
N. Monod [1, 2].

Theorem 1.4 (Ghys [6]). Suppose that Γ is an irreducible lattice in a con-
nected, semisimple, real Lie group G of real rank at least 2, and that there
is no continuous homomorphism from G onto PSL(2, R). Then every ho-
momorphism from Γ into the group of homeomorphisms of the circle, T1,
has a finite orbit. Furthermore, if Γ acts by C1 diffeomorphisms, then some
finite-index subgroup of Γ acts trivially on T1.

2. General facts about codimension-one foliations.

We use [3] as our main reference for the fundamental concepts and results
about codimension-one foliations. These results were established by R. Sack-
steder, P. Dippolito, G. Hector, A. Haefliger, J. Cantwell, L. Conlon, and
others. Some of the original sources are [5, 9, 12, 14, 4].

The foliation F will be said to be without holonomy if the germinal holo-
nomy group of each leaf of F is trivial.

Let L denote a smooth one-dimensional foliation of M everywhere trans-
verse to F . (Cf. [3, 5.1.2].) It is convenient to work with biregular co-
ordinate charts for the pair (F ,L). These are charts that define folia-
tion boxes for both L and F simultaneously, having local coordinate maps
ϕ : U ⊂ M → V ⊂ Rn−1 × R1, ϕ(p) =

(
x(p), y(p)

)
, such that x = constant

corresponds to plaques of L while y = constant corresponds to plaques of F .
A biregular cover is an atlas comprised of biregular coordinate charts. Such
covers exist. (Cf. [3, 5.1.4].) From now on L will denote a fixed transverse
foliation to F and any foliation box will be assumed without mention to be
biregular.

An open F-saturated set U is a called a foliated product if it is connected
and L|U fibers U by open intervals over some (n− 1)-dimensional manifold
B. Since F is orientable, a foliated product is a trivial interval bundle,
homeomorphic to B× (0, 1) (although the foliation need not be the product
foliation). Each leaf of F in U with the restriction to it of the bundle map is
a covering space of B. We note, in particular, that each closed transversal
that meets U has to meet every leaf in U . Let d be the topological metric on
U induced by the restriction to U of a Riemannian metric on M and denote
by Û the completion of U in the metric d.

An F-saturated set U is a called a foliated bundle if it is connected and L|U
fibers U over some (n − 1)-dimensional manifold B. (This is more general
than a foliated product, because there is no restriction on the fibers.) An F-
saturated set U is a called a trivially foliated product if there is a connected
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1-manifold F (possibly with boundary), a connected (n − 1)-dimensional
manifold B, and a diffeomorphism from U to B × F , that carries L|U and
F|U to the product foliations of B × F .

Theorem 2.1 (Dippolito [5]). Let U be a connected F-saturated open set.
Then Û is a connected manifold with finitely many boundary components.
The interior of Û is U and the inclusion i : U → M extends to an immersion
ι̂ of Û into M that sends the boundary components of Û onto boundary
leaves of U . If L′ is a boundary leaf of U then ι̂−1(L′) consists of one or two
components of the boundary of Û , each component being mapped bijectively
to L′ by ι̂. Both F and L pull-back under ι̂ to well-defined foliations on
Û . If U is a foliated product, then Û is a foliated bundle whose fibers are
compact intervals.

Proof. This is [3, 5.2.10, 5.2.11, 5.2.12] as well as the remarks after 5.2.12
of the same reference. �

The foliation of Û obtained by the pull-back of F will be denoted F̂ .

Theorem 2.2 (Sacksteder [14]). Let F be a transversely orientable folia-
tion of class C2 and codimension one on a compact manifold. Then the
following are equivalent:

1) There exists a bounded transverse invariant measure µ.
2) Either F has a compact leaf or F is without holonomy.

Proof. This is [10, 2.3.8]. �

A foliation F of a manifold U will be said to fiber over a manifold B if
there is a fibration of U with base B having the leaves of F as fibers.

Theorem 2.3. Let F be a transversely orientable foliation of class C2 and
codimension-one of a compact manifold M . Let U be a connected F-satu-
rated open set and suppose that F|U is without holonomy. Then either every
leaf of F|U is closed and F|U fibers over a connected 1-manifold, or each leaf
of F|U is dense in U . Furthermore, if F|U is a fibration over a 1-manifold
B, but (Û , F̂) is not a trivially foliated product, then B ∼= S1.

Proof. This is [3, 9.1.4, 9.1.6]. �

Theorem 2.4. Let F be a transversely orientable foliation of class C2 and
codimension-one. Let U ⊂ M be a connected, nonempty, open, F-saturated
set.

1) Suppose that (U,F|U ) is without holonomy. Then there is a C0 flow

Φ: R× Û → Û

that fixes the points of ∂Û , carries leaves diffeomorphically to leaves
and is transitive on the set of leaves of F|U . Furthermore, F|U admits
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a bounded transverse-invariant nonatomic measure µ of full support
that assigns to each transverse arc {Φt(p)|t ∈ (a, b)} the measure b−a.

2) Conversely, if (U,F|U ) admits a bounded nonatomic transverse in-
variant measure µ of full support, then F|U is without holonomy and
there exists a continuous flow Φ that carries leaves diffeomorphically
to leaves, transitively on the set of leaves in F|U , and fixing the leaves
on the boundary. The flow Φ is related to µ in the way described in
Part 1) of this theorem.

Proof. This is a special case of [3, 9.2.1]. The transverse-invariant measure
is described in the proof given in the reference. See also [12]. �

Finally, we mention the following basic fact. For simplicity, we state it
for a boundaryless M and a C1 foliation, although these conditions can be
weakened. (Cf. [3, 6.1.1].)

Theorem 2.5 (Haefliger [8]). Let F be a codimension-one C1 foliation of a
compact connected boundaryless manifold M . Then the union of the compact
leaves of F is a compact subset of M .

3. Proof of Theorem 1.1.

Suppose that a Γ-action satisfying the assumptions of Theorem 1.1 has been
fixed. We may assume, by passing to a finite-index subgroup of Γ, that the
Γ-action preserves the transverse orientation for F .

The Γ-action will be said to be fixing if there exists a finite-index sub-
group Γ′ of Γ and a compact leaf L such that every element of Γ′ sends L
to itself.

A nonempty F-saturated subset P of M will be called F-perfect if for
every differentiable curve α : (−a, a) → M , a > 0, transverse to F , the
intersection of P with the image of α is a perfect set.

Lemma 3.1. If F has a compact leaf and the Γ-action is not fixing, then
there exists a compact, F-saturated, F-perfect, Γ-invariant set P ⊂ M , that
is the union of compact, mutually homeomorphic leaves.

Proof. Let C denote the union of all compact leaves of F of a same homeo-
morphism type. A nonempty set of this kind exists since F has a compact
leaf. It is also clear that C is invariant under every automorphism of F .
Furthermore, by a theorem of Haefliger, [3, 6.1.1], C is compact. Let

A = {A ⊂ C | A is compact, nonempty, F-saturated, and Γ-invariant}.
By Zorn’s lemma, A has an element A that is minimal under inclusion.

We define the derived set A′ of A as the subset of A comprised of the union
of all leaves L ⊂ A whose points are limits of sequences in the complement
of L in A. If A is the union of finitely many leaves, a finite-index subgroup
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of Γ would send each of those finitely many leaves to itself, contradicting
the assumption that the Γ-action is not fixing. Therefore A′ is nonempty.
It is easy to see that A′ ∈ A, so A = A′ by the minimality of A. Therefore,
P := A satisfies the properties required in the lemma. �

Proposition 3.2. If P = M , then the foliation fibers over the circle.

Proof. This is immediate from Theorem 2.3 and the easy fact that F is, in
this case, without holonomy. �

The connected components of M − P will be called the gaps of P.

Lemma 3.3. Suppose that P is a proper subset of M , and the Γ-action is
not fixing. Then

1) each gap is bounded by two leaves of P, and
2) there exists a finite open cover {V1, . . . , Vk} of M by foliated products

such that each Vi is bounded by two leaves in P.

Proof. We first remark that each connected component of W = M − P
is a foliated product. In fact, by [3, 5.2.9], only finitely many connected
components of W fail to be foliated products. Suppose that there are con-
nected components of W which are not foliated products and denote them
by W1, . . . ,Wl. Since any homeomorphism γ ∈ Γ must send each Wi into
some (possibly the same) Wj , one obtains a homomorphism of Γ into the
group of permutations of l symbols, from which it follows that some finite-
index subgroup of Γ sends each Wi to itself. In particular, this subgroup
would permute the boundary components of a Wi. By [3, 5.2.5] the bound-
ary of a connected F-saturated open set consists of the union of a finite
number of leaves, which in this case must be elements of P. But then a
finite-index subgroup of Γ would send one leaf in P to itself, contradicting
the assumption that the action is not fixing.

A leaf in P will be called a border leaf of P if it is a component of the
boundary of a gap. If P is not all of M , there must be a countable infinity
of gaps, since otherwise P would be contained in the union of the finitely
many boundary leaves of a finite number of connected F-saturated open
sets. Each border leaf L of P is a boundary component of a gap and on the
side of L opposite the gap a sequence of leaves in P accumulates on L.

If a leaf L of P does not bound a gap, then L is a limit of sequences
of leaves in P on both of its sides, so that [3, 5.3.4] (due to Dippolito [5])
immediately yields a foliated product neighborhood of L.

We claim that boundary of each gap of P consists of two (distinct) leaves
in P, and that the closure of each gap is contained in a foliated product
bounded by two leaves in P. The interiors of these foliated products together
with the interiors of the foliated products of the previous paragraph form an
open cover for M . Since M is compact, we can extract a finite open cover.
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All that is left is to prove the claim. Let W denote a gap of P. We have
seen that it is a foliated product. Denote by B the base manifold. The
boundary of W consists of two (distinct) leaves in P. (There are not more
than two leaves by Theorem 2.1. If a single leaf of P bounded W on both
sides, this would be an isolated leaf, which is not the case.) The boundary
leaves are homeomorphic to B (notice that the boundary leaves of Ŵ are
homeomorphic to the base of the fibration on Ŵ ) and Ŵ maps bijectively
onto the closure of W under the map ι̂. Since the boundary leaves L1 and
L2 are compact, it is possible to find neighborhoods U1 and U2 of L1 and
L2, respectively, such that Ui|L is a trivial bundle over Li, i = 1, 2, not
necessarily F-saturated. To obtain F-saturated Ui, one applies [3, 5.3.4].
The union of W , U1 and U2 (for sufficiently small Ui) gives the desired
neighborhood. �

For x ∈ P, let Lx be the leaf of F that contains x. Define an equivalence
relation ∼ on P by specifying that x ∼ y if either Lx ∪ Ly is the boundary
of a gap of P, or Lx = Ly. (In particular, if P = M , then x ∼ y if and only
if Lx = Ly.) Note that each equivalence class is either a leaf or the union of
two leaves.

Lemma 3.4. If Γ is as in Theorem 1.1 and F has a compact leaf, but the
Γ-action is not fixing, then P/∼ is homeomorphic to S1.

Proof. We may assume P is a proper subset of M ; otherwise, the desired
conclusion follows from Proposition 3.2. It is immediate from Lemma 3.3
(and the “waterfall construction” described in [3, 3.3.7]) that there exists
a closed transversal, α, of F that intersects each leaf of P exactly once.
The intersection α ∩ P is a perfect set in the embedded circle α, and the
saturations of the gaps of this perfect set are the gaps of P. Thus, the desired
conclusion follows from the elementary observation that, by identifying the
two endpoints of each of the gaps of α ∩ P to a single point, we obtain a
quotient that is homeomorphic to a circle. �

Suppose the Γ-action is not fixing, and let P be as in Lemma 3.1. The
action of Γ on P factors through to an action of Γ by homeomorphisms
of P/∼. Now Lemma 3.4 implies that P/∼ is homeomorphic to S1, so, by
assumption, Γ must have a finite orbit on P/∼. This finite orbit yields a
Γ-invariant, finite collection of compact leaves in P. Then some finite-index
subgroup of Γ fixes each of these compact leaves. This proves Theorem 1.1.

4. Proof of Corollary 1.2.

Suppose that F admits a transverse invariant measure.
If F has a compact leaf, then Theorem 1.1 implies that some finite-index

subgroup Γ′ of Γ fixes some compact leaf L. Then Γ′ fixes the atomic
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measure µ supported on the single leaf L, so the conclusion of Corollary 1.2
holds.

Thus, we may assume that no leaf of F is compact. Therefore, from
Theorems 2.2 and 2.3, it follows that F is a minimal foliation (that is,
every leaf is dense in M). Then Corollary 4.2 below completes the proof of
Corollary 1.2.

Corollary 4.2 is stated in greater generality than needed for the proof
of Corollary 1.2 because it will be used in the given form for the proof of
Theorem 1.3.

The next observation follows from the proof of [10, Thm. X.2.3.3, p. 272].

Proposition 4.1. Let U be a connected, Γ-invariant, F-saturated open set.
We suppose that the boundary of U is either empty or consists of finitely
many Γ-invariant compact leaves. We also suppose that each leaf of F in U
is dense in U . Let µ be a bounded transverse invariant measure on U .

If µ′ is another bounded transverse invariant measure on U , then µ′ is a
scalar multiple of µ.

Corollary 4.2. Let U be a connected, Γ-invariant, F-saturated open set.
We suppose that the boundary of U is either empty or consists of finitely
many Γ-invariant compact leaves. We also suppose that each leaf of F in U
is dense in U . Let µ be a bounded transverse invariant measure on U . Then

1) µ is Γ-invariant; and
2) [Γ,Γ] is a finite-index subgroup of Γ that fixes each leaf in U .

Proof. (1) For each γ ∈ Γ, Proposition 4.1 implies there is some c(γ) ∈ R+,
such that γ∗µ = c(γ) µ. It is easy to see that c : Γ → R+ is a homomorphism,
so, because R+ is abelian and has no nontrivial finite subgroups, Lemma 4.3
implies c(Γ) = 1. Thus, µ is Γ-invariant.

(2) We use the notations of Theorem 2.4, where the Sacksteder flow Φt is
defined. Integration of µ over closed curves representing elements of π1(U)
yields a homomorphism ρ : π1(U) → R whose image group, P (µ), is called
the group of periods of µ [3, 9.3.4]. This is a finitely generated abelian
subgroup of R. The group of periods can be characterized by the following
property ([3, 9.3.6]): Φt sends every leaf to itself exactly when t ∈ P (µ).

Define for each p ∈ U and each γ ∈ Γ a class [t] ∈ R/P (µ) where t is any
real number such that Φt(p) lies in the leaf of γ(p). Then the correspondence
γ 7→ [t] gives a well-defined homomorphism, h from Γ into R/P (µ). Because
R/P (µ) is abelian, we know that [Γ,Γ] is in the kernel of h, so [Γ,Γ] sends
every leaf to itself. Furthermore, Lemma 4.3 below asserts that [Γ,Γ] is a
finite-index subgroup of Γ. �

The following well-known observation is easy to prove.
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Lemma 4.3. If each homomorphism of a finitely generated group Γ into the
group of homeomorphisms of the circle has a finite orbit, then A := Γ/[Γ,Γ]
is a finite group.

5. Proof of Theorem 1.3.

The following lemma is a slight generalization of the Thurston Stability
Theorem [15]:

• We only assume the action of Γ is germinal, rather than being globally
defined; and

• we do not assume that each element of Γ is defined in a neighborhood
of 0, but only on a set X that accumulates at 0.

Thurston’s original proof (and many others, such as [11]) can easily be
generalized to this setting.

Lemma 5.1 (Thurston, cf. [15]). Suppose Γ is a finitely generated group,
X is a compact subset of [0, 1] that accumulates at 0, and, for each γ ∈ Γ,
we have a C1 diffeomorphism φγ : [0, aγ) → [0, bγ), for positive constants aγ

and bγ. Assume
1) Γ/[Γ,Γ] is finite; and
2) for each γ1, γ2 ∈ Γ, there exists c > 0, such that φγ1γ2 |[0,c]∩X =

φγ1φγ2 |[0,c]∩X .
Then there exists a > 0, such that, for every γ ∈ Γ and x ∈ [0, a) ∩X, we
have φγ(x) = x.

All the assumptions of Theorem 1.3 are in force from now on.

Lemma 5.2. Let Γ′ be a finite-index subgroup of Γ and suppose that W is
a connected, open, Γ′-invariant, F-saturated subset of M whose boundary
components are Γ′-invariant compact leaves. If the compact leaves accumu-
late on a boundary component L of Ŵ , then all the compact leaves in some
foliated neighborhood of L in Ŵ are also Γ′-invariant.

Proof. Let U be a connected, F̂-saturated neighborhood of L in Ŵ . We may
assume U is so small that there is a complete C1 transversal α : [0, 1] → U
of U , such that each compact leaf in U meets α exactly once. We may
assume α(0) ∈ L.

As the Γ-action and the foliation (hence the local holonomy maps) are C1,
we can construct, for each γ ∈ Γ′, a C1 diffeomorphism φγ : [0, a1] → [0, a2],
for positive constants ai, such that α

(
φγ(t)

)
is on the same leaf as γ

(
α(t)

)
,

for each t ∈ [0, a1]. Let

X = {x ∈ [0, 1] | α(x) is on a compact leaf}.
For each γ1, γ2 ∈ Γ, there exists c > 0, such that α

(
φγ1γ2(t)

)
is on the

same leaf as α
(
φγ1(φγ2(t))

)
, for each t ∈ [0, c). Then, for x ∈ X ∩ [0, c),
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we must have φγ1γ2(x) = φγ1

(
φγ2(x)

)
. Also, from Lemma 4.3, we know

that Γ′/[Γ′,Γ′] is finite. Therefore, Lemma 5.1 applies, so we conclude that
there is an interval [0, a), such that α(x) is on the same leaf as γ

(
α(x)

)
, for

all x ∈ X ∩ [0, a). So Γ′ fixes the compact leaf containing α(x), for each
x ∈ X ∩ [0, a). �

Lemma 5.3. If a finite group H acts on the circle by orientation preserv-
ing homeomorphisms, then the action of the commutator subgroup [H,H] is
trivial.

Proof. By a standard averaging procedure H can be assumed to act by
isometries of a metric on the circle. Therefore the action is conjugate to a
homomorphism of H into the group of rotations of the circle, which is an
abelian group. It follows that the commutator subgroup must act trivially.

�

Lemma 5.4. Let Γ′ be a finite-index subgroup of Γ and suppose that W ⊂
M is a connected, open, Γ′-invariant, F-saturated subset, such that the
boundary components of W are Γ′-invariant compact leaves, and every com-
pact leaf in W is Γ′-invariant. Then all leaves in W are [Γ′,Γ′]-invariant.

Proof. From Theorem 2.5 and the hypothesis about W it follows that the
complement in W of the set of compact leaves is a countable union of con-
nected, Γ′-invariant, F-saturated sets Ui, i = 1, 2, . . . , such that the bound-
ary of each Ui is the union of at most 2 compact, Γ′-invariant leaves. Since
there are no compact leaves in each of the Ui, each leaf of F|Ui is, by as-
sumption, without holonomy. Theorem 2.3 implies that either

1) F|Ui fibers over the circle; or
2) (Ûi, F̂) fibers over [0, 1]; or
3) every leaf of F|Ui is dense in Ui.

In Case 1, we obtain a C1 action of Γ′ on the circle. This action has to
be finite, that is, a finite-index subgroup of Γ′ must leave invariant each leaf
in Ui. From Lemma 5.3, we know that this normal subgroup contains the
commutator subgroup [Γ′,Γ′].

In Case 2, we obtain a C1 action of Γ′ on [0, 1]. Lemma 5.1 implies that
this action is trivial.

In Case 3, we can apply Theorem 2.4(1) and Corollary 4.2(2) to conclude
that each leaf in Ui is Γ′-invariant.

Therefore, [Γ′,Γ′] fixes every leaf of W . �

We now conclude the proof of Theorem 1.3. It suffices to show that there
is a finite-index subgroup Γ′ of Γ, such that Γ′ fixes every compact leaf, for
then Lemma 5.4 shows that [Γ′,Γ′] fixes every leaf (and Lemma 4.3 implies
that [Γ′,Γ′] has finite index in Γ).



GROUPS THAT DO NOT ACT ON FOLIATIONS 41

We may assume that F has a compact leaf. Then Theorem 1.1 states
that there is a finite-index subgroup Γ′ of Γ, and a compact leaf L0 of F ,
such that Γ′ fixes L0. Let W0 be the complement of the union of all the
compact leaves of F . From Theorem 2.1, we know that only finitely many
components U1, U2, . . . , Uk of W0 fail to be foliated products, and that each
of these components has only finitely many boundary leaves, so, replacing
Γ′ with a finite-index subgroup, we may assume that

Γ′ fixes each Ui, and its boundary components.(5.5)

To complete the proof, we will show that Γ′ fixes every compact leaf.
Let W be a component of the complement of the union of the Γ′-invariant
compact leaves of F . It suffices to show that every compact leaf in W is
Γ′-invariant.

Let L be any leaf on the boundary of W . By definition of W , we know
that L is Γ′-invariant.

If the compact leaves in W accumulate on L, then Lemma 5.2 implies
that every compact leaf in W is Γ′-invariant.

If the compact leaves in W do not accumulate on L, then there is a
component U of W0 such that L is part of the boundary of U , and U is
contained in W . We will show that U = W , so there are no compact leaves
in W . If U is not a foliated product, then from (5.5), we know that Γ′

fixes each boundary component of U , so U = W as desired. Now suppose
that U is a foliated product. Then the boundary of U consists of at most
two compact leaves. One of these boundary leaves is L, which is known to
be Γ′-invariant. Thus the second boundary leaf (if it exists) must also be
Γ′-invariant, so U = W , as desired. �
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