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The normal holonomy of a polygonal knot is a geometrical
invariant which is closely related to the writhing number. We
show that normal holonomy fibers the space of knots over the
circle and deduce that the writhing number fibers the space
of knots over the real line. Consequently, two isotopic knots
which have the same writhing number are isotopic through a
family of knots having the same writhing number. In a similar
vein, two isotopic knots having zero holonomy are isotopic
through a family of such knots if and only if they have the
same autoparallel linking number.

More generally, the definition of normal holonomy makes
sense for immersed polygonal knots. This time normal holo-
nomy fibers the space of immersed knots over the circle, but
now there are only two isotopy classes of immersed knots of
zero holonomy.

1. Introduction.

The writhing number of a smooth knot in Euclidean 3-space is a real number
which measures the extent to which the knot coils around itself. Although
named by F.B. Fuller [8], the writhing number was originally discovered by
G. Călugăreanu [4] and [5], in the form of an integral which he obtained
while investigating the behavior in the limit of the Gauss formula for the
linking number of a pair of space curves as one of the curves is allowed to
approach the other. In this way, he established the formula

(1.1) LK(K,U) = WR(K) + TW (K,U)

where U is a unit vector field along the knot K, LK(K,U) is the linking
number of K with a nearby knot that approaches K from a direction along
U , WR(K) is the writhing number, and TW (K,U) is the twist of U along
K. Recently, the writhing number of a smooth knot has been related to the
helicity of vector fields [6] and [17], and applied in the discussion of models
of bacterial fibers [19].

The normal holonomy of the knot is a geometric invariant closely related
to the writhing number, but more easily computed. Consider parallel trans-
lation with respect to the induced connection in the normal bundle of the
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knot. Parallel translating a vector that is perpendicular to the knot at some
point, once around the knot, has the effect of rotating the vector through an
angle in the normal plane. Every such vector is rotated through the same
angle. This common “phase” is the normal holonomy of the knot and may
be regarded variously as an angle, a real number modulo 2π, or a point on
the unit circle. Suppose the knotK is parametrized on the interval [0, `]. Let
X be a parallel unit normal vector field along K. The angle in the normal
plane from X0 to X` equals the normal holonomy HOL (K). Suppose U is
a smooth unit normal vector field along K, and let θ be a continuous choice
of angle between X and U along K. Because U0 = U`, θ0 − θ` = HOL (K).
On the other hand, θ` − θ0 = 2πTW (K,U). Since LK(K,U) is an integer,
the formula (1.1) implies

(1.2) 2πWR(K) ≡ HOL (K) mod 2π.

Thus the normal holonomy may be identified with the “fractional part” of
the writhing number. The connection of writhe to the normal holonomy
or Berry’s phase has appeared in the literature [15]. Earlier Banchoff and
White [3] and [20], observed that the fractional part of the twist depends
only on the knot. A closely related formula to (1.2) was observed by F.B.
Fuller [9, Equation 6.1]. (See also [1, Equation 16].)

In this paper we study the normal holonomy and writhing number of
polygonal, rather than smooth, knots. For us, polygonal knots are piece-
wise linear embeddings of the circle into 3-space, and so come already
parametrized. This differs with the usual definition of polygonal knots as
the image of such embeddings in R3, but our definition simplifies the dis-
cussion of the topology on the space of knots. This is important because
our point of view is to regard the normal holonomy and writhing number as
functions on the space of polygonal knots. Our main result is that normal
holonomy fibers the space of knots over the circle and that writhing number
fibers it over the real line.

As a corollary, we prove that two isotopic polygonal knots which have the
same writhing number are isotopic through a family of knots having the same
writhing number. This corollary was proved for C1-smooth knots by Miller
and Benham [16] by considering individual knots and adjusting an isotopy
between them. For knots of zero holonomy, the writhe is an integer which
is equal to the linking number of the knot with a nearby, geometrically
determined, parallel curve. We call this integer the autoparallel linking
number of the knot of zero holonomy and prove that two isotopic knots
having zero holonomy are isotopic through a family of such knots if and
only if they have the same autoparallel linking number.

These results may be viewed as the three dimensional version of the fact
that two oriented isotopic knot diagrams are regularly isotopic if and only
if they have the same writhing number and rotation number. (For a special
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case, see [14, pp. 172-173].) They also bear comparison to the result that
two isotopic smooth knots of non-vanishing curvature are isotopic through
a family of such knots if and only if they have the same self-linking num-
ber [10] and [11]. Smooth knots of non-vanishing curvature form an open
dense subset of the space of smooth knots, while the polygonal knots of zero
holonomy are nowhere dense in the space of polygonal knots.

Finally we prove that holonomy fibers the space of immersed polygonal
knots over the circle. Consequently, we obtain a result concerning immersed
polygonal knots of zero holonomy which is analogous to Feldman’s results
for smoothly immersed space curves of non-vanishing curvature [7].

2. The normal holonomy of polygonal knots.

A polygonal knot is a piecewise linear embedding of the circle S1 into Eu-
clidean 3-space R3. Thus, given a polygonal knot K : S1 → R3, there is a
finite subset σ of S1 which subdivides S1 into a finite number of intervals,
such that the mapping K restricted to each of these intervals is a linear affine
mapping into R3 as a function of the usual angle parameter t mod 2π in
S1. The elements of σ are denoted t0 < t1 < · · · < tn−1 < tn = t0 and are
to be regarded as cyclically ordered. The point K(ti) is the i-th vertex of
K, and the restriction of K to [ti−1, ti] is the i-th edge. Because of cyclic
ordering, the n–th edge is the restriction to the interval [tn−1, t0]. Let

(2.1) Ti =
K(ti)−K(ti−1)
|K(ti)−K(ti−1)|

denote the oriented unit tangent vector along the i-th edge. The exterior
angle αi at the i–th vertex is the angle between Ti and Ti+1 with 0 ≤ αi < π.
Since K is an embedding, αi 6= π. The definition allows for the possibility
that αi = 0. When αi 6= 0, the unit normal vector ξi at the i–th vertex is
defined by the cross product

(2.2) ξi =
Ti × Ti+1

|Ti × Ti+1|
.

When αi = 0, any unit vector ξi perpendicular to Ti+1 = Ti may be chosen
and used in the following formulas.

Let T⊥i denote the two-dimensional space of normal vectors to the i-th
edge, oriented so that X,Y is an oriented basis if and only if Ti, X, Y is an
oriented triad in R3. Rotation about the vector ξi through the angle αi is
a linear isometry that carries T⊥i onto T⊥i+1. It is the identity when αi = 0.
Let Ri denote this isometry. The composition of all these rotations

(2.3) Rn ◦ · · · ◦R1 : T⊥1 → T⊥1

is an orientation preserving linear isometry of T⊥1 , hence is a rotation of T⊥1
through some angle HOL (K) (regarded as a number modulo 2π) that we
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will call the normal holonomy of the knot K. Clearly, the angle HOL (K)
does not depend upon which edge is considered to be the first. This will be
obvious from the formula we derive for HOL (K).

A simple formula for the normal holonomy can be obtained by the fol-
lowing considerations. There are two canonical, oriented orthonormal or-
dered bases for the two–dimensional vector space T⊥i , the alpha frame
Ai = {ξi−1, Ti × ξi−1} and the omega frame Ωi = {ξi, Ti × ξi}. One can
regard these frames as the linear isometries Ai,Ωi : R2 → T⊥i which carry
the standard basis to the respective bases. By construction the matrix rep-
resenting Ri relative to the omega basis of T⊥i and the alpha basis of T⊥i+1
is the identity matrix, that is,

A−1
i+1 ◦Ri ◦ Ωi =

[
1 0
0 1

]
.

The change of basis matrix Φi between the alpha and omega frames of T⊥i
is given by rotation through some angle φi as follows:

(2.4) Φi = Ω−1
i ◦Ai =

[
cos(φi) − sin(φi)
sin(φi) cos(φi)

]
.

Since the columns of a change of basis matrix are the coordinates of the old
basis in terms of the new, we have

ξi−1 = cos(φi)ξi + sin(φi)Ti × ξi.

Therefore

cos(φi) = ξi · ξi−1(2.5a)

and

sin(φi) = Ti × ξi · ξi−1 = Ti · ξi × ξi−1.(2.5b)

This pair of formulas is sufficient to determine φi modulo 2π.
Now if we express the rotation Ri relative to the alpha bases of T⊥i and

T⊥i+1 we obtain

A−1
i+1 ◦Ri ◦Ai = A−1

i+1 ◦Ri ◦ Ωi ◦ Ω−1
i ◦Ai = Φi.

Since the holonomy is the product of the Ri, we obtain the formula

(2.6) HOL (K) =
n∑

i=1

φi mod 2π.

Remark. When the vertices of K are in general position,
∑n

i=1 φi is equal
to the negative of the total torsion TT (K) defined in [2], because −φi is the
signed angle from ξi−1 to ξi by (2.5). Formula (2.6) shows that HOL (K)
depends continuously on the vertices of K. In contrast, the total torsion is
discontinuous at polygonal knots whose vertices are not in general position.

Example 2.1. Planar curves have zero holonomy mod 2π.
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Example 2.2. Polygonal knot diagrams can be made into knots by re-
placing each crossing by a small polygonal bridge as in Figure 2.1. Knots
constructed in this way clearly have zero holonomy mod 2π.

Figure 2.1

Example 2.3. Consider the 1-parameter family of curves

Kθ : S1 → R3

defined so that the vertices are the sequence of points v0 = (0, 0, 0), v1 =
(0, 1, 0), v2 = (1, 2, 0), v3 = (0, 3, 0), v4 = (0, 2, 0), v5 = (− cos θ, 1, sin θ).
Note that the first and fourth edges lie along the y-axis. The parameter
θ is the dihedral angle between the xy-plane and the plane containing the
triangle v0v4v5. Imagine the triangle v0v4v5 rotating about the y-axis. See
Figure 2.2.

v0

v1

v2

v3v4

v5

Figure 2.2
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A computation with the formulas (2.4) and (2.5) gives:

Φ1 = Φ4 =
[
− cos θ sin θ
− sin θ − cos θ

]
Φ2 = Φ5 =

[
−1 0
0 −1

]
Φ3 = Φ6 =

[
1 0
0 1

]
.

Thus

Φ6 ◦ · · · ◦ Φ1 =
[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
.

Therefore HOL (Kθ) = 2θ modulo 2π.

Example 2.4. In this example we examine the effect on holonomy of
putting a twist in an edge. Let Eδ

ε be the 2-parameter family of polygo-
nal arcs whose vertices are: v0 = (0,−3, 0), v1 = (0,−8δ

3 , 0),

v2 =
(
− 5εδ√

1− 25ε2
,−δ, 20εδ

3
√

1− 25ε2

)
, v3 =

(
0, 0,

20εδ
3
√

1− 25ε2

)
,

v4 =
(

5εδ√
1− 25ε2

, δ,
20εδ

3
√

1− 25ε2

)
, v5 =

(
0,

8δ
3
, 0
)
,

and v6 = (0, 3, 0), where 0 ≤ ε < 1
5 and 0 < δ ≤ 1. See Figure 2.3.

Then the corresponding unit tangent vectors are found to be: T1 = T6 =
(0, 1, 0), T2 = (−3ε,

√
1− 25ε2, 4ε), T3 = T4 = (5ε,

√
1− 25ε2, 0) and T5 =

(−3ε,
√

1− 25ε2,−4ε). The unit normal vectors at the 0th, 3rd and 6th
vertex are chosen for convenience while the others are computed from (2.2):

ξ0 = ξ3 = ξ6 = (0, 0, 1)

ξ1 =
(

4
5
, 0,

3
5

)
ξ2 =

(
−

√
1− 25ε2√

5(1− 20ε2)
,

5ε√
5(1− 20ε2)

,− 2
√

1− 25ε2√
5(1− 20ε2)

)

ξ4 =

(
−

√
1− 25ε2√

5(1− 20ε2)
,

5ε√
5(1− 20ε2)

,
2
√

1− 25ε2√
5(1− 20ε2)

)

ξ5 =
(

4
5
, 0,−3

5

)
.
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v0 v1

v2

v3

v4 v5 v6

Figure 2.3

The change of base matrices are computed from (2.4) and (2.5):

Φ1 = −Φ6 = Ψ∗ ≡
[

3
5

4
5

−4
5

3
5

]
,(2.7)

Φ2 = Φ3 = −Φ4 = Φ5 = Ψε ≡

− 2
√

1−25ε2√
5(1−20ε2)

1√
5(1−20ε2)

− 1√
5(1−20ε2)

− 2
√

1−25ε2√
5(1−20ε2)

 .(2.8)

Since the two negative signs in the matrix product will cancel, we have

Φ6 ◦ · · · ◦ Φ1 = Ψ∗ ◦Ψ4
ε ◦Ψ∗.

Therefore parallel translation from T⊥1 to T⊥6 is realized as rotation
through the angle 2ψ∗ + 4ψε. Observe that this angle increases mono-
tonically from 0 to π as ε goes from 0 to

√
7/180. Indeed, by (2.7),

ψ∗ = arcsin(−4/5), and, by (2.8), as ε goes from 0 to 1
5 , the angle ψε

increases from − arccos(− 2√
5
) to −π/2, which is a change in angle exceed-

ing π/4. A simple calculation shows the angle change is equal to π/4 when
ε =

√
7/180.

Lemma 2.5. Given any polygonal knot K, there is a family of polygonal
knots Kε, 0 ≤ ε ≤

√
7/180, such that

(1) K0 = K, and
(2) HOL (Kε) continuously increases monotonically through an angle equal

to π as ε runs from 0 to
√

7/180.

Proof. Pick a unit vector U which is perpendicular to the first edge of K.
There is a unique orientation preserving similarity transformation S of R3

into itself that carries the oriented line segment from (0,−3, 0) to (0, 3, 0)
onto the first edge of K and the z–axis onto a positive multiple of U . De-
fine Kε to be K with the first edge replaced by S(Eδ

ε ), where Eδ
ε is as in
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Example 2.4, and where δ is chosen small enough so that S(Eδ
ε ) does not

intersect any remaining edges of K, except for the endpoints of the first
edge. This ensures that Kε is a family of embeddings. Since the normal
holonomy is unaffected under similarity transformations, the computation
of Example 2.4 shows that Kε has the desired properties.

Remark. Since reflection through a plane changes the sign of holonomy,
the construction in Lemma 2.5 produces an isotopy Kε of K such that the
holonomy decreases monotonically through an angle of −π as ε runs from
0 to

√
7/180 when an edge of K is replaced with an appropriately scaled

reflection of Eδ
ε .

3. The writhing number of polygonal knots.

The same double integral used to define the writhing number of a smooth
knot is used to define the writhing number of a polygonal knot K.

(3.1) WR(K) =
1
4π

∫ 2π

0

∫ 2π

0

K ′(s)×K ′(t) · (K(s)−K(t))
|K(s)−K(t)|3

dsdt.

The integral is convergent and can be given by a simple formula involving
the vertices. To see this, let t0 < t1 < · · · < tn = t0 be the subdivision of S1

into subintervals on which K is linear. Set

(3.2) Wij =
1
4π

∫ tj

tj−1

∫ ti

ti−1

K ′(s)×K ′(t) · (K(s)−K(t))
|K(s)−K(t)|3

dsdt.

When i = j, the vectors K ′(s), K ′(t), and (K(s) −K(t)) are colinear, and
when |i − j| = 1, they are coplanar. Thus, if |i − j| ≤ 1, Wij = 0, because
the integrand is zero almost everywhere. Therefore,

(3.3) WR(K) =
∑

|i−j|≥2

Wij .

For a polygonal knot K : S1 → R3, consider the Gauss mapping

γ : S1 × S1 −∆ → S2

defined by

γ(s, t) =
K(s)−K(t)
|K(s)−K(t)|

where ∆ is the diagonal of S1×S1. When |i−j| ≥ 2, the rectangle [ti−1, ti]×
[tj−1, tj ] does not meet ∆, and its image under γ is a convex, geodesic
quadrilateral Qij in S2, which is possibly degenerate since the i–th and j–th
edges of K could be coplanar. When non-degenerate, γ carries [ti−1, ti] ×
[tj−1, tj ] diffeomorphically onto Qij .
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Lemma 3.1. Suppose |i− j| ≥ 2, then

4πWij = ±Area(Qij)

where Area (Qij) is the area of Qij. The plus sign is taken when γ is orien-
tation reversing on [ti−1, ti]× [tj−1, tj ].

Proof. Because

4πWij = −
∫

[ti−1,ti]×[tj−1,tj ]
γ∗(ωS2),

where ωS2 is the area form on S2 oriented by the outward normal, we have
4πWij = ±Area (Qij). (See [18, p. 132].) The sign is positive if and only if
γ is orientation reversing on the rectangle [ti−1, ti] × [tj−1, tj ]. This occurs
precisely when the scalar triple product Ti × Tj · γ(ti, tj) > 0.

Suppose |i − j| ≥ 2. Let A = K(tj−1), B = K(tj), C = K(ti−1), and
D = K(ti). Let βAD,βAC ,βBD, and βBC denote the interior dihedral angles
of the tetrahedron ABCD at the respective edges AD, AC, BD, and BC.
Each of these four dihedral angles corresponds under γ to one of the four
interior angles of Qij having the same measure. Thus the area of Qij is given
by the excess formula:

Area(Qij) = βAD + βAC + βBD + βBC − 2π.

Since the dihedral angles can be computed in terms of the vertices A, B,
C, and D, this results in a formula for Wij in terms of the vertices (cf. [4,
pp. 15-17] and [2, p. 1177]).

Proposition 3.2. For any polygonal knot K,

(3.4) 2πWR(K) ≡ HOL (K) mod 2π.

Remark. As noted in the introduction, the same formula (1.2) holds for
smooth knots.

Proof. If the vertices of K are in general position, then WR(K)+
(1/2π)TT (K) is an integer by [2, Theorem 4] where TT (K) is the total
torsion. Combining this with the previous remark, HOL (K) ≡ −TT (K)
mod 2π, shows that (3.4) holds when the vertices of K are in general posi-
tion.

If the vertices of K are not in general position, (3.4) still holds by conti-
nuity of WR and HOL because K can be approximated by polygonal knots
whose vertices are in general position.

For sufficiently small ε, the ε-tube about a polygonal knot K is a surface
homeomorphic to the torus built out of pieces of cylinders which are pasted
together along elliptical boundary curves. Each cylindrical piece of the tube
is associated to an edge of K which forms part of the axis of the cylinder.
Moreover, each cylindrical piece is striated by a family of line segments which
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are parallel to the associated edge of K. There is an obvious correspondence
between the set of stria and the set of directions in the plane perpendicular
to the associated edge. Each stria in the i-th cylindrical piece connects to
a unique stria in the adjoining (i + 1)-st cylindrical piece in such a way
that the corresponding directions Ui ∈ T⊥i and Ui+1 ∈ T⊥i+1 are related by
Ri(Ui) = Ui+1 where Ri is the rotation about the i-th vertex of K described
in §2. Therefore, if K has zero holonomy modulo 2π, one of these stria,
followed around the knot, will return to itself to produce a closed polygonal
curve J disjoint from K. Any two such J are isotopic with one another.
Thus, the linking number of K with J is independent of the choice of a
sufficiently small ε and the choice of the stria. We define the autoparallel
linking number of the polygonal knotK with zero holonomy to be the linking
number of K with any such J .

Remark. The autoparallel linking number is different from the self-linking
number defined in [2] for polygonal knots in general position.

Proposition 3.3. For polygonal knots K of zero holonomy, WR(K) is
equal to the autoparallel linking number of K.

Proof. By rounding out the corners of K we may replace K by a smooth
knot, still denoted K, with zero holonomy and the same writhe. Let U be
a smooth parallel normal vector field along K. Then as in §1, the twist
of U along K is zero. Moreover, LK(K,U) equals the autoparallel linking
number of K. Therefore WR(K) equals the autoparallel linking number by
applying Călugăreanu’s formula (1.1).

Remark. This shows that for oriented knots constructed from oriented knot
diagrams as in Example 2.2, the writhing number is computed as the link-
ing number of the oriented knot diagram and its blackboard framing, and
therefore is given by the well-known combinatorial formula, see for example
[14, p. 163].

4. The space of polygonal knots.

Given a finite subset σ = {t0 < t1 < · · · < tn = t0} of S1, let K(σ) denote
the collection of all polygonal knots K : S1 → R3 with vertices K(ti), ti ∈ σ.
Because a piecewise linear map K : S1 → R3 is determined by its values at
the vertices, K(σ) is in one-to-one correspondence with an open subset of
R3n. The correspondence takes a knot K in K(σ) to the ordered n-tuple of
vectors (K(t1), . . . ,K(tn)). Topologize K(σ) so that the correspondence is
a homeomorphism.

The family F of all finite subsets of S1 is partially ordered by set inclusion.
The collection of the K(σ) for σ ∈ F form a directed system of topological
spaces. For all σ1, σ2 in F , K(σ1) is a closed subspace of K(σ2) if and only
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if σ1 ⊂ σ2, and always K(σ1) ∩ K(σ2) = K(σ1 ∩ σ2) and K(σ1) ∪ K(σ2) ⊂
K(σ1 ∪ σ2).

Define the space of polygonal knots to be the union

K =
⋃

σ∈F
K(σ)

topologized with the direct limit topology. This means that K has the weak
topology, that is, a subset is closed in K if and only if its intersection with
every K(σ) is closed. See [12, Chapter 15] or [21, pp. 27-28].

Lemma 4.1. K is Hausdorff.

Proof. Given two distinct polygonal knots K1 and K2 in K, there exists a
t∗ ∈ S1 such that K1(t∗) 6= K2(t∗). But the evaluation map

evt∗ : K → R3

defined by evt∗(K) = K(t∗) is continuous on K(σ) for every σ ∈ F . There-
fore evt∗ is continuous on K, since K has the limit topology. If U1 and U2

are disjoint open sets in R3 containing respectively K1(t∗) and K2(t∗), then
ev−1

t∗ (U1) and ev−1
t∗ (U2) are disjoint open sets in K containing respectively

K1 and K2.

By applying Lemma 15.10 in [12] we have the following result.

Lemma 4.2. Every compact subset of K is contained in some K(σ).

Remark. In view of Lemma 4.2, every path in K is a path in some K(σ).
Thus paths in K correspond to isotopies of polygonal knots, and vice versa.

5. Serre fibrations over circles.

Recall that a continuous map f : X → B is a Serre fibration if f has
the homotopy lifting property with respect to simplices ∆n for all n. (See
[12, p. 79] and [21, p. 29].) There is a long exact homotopy sequence
associated to a Serre fibration [12, p. 84]. This section is devoted to proving
a characterization of Serre fibrations over the circle.

Proposition 5.1. Let f : X → S1 be a continuous map from a topological
space X to the circle. Then f is a Serre fibration if and only if for every
continuous simplex s : ∆n → X there exists a pair of homotopies

h, h : ∆n × [0, 1] → X

such that, for every x ∈ ∆n,
(1) h(x, 0) = h(x, 0) = s(x),
(2) f(h(x, t)) continuously increases monotonically through an angle equal

to π as t runs from 0 to 1, and
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(3) f(h(x, t)) continuously decreases monotonically through an angle equal
to −π as t runs from 0 to 1.

The proof is based on several lemmas.
The exponential map exp : R → S1 is a covering map. Consider the

pullback X̃ of this covering space by the continuous map f : X → S1. Then
there is a covering map EXP: X̃ → X and a bundle map f̃ : X̃ → R such
that the following diagram commutes.

X̃
ef−−−→ R

EXP

y exp

y
X

f−−−→ S1.

The following lemma is obvious (cf. [21, pp. 36-37]).

Lemma 5.2. f : X → S1 is a Serre fibration if and only if f̃ : X̃ → R is a
Serre fibration.

Lemma 5.3. The map f : X → S1 satisfies the hypothesis of Proposition
5.1. if and only if for every positive integer m and every continuous simplex
s : ∆n → X̃, there exists a homotopy hm : ∆n × [−m,m] → X̃ such that,
for every x ∈ ∆n,

(1) hm(x, 0) = s(x),
(2) t 7→ f̃(hm(x, t)) is monotone increasing, and
(3) f̃(hm(x,m)) − f̃(hm(x, 0)) ≥ mπ and f̃(hm(x, 0)) − f̃(hm(x,−m)) ≥

mπ.

Proof. Assuming f satisfies the hypothesis of Proposition 5.1, this is proved
by induction on m. To construct h1, patch together the lifts from X to X̃
of the homotopies h and h obtained from the simplex EXP◦s : ∆n → X,
which exist according to the hypothesis of Proposition 5.1. Then

EXP (h1(x, t)) =

{
h(x,−t) if − 1 ≤ t ≤ 0
h(x, t) if 0 ≤ t ≤ 1.

Once hm has been constructed, let h be the homotopy in X obtained from
the simplex x 7→ EXP (hm(x,−m)) by hypothesis, and let h be the homotopy
obtained from the simplex x 7→ EXP (hm(x,m)). Then hm+1 is constructed
as an extension of hm by patching the homotopy h on the left of hm and
patching the homotopy h on the right of hm after suitable reparametrizations
of the interval domains of h and h.

The converse is obvious.

Lemma 5.4. A continuous map f̃ : X̃ → R is a Serre fibration if and only
if for every positive integer m and every continuous simplex s : ∆n → X̃

there exists a homotopy hm : ∆n×[−m,m] → X̃ such that, for every x ∈ ∆n,



NORMAL HOLONOMY AND WRITHING NUMBER 89

(1) hm(x, 0) = s(x),
(2) t 7→ f̃(hm(x, t)) is monotone increasing, and
(3) f̃(hm(x,m)) − f̃(hm(x, 0)) ≥ mπ and f̃(hm(x, 0)) − f̃(hm(x,−m)) ≥

mπ.

Proof. Let s : ∆n → X̃ be a continuous simplex in X̃, and let k : ∆n ×
[0, 1] → R be a homotopy of f̃ ◦ s. Thus we have the following commutative
diagram where i0(x) = (x, 0) for all x in ∆n.

∆n s−−−→ X̃

i0

y efy
∆n × [0, 1] k−−−→ R.

Pick an integer m > 0 so that

|k(x, t)− k(x, 0)| < mπ

for all x in ∆n and t in [0, 1]. Consider the map

(id, f̃ ◦ hm) : ∆n × [−m,m] → ∆n ×R.

By (2), this is one-to-one, and hence a homeomorphism onto its image.
Consider also the map

(id, k) : ∆n × [0, 1] → ∆n ×R.

By (3), the image of the map (id, k) is contained in the image of the map
(id, f̃ ◦ hm).

It is straightforward to verify that the map

hm ◦ (id, f̃ ◦ hm)−1 ◦ (id, k) : ∆n × [0, 1] → X̃

is a lift of k. Here are the details of the calculation:

hm ◦ (id, f̃ ◦ hm)−1 ◦ (id, k)(x, 0)

= hm ◦ (id, f̃ ◦ hm)−1(x, k(x, 0))

= hm ◦ (id, f̃ ◦ hm)−1(x, f̃(s(x)))

= hm ◦ (id, f̃ ◦ hm)−1(x, f̃(hm(x, 0)))

= hm(x, 0) = s(x)

and

f̃ ◦ hm ◦ (id, f̃ ◦ hm)−1 ◦ (id, k)(x, t)

= f̃ ◦ hm ◦ (id, f̃ ◦ hm)−1(x, k(x, t))

= f̃ ◦ hm(x, t′) where f̃(hm(x, t′)) = k(x, t)

= k(x, t).
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This proves that f̃ is a Serre fibration.
Conversely, suppose f̃ is a Serre fibration. Given a positive integer m

and a continuous simplex s : ∆n → X̃, hm can be constructed from the
homotopy lifting property by lifting the homotopy k : ∆n × [−m,m] → R
defined by the formula k(x, t) = f̃(s(x)) + tπ to X̃.

6. HOL and WR are Serre fibrations.

The formula in §2 shows that the normal holonomy of a polygonal knot
depends continuously on the vertices. Thus HOL: K → S1 is continuous
because K has the limit topology.

Theorem 6.1. HOL : K → S1 is a Serre fibration.

Proof. Let s : ∆n → K be a continuous simplex in K. Since ∆n is compact,
Lemma 4.2 implies there exists a finite set σ ⊂ S1 such that s(∆n) ⊂ K(σ).
Moreover, there exists a continuous unit vector field U : ∆n → R3 such that
U(x) is perpendicular to the first edge of the knot s(x) for every x in ∆n.
To prove this, consider the vector bundle over ∆n such that the fiber over
x ∈ ∆n is the vector subspace of R3 consisting of all vectors perpendicular to
the first edge of the knot s(x). This bundle must be trivial because the base
space ∆n is contractible [13, p. 29]. Hence this bundle admits a continuous
nonzero section, which after normalizing gives the unit vector field U .

For each x ∈ ∆n, consider the construction in Lemma 2.5 of the family
of knots starting from K = s(x) with U = U(x). For any fixed δ, the
construction depends continuously on K and the choice of U . Because ∆n

is compact, there is a value of δ that can be used uniformly for all x ∈ ∆n.
Changing the parameter interval to [0, 1] produces a homotopy h : ∆n ×
[0, 1] → K such that, for all x ∈ ∆n, h(x, 0) = s(x) and t 7→ HOL (h(x, t)) is
strictly monotone increasing through an angle equal to π as t runs from 0 to
1. Likewise, in view of the remark after Lemma 4.2, there is also a homotopy
h : ∆n × [0, 1] → K which decreases holonomy monotonically through an
angle −π. Proposition 5.1 implies that HOL is a Serre fibration.

Theorem 6.2. WR : K → R is a Serre fibration.

Proof. By Proposition 3.2, HOL factors as the composition of the map
2πWR : K → R and the covering map exp : R → S1. Thus, because
HOL is a Serre fibration, so will be the map 2πWR : K → R. Therefore
WR is a Serre fibration.

Corollary 6.3. Two isotopic polygonal knots which have the same writhing
number are isotopic through a family of polygonal knots with the same
writhing number.

Proof. For each real number w, the long exact homotopy sequence for a
fibration, together with the fact that R is contractible, implies that the
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inclusion of the fiber WR−1(w) into K is a weak homotopy equivalence. In
particular,

WR∗ : π0(WR−1(w)) → π0(K)
is an isomorphism of sets. Thus the path connected components ofWR−1(w)
are in one-to-one correspondence with the path connected components of K.

Corollary 6.4. A polygonal knot with zero writhe is isotopic to its reflection
if and only if it is isotopic to its reflection through polygonal knots with zero
writhe.

Proof. This follows from Corollary 6.3 because the writhe of the reflection
of a polygonal knot is the negative of the writhe of the knot.

Remark. This is a three dimensional version of the Mirror Theorem [14,
p. 173].

Reversing the orientation of a polygonal knot does not change the writhing
number. Therefore we have the following:

Corollary 6.5. A polygonal knot is isotopic to its inverse if and only if it
is isotopic to its inverse through a family of polygonal knots of the same
writhe.

The class of a polygonal knots of zero holonomy will be denoted K0. This
class is a fiber of HOL . Consider part of the long exact homotopy sequence
for HOL :

→ π1(K) HOL ∗→ π1(S1) ∂→ π0(K0) → π0(K).
By Proposition 3.2, HOL factors through R. Thus HOL∗ is the trivial
group homomorphism, and the above long exact sequence gives the short
exact sequence

1 → π1(S1) ∂→ π0(K0) → π0(K).
This shows that the path connected components of K0 are indexed by the
set of integers in the form of π1(S1) and the path connected components of
K. By Corollary 6.3, WR is constant on each path connected component of
K0. By Proposition 3.3, this constant is an integer equal to the autoparallel
linking number of any knot in that component. Therefore the following
holds:

Corollary 6.6. Two isotopic knots having zero holonomy are isotopic
through a family of such knots if and only if they have the same autoparallel
linking number.

Recall that the fundamental group of the base of a Serre fibration acts on
the set of path connected components of the fiber (cf. [21, p. 186]). Thus,
by Theorem 6.2, π1(S1) ≈ Z acts on the set π0(K0). Let n · [K] denote the
action of n ∈ Z on [K] in π0(K0). In view of Corollary 6.5, we can define
writhe on π0(K0) by WR([K]) = WR(K).
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Theorem 6.7. For every [K] in π0(K0) and n in Z,

WR(n · [K]) = WR([K]) + n.

If K is a knot diagram, then 1 · [K] has a knot diagram representative that
results from K by a type I Reidemeister move.

Proof. Let [K] ∈ π0(K0) and n ∈ Z. Consider the commutative diagram:

K
2πWR ↙ ↘HOL

R →
exp

S1

The loop in S1 representing n lifts to a curve α in K starting at K and
ending in n · [K]. This lift can be achieved in two stages. First the loop lifts
to a path in R starting at 2πWR(K) and ending at 2π(WR(K)+n), which
then lifts to the curve α. This proves the first statement.

If K is a knot diagram, it defines a knot class [K] in π0(K0) by Exam-
ple 2.2. Rearrange the diagram K to K0 as shown in Figure 6.1. By rotat-
ing the triangle ABC around the line AC, one produces a family of knots
Kθ, 0 ≤ θ ≤ π, such that HOL (Kθ) = 2θ just as in Example 2.3. Since
HOL (Kθ) wraps once counterclockwise around the circle, [Kπ] = (+1) · [K].
Clearly, the diagram for Kπ results from that of K by a type I Reidemeister
move. See Figure 6.1. (For a description of the three types of Reidemeister
moves see [14, p. 9].)

v

v

vA

B

C A C

B

K K0 Kπ

Figure 6.1

7. Immersed polygonal knots.

A piecewise linear immersion of S1 into R3 is a piecewise linear map which
is locally an embedding. We will call such maps immersed polygonal knots.
The notation in §2 carries over to immersed polygonal knots. It is still the
case that the exterior angle at every vertex must be strictly less than π,
even though an immersed polygonal knot may have self–intersections. Thus
normal holonomy is defined for immersed polygonal knots. However, the
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writhing number cannot be defined, and there is no analogue for Proposi-
tion 3.2.

On the other hand, there is an analogue for the autoparallel linking num-
ber of a polygonal knot of zero holonomy. Let K be an immersed polygonal
knot of zero holonomy. Recalling the notation of §2, pick a unit vector
U1 ∈ T⊥1 , and define Ui ∈ T⊥i inductively by Ui+1 = Ri(Ui). Since K has
zero holonomy, Rn(Un) = U1 by (2.3). Let Mi be the orthogonal matrix
in SO(3) whose columns are the vectors Ti, Ui, Ti × Ui. Recalling For-
mula (2.2), define Γθ

i to be rotation about ξi through an angle θ, where
0 ≤ θ ≤ αi. Then θ 7→ Γθ

i ◦Mi is a path in SO(3) joining Mi to Mi+1. The
collection of these paths forms a loop in SO(3) whose free homotopy class is
independent of the choice of U1. The free homotopy class of loops in SO(3)
associated to K in this way will be called the rotation class of K. There
are two possible rotation classes because π1(SO(3)) ≈ Z2 (see, for example,
[21, pp. 198-199]). Both rotation classes are realizable. For example, the
rotation class of any regular planar polygon is the nontrivial homotopy class
in SO(3), while the rotation class of a polygonal planar figure eight is the
trivial homotopy class.

The space I of immersed polygonal knots can be topologized as the direct
limit of finite dimensional approximations I(σ) just as in §4. The proof of
Theorem 6.1 goes over without modification. In fact it is a little easier since
one need not worry about self-intersections introduced by the homotopies.

Theorem 7.1. HOL : I → S1 is a Serre fibration.

Let I0 denote the space of immersed polygonal knots of zero holonomy.
Consider the long exact homotopy sequence of HOL :

→ π1(I) HOL ∗→ π1(S1) ∂→ π0(I0) → π0(I).

π0(I) is a set with one element since I is path connected. The loop Kθ,
0 ≤ θ ≤ 2π, of Example 2.3 shows that the image of HOL∗ in Z ≈ π1(S1)
contains 2Z. Thus π0(I0) has two elements corresponding to the two rotation
classes. This proves the following analogue to Corollary 6.3. There is a
similar result for smooth space curves of non-vanishing curvature [7].

Corollary 7.2. A pair of immersed polygonal knots of zero holonomy are
isotopic through a family of immersed polygonal knots of zero holonomy if
and only if they have the same rotation class.

Since K0 ⊂ I0, every K ∈ K0 has a rotation class ROT (K) ∈ Z2 ≈
π1(SO(3)) as well as an autoparallel linking number, which equalsWR(K) ∈
Z by Proposition 3.3.

Corollary 7.3. Let K be a polygonal knot of zero holonomy. Then

WR(K) + 1 ≡ ROT (K) mod 2.
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Remark. This result should be compared with Fuller’s formula [9, Equa-
tion 6.1] or [1, Equation 16].

Proof. If K is a knot diagram, ROT (K) is clearly equal to the rotation
number [22] of the diagram modulo 2. (See [14, p. 170] for a combinatorial
definition of rotation number.) Furthermore, the equivalence

WR(K) + 1 ≡ ROT (K) mod 2

holds for knot diagrams K because it holds for the trivial knot diagram
and the equivalence is unchanged under Reidermeister moves and crossing
changes. Now observe every connected component of K0 contains a knot
diagram as in Example 2.2 and Theorem 6.7. Because HOL and ROT are
constant on the connected components of K0 by Corollaries 6.6 and 7.2, the
equivalence must hold for every K ∈ K0.
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