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Suppose X is a simply connected mod p H-space such that
the mod p cohomology H∗(X; Z/p) is finitely generated as an
algebra. Our first result shows that if X is an An-space, then
X is the total space of a principal An-fibration with base a
finite An-space and fiber a finite product of CP ∞s. As an
application of the first result, it is shown that if X is a quasi
Cp-space, then X is homotopy equivalent to a finite product
of CP ∞s.

1. Introduction.

The theory of H-spaces is a generalization of the homotopy theory of Lie
groups, and it has been investigated as one of the most important objects of
study in algebraic topology. It is useful to consider the H-spaces at a prime
by using the completion of Bousfield-Kan [2]. Given a prime p, an H-space
which is completed at p is called a mod p H-space. In this paper, homotopy
equivalence means mod p homotopy equivalence and cohomology is mod p
cohomology unless otherwise specified.

In recent decades, many theorems have been proved about mod p finite
H-spaces (cf. [6], [12] and [17]), which suggest that they are similar to Lie
groups. In this paper, we study mod p H-spaces which need not be finite, but
whose cohomology rings are finitely generated. It is known that the three-
connected cover G〈3〉 of a Lie group G is such an H-space. Another example
is the infinite dimensional complex projective space CP∞. Recently, Broto
and Crespo [3] and [4] have obtained remarkable results about mod p H-
spaces with finitely generated cohomology. It follows from their results that
such an H-space is the total space of a principal H-fibration with base a
mod p finite H-space and fiber a product of CP∞s. One of the purposes
of this paper is to generalize their results to the case of higher homotopy
associative mod p H-spaces with finitely generated cohomology.

Stasheff [22] introduced the notion of the higher homotopy associativity
of H-spaces as a series of intermediate stages between H-spaces and loop
spaces. An A2-space is an H-space with a multiplication M2 : X × X →
X, and an A3-space is a homotopy associative H-space. Now we denote
M2(x, y) = xy for x, y ∈ X. Let X be an A3-space, and let M3 : I×X3 → X
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be a map satisfying that M3(0, x, y, z) = (xy)z and M3(1, x, y, z) = x(yz) for
x, y, z ∈ X. By using the map M3, we can define a map M̃4 : S1 ×X4 → X

such that M̃4(t, x, y, z, w) is the pentagon in Figure 1.
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Figure 1. A4-form on X.

X is said to be an A4-space if there exists a map M4 : D2×X4 → X with
M4|S1×X4 = M̃4. In general, an H-space X is called an An-space if there
exists an An-form {Mi : Di−2 ×Xi → X}2≤i≤n satisfying some conditions.
Figure 2 denotes the A5-form on X (see §2). Furthermore, an A∞-space has
the homotopy type of a loop space. Similarly, an An-map is defined as an
H-map between An-spaces preserving the An-forms (see §2). An H-fibration
consisting of An-spaces and An-maps is called an An-fibration.

Our first result is stated as follows:

Theorem A. If X is a simply connected An-space such that the mod p
cohomology H∗(X; Z/p) is finitely generated as an algebra, then we have a
simply connected finite An-space Y and a principal An-fibration

F −−−→ X −−−→ Y,

where the fiber F is the direct product of a finite number of CP∞s.

The above theorem is regarded as a generalization of [3, Thm. 1.1] and
[4, Thm. 1.1] since H-space is the same as A2-space. From Theorem A,
it is possible to reduce a problem about An-spaces with finitely generated
cohomology to the case of finite An-spaces. In this paper, Theorem A is
used to study the higher homotopy commutativity of H-spaces with finitely
generated cohomology. In the case of p = 2, Slack has shown the following
result:

Theorem 1.1 ([21, Thm. 0.1]). If X is a simply connected homotopy com-
mutative mod 2 H-space such that the mod 2 cohomology H∗(X; Z/2) is
finitely generated as an algebra, then X is homotopy equivalent to a finite
product of CP∞s.

Here we note that Broto-Crespo [3, Cor. 1.5] gave another proof of The-
orem 1.1. On the other hand, the odd prime version of Theorem 1.1 does
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not hold. In fact, it was shown by Iriye-Kono [9, Thm. 1.3] that for an odd
prime p, any connected mod p H-space possesses a multiplication which is
homotopy commutative. Furthermore, one may expect that a simply con-
nected homotopy commutative mod p loop space with finitely generated
cohomology has the homotopy type of a product of CP∞s. However, we
see that by McGibbon [18, Thm. 2], Sp(2) for p = 3 and S3 for p ≥ 5 are
counterexamples.

To describe an odd prime version of Theorem 1.1, we need to generalize
the homotopy commutativity of H-spaces to the higher ones. Such notions
were first considered by Sugawara [24] and Williams [25] in the case of loop
spaces. Later Hemmi [8] introduced the higher homotopy commutativity of
H-spaces. Let X be an An-space, and let Pi(X) denote the i-th projective
space of X for 1 ≤ i ≤ n. A quasi Cn-form on X is defined by a system of
maps {λi : (ΣX)i → Pi(X)}1≤i≤n satisfying some conditions (see §3). An
An-space which has a quasi Cn-form is called a quasi Cn-space. In [8, Thm.
1.1], Hemmi has shown that if X is a simply connected finite quasi Cp-space,
then X is contractible (see Theorem 3.3). Now we generalize his result to
the case of quasi Cp-spaces with finitely generated cohomology.

Theorem B. If X is a simply connected quasi Cp-space such that the
mod p cohomology H∗(X; Z/p) is finitely generated as an algebra, then X
is homotopy equivalent to a finite product of CP∞s.

Theorem B was first conjectured by Slack [21, pp. 4-5], and was suggested
to the author by Lin. In the above theorem, it is impossible to relax the
condition of quasi Cp-space to quasi Cp−1-space. In fact, by [8, Thm. 2.4],
the odd dimensional sphere S2n−1 is a quasi Cp−1-space for any n ≥ 1. Now
we note that Theorem B implies Theorem 1.1 since a homotopy commutative
H-space is a quasi C2-space by [8, Prop. 2.3] (see also [23, Thm. 13.6]).
Furthermore, in the case that X is a loop space, by [8, Thm. 2.2], quasi
Cn-space is the same condition as Cn-space in the sense of Williams [25,
Def. 5] (see also [20, Thm. 3.2]), and so Theorem B implies [14, Thm. C].
In particular, since the loop space of an H-space is a quasi Cn-space for all
n ≥ 1, we have the following result (see also [15] and [16]):

Theorem 1.2 ([13, Thm. A]). Let X be a simply connected mod p H-space
with finitely generated mod p cohomology. If X has the homotopy type of the
loop space of an H-space, then X is homotopy equivalent to a finite product
of CP∞s.

This paper is organized as follows: In §2, we recall the nullification functor
and the colocalization functor introduced by Dror Farjoun [5]. It is shown
that those homotopy functors preserve the higher homotopy associativity
of H-spaces (see Theorem 2.1). §3 is devoted to the proofs of Theorem A
and Theorem B. First we recall the results of Broto and Crespo [3] and
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[4] about H-spaces with finitely generated cohomology. By combining their
results with Theorem 2.1 obtained in §2, we can prove Theorem A. To
prove Theorem B, we show that the nullification functor LBZ/p with respect
to BZ/p preserves a quasi Cn-form (see Theorem 3.5). As a consequence of
Theorem A and Theorem 3.5, we obtain the proof of Theorem B.

The content of the paper was first presented in JAMI conference on ho-
motopy theory at Johns Hopkins University in March 2000. The author is
grateful to the organizers for their kind invitation and hospitality. I would
also like to thank Jim Stasheff for many helpful comments on the man-
uscript of the paper. Furthermore, I wish to express my appreciation to
Yutaka Hemmi and Jim Lin for many discussions about the higher homo-
topy commutativity of H-spaces. In particular, Theorem B was suggested
to me by Jim Lin. Finally, I am grateful to Takao Matumoto and Mitsunori
Imaoka for their encouragements.

2. Nullification functor and colocalization functor.

Dror Farjoun [5] introduced the nullification functor and the colocalization
functor with respect to spaces. Let S∗ denote the category of pointed spaces
having the homotopy types of CW -complexes, and let A ∈ S∗. A space X ∈
S∗ is called A-null if the pointed mapping space Map∗(A,X) is contractible.
By Dror Farjoun [5, Thm. 1.A.3], we have the A-nullification functor LA :
S∗ → S∗. Given a space X, the A-nullification LA(X) is A-null, and we have
the natural map φX : X → LA(X). By [5, Thm. 1.C.1], φX is homotopically
universal, that is, for any A-null space Z and a map ζ : X → Z, there
exists a map ζ̃ : LA(X) → Z unique up to homotopy such that ζ̃φX ' ζ.
Furthermore, it is known by [5, p. 18] that the natural map φX induces a
homotopy equivalence

(φX)∗ : Map∗(LA(X), Z) −→ Map∗(X,Z)(2.1)

for an A-null space Z.
Let X,Y ∈ S∗. A map f : Y → X is called an A-equivalence if the

induced map

f∗ : Map∗(A, Y ) −→ Map∗(A,X)

is a homotopy equivalence. In [5, Prop. 2.B.1], Dror Farjoun constructed
the A-colocalization functor CWA : S∗ → S∗. Given a space X, we have
the natural map ψX : CWA(X) → X which is an A-equivalence. By [5,
Thm. 2.B.3], the natural map ψX is homotopically universal among all A-
equivalences, that is, for any A-equivalence ξ : Y → X, there exists a map
ξ̃ : CWA(X) → Y unique up to homotopy such that ξξ̃ ' ψX . If the natural
A-equivalence ψX : CWA(X) → X is a homotopy equivalence, then X is
called an A-cellular space.
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To prove Theorem A, we show that those homotopy functors LA and CWA

preserve the higher homotopy associativity of H-spaces (see Theorem 2.1).
Now we recall the definitions of an An-space and an An-map introduced by
Stasheff [22] and Iwase-Mimura [11], respectively.

Stasheff [22] introduced the notion of the higher homotopy associativity
of H-spaces. To describe an An-form on an H-space, he defined a special
complex Ki which is homeomorphic to the (i−2)-dimensional disk for i ≥ 2.
Let Li = ∂Ki denote the boundary of the complex Ki. Then Li is the union
of (i(i − 1)/2 − 1)-faces Kk(r, s) for r, s ≥ 2, 1 ≤ k ≤ r, r + s = i + 1,
and the face Kk(r, s) is homeomorphic to Kr × Ks by the face operator
∂k(r, s) : Kr ×Ks → Kk(r, s).

An An-form on X consists of a system of maps {Mi : Ki×Xi → X}2≤i≤n
satisfying the following conditions:

M2(x, ∗) = M2(∗, x) = x,(2.2)

that is, M2 : X2 → X is a multiplication with unit, where K2 × X2 =
{∗} ×X2 is identified with X2.

Mi(∂k(r, s)(ρ, σ), x1, . . . , xi)(2.3)

= Mr(ρ, x1, . . . , xk−1,Ms(σ, xk, . . . , xk+s−1), xk+s, . . . , xi)

for (ρ, σ) ∈ Kr ×Ks.

Mi(τ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)(2.4)

= Mi−1(sj(τ), x1, . . . , xj−1, xj+1, . . . , xi),

where sj : Ki → Ki−1 denotes the degeneracy map for 1 ≤ j ≤ i (see [22,
I Prop. 3]). A space X together with an An-form is called an An-space. If
X has a system of maps {Mi : Ki×Xi → X}i≥2 such that {Mi}2≤i≤n is an
An-form on X for any n ≥ 2, then X is called an A∞-space.
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Figure 2. A5-form on X.



150 YUSUKE KAWAMOTO

It is natural to consider the notion of the higher homotopy associativity
of maps between An-spaces. Such notions were first considered by Sugawara
[24, §2] and Stasheff [23, Def. 11.9] under some restricted situations. The
full generality was described by Iwase-Mimura [11]. To construct an An-
form of a map, they defined a special complex Γi which is homeomorphic to
the (i− 1)-dimensional disk for i ≥ 1. Let Λi = ∂Γi denote the boundary of
the complex Γi. Then Λi is the union of the following (i(i−1)/2+2i−1−1)-
faces:

Γk(r, s) for 1 ≤ k ≤ r, 1 ≤ r ≤ i− 1, r + s = i+ 1,

Γ(t; r1, . . . , rt) for 2 ≤ t ≤ i, rj ≥ 1, r1 + · · ·+ rt = i,

and the faces Γk(r, s) and Γ(t; r1, . . . , rt) are homeomorphic to Γr ×Ks and
Kt×Γr1 ×· · ·×Γrt , respectively. The homeomorphisms δk(r, s) : Γr×Ks →
Γk(r, s) and δ(t; r1, . . . , rt) : Kt×Γr1 ×· · ·×Γrt → Γ(t; r1, . . . , rt) are called
the face operators on Γi. Furthermore, we have the degeneracy operations
dj : Γi → Γi−1 for 1 ≤ j ≤ i satisfying certain conditions (see [11, (2-d)]).

From the construction of Γi, there exists a homeomorphism ζi : I ×Ki →
Γi such that ζi({1} ×Ki) = Γ1(1, i), ζi({0} ×Ki) = Γ(i; 1, . . . , 1) and

ζi(I × Li) =
⋃

(k,r,s)∈Φi

Γk(r, s) ∪
⋃

(t;r1,... ,rt)∈Ψi

Γ(t; r1, . . . , rt),

where Φi = {(k, r, s) | 1 ≤ k ≤ r, 2 ≤ r ≤ i − 1, r + s = i + 1} and
Ψi = {(t; r1, . . . , rt) | 2 ≤ t ≤ i− 1, rj ≥ 1, r1 + · · ·+ rt = i}. By using the
homeomorphism ζi, we identify the complex Γi with I ×Ki.

Let X and Y be An-spaces, and let φ : X → Y be a map. Then we have
the An-forms {Mi : Ki ×Xi → X}2≤i≤n and {Ni : Ki × Y i → Y }2≤i≤n on
X and Y , respectively. An An-form on the map φ : X → Y is a system of
maps {Fi : Γi ×Xi → Y }1≤i≤n satisfying the following conditions:

F1 = φ : X −→ Y,(2.5)

where Γ1 ×X = {∗} ×X is identified with X.

Fi(δk(r, s)(ρ, σ), x1, . . . , xi)(2.6)

=Fr(ρ, x1, . . . , xk−1,Ms(σ, xk, . . . , xk+s−1), xk+s, . . . , xi)

for (ρ, σ) ∈ Γr ×Ks.

Fi(δ(t; r1, . . . , rt)(τ, ρ1, . . . , ρt), x1, . . . , xi)(2.7)

= Nt(τ, Fr1(ρ1, x1, . . . , xr1), . . . , Frt(xr1+···+rt−1+1, . . . , xi))

for (τ, ρ1, . . . , ρt) ∈ Kt × Γr1 × · · · × Γrt .

Fi(γ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)(2.8)

= Fi−1(dj(γ), x1, . . . , xj−1, xj+1, . . . , xi)

for 1 ≤ j ≤ i.
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Figure 4. A4-form on φ.

Figure 3 and Figure 4 denote the A3-form and the A4-form on φ, re-
spectively. A map together with an An-form is called an An-map. From
the definition, we see that an A2-map and an A3-map are an H-map and
an H-map preserving the homotopy associativity of H-spaces, respectively.
Furthermore, an A∞-map is homotopic to a loop map, and we have the
induced map between classifying spaces (see [12, §6.4]).

In the proof of Theorem A, we need the following result:

Theorem 2.1. Let A,X ∈ S∗. Then we have the following:

(1) If X is an An-space, then the A-nullification LA(X) is an An-space
and the natural map φX : X → LA(X) is an An-map.

(2) If X is an An-space, then the A-colocalization CWA(X) is an An-space
and the natural map ψX : CWA(X) → X is an An-map.
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A functor F : S∗ → S∗ is called continuous if the map

λF : Map∗(X,Y ) −→ Map∗(F (X), F (Y ))

defined by λF (g) = F (g) is continuous when the compact-open topology
are assigned to those mapping spaces. Let (Z/p)∞ denote the p-completion
functor of Bousfield-Kan [2]. It is shown by Iwase [10, Thm. 3.7] that
(Z/p)∞ is a continuous functor. He used the result to show that (Z/p)∞
strictly preserves the higher homotopy associativity of H-spaces (see [10,
Cor. 3.10]). Since the continuity of LA and CWA are proved by Dror Far-
joun [5, Thm. 1.A.3, Thm. 2.B.3], we also use a similar way to the proof
of [10, Thm. 3.7, Cor. 3.10] to prove Theorem 2.1. But we need to argue
more precisely than [10] since LA and CWA are in general homotopy func-
tors. Theorem 2.1 shows that LA and CWA preserve the higher homotopy
associativity of H-spaces up to homotopy.

Kawamoto [14, Thm. 2.14] has shown that the nullification functor LA
preserves the higher homotopy commutativity in the sense of Williams [25]
of loop spaces. Since the proof of Theorem 2.1(1) is similar to the one of
[14, Thm. 2.14], we give an outline of the proof.

Proof of Theorem 2.1(1). Since X is an An-space, there is a system of maps
{Mi : Ki × Xi → X}2≤i≤n satisfying Conditions (2.2)-(2.4). By using
induction on i, we construct An-forms {Ni : Ki × LA(X)i → LA(X)}2≤i≤n
and {Fi : Γi ×Xi → LA(X)}1≤i≤n on LA(X) and φX satisfying Conditions
(2.2)-(2.4) and (2.5)-(2.8), which implies the required conclusion.

First we put F1 = φX : X → LA(X), where Γ1 × X is identified with
X. Next we identify K2 × LA(X)2 and Γ2 × X2 with LA(X)2 and I ×
X2, respectively. By [5, 1.A.8 e.4], there is a homotopy equivalence γ :
LA(X)2 → LA(X2) with γ(φX)2 ' φX2 . If we define a map Ñ2 : LA(X)2 →
LA(X) by the composite Ñ2 = LA(M2)γ, then Ñ2(φX)2 ' φXM2. Since
Ñ2ιjφX ' φX , we have by (2.1) that Ñ2ιj ' 1LA(X) for j = 1, 2, where
ιj : LA(X) → LA(X)2 denotes the inclusion on the j-th factor. From the
homotopy extension property, there is a map N2 : LA(X)2 → LA(X) with
N2ιj = 1LA(X) for j = 1, 2 and N2(φX)2 ' φXM2. Here we can choose a
homotopy F2 : I ×X2 → LA(X) such that F2(t, x, ∗) = F2(t, ∗, x) = φX(x),
F2|{0}×X2 = N2(φX)2 and F2|{1}×X2 = φXM2.

By the inductive hypothesis, we have systems of maps {Nj : Kj×LA(X)j

→ Y }2≤j≤i−1 and {Fj : Γj × Xj → LA(X)}1≤j≤i−1 satisfying Conditions
(2.2)-(2.4) and (2.5)-(2.8). Now we put that Si = I× (Li×Xi∪Ki×X [i])∪
{1} ×Ki × Xi and Ti = (ζi × 1Xi)(Si) ⊂ Γi × Xi, where X [i] denotes the
i-fold fat wedge of X given by

X [i] = {(x1, . . . , xi) ∈ Xi | xj = ∗ for some 1 ≤ j ≤ i}.
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Let Ei : Ti → LA(X) be the map defined by

Ei(δk(r, s)(ρ, σ), x1, . . . , xi)

= Fr(ρ, x1, . . . , xk−1,Ms(σ, xk, . . . , xk+s−1), xk+s, . . . , xi),

Ei(δ(t; r1, . . . , rt)(τ, ρ1, . . . , ρt), x1, . . . , xi)

= Nt(τ, Fr1(ρ1, x1, . . . , xr1), . . . , Frt(xr1+···+rt−1+1, . . . , xi))

for (k, r, s) ∈ Φi and (t; r1, . . . , rt) ∈ Ψi,

Ei(γ,x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= Fi−1(dj(γ), x1, . . . , xj−1, xj+1, . . . , xi)

for γ ∈ Γi and 1 ≤ j ≤ i, and

Ei(ζi(1, τ), x1, . . . , xi) = φX(Mi(τ, x1, . . . , xi))

for τ ∈ Ki. From the homotopy extension property, there exists a map
Ẽi : Γi × Xi → LA(X) with Ẽi|Ti = Ei. Let Qi : Ki × Xi → LA(X) be
the map given by Qi(τ, x1, . . . , xi) = Ẽi(0, τ, x1, . . . , xi). By using a similar
argument to the proof of [14, Thm. 2.14], we can construct a map Ni :
Ki×LA(X)i → LA(X) which satisfies (2.2)-(2.4) and Ni(1Ki × (φX)i) ' Qi
rel Li × Xi. By using the same argument as the proof of [14, Thm. 2.14]
again, we have a map Fi : Γi×Xi → LA(X) satisfying Conditions (2.5)-(2.8),
which implies the required conclusion. This completes the proof. �

In the case of the colocalization functor CWA, we can prove Theorem 2.1(2)
by using a similar argument to the proof of Theorem 2.1(1), and so we omit
the proof. In the proof, we need the following result instead of [14, Prop.
2.3]:

Proposition 2.2. Let A,X ∈ S∗, and let ψX : CWA(X) → X denote the
natural map. Then we have the following homotopy equivalences:

(ψX)∗ : Map∗(CWA(X)i, CWA(X)) −→ Map∗(CWA(X)i, X),(2.9)

(ψX)∗ : Map∗(CWA(X)(i), CWA(X)) −→ Map∗(CWA(X)(i), X)(2.10)

for i ≥ 1, where Z(i) denotes the i-fold smash product of a space Z.

From the proof of [5, Thm. 2.E.1], we have the following lemma:

Lemma 2.3. Let A ∈ S∗. If f : Y → X is an A-equivalence and W is an
A-cellular space, then the induced map

f∗ : Map∗(W,Y ) −→ Map∗(W,X)

is a homotopy equivalence.
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Proof of Proposition 2.2. By Lemma 2.3, the induced map

(ψX)∗ : Map∗(W,CWA(X)) −→ Map∗(W,X)

is a homotopy equivalence for an A-cellular space W . Then it is sufficient
to show that CWA(X)i and CWA(X)(i) are A-cellular. If B and C are
A-cellular, then by [5, Cor. 2.D.17], B × C is A-cellular. Since B ∨ C is
represented as a homotopy colimit space, by [5, Def. 2.D.1], B ∨ C is A-
cellular, and by using [5, Def. 2.D.1] again, so is B ∧ C. From these facts,
we have the required conclusion. This completes the proof. �

Let Sm denote the m-dimensional sphere for m ≥ 1. From the definition,
one can see that a space X is Sm-null if and only if πi(X) = 0 for i ≥
m, and a map f : X → Y is Sm-equivalence if and only if the induced
homomorphism f∗ : πi(X) → πi(Y ) is an isomorphism for i ≥ m (see
[5, 1.A.1.1, 2.D.2.6]). Furthermore, it is shown by Dror Farjoun [5, 1.E.1,
2.A.3.1] that the Sm-nullification LSm(X) is the (m − 1)-th stage Xm−1

of the Postnikov system of X, and the Sm-colocalization CWSm(X) is the
(m − 1)-connected cover X〈m − 1〉 of X. Then as direct consequences of
Theorem 2.1, we have the following results:

Corollary 2.4. If X is an An-space, then the m-th stage Xm of the Post-
nikov system is an An-space and the natural projection pm : X → Xm is an
An-map.

Corollary 2.5. If X is an An-space, then the m-connected cover X〈m〉 is
an An-space and the natural inclusion im : X〈m〉 → X is an An-map.

Remark 2.6. By using a result of Stasheff [22, II Cor. 10.6], we have a
similar result to Corollary 2.4 (see [22, II Thm. 6.2]). His result implies that
we can choose An-forms on X and Xm, so that the projection pm : X → Xm

is an An-homomorphism, where An-homomorphism is a map between An-
spaces strictly preserving the An-forms (see [22, II Def. 4.1]). Corollary 2.4
has the advantage in that we need not change the given An-form on X.

3. Proofs of Theorem A and Theorem B.

In this section, we give the proofs of Theorem A and Theorem B. First we
prove Theorem A by combining Theorem 2.1 with the results of Broto and
Crespo about H-spaces with finitely generated cohomology. Next we show
that the BZ/p-nullification functor LBZ/p preserves a quasi Cn-form on an
An-space (see Theorem 3.5). By using Theorem A and Theorem 3.5, we
prove Theorem B.

Lin [17] posed a question whether a simply connected H-space whose
mod p cohomology is finitely generated as an algebra has the same mod
p cohomology as a product of CP∞s with three-connected covers of finite
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H-spaces and finite H-spaces (see [17, p. 1105]). Broto and Crespo [3] and
[4] answered positively the question as follows:

Theorem 3.1 ([3, Thm. 1.1], [4, Thm. 1.1]). Let p be a prime. If X is a
simply connected mod p H-space such that the mod p cohomology H∗(X; Z/p)
is finitely generated as an algebra, then we have a simply connected mod p
finite H-space Y and a principal H-fibration

F
α−−−→ X

β−−−→ Y,(3.1)

where the fiber F is the direct product of a finite number of CP∞s.

In [3] and [4], they also remarked the next fact without the proof (see [3,
p. 354]). Since it is an essential point in the proof of Theorem A, we will
explain the proof in detail.

Proposition 3.2. Suppose that X satisfies the same conditions as Theo-
rem 3.1. Then we have the following homotopy commutative diagram of
fibrations:

F
α−−−→ X

β−−−→ Y

γ

y' ∥∥∥ δ

y'
CWBZ/p∞(X)

ψX−−−→ X
φX−−−→ LBZ/p(X),

where the top horizontal sequence is the principal H-fibration (3.1).

Proof. By a result of Dwyer-Wilkerson [7, Thm. 9.3], we have that
Map∗(BZ/p∞, Y ) is contractible since Y is a mod p finite H-space. Then
α : F → X is a BZ/p∞-equivalence. By using the universality of the natural
map ψX : CWBZ/p∞(X) → X, we have a map ξ : CWBZ/p∞(X) → F with
αξ ' ψX . Since F is BZ/p∞-cellular, by Lemma 2.3, there exists a map
γ : F → CWBZ/p∞(X) with ψXγ ' α. By using Lemma 2.3 again, we have
a bijection

(ψX)∗ : [CWBZ/p∞(X), CWBZ/p∞(X)] −→ [CWBZ/p∞(X), X],

which implies that γξ ' 1CWBZ/p∞ (X). Similarly, we have ξγ ' 1F by using
a bijection α∗ : [F, F ] → [F,X], and thus γ : F → CWBZ/p∞(X) is a
homotopy equivalence.

By Miller [19, Thm. A], Y is BZ/p-null, and so the natural map φY :
Y → LBZ/p(Y ) is a homotopy equivalence. By a result of Dror Farjoun [5,
Cor. 3.D.3], the BZ/p-nullification functor LBZ/p preserves the fibration
(3.1). Furthermore, by [1, Remark 9.5], LBZ/p(F ) is contractible, which
implies that LBZ/p(β) : LBZ/p(X) → LBZ/p(Y ) is a homotopy equivalence.
Let δ = LBZ/p(β)−1φY : Y → LBZ/p(X), where LBZ/p(β)−1 : LBZ/p(Y ) →
LBZ/p(X) denotes the homotopy inverse of LBZ/p(β). Then δ is a homotopy
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equivalence with δφX ' β, and we have the required conclusion. This
completes the proof. �

Now we prove Theorem A as follows:

Proof of Theorem A. Let X be a simply connected An-space such that the
mod p cohomology H∗(X; Z/p) is finitely generated as an algebra. By The-
orem 3.1 and Proposition 3.2, we have the following principal H-fibration:

CWBZ/p∞(X)
ψX−−−→ X

φX−−−→ LBZ/p(X),

where CWBZ/p∞(X) is homotopy equivalent to a finite product of CP∞s.
From Theorem 2.1, the above fibration is a principal An-fibration, and we
have the required conclusion. This completes the proof of Theorem A. �

Next we proceed to the proof of Theorem B. Hemmi [8] introduced the
concept of a quasi Cn-form on an An-space. Let X be an An-space in the
sense of Stasheff [22], and let Pi(X) denote the i-th projective space of X
for 1 ≤ i ≤ n. From the construction of Pi(X), we have the following cofiber
sequence:

Pi−1(X)
ιi−1−−−→ Pi(X)

ρi−−−→ (ΣX)(i)

for 1 ≤ i ≤ n. To describe the definition of a quasi Cn-form, let κi :
(ΣX)i−1 → (ΣX)i and εi : ΣX → (ΣX)i be the inclusion maps given by

κi(x1, . . . , xi−1) = (x1, . . . , xi−1, ∗)

and

εi(x) = (∗, . . . , ∗, x)

for 2 ≤ i ≤ n. Let ζi : (ΣX)i → (ΣX)(i) denote the natural projection
for 1 ≤ i ≤ n. A quasi Cn-form on X is defined by a system of maps
{λi : (ΣX)i → Pi(X)}1≤i≤n satisfying the following conditions:

λ1 = 1ΣX : ΣX −→ ΣX,(3.2)

λiκi = ιi−1λi−1 for 2 ≤ i ≤ n,(3.3)

λiεi = ιi−1 · · · ι1 for 2 ≤ i ≤ n,(3.4)

ρiλi '

( ∑
σ∈Σi

σ

)
ζi for 1 ≤ i ≤ n,(3.5)

where the action of the symmetric group Σi on (ΣX)(i) is given by the
permutation of the coordinates, and the summation on the right hand side
is defined by using the natural co-H-structure on (ΣX)(i). An An-space
which has a quasi Cn-form is called a quasi Cn-space. Hemmi has shown
the following result:
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Theorem 3.3 ([8, Thm. 1.1]). If X is a simply connected finite quasi Cp-
space, then X is contractible.

Remark 3.4. The above definition of a quasi Cn-form is slightly weaker
than the original definition due to Hemmi. In fact, he defined a quasi Cn-
form by a system of maps {ψi : Ji(ΣX) → Pi(X)}1≤i≤n satisfying some
conditions (see [8, Def. 2.1]), where Ji(ΣX) denotes the i-th James reduced
product space of ΣX for 1 ≤ i ≤ n. Given a quasi Cn-form {ψi : Ji(ΣX) →
Pi(X)}1≤i≤n in the sense of Hemmi, by composing ψi with the natural pro-
jection πi : (ΣX)i → Ji(ΣX), we have a system {λi : (ΣX)i → Pi(X)}1≤i≤n
satisfying Conditions (3.2)-(3.5). Hemmi has shown Theorem 3.3 under the
assumption that X is a quasi Cp-space in his definition. However, one can
see from his proof that our definition is also sufficient to prove Theorem 3.3.

Let X and Y be quasi Cn-spaces which have the quasi Cn-forms {λXi :
(ΣX)i → Pi(X)}1≤i≤n and {λYi : (ΣY )i → Pi(Y )}1≤i≤n, respectively. If
φ : X → Y is an An-map, then by Iwase-Mimura [11, Thm. 3.1], we have
the induced map Pi(φ) : Pi(X) → Pi(Y ) for 1 ≤ i ≤ n. Now φ : X → Y is
called a quasi Cn-map if the following diagram is homotopy commutative:

(ΣX)i
λX

i−−−→ Pi(X)

(Σφ)i

y yPi(φ)

(ΣY )i
λY

i−−−→ Pi(Y )
for 1 ≤ i ≤ n.

In the proof of Theorem B, we need the following result:

Theorem 3.5. If X is a simply connected quasi Cn-space such that the mod
p cohomology H∗(X; Z/p) is finitely generated as an algebra, then LBZ/p(X)
is a quasi Cn-space and φX : X → LBZ/p(X) is a quasi Cn-map.

Lemma 3.6. Suppose X satisfies the same conditions as Theorem 3.5.
Then we have the following:

(1) There exists a homotopy equivalence

νi : (ΣLBZ/p(X))i → LBZ/p((ΣX)i)

with φ(ΣX)i ' νi(ΣφX)i for i ≥ 1.
(2) Given a BZ/p-null space Z, the induced map(

(ΣφX)i
)∗ : Map∗((ΣLBZ/p(X))i, Z) −→ Map∗((ΣX)i, Z)

is a homotopy equivalence for i ≥ 1.

Proof. First we show (1). By Dror Farjoun [5, 1.A.8 e.4], there exists a
homotopy equivalence γj : LBZ/p((ΣX)j)× LBZ/p(ΣX) → LBZ/p((ΣX)j+1)
such that γj(φ(ΣX)j × φΣX) ' φ(ΣX)j+1 for j ≥ 1. If we define a map
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θi : LBZ/p(ΣX)i → LBZ/p((ΣX)i) by θi = γi−1(γi−2 × 1LBZ/p(ΣX)) · · · (γ1 ×
1LBZ/p(ΣX)i−2), then θi is a homotopy equivalence satisfying that θi(φΣX)i '
φ(ΣX)i for i ≥ 1.

From [14, Lemma 2.6], we have a homotopy equivalence ω : LBZ/p(ΣX) →
LBZ/p(LBZ/p(S1) ∧ LBZ/p(X)) such that

ωφΣX ' φLBZ/p(S1)∧LBZ/p(X)(φS1 ∧ φX).

Let ω−1 : LBZ/p(LBZ/p(S1) ∧ LBZ/p(X)) → LBZ/p(ΣX) denote the ho-
motopy inverse of ω. By Theorem A, LBZ/p(X) ' Y is finite, and so is
LBZ/p(S1) ∧ LBZ/p(X) ' ΣLBZ/p(X). Then φLBZ/p(S1)∧LBZ/p(X) is a homo-
topy equivalence. Let ζ : ΣLBZ/p(X) → LBZ/p(ΣX) be the map defined
by ζ = ω−1φLBZ/p(S1)∧LBZ/p(X)(φS1 ∧ 1LBZ/p(X)). Then ζ is a homotopy
equivalence and ζ(ΣφX) ' φΣX . If we put νi = θiζ

i : (ΣLBZ/p(X))i →
LBZ/p((ΣX)i), then νi satisfies the required conditions.

Next we show (2). By taking the mapping spaces, we have the following
homotopy commutative diagram:

Map∗(LBZ/p((ΣX)i), Z)
ν∗i−−−→
'

Map∗((ΣLBZ/p(X))i, Z)

(φ(ΣX)i )
∗
y' y((ΣφX)i)∗

Map∗((ΣX)i, Z) Map∗((ΣX)i, Z)

for a BZ/p-null space Z. Since ν∗i and (φ(ΣX)i)∗ are homotopy equivalences
by (1) and (2.1), so is ((ΣφX)i)∗. This completes the proof. �

Proof of Theorem 3.5. Let X be an An-space with finitely generated mod
p cohomology. From Theorem 2.1, the BZ/p-nullification LBZ/p(X) is an
An-space and the natural map φX : X → LBZ/p(X) is an An-map. Then by
Iwase-Mimura [11, Thm. 3.1], we have the induced map Pi(φX) : Pi(X) →
Pi(LBZ/p(X)) for 1 ≤ i ≤ n satisfying the following homotopy commutative
diagram of cofiber sequences:

Pi−1(X)
ιi−1−−−→ Pi(X)

ρi−−−→ (ΣX)(i)

Pi−1(φX)

y Pi(φX)

y y(ΣφX)(i)

Pi−1(LBZ/p(X))
eιi−1−−−→ Pi(LBZ/p(X))

eρi−−−→ (ΣLBZ/p(X))(i),

(3.6)

where ι̃i−1 : Pi−1(LBZ/p(X)) → Pi(LBZ/p(X)) is the natural inclusion and
ρ̃i : Pi(LBZ/p(X)) → (ΣLBZ/p(X))(i) denotes the natural projection. Since
LBZ/p(X) is finite, so is (ΣLBZ/p(X))(i) for i ≥ 1. By using induction
on i, the projective space Pi(LBZ/p(X)) is finite, and so Pi(LBZ/p(X)) is
BZ/p-null. Then there exists a map ηi : LBZ/p(Pi(X)) → Pi(LBZ/p(X))
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such that ηiφPi(X) ' Pi(φX). Now we define a map λ̂i : (ΣLBZ/p(X))i →
Pi(LBZ/p(X)) by the composite λ̂i = ηiLBZ/p(λi)νi. Then by Lemma 3.6,
we see that λ̂i(ΣφX)i ' Pi(φX)λi for 1 ≤ i ≤ n. If we show that the
system {λ̂i : (ΣLBZ/p(X))i → Pi(LBZ/p(X))}1≤i≤n is a quasi Cn-form on
LBZ/p(X), then the result follows.

First we consider Conditions (3.3) and (3.4). Let κ̃i : (ΣLBZ/p(X))i−1

→ (ΣLBZ/p(X))i be the inclusion given by

κ̃i(y1, . . . , yi−1) = (y1, . . . , yi−1, ∗)

for 2 ≤ i ≤ n. From the definition of λ̂i, and by using Diagram (3.6), we
have that ((ΣφX)i−1)∗([λ̂iκ̃i]) = [Pi(φX)λiκi] and ((ΣφX)i−1)∗([̃ιi−1λ̂i−1]) =
[Pi(φX)ιi−1λi−1]. Then ((ΣφX)i−1)∗([λ̂iκ̃i]) = ((ΣφX)i−1)∗([̃ιi−1λ̂i−1]) since
λiκi = ιi−1λi−1. By Lemma 3.6,(

(ΣφX)i−1
)∗ :

[
(ΣLBZ/p(X))i−1, Pi−1(LBZ/p(X))

]
−→

[
(ΣX)i−1, Pi−1(LBZ/p(X))

]
is a bijection since Pi−1(LBZ/p(X)) is BZ/p-null, which implies that λ̂iκ̃i '
ι̃i−1λ̂i−1 for 2 ≤ i ≤ n. By using the same argument as above, we have
λ̂iε̃i ' ι̃i−1 · · · ι̃1 for 2 ≤ i ≤ n, where ε̃i : ΣLBZ/p(X) → (ΣLBZ/p(X))i

denotes the inclusion given by

ε̃i(y) = (∗, . . . , ∗, y)

for 2 ≤ i ≤ n. From the homotopy extension property, we can choose a map
λ̃i : (ΣLBZ/p(X))i → Pi(LBZ/p(X)) such that λ̃i ' λ̂i for 1 ≤ i ≤ n and the
system {λ̃i}1≤i≤n satisfies Conditions (3.3) and (3.4).

Next we show Condition (3.5). Let ζ̃i : (ΣLBZ/p(X))i→ (ΣLBZ/p(X))(i)

denote the natural projection for 1 ≤ i ≤ n. Since X is a quasi Cn-space, by
using Condition (3.5) and the homotopy commutativity of Diagram (3.6),
we have that

(
(ΣφX)i

)∗ ([ρ̃iλ̃i]) =
[
(ΣφX)(i)ρiλi

]
=

(ΣφX)(i)

∑
σ∈Σi

σ

 ζi

 .
On the other hand, we see that

(
(ΣφX)i

)∗∑
σ∈Σi

σ

 ζ̃i

 =

(ΣφX)(i)

∑
σ∈Σi

σ

 ζi
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since (ΣφX)(i) : (ΣX)(i) → (ΣLBZ/p(X))(i) is a co-H-map. By applying
Lemma 3.6 to a BZ/p-null space (ΣLBZ/p(X))(i), we have a bijection(
(ΣφX)i

)∗ :
[
(ΣLBZ/p(X))i, (ΣLBZ/p(X))(i)

]
−→

[
(ΣX)i, (ΣLBZ/p(X))(i)

]
,

which implies that

ρ̃iλ̃i '

∑
σ∈Σi

σ

 ζ̃i

for 1 ≤ i ≤ n. This completes the proof of Theorem 3.5. �

Now we can prove Theorem B as follows:

Proof of Theorem B. Let X be a simply connected quasi Cp-space such that
the mod p cohomology H∗(X; Z/p) is finitely generated as an algebra. From
Theorem A, we have a principal Ap-fibration

F −−−→ X
φX−−−→ LBZ/p(X),

where the fiber F is homotopy equivalent to the direct product of a finite
number of CP∞s. By Theorem 3.5, the BZ/p-nullification LBZ/p(X) is a
simply connected finite quasi Cp-space, and by Theorem 3.3, LBZ/p(X) is
contractible. Hence X is homotopy equivalent to the fiber F , and we have
the required conclusion. This completes the proof of Theorem B. �
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