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When we have two extensions of a Cantor minimal system
which are both one-to-one on at least one orbit, we can con-
struct new Cantor minimal systems called topological join-
ings. We compute the dimension group of the joining in a
special case. As an application, we show that a non-invertible
endomorphism can induce the identity map on the dimension
group of a Cantor minimal system.

1. Introduction.

By a topological dynamical system (Y, %), we mean a compact Hausdorff
space Y endowed with a homeomorphism ¥. When (Y;,4;),i = 0,1 are two
topological dynamical systems, 1y X 1-invariant closed subsets of Yy x Y
are called (topological) joinings, and when (Yp, ) equals (Y7,1), they are
called self-joinings. In the measure-theoretical setting, the notion of self-
joinings was introduced by D. Rudolph in [R], and it was proved that the
minimal self-joining property implies coalescence and zero entropy. In this
paper, we will compute the dimension group of joinings of Cantor minimal
systems.

When Y is the Cantor set and a homeomorphism 1 on Y has no nontrivial
invariant closed set, (Y,1)) is called a Cantor minimal system. We define
the dimension group K°(Y,v) of (Y,v) as the quotient of C(Y,Z) by the
coboundary subgroup

By={f—foy™h feC(Y,Z)}.

In [GPS], it was proved that the dimension group K°(Y, 1)), as an ordered
group with a distinguished order unit, characterizes the strong orbit equiv-
alence class of (Y, ).

We would like to consider the case that a joining (Z, 7) of Cantor minimal
systems (Yp, o) and (Y1,71) is also a Cantor minimal system. (We must
distinguish the property of minimal self-joinings and minimal systems in the
joinings.) We don’t know a necessary and sufficient condition so that the
joining is minimal. In a special case, however, we will prove that the joining
becomes a Cantor minimal system, and compute its dimension group. Our
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main result is Theorem 5, in which we will show that the dimension group of
the joining is order isomorphic to the relative direct sum of the K%(Y;,1;)’s

In the last section, we will consider the non-coalescence of Cantor mini-
mal systems. We denote by C(¢)) the set of continuous maps on Y which
commute with ¢ and call it the centralizer of (Y,v). If C(¢) consists of
homeomorphisms, we say that the system (Y, ) is topologically coalescent,
and say that (Y, ) is non-coalescent, if C'(¢)) contains a non-invertible endo-
morphism. For an element v € C(1)), we can define an order homomorphism
mod(y) on K°(Y, ) by mod(v)([f]) = [f o 4] for [f] € K°(Y,4). The map
mod gives a homomorphism from the automorphism group of (Y, ) to the
automorphism group of the dimension group. Finite subgroups of the ker-
nel of the mod map were studied by the author in [M2]. In the present
paper, we will prove that there exist a lot of non-coalescent Cantor minimal
systems whose non-invertible endomorphisms induce automorphisms on the
dimension groups. Especially, we construct a non-coalescent Cantor min-
imal system which is strong orbit equivalent to an odometer system. For
detailed information on odometer groups, we refer to [HR).

2. Dimension groups of joinings.

Let {(Y;,%;)}icr be a family of topological dynamical systems. For (y;)icr
in Y/, the orbit closure of (;); by the diagonal action is called the joining
generated by (y;);.

Lemma 1. Let {(Yi,1:)}icr and (X, ¢) be topological dynamical systems
and T; : (K,wz) (X, ) be factor maps. If y = (yi)ier satisfies m;(y;) =
mi(y;) and m; Nmi(ys)) = {yi} for all i,j € I, and (X, ¢) is minimal, then
the joining genemted by (yi)ier € Y is minimal.

Proof. 1t suffices to prove the case I = {0,1}. Let ¢ be the diagonal action
1o X 1. For every open neighborhood O of y = (yo,y1), there exists an
open set U of X such that V = 75 1(U) x n; }(U) is a neighborhood of y
contained in O. To prove the minimality, it is enough to show the almost
periodicity of y for V, that is,

{keZ; v"(y) eV}

has a bounded gap in Z. But, we have *(y) € V if and only if ¢*(mo(y0)) €
U, and so the assertion comes from the minimality of (X, ¢). O

When an unperforated ordered group G satisfies the Riesz interpolation
property, G is called a dimension group in the abstract sense (|[GPS, Section
1]). Let 7 : H — G be an order homomorphism between dimension groups.
We say that 7 is an order embedding, if 7 is injective and w(h) > 0 if and
only if h > 0.
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Definition 2. Let m; : H — G;, ¢ = 0,1, be order embeddings between
simple dimension groups, none of them equal to Z. Assuming G;/m;(H) is
torsion-free for ¢ = 0, 1, we call the quotient D of Go ® G1 by

{(mo(h), —m1(R)); h € H}

the relative direct sum of G; with respect to m;(H). Define the positive cone
D™ such as

Dt ={[go,q1] € D; g; € Gf, i =0,1},

where [-, -] means the quotient map. When mp and m preserve the distin-
guished order units, the order unit of (D, D) can be defined in the obvious
way.

We can define the relative direct sum of more than two dimension groups
in a similar fashion.

Lemma 3. Let (D,D™) be the relative direct sum of G; with respect to
mi(H). Then, (D, D7) is an unperforated ordered group, and for x € D\
{0} and y € DT, there ewists a natural number n € N such that 0 < y < nx.

Proof. Tt is easy to see that (D, D) is an ordered group. Suppose n[go, g1] >
0 for [go,91] € D and n € N. By the definition, there exists an element
h € H such that ngo + mo(h) > 0 and ng; — m1(h) > 0. If ngo + mo(h)
is equal to zero, h is divisible by n in H, because Go/mo(H) is torsion-
free. Hence, we get [go,¢91] > 0 in D. We have the same conclusion, if
ngy — m1(h) is zero. Therefore, we may assume the strict inequality. Since
H is a simple dimension group (# Z), we can find ¢; € H for i = 0,1 such
that 0 < mp(eg) < ngo + mo(h) and 0 < m1(e1) < ng; — m1(h), by Corollary
4.10 of [GH]. By using 4.10 of [GH] again, we get an element h’ such that

h—60<nh/<h+61.

Then, go + mo(h') and g1 — w1 (k') are positive, which implies [gg, g1] are
positive in D.

To prove the second statement, let z = [go, g1] be in DT\ {0}. We may
assume gp > 0 and g1 > 0. Because we can choose h € H \ {0} such that
go — mo(h) > 0, the assertion has been proved. O

The relative direct sum D may not satisfy the Riesz interpolation prop-
erty. For example, let G be Q? and define the positive cone by

GT = {(z,y); z > |y} U{(0,0)}.
If H={(z,0)} = Q is a subgroup of G, it can be seen that the relative
direct sum of two copies of G with respect to H doesn’t satisfy the Riesz
interpolation property.
We say w(H) is order dense in G, if there is h € H for every g < ¢’ such
that g < w(h) < ¢’. By [GPS2, Proposition 1.1], 7(H) is order dense in G,
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if and only if 7 induces an isomorphism between the state space S(G) and
S(H).

Lemma 4. The relative direct sum (D, D) of G; with respect to m;(H)
satisfies the Riesz interpolation property, if m1(H) is order dense in Gy.

Proof. We check the Riesz decomposition property. Assume the inequality
0 < [a,d’] < [b,¥] + [¢,¢] in D for a,b,c € G§ and a,V,¢ € Gf. We must
show that there exist x,y € Dt so that [a,d'] = x4y, z < [b,V], y < [¢, ).
We may also assume [b,0'] # 0 and [¢,¢] # 0. Because [b+ ¢,b + ] is
strictly larger than [a, a’], we can find v,e € H such that

0<(b+c)—a+mv), 0<2m(e) < +)—d —m(v).
Since 71 (H) is order dense in G1, we also get t,u € H™ satisfying,
0<b+m(t), 0<b —m(t) <mie)
and
0<c+m(u), 0<c —m(u)<m(e).

Take ¢ € H such as 0 < m1(¢') < —mi(t) and 0 < m1(€') < ¢ — 71 (u). By
using the order density again, we have s € H™ satisfying

0<a+m(s), 0<a —m(s) <m(e).
Then, we obtain
m(e) < (b +)—d —mt+u—s)<2m(e),

and so t + u — s is greater than v. If we replace [a, d'], [b, b'] and [¢, ¢/] with
[a + mo(s),a’ — m1(s)],[b+ mo(t), b — m1(¢)] and [c + 7o(u),d’ — m1(u)], the
assertion follows by the Riesz decomposition property of G;. (|

We would like to state the main theorem. Let m; : (Y;,v¢:) — (X, ¢) be
factor maps between Cantor minimal systems for ¢ = 0, 1. Define

B ={z € X; #n; ' (z) £1}
for each ¢ and assume that y; max € Y; and rmax € X satisfy

7TO(?JO,max) =TT (yl,max) = ZTmax € (EO U EI)C-

By Lemma 1, the joining (Z, 7) generated by (Yo max, ¥1,max) is & Cantor min-
imal system. In general, a factor map m; between Cantor minimal systems
induces the order embedding 7} : K%(X,¢) — KY(Y;,v;). In Lemma 6,
we will prove that the quotient of K°(Y;, ;) by 77 (K°(X,¢)) is torsion-
free. We denote by p; the canonical factor maps from (Z,7) to (Y;,1;) for
t = 0,1. The direct sum of pj and p] induces the homomorphism from
K°(Yy, o) ® K°(Y1,11) to K°(Z, 7).
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Theorem 5. In the above setting, we further assume that Ey and E1 are
disjoint. Then, the dimension group K°(Z, ) is isomorphic to the relative
direct sum of K°(Y;, ;) with respect to m;(K°(X,¢)) as a unital ordered
group. Moreover, the state space of K%(Z,T) is equal to

{(/J,(),/,Ll); Wi € S(KO(Y;vwz))a o © 7-‘—6( = H10 71—;}7
where S(K°(Y;, ;) is the state space of KO(Y;, ;).

If £y and F; are disjoint, the topological joining Z coincides with the
pull-back associated with 7y and 71, that is,

Z = {(yo,y1) € Yo x Y15 mo(yo) = m1(y1)}-

Therefore, the theorem asserts that the dimension group of the pull-back
system is isomorphic to the push-out of the dimension group.

For an ergodic measure p on (X, ¢), either of u(Fp) and p(E1) must be
zero when Fy and E are disjoint. If u(Ep) = 0 for every ergodic measure
p, then 74 (K°(X, ¢)) is order dense in K°(Yp,1p). But, we must remark
that even if Ey and F; are disjoint, 7} (K°(X, ¢)) may not be order dense
in K°(Y;,v;) for each i = 0,1. See the example at the last of this section.

In order to prove the above theorem, at first, we need to fix Kakutani-
Rohlin partitions for (X, ¢) and (Y3, ;).

Let {X,, }nen be a decreasing sequence of clopen sets of X such that the
intersection of all X,,’s is {Zmax}. By Theorem 4.2 of [HPS], for each X,,,
we can find a finite set V,, a map h: V,, — N and a clopen partition

P ={X(n,v,k); veV,, 1<k<h(v)}
of X, which satisfy the following properties:
e For every v € V,, and k # h(v), we have ¢(X (n,v,k)) = X(n,v,k+1).
e The clopen set X, equals the disjoint union of X (n,v,h(v)) for all
v EV,.
e The partition P41 is finer than P, for every n € N, and the family
of partitions {P, }, generates the topology of X.
The clopen set X, is called the top set and the map h is called the height
function. In order to compute the dimension group K°(X, ¢), we must con-
sider the free abelian group ZY». For convenience we denote the canonical
basis of Z"» by the vertices vy, va, - - - ,v; € V. When we define the rectan-
gular matrix A, € My, xv, ., (Z) by

Ap(v,0) =#{1 <k <h(); X(n+1,v,k) C X(n,v,h(v))}

for every v € V;, and v' € Vj, 41, the dimension group K°(X, ¢) is computed
by the inductive limit of (Z"»),, with the connecting maps (A, ).

The partition P,, induces the clopen partition of Y; for each i = 0,1 and
n € N. This family of partitions, however, does not generate the topology
of Y;. When we divide every clopen set Wi_l(X(TL, v, k)) so that the topology
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is generated, we obtain a finite set W; ,, a map p; : W;,, — V;, and a clopen
partition
Qi = {Yi(n,w, k); w e Wipn, 1<k <h(pi(w))}
of Y; and the following holds for each ¢ = 0, 1:
e For every w € W;, and k # h(pi(w)), we have ¢;(Yi(n,w,k)) =
Yi(n,w, k +1).
e For every v € V, and 1 < k < h(v), 7; (X (n,v,k)) is the disjoint
union of Y;(n,w, k) for all w € p; *(v).
e As in the case of (X,¢), Vi, = 7 '(X,) is the disjoint union of
Yi(n,w, h(p;i(w))) for all w € Wj,,.
e The partition Q; 41 is finer than Q;, and the family of partitions
{Qin}n generates the topology of ;.
Notice that the intersection of all Y; ,,’s equals {y; max} because Tmax is not
contained in E;. As above we denote the canonical basis of Z"in by the ver-
tices w in W;,,. We can compute the dimension group K°(Y;,1;), using the
rectangular matrix B;, € Mw, ,xw;,,.,(Z) determined in a similar fashion
to the case of A,. The homomorphisms sending v € Z"* to 3

ZWin induce the order embedding 7} : K°(X, ¢) — K°(Yi, ;).

Lemma 6. Let7: (Y,¢) — (X, ¢) be a factor map between Cantor minimal
systems. If there is a point y € Y such that 7= (n(y)) = {y}, then the
quotient K°(Y,v)/n*(K°(X, ¢)) is torsion-free.

Proof. We will prove the lemma for my : (Yo,%0) — (X, ¢) above. The
embedding of K°(X,¢) to K°(Yy,0) is obtained by the natural injection
from Z"» to Z"on induced by po. Since clearly Z"o» /ZV» is torsion-free,
we get the conclusion. O

We return to the setting of Theorem 5. We would like to describe
Kakutani-Rohlin partitions of (Z,7). When wy € Wy, and w; € Wi,
are preimages of the same v € V,,, we set

Z(n,wo, w1, k) = Z N (Yo(n,wo, k) x Yi(n,wi, k))

for all 1 < k < h(v). Let W, be the set of pairs (wg,w;) such that the
clopen set Z(n,wp,w;, h(v)) is not empty. Then, we get the partition

Rn = {Z(naw()awhk); ('UJ(],wl) € an 1 < k < h(pl(wz>)}

of Z. We can check that the sequence of clopen partitions {R,}, satisfies
the similar properties as in the case of {P,}, or {Q;,},. Hence, we can
compute the dimension group K°(Z,7) by the inductive limit of (Z""),,.
We denote the canonical basis of Z"» by the vertices (wg,w) in W,. The
connecting map from Z"» to ZWn+1 is given by a matrix C,, and the entry
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of C), corresponding to (wp,w;) € Wy, and (wj, w}) € Wy41 is equal to the
cardinality of the set

{1 <k < hipi(wi)); Z(n,wh, wy, k) C Z(n,wo,wi, h(pi(wi)))}.
The order embedding p{ is induced from the homomorphism sending wy €
ZWon to 2 (wo,w)ew, (Wo, W) € Z"». The order embedding p} is described

in the same way.
Define

Ei(m,Q) = {P € Py; m; {(P)NQ and 7; 1(P) N Q° are both nonempty}

)

for @ € Qin, n <mand i=0,1. If P' € Pp,1; is a subset of P € P, and
P’ € E;(m+1,Q), then we have P € E;(m, Q).

Lemma 7. For every Qo € Qon and Q1 € Qi,, there exists a natural
number m greater than n such that Eo(m, Qo) and E1(m,Q1) are disjoint.

Proof. The proof is by contradiction. Let U, ,, be the disjoint union of P &
Ei(m,Q;), for every m > n and ¢ = 0,1. The clopen set Uy, = Ug p, NU7 1y s
nonempty and forms a decreasing sequence. Therefore, there exists a point
x € X contained in all U,,. Then, m;~ Y(x) contains at least two distinct
points for each ¢ = 0,1, which contradicts the disjointness of Fy and E;. [

We are now ready to prove the main theorem.

Proof of Theorem 5. By virtue of Lemma 7, we may assume that Ey(n +
1,Qo0) and Ei(n + 1,Q1) are disjoint for all Q; € Q;, and n € N. We
denote the factor map my o pg = w1 o p1 by 7.

At first, we prove the surjectivity of the map pj @ p] from K%Yy, vo) @
K°(Y1,v1) to K°(Z,7). Fix n € N and (wp,w;) € W, arbitrarily. Let
v = po(wp) = p1(wy) € V,,. Set

S={R € Rp+1; RN Z(n,wo, wi,h(v)) is not empty},

Si={ReS; Rcn }(P) for some P € E;(n+ 1,Yi(n,w;, h(v)))},
for each i = 0, 1, and
S ={ReS; RN 7 1(P)
is empty for all P € E;(n+ 1,Y;(n,w;, h(v))), i =0, 1}.
Then, we have

Z(n,wo,wl,h(v)) = U R
ReS

= |JRru Y RU |J R

RES@ ReS; ReSy
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The first summand is equal to
UZn (Yo(n+ 1,wp, k) x V),

where the union runs over w(, and k satisfying Z(n + 1, wj, w, k) € Sy for
some w’l € Wi n41. The second summand can be written in the same way.
The last summand is equal to 7= (U) for some clopen set U of X. Hence,
the surjectivity has been proved.

Let us consider the kernel of pj @ pj. Suppose ag = zwaGWo,n A0,wo WO

and a1 = Zwlewl,n A,w, w1 satisfy

po(ao) = pi(a1)
in K°(Z,7). We may assume that

> Xowe(wo,wr) = D Ay, (wo, wy),

(wo,w1)EW, (wo,w1)EWn

and so we have Ao, = ALw,, if (wo,w1) exists in W;,. Therefore, we may
further assume that there exists a subset F; C W;,, for each i = 0,1, such
that:

o If wy € Fy and (wp,w1) € Wy, then wy € F.

o If wy € F1 and (wp,w1) € Wy, then wy € Fp.

e The element a; is equal to ), p (wo,w;) for each i =0, 1.
Define the clopen set

W= |J Z(n,wo,wi, h(pi(w))) = | Z(n,wo,wr, h(pi(wy))).

wo€Fp w1 €F

Let Z(n + 1,w), w}, k) € Ru+1 be a clopen set which is contained in W.
Then, there exist wy € Fy and wy € Fy such that Z(n + 1, w(, w}, k) is con-
tained in Z(n, wo, w1, h(p;(w;))). Without loss of generality, we may assume
that X (n + 1, po(w}), k) is not contained in Ey(n + 1, Yo(n, wo, h(po(wo)))).
Take a pair (wjj,w]) € Wy41 satisfying p;(w)) = p;(w]). There exists a
pair (wp,wy) € W, satisfying Z(n + 1, w({, wy, k) C Z(n,wq, w1, h(pi(w;))).
By the assumption, we have wy = wg, and so w; must be in F;. Hence,
71 (X (n+1, po(wp), k)) is contained in W. By repeating this argument, we
see that pjj(ao) = pi(a1) comes from K°(X,¢).

We have proved that pj @ p] induces an isomorphism from the relative
direct sum to K°(Z,7). It is obvious from the above argument that the
isomorphism preserves the positive cones and the distinguished order units,
and so the proof is completed. O

Corollary 8. Let {(Y;, ;) }ier be a family of at most countable Cantor min-
imal systems and m; : (Yi, ;) — (X, @) be factor maps to a Cantor minimal
system (X, ¢). Define

Ei={ze€X; #n; Y (z) # 1}
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and assume y; € Y; and x € X satisfies m;(y;) = x and v € Ef for alli € 1.
When we further assume that E;’s are disjoint for all i, the dimension group
of the joining (Z,7) generated by (y;); is isomorphic to the relative direct
sum of K°(Y;,1;)’s with respect to wf(K°(X, ¢)).

Proof. Use Theorem 5 repeatedly. O
Example. Let {g,}nen be a sequence of natural numbers satisfying

) - qr +1
a = lim 1
n Ook;:lqki

< 00

For convenience, we assume that, for every p € N, there exists n € N such
that 17, (qx +1).][r—1(qx — 1) and [[;_;(gx — 2) are divisible by p.

We would like to define a simple ordered Bratteli diagram (V) E, <)
([HPS]). Let the vertex set V;, be {v,,v),} and define the edge set E,
so that the connecting matrix from Z"» to Z""+! equals

qn 1
4, = [ . ] |
Let the source vertex of the initial edge in 7~ (vn41) and 7~ 1(v], ;) be vy,
and the source vertex of the final edge be v/,. Then, we obtain a sim-
ple ordered Bratteli diagram. Let (X, ¢) be the Bratteli-Vershik system
of (V,E,<). The dimension group K°(X,¢) is isomorphic to Q? and the
positive cone is

KX, )" = {(z,y); az > [y|} U{(0,0)},
and so there are two ergodic measures. The distinguished order unit [1] is
equal to (2,0).

Let us construct two extensions of (X, ¢), namely (Yp, o) and (Y7,1).
We would like to define two simple ordered Bratteli diagrams (W, Fp, <)
and (W71, F1, <). Set the vertex set Wy, be {won, wfm, wé’,n} and the vertex
set Wi, be {w1n,wy,, wy,,}. To describe the partial order on the edge set,
for each vertex w, we denote by #(w) the ordered list of the source vertices
of edges in 7~ (w). Define the partial order on Fy by

QH_2
f_/— Vi /
e(wo,n'f‘l) = <w0,n7 U)O,m e 7w077’b7 wO,na wo’n)v
qn_2
/ / / / /
e(wO,nJrl) = <w0,n7 Woms " s Woms Wons wO,n)v
and
qn—2

1 " " " /
H(wO,n-i-l) = (wO,mwo,m‘“ 7w0,n?w0,n7w0,n)'



172 HIROKI MATUI

Similarly, define the partial order on Fj by

qn—2
—_— ’
e(wlﬂ’H—l) = <w1ﬂ’b7 Win,  , Win, Win, wl,n)v
qn—2
/ o / / " /
e(wl,’n-ﬁ-l) - (wlﬂu wLn? e 7w17n7 wl,n? w]_,n)v
and
qn—2
1 1 1 " /
e(wl,n—i—l) = <w1,ﬂ7 wl,fm e 7w1,n7 wl,na wl,n)a

for each n € N. Then, we get two Cantor minimal systems (Yp, ) and
(Y1,%1) associated with simple ordered Bratteli diagrams (W, Fp, <) and
(W1, F1,<). There exists a factor map mg : (Yo,%0) — (X, ¢) which sends
the tower wy , and wé”n to vy, and the tower w{),n to v},. In the same way,
there exists a factor map 7 : (Y1,¢1) — (X, ¢). For i = 0,1, we set

Ei={z € X; #n; ' (z) # 1}.
It is not hard to see that Fy and E; are disjoint.

Let 8 be the limit of [[;_,(qx — 2)/(gx — 1). The dimension group
K°(Y;, ;) is isomorphic to Q* and the positive cone is

aa—b—0c>0
KO(Y;, 05)" =< (a,b,c); aa+b+28c>0 3 U{(0,0,0)},
aa+b—0c>0

for both i = 0, 1, hence, (Y7, ;) has three ergodic measures. The order em-
beddings 7§ and 7} send (x,y) € Q? to (,y,0) and (z, —y,0), respectively.

Choose z € X\ (EgUE]) and y; € Y; such that 7;(y;) = x. The topological
joining (Z, 7) generated by (yo,y1) is a Cantor minimal system. The dimen-
sion group K°(Z,7) is isomorphic to the relative direct sum of K°(Yg, 1)
and K°(Y1,v1) with respect to K%(X,$). Therefore, K°(Z,7) equals Q*
and the positive cone is determined by four linear inequalities. In this
case, K°(Z,7) satisfies the Riesz interpolation property, although neither
7o(K%(X, ¢)) nor 71 (K°(X, ¢)) is order dense.

3. Non-coalescence and dimension groups.

Let o and 8 be two irrational numbers which are linearly independent over
Q. By cutting the circle S =2 R/Z at the points na — mf for n € Z and
m € N U {0}, a Cantor set Y is obtained. Then, the a-rotation on Y gives
a minimal homeomorphism ¢, and the system (Y1) is called the Denjoy
system ([PSS]). It is easy to see that the S-rotation induces a non-invertible
endomorphism + on (Y,%). The dimension group K°(Y,) is isomorphic to
the countable direct sum of Z, and mod(+y) is an endomorphism on it.
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In this section, we would like to construct non-invertible endomorphisms
of Cantor minimal systems which induce automorphisms on the dimension
groups. We say an automorphism 7 of a Cantor minimal system (X, ¢) has
essentially infinite order, if 4% does not equal ¢’ for all i € N and j € Z.

Lemma 9. Let (X, ¢) be a Cantor minimal system, v € C(¢) be an au-
tomorphism which has essentially infinite order and xmax € X be a point.
Then, there exist a Cantor minimal system (Y,1) and a factor map 7 :
(Y,1) — (X, @) such that the following properties are satisfied:

(i) 7 is an order isomorphism between K°(X, ¢) and KO(Y,¢).
(i) When we set E = {z € X; #m Y(x) # 1}, ¥ (Tmax) and 7 (E) are all
disjoint for 1,7 € Z.

Proof. We may assume that X is the infinite path space of an ordered Brat-
teli diagram (V, E, <), Zmax is the unique maximal path and ¢ is the Bratteli-
Vershik map. Let xpyi, be the unique minimal path. We denote the source
map by s : £, — V, and the range map by r : F, — V,11. The symbol
E,, m means the set of finite paths from V,, to V,,, and [e] for e € E,, ,,, means
the corresponding clopen set of X. Let A,, be the incidence matrix from Z"»
to Z"7+1, and h(v) be the number of edges connecting vy € Vj to v € Vj,.

By telescoping the diagram, we would like to choose vy, € V,, and f,, f} €
E, for each n € N which satisfy the following:

e The source and range vertex of f,, and f, are v,, and v,,41, respectively.

e The clopen sets ¥/ ([f,]) and v*([f.]) for |j]|, |k| < n are all disjoint.

e The clopen set [f,] U [f}] doesn’t contain v*(zmax) and v*(zmim) for

k| < n.

The construction of v,, f, and f/ is by induction. At first, we choose
vy € V4 arbitrarily. Let us assume that vy, f,—1 and f/,_; have been already
chosen. Since 7 has essentially infinite order, we can find m > n and v’ € V,,
satisfying

[e] Ny*[e] is empty for all e € E, v, 0<|kl <n
and
#E,, o > 220+ 1) + h(v,)(4n + 1) + 1,

where E,, ,» means the set of edges from v, to v. Choose f € E,, , so that
[f] does not contain V¥ (2max) and v*(zmin) for |k| < n. For a large number
I > m, we may assume that

Ve € Eoy, V|k| < 2n, 3¢’ € Epm, st.7"([e]) C [¢].

Then, let f,, € E,; be an arbitrary extension of f and choose f; € E as an
extension of an edge of F,, . so that the above property is satisfied. Hence,
the induction is completed.
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Let F be the set of infinite paths consisting of f,,’s and f/’s and E be the
union of all ¢*(F) for k € Z. We construct a new ordered Bratteli diagram
(W, E’, <). Define the vertex set W, as the disjoint union of V;, and v},, and
let the map p : W,, — V,, be p(v],) = vy, and p(v) = v for v € V,,. Define the
edge set E, so that the incidence matrix B, satisfies

0 w=vy, W # Vyq1,0),

1 w=vy, W =11,V
An(vnavn—i-l) -1 w=u,, w' = Un—i—lyv;prl
Ap(p(w), p(w")) otherwise

By (w,w') =

for w € W, and w’ € W, 41. It is not hard to check that the inductive limit
of (Z"n),, with the connecting maps (B,,),, is order isomorphic to K°(X, ¢).
Let us define the linear order on the set r~(w’) for each w’ € W,,411. When
w’ is not equal to v,4q nor vj,;, we define the linear order by exactly the
same way as in 7~ !(p(w')). If w' is vnp41 or v),,4, we change the source
vertex of the edge f, or f/, respectively, to v],. Then, we get a well-defined
ordered Bratteli diagram.

Let (Y,%) be the Cantor minimal system determined by (W, E’, <). Ob-
viously, there is a factor map 7 : (Y,v¢) — (X, ¢), and 7 is not one-to-one
exactly on the subset E. By the construction of E, we see that F satisfies
the condition (ii) above. O

For an automorphism -~ which induces the identity on the dimension
group, we introduced a new invariant n(vy) in the Ext group ([M]). When ~
is a non-invertible endomorphism, we can define 7(7) in the same way, by
replacing v~ with 7 in [M].

Theorem 10. Let (X, ¢) be a Cantor minimal system, v € C(¢) be an au-
tomorphism which has essentially infinite order. Then, there exists a Cantor
minimal system (Z,7), a factor map ® : (Z,7) — (X, ¢) and a non-invertible
endomorphism v € C(7) such that yo ® = ® o5 and ® induces the isomor-
phism between the dimension groups K°(X,¢) and K°(Z, 7). Moreover,
when mod(7) is the identity, n(7) equals n(vy) in the Ext group.

Proof. Choose xmax € X arbitrarily and let (Y,v) and 7 as in Lemma 9.
For each i € N U {0}, let y; € Y be the unique point such that m(y;) =
7 (2max) and (Z, 7) be the topological joining generated by (y;);. By apply-
ing Lemma 1 to y~* o7, we see that (Z, 7) is a Cantor minimal system. Let
® be the composition of 7 and the projection from Z to the first summand.
By Corollary 8, the factor map ® induces an isomorphism between K%(X, ¢)
and KO(Z, 7). It is easily seen that the one-sided subshift on YN0} gives
the well-defined centralizer 7 € C'(7) and 7 is a non-invertible endomorphism
satisfying yo ® = ® 0 7. (]
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By applying the above theorem to an odometer system (X, ¢), we get a
Cantor minimal system (Z, 7) which is strong orbit equivalent to (X, ¢) and
has a non-invertible endomorphism ~. Of course, v induces the identity map
on the dimension group K"(Z, 7). Actually, in the proof of Lemma 9, we can
find the Cantor minimal system (Y, %) in the class of Toeplitz subshifts, if
(X, ¢) is an odometer system. Therefore, the Cantor minimal system (Z, 1)
is the projective limit of Toeplitz minimal subshifts. But, the system (Z,7)
itself is not expansive. In [D], T. Downarowicz constructed an example of
a Toeplitz minimal subshift which admits a non-invertible endomorphism.
We can check that the endomorphism in his example does not induce the
identity on the dimension group. The author doesn’t know non-coalescent
minimal subshifts except for Downarowicz’s example.
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stant encouragement.
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