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We classify two-variable polynomials which are rational of
simple type. These are precisely the two-variable polynomials
with trivial homological monodromy.

1. Introduction.

A polynomial map f : C2 → C is rational if its generic fibre, and hence every
fibre, is of genus zero. It is of simple type if, when extended to a morphism
f̃ : X → P1 of a compactification X of C2, the restriction of f̃ to each curve
C of the compactification divisor D = X − C2 is either degree 0 or 1. The
curves C on which f̃ is non-constant are called horizontal curves, so one says
briefly “each horizontal curve is degree 1”.

The classification of rational polynomials of simple type gained some new
interest through the result of Cassou-Nogues, Artal-Bartolo, and Dimca [4]
that they are precisely the polynomials whose homological monodromy is
trivial (it suffices that the homological monodromy at infinity be trivial by
an observation of Dimca).

A classification appeared in [12], but it is incomplete. It implicitly as-
sumes trivial geometric monodromy (on page 346, lines 10-11). Trivial geo-
metric monodromy implies isotriviality (generic fibres pairwise isomorphic)
and turns out to be equivalent to it for rational polynomials of simple type.
The classification in the non-isotrivial case was announced in the final sec-
tion of [17]. The main purpose of this paper is to prove it. But we recently
discovered that there are also isotrivial rational polynomials that are not in
[12], so we have added a classification for the isotrivial case using our meth-
ods. This case can also be derived from Kaliman’s classification [9] of all
isotrivial polynomials. The fact that his list includes rational polynomials
of simple type that are not in [12] appears not to have been noticed before
(it also includes rational polynomials not of simple type).

In general, the classification of polynomial maps f : C2 → C is an open
problem with extremely rich structure. One notable result is the theorem
of Abhyankar-Moh and Suzuki [1, 23] which classifies all polynomials with
one fibre isomorphic to C. The analogous result for the next simplest case,
where one fibre is isomorphic to C∗, is open except in special cases where the
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genus of the generic fibre of the polynomial is given. Kaliman [10] classifies
all rational polynomials with one fibre isomorphic to C∗.

The basic tool we use in our study of rational polynomials is to associate
to any rational polynomial f : C2 → C a compactification X of C2 on
which f extends to a well-defined map f̃ : X → P1 together with a map
X → P1 × P1. The map to P1 × P1 is not in general canonical. We will
exploit the fact that for a particular class of rational polynomials, there is
an almost canonical choice.

Although we give explicit polynomials, the classification is initially pre-
sented in terms of the splice diagram for the link at infinity of a generic fibre
of the polynomial (Theorem 4.1). This is called the regular splice diagram
for the polynomial (since generic fibres are also called “regular”). See [15]
for a description of the link at infinity and its splice diagram. The regular
splice diagram determines the embedded topology of a generic fibre and the
degree of each horizontal curve. Hence we can speak of a “rational splice
diagram of simple type”.

The first author has asked if the moduli space of polynomials with given
regular splice diagram is connected. For a rational splice diagram of simple
type we find the answer is “yes”. We describe the moduli space for our
polynomials in Theorem 4.2 and use it to help give explicit normal forms for
the polynomials. We also describe how the topology of the irregular fibres
varies over the moduli space.

The more general problem of classifying all rational polynomials, which
would cover much of the work mentioned above, is still an open and inter-
esting problem. It is closely related to the problem of classifying birational
morphisms of the complex plane since a polynomial is rational if and only
if it is one coordinate of a birational map of the complex plane. Russell
[20] calls this a “field generator” and defines a good field generator to be a
rational polynomial that is one coordinate of a birational morphism of the
complex plane. A rational polynomial is good precisely when its resolution
has at least one degree one horizontal curve, [20]. Daigle [5] studies bira-
tional morphisms C2 → C2 by associating to a compactification X of the
domain plane a canonical map X → P2. A birational morphism is then
given by a set of curves and points in P2 indicating where the map is not
one-to-one. The approach we use in this paper is similar.

The full list of rational polynomials f : C2 → C of simple type is as follows.
We list them up to polynomial automorphisms of domain C2 and range C
(so-called “right-left equivalence”).
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Theorem 1.1. Up to right-left equivalence a rational polynomial f(x, y) of
simple type has one of the following forms fi(x, y), i = 1, 2, or 3.

f1(x, y) =xq1sq + xp1sp
r−1∏
i=1

(βi − xq1sq)ai (r ≥ 2)

f2(x, y) =xp1sp
r−1∏
i=1

(βi − xq1sq)ai (r ≥ 1)

f3(x, y) =y

r−1∏
i=1

(βi − x)ai + h(x) (r ≥ 1).

Here:

0 ≤ q1 < q, 0 ≤ p1 < p,

∣∣∣∣p p1

q q1

∣∣∣∣ = ±1;

s = yxk + P (x), with k ≥ 1 and P (x) a polynomial of degree < k;
a1, . . . , ar−1 are positive integers;
β1, . . . , βr−1 are distinct elements of C∗;
h(x) is a polynomial of degree <

∑r−1
1 ai.

Moreover, if g1(x, y) = g2(x, y) = xq1sq and g3(x, y) = x then (fi, gi) : C2

→ C2 is a birational morphism for i = 1, 2, 3. In fact, gi maps a generic fibre
f−1

i (t) biholomorphically to C−{0, t, β1, . . . , βr−1}, C−{0, β1, . . . , βr−1}, or
C− {β1, . . . , βr−1}, according as i = 1, 2, 3. Thus f1 is not isotrivial and f2

and f3 are.

In [12] the isotrivial case is subdivided into seven subcases, but these do
not include any f2(x, y) with p, q, p1, q1 all > 1.

2. Resolution.

Given a polynomial f : C2 → C, extend it to a map f : P2 → P1 and resolve
the points of indeterminacy to get a regular map f̃ : X → P1 that coincides
with f on C2 ⊂ X. We call D = X−C2 the divisor at infinity. The divisor D
consists of a connected union of rational curves. An irreducible component
E of D is horizontal if the restriction of f̃ to E is not a constant mapping.
The degree of a horizontal curve E is the degree of the restriction f̃ |E.
Although the compactification defined above is not unique, the horizontal
curves are essentially independent of choice.

Note that a generic fibre Fc := f−1(c) is a punctured Riemann surface
with punctures precisely where F c meets a horizontal curve. Thus f has
simple type if and only if F c meets each horizontal curve exactly once, so
the number of punctures equals the number of horizontal curves. For non-
simple type the number of punctures will exceed the number of horizontal
curves.
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We say that a rational polynomial is ample if it has at least three degree
one horizontal curves. Those polynomials with no degree one horizontal
curves, or bad field generators [20], are examples of polynomials that are
not ample. The classification of Kaliman [10] mentioned in the introduction
gives examples of polynomials with exactly one degree one horizontal curve
so they are also not ample. Nevertheless, ample rational polynomials will
be the focus of our study in this paper. We will classify all ample rational
polynomials that are also of simple type.

3. Curves in P1 × P1.

If f̃ : X → P1 is a regular map with rational fibres then X can be blown
down to a Hirzebruch surface, S, so that f̃ is given by the composition of
the sequence of blow-downs X → S with the natural map S → P1; see [2]
for details. Moreover, by first replacing X by a blown-up version of X if
necessary, we may assume that S = P1 × P1 and the natural map to P1 is
projection onto the first factor.

A rational polynomial f : C2 → C, once compactified to f̃ : X = C2∪D →
P1, may thus be given by P1 × P1 together with instructions how to blow
up P1 × P1 to get X and how to determine D in X. For this we give the
following data:

• A collection C of irreducible rational curves in P1×P1 including L∞ :=
∞× P1;

• a set of instructions on how to blow up P1 × P1 to obtain X;
• a sub-collection E of the curves of the exceptional divisor of X →

P1 × P1;

satisfying the condition:

• If D is the union of the curves of E and the proper transforms of the
curves of C then X −D ∼= C2.

If C ⊂ P1 × P1 is an irreducible algebraic curve we associate to it the
pair of integers (m,n) given by degrees of the two projections of C to the
factors of P1 × P1. Equivalently, (m,n) is the homology class of C in terms
of H2(P1×P1) = Z⊕Z. We call C an (m,n) curve. The intersection number
of an (m,n) curve C and an (m′, n′) curve C ′ is C · C ′ = mn′ + nm′.

The above collection C of curves in P1 × P1 will consist of some vertical
curves (that is, (0, 1) curves; one of these is L∞) and some other curves.
These non-vertical curves give the horizontal curves for f , so they all have
m = 1 if f is of simple type. Note that a (1, n) curve is necessarily smooth
and rational (since it is the graph of a morphism P1 → P1).

The image in P1 × P1 of the fibre over infinity is the (0, 1) curve L∞ and
the image of a degree m horizontal curve is an (m,n) curve. This view
allows one to see as follows a geometric proof of the result of Russell [20]
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that a rational polynomial f is good precisely when its resolution has at
least one degree one horizontal curve. A degree one horizontal curve for f
has image in P1 × P1 given by a (1, n) curve. Call this image C and let P
be its intersection with L∞. The (1, n) curves that do not intersect C − P
form a C–family that sweeps out P1 × P1 − (L∞ ∪C) so they lead to a map
X → P1 which takes values in C at points that do not lie over L∞ ∪ C.
Restricting to C2 = X −D we obtain a meromorphic function g1 that has
poles only at points that belong to exceptional curves that were blown up on
C (and do not belong to E). However the polynomial f is constant on each
such curve, so if c1, . . . , ck are the values that f takes on these curves, then
g := g1(f−c1)a1 . . . (f−ck)ak will have no poles, and hence be polynomial, for
a1, . . . , ak sufficiently large. Then (f, g) is the desired birational morphism
C2 → C2. For the converse, given a birational morphism (f, g) : C2 → C2,
we compactify it to a morphism (f̃ , g̃) : X → P1 × P1. Then the proper
transform of P1 ×∞ is the desired degree one horizontal curve for f .

We shall use the usual encoding of the topology of D by the dual graph,
which has a vertex for each component of D, an edge when two components
intersect, and vertex weights given by self-intersection numbers of the com-
ponents of D. We will sometimes speak of the valency of a component C of
D to mean the valency of the corresponding vertex of the dual graph, that
is, the number of other components that C meets.

The approach we will take to get rational polynomials will be to start with
any collection C of k curves in P1 × P1 and see if we can produce a divisor
at infinity D for a map from C2 to C. In order to get a divisor at infinity
we must blow up P1 × P1, say m times, and include some of the resulting
exceptional curves in the collection so that this new collection gives a divisor
D whose complement is C2. The exceptional curves that we “leave behind”
(i.e., do not include in D) will be called cutting divisors.

Lemma 3.1. (i) D must have m + 2 irreducible components, so we must
include m − k + 2 of the exceptional divisors in the collection leaving
k − 2 behind as cutting divisors;

(ii) D must be connected and have no cycles;
(iii) D must reduce to one of the “Morrow configurations” by a sequence

of blow-downs. The Morrow configurations are the configurations of
rational curves with dual graphs of one of the following three types, in
which, in the last case, after replacing the central (n, 0,−n − 1) by a
single (−1) vertex the result should blow down to a single (+1) vertex
by a sequence of blow-downs:

1

◦
0 l

◦ ◦
lm ··· l1 n 0 −n−1 t1 ··· tk

◦ ◦ ◦ ◦ ◦ ◦ ◦
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These conditions are also sufficient that X −D ∼= C2.

Proof. The first property follows from the fact that each blow-up increases
the rank of second homology by 1. Thus H2(X) has rank m + 2, so D
must have m+2 irreducible components. Notice that this implies easily the
well-known result [11, 12, 23] that

δ − 1 =
∑
a∈C

(ra − 1),

where δ is the number of horizontal curves of f and ra is the number of
irreducible components of f−1(a). (Both sides are equal to k− 1−{number
of finite curves at infinity}.)

The second property follows from the third property. For the third prop-
erty and sufficiency see [13, 19]. �

Now assume that f̃ has at least three degree one horizontal curves. Take
these three horizontal curves and use them to map X to P1 × P1 as follows.
The three horizontal curves define three points in a generic fibre of f̃ . We can
map this generic fibre to P1 by mapping these three points to 0, 1,∞ ∈ P1.
This defines a map from a Zariski open set of X to P1 which then extends
to a map π from X to P1. If π is not a morphism then we blow up X to get
a morphism. Rather than introducing further notation for this blow-up we
will assume we began with this blow-up and call it X. Together with the
map f̃ this gives us the desired morphism

X
( ef,π)−→ P1 × P1

with the property that the three horizontal curves map to (1, 0) curves.
If all horizontal curves for f are of type (1, 0) then the generic fibres form

an isotrivial family (briefly “f is isotrivial”). Thus if f is of simple type
but not isotrivial, there must be a horizontal curve of type (1, n) in C with
n > 0. From now on, therefore, we assume that there are at least three
(1, 0) curves and at least one (1, n) curve in C with n > 0.

Lemma 3.2. Any curve of D that is beyond a horizontal curve from the
point of view of L̃∞ has self-intersection ≤ −2.

Proof. If the curve is an exceptional curve then it has self-intersection ≤
−1. If −1, then the curve must have valency at least three (since any −1
exceptional curve that could be blown down is a cutting divisor). Any three
adjacent curves must include two horizontal curves, which contradicts the
fact that the dual graph of D has no cycles. If the curve is not exceptional
then it is the proper transform of a vertical curve. But we must have blown
up at least three times on the vertical curve to get rid of cycles in the dual
graph of D so in this case the self-intersection is ≤ −3. �
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3.1. Horizontal curves. The next few lemmas will be devoted to find-
ing restrictions on the horizontal curves in the configuration C ⊂ P1 × P1,
culminating in Proposition 3.9.

Lemma 3.3. A horizontal curve of type (1, n) in C must be of type (1, 1).

Proof. Assume we have a horizontal curve C ∈ C of type (1, n) with n > 1. It
intersects each of the three (1, 0) curves n times (counting with multiplicity)
so in order to break cycles—Lemma 3.1 (ii)—we have to blow up at least n
times on each (1, 0) horizontal curve, so the proper transforms of the three
(1, 0) curves have self-intersection at most −n and the proper transform of
the (1, n) curve has self-intersection at most 2n− 3n = −n.

By Lemma 3.1 (iii), D must reduce to a Morrow configuration by a se-
quence of blow-downs. Thus D must contain a −1 curve E that blows
down. By Lemma 3.2, the curve E must be a proper transform of a hori-
zontal curve. The proper transform of each (1, 0) curve has self-intersection
at most −n < −1. Thus E must come from one of the (1, ∗) horizon-
tal curves. As mentioned above, the proper transform of a (1, k) curve
has self-intersection ≤ −k so E must be the proper transform of a (1, 1)
curve, E0. But E0 would intersect C, the (1, n) curve, 2n times and hence
E.E ≤ 2 − 2n < −1 since n > 1. This is a contradiction so any horizontal
curve of type (1, n) must be a (1, 1) curve. �

Hence, the horizontal curves consist of a collection of (1, 0) curves and
(1, 1) curves. Figure 1 shows an example of a possible configuration of
horizontal curves in P1 × P1.

.

.

.

uuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 1. Configuration of horizontal curves.

Lemma 3.4. L̃∞ · L̃∞ = −1.

Proof. We blow up at a point on L∞ precisely when at least two horizontal
curves meet in a common point there. In general, if a horizontal curve
meets L∞ with a high degree of tangency then we blow up repeatedly there.
But, since all horizontal curves are (1, 0) and (1, 1) curves, they meet L∞
transversally, so a point on L∞ will be blown up at most once.
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If there are two such points to be blown up, then after blowing up there
will be (in the dual graph) two non-neighbouring −1 curves with valency
> 2. The complement of such a configuration cannot be C2. This is proven
by Kaliman [11] as Corollary 3. Actually the result is stated for two −1
curves of valency 3 but it applies to valency ≥ 3.

Thus, at most one point on L∞ is blown up and L̃∞ · L̃∞ = 0 or −1. We
must show 0 cannot occur.

Since there are at least four horizontal curves, if L̃∞ · L̃∞ = 0, then L̃∞
has valency at least 4 and every other curve has negative self-intersection.
Furthermore, the only possible −1 curves must be horizontal curves, and
these intersect L̃∞ in D. As we attempt to blow down D to get to a Morrow
configuration, the only curves that can be blown down will always be adja-
cent to L̃∞. Thus the intersection number of L̃∞ will become positive and
all other intersection numbers remain negative, so a Morrow configuration
cannot be reached. Hence, L̃∞ · L̃∞ = −1. �

Lemma 3.5. A configuration of curves that contains two branches consist-
ing of curves of self-intersection < −1 that meet at a valency > 2 curve of
self-intersection greater than or equal to −1 as in Figure 2 (where the meet-
ing curve is drawn with valency 3 for convenience) cannot be blown down to
a Morrow configuration.

Proof. Since the two branches consist of curves of self-intersection < −1,
they cannot be reduced before the other branches are reduced. If the rest of
the configuration of curves is blown down first then the valency > 2 curve
becomes a valency 2 curve with non-negative self-intersection and no more
blow-downs can be done. Since there is no 0 curve, we have not reached a
Morrow configuration. �

A

B1

B2

ee

Figure 2. The branches B1 and B2 consist of curves of self-
intersection < −1 and e ≥ −1.

Lemma 3.6. The intersection of any two (1, 1) curves in C consists of two
distinct points contained in the union of the (1, 0) curves in C.
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Proof. We will assume otherwise and reduce to the situation of Lemma 3.5
to give a contradiction. Thus, assume that two (1, 1) curves do not intersect
in two points contained in the union of the (1, 0) curves. Then in order
to break cycles these curves must be blown up at least four times—once
each for at least three of the (1, 0) curves and at least another time for the
intersection of the two (1, 1) curves. Thus they have self-intersection < −1.

Case 1: Suppose two (1, 1) curves meet on L∞. Then after blowing up (twice
if the (1, 1) curves meet at a tangent), the exceptional curves are retained
and the final exceptional curve has self-intersection −1, valency 3 and two
branches, which we will call B1 and B2, consisting of the proper transforms of
the two (1, 1) curves and any other curves beyond these proper transforms
all of which have self-intersection < −1. Thus we are in the situation of
Lemma 3.5 and we get a contradiction.

Case 2: Suppose two (1, 1) curves meet L∞ at distinct points. Then at least
one of the (1, 1) curves, D, must meet L∞ at a point away from the (1, 0)
curves by Lemma 3.4. Also one of the (1, 0) curves, H, must meet L∞ away
from the (1, 1) curves and contain at least two points where it intersects the
(1, 1) curves and thus have self-intersection < −1 after blowing up to break
cycles. We are once more at the situation of Lemma 3.5 where the valency
> 2 curve is L̃∞ which has self-intersection −1 by Lemma 3.4, and the
branches B1 and B2 are the proper transform of D and any curves beyond
it, respectively the proper transform of H and any curves beyond it. Thus
we have a contradiction.

Notice that both cases apply to two (1, 1) curves that may intersect at a
tangent point, and shows that this situation is impossible. �

Lemma 3.7. If there is more than one (1, 1) curve in C then there are
exactly three (1, 0) horizontal curves in C.

Proof. Assume that there are more than three (1, 0) horizontal curves in C
and at least two (1, 1) curves, say C1 and C2.

Case 1: C1 and C2 meet on L̃∞. Then they meet each of at least two (1, 0)
curves in distinct points, so after blowing up to destroy cycles, these (1, 0)
curves have self-intersection ≤ −2 and Lemma 3.5 applies.

Case 2: C1 and C2 meet L̃∞ at distinct points. Then one of them, say C1,
meets L̃∞ at a point not on a (1, 0) curve by Lemma 3.4. At least one (1, 0)
curve C3 meets C1 and C2 in distinct points. After breaking cycles, C1 and
C3 have self-intersections ≤ −2 so Lemma 3.5 applies again. �

Lemma 3.8. A family of (1, 1) horizontal curves in C must pass through a
common pair of points.
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Proof. The statement is trivial for one (1, 1) horizontal curve so assume
there are at least two (1, 1) horizontal curves in C. By the previous lemma,
there are exactly three (1, 0) horizontal curves.

If there are exactly two (1, 1) horizontal curves in C then the lemma is
clear since the curves cannot be tangent by Lemma 3.6.

When there are more than two (1, 1) curves in C, apply Lemma 3.6 to two
of them. If another (1, 1) horizontal curve in C does not intersect these two
(1, 1) curves at their common two points of intersection then, by Lemma 3.6,
it must meet both these (1, 1) curves at the third (1, 0) horizontal curve of C.
So the first two (1, 1) curves would meet there, which is a contradiction. �

Proposition 3.9. Any configuration of horizontal curves in C is equivalent
to one of the form in Figure 1.

Proof. By assumption and Lemma 3.3 there are at least three (1, 0) hori-
zontal curves and some (1, 1) horizontal curves in C. If there is exactly one
(1, 1) horizontal curve then the proposition is clear. If there is more than
one (1, 1) horizontal curve, then by Lemmas 3.7 and 3.8 there are precisely
three (1, 0) horizontal curves and two of the (1, 0) horizontal curves contain
the common intersection of the (1, 1) curves. Each (1, 1) curve also contains
a distinguished point where the curve meets the third (1, 0) horizontal curve.
A Cremona transformation can bring such a configuration to that in Fig-
ure 1 by blowing up at the two points of intersection of the (1, 1) curves and
blowing down the two vertical lines containing the two points. This sends
two of the (1, 0) horizontal curves and each (1, 1) curve to (1, 0) horizontal
curves and one of the (1, 0) curves to a (1, 1) curve that intersects each of the
other horizontal curves exactly once. Note that since we blow up P1×P1 to
get the polynomial map, two configurations of curves C, C′ in P1×P1 related
by a Cremona transformation give rise to the same polynomial, so we are
done. �

3.2. The configuration C. The image C of D ⊂ X → P1 × P1 will consist
of the configuration of horizontal curves in Figure 1 plus some (0, 1) vertical
curves. The next two lemmas show that in fact the only (0, 1) vertical curve
we need to include in C is L∞ and furthermore that C can be given by
Figure 4.

Lemma 3.10. The configuration C appears in Figure 3 or Figure 4.

Proof. Let r+2 denote the number of horizontal curves and k+1 denote the
number of (0, 1) vertical curves in C. Thus C consists of k + r +3 irreducible
components and by Lemma 3.1 (i), when blowing up to get D from C we
must leave k + r + 1 exceptional curves behind as cutting divisors.

By Lemma 3.1 (ii) we must break all cycles. The minimum number of
cutting divisors needed to do this is kr +k + r−2min{k, r}. This is because
each of the k (0, 1) vertical curves different from L∞ must be separated from
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all but one of the r+1 (1, 0) horizontal curves, so we need kr cutting divisors.
Also, the (1, 1) horizontal curve meets each of the r + 1 (1, 0) horizontal
curves and each of the k (0, 1) vertical curves once, so that requires k + r
cutting divisors (by Lemma 3.4 the (1, 1) curve must meet L∞ at a triple
point with a (1, 0) horizontal curve, so this intersection does not produce a
cycle to be broken). We would thus require kr+k+r cutting divisors except
that the (1, 1) curve may pass through intersections of the (1, 0) horizontal
curves and the (0, 1) vertical curves, so some of the cutting divisors may
coincide. The most such intersections possible is min{k, r} and we have
then over-counted required cutting divisors by 2min{k, r}. Hence we get at
least kr + k + r − 2min{k, r} cutting divisors.

Since the number k + r + 1 of cutting divisors is at least kr + k + r −
2min{k, r}, we have k + r + 1 ≥ kr + k + r − 2min{k, r}, so

1 ≥ k(r − 2) and 1 ≥ (k − 2)r, k ≥ 0, r ≥ 2.(1)

The solutions of (1) are (k, r) = {(0, r), (1, 2), (1, 3), (2, 2)}.
Recall by Lemma 3.4 that the (1, 1) curve must meet L∞ at a triple point

with a (1, 0) horizontal curve. Furthermore, by keeping track of when either
inequality in (1) is an equality, or one away from an equality, we can see
that the (1, 1) curve must meet any other (0, 1) vertical curves at a triple
point with a (1, 0) horizontal curve. Thus, the only possible configurations
for C are given in Figures 3 and 4. �

yyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyy

Figure 3. Configuration C.

.

.

.

yyyyyyyyyyyyyyyyyyyyyyyy

Figure 4. Configuration C with r + 2 horizontal curves.
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In the following lemmas we will exclude the configurations in Figure 3.
Label the triple points in the first two configurations of Figure 3 by P∞ ∈
L∞ and P1, and in the third configuration by P∞, P1, P2. Also, label the
exceptional divisor obtained by blowing up the triple point Pi by Ei and its
proper transform by Ẽi.

Lemma 3.11. If Ei is a cutting divisor then the (0, 1) vertical curve con-
taining Pi can be removed from C by a birational transformation.

Proof. In each of the configurations of Figure 3 we can perform a Cremona
transformation by blowing up P∞ and Pi for i = 1 or 2 and then blowing
down L̃∞ and the proper transform of the (0, 1) vertical curve that contains
Pi. The exceptional divisors E and Ei become (0, 1) curves and the (0, 1)
vertical curve that contains Pi becomes an exceptional divisor in a new
configuration C. When Ei is a cutting divisor this operation essentially
removes a (0, 1) vertical curve from C. �

Lemma 3.12. In a configuration from Figure 3 with (k, r) ∈ {(1, 3), (2, 2)}
at least one of the exceptional divisors E1 or E2 is a cutting divisor.

Proof. Suppose otherwise, that E1 is not a cutting divisor and for (k, r) =
(2, 2) nor is E2 a cutting divisor. The exceptional curves Ei introduce an
extra intersection and hence an extra cutting divisor is required. There
is one such extra intersection in the configuration with (k, r) = (1, 3) and
two such extra intersections in the configuration with (k, r) = (2, 2). As
mentioned in the proof of Lemma 3.10 the solution (k, r) = (1, 3) gives
equality in (1) and so it cannot sustain an extra cutting divisor. Similarly
the solution (k, r) = (2, 2) is 1 away from equality in (1) and so it cannot
sustain two extra cutting divisors. Hence we get a contradiction and the
lemma is proven. �

By the previous two lemmas we can simplify any configuration from Fig-
ure 3 to lie in Figure 4 or to be the first configuration from Figure 3 (the one
with (k, r) = (1, 2)) with the requirement that E1 is not a cutting divisor.
It is this last case that we will now exclude.

The next three lemmas suppose that we have the first configuration from
Figure 3 and that E1 is not a cutting divisor. We will denote the four hori-
zontal curves by Hi, i = 1, . . . , 4, and their proper transforms by H̃i where
H4 is the (1, 1) curve, H1 contains P1 and H3 contains P∞. Also denote the
(1, 0) vertical curve that contains P1 by L1 and its proper transform by L̃1.

Lemma 3.13. At least one of H̃1 and H̃2 and at least one of H̃3 and H̃4

has self-intersection −1.

Proof. The proper transform of each horizontal curve has self-intersection
less than or equal to −1 and all curves in D beyond horizontal curves have
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self-intersection strictly less than −1. If the two horizontal curves that meet
L̃∞, H̃1 and H̃2, have self-intersection strictly less than −1, then since all
curves beyond the two horizontal curves also have self-intersection strictly
less than −1, and since L̃∞ has self-intersection −1 and valence 3 this gives
a contradiction by Lemma 3.5. The same argument applies to H̃3 and H̃4

together with E. �

Lemma 3.14. H̃4 · H̃4 = −1 if and only if H̃2 · H̃2 = −1.

Proof. Since L1 must be separated from at least one of H2 and H3 then at
most one of H̃2 · H̃2 = −1 and H̃3 · H̃3 = −1 can be true. Similarly E1 must
be separated from at least one of H1 and H4 so at most one of H̃1 · H̃1 = −1
and H̃4 · H̃4 = −1 can be true. By Lemma 3.13, if H̃2 · H̃2 6= −1 then
H̃1 · H̃1 = −1 so H̃4 · H̃4 6= −1. Similarly, H̃1 · H̃1 6= −1 implies that
H̃2 · H̃2 = −1 and H̃4 · H̃4 = −1. �

Lemma 3.15. The configuration from Figure 3 with (k, r) = (1, 2) together
with the requirement that E1 is not a cutting divisor cannot occur.

Proof. Suppose otherwise. Assume that H̃1 · H̃1 = −1 and H̃3 · H̃3 = −1.
If this is not the case, then by Lemmas 3.13 and 3.14 we may assume that
H̃4 · H̃4 = −1 and H̃2 · H̃2 = −1 and argue similarly. The curves beyond H̃1

have self-intersection strictly less than −1. The curve immediately adjacent
and beyond H̃1 is Ẽ1 and this has self-intersection strictly less than −2.
This is because we must blow up between E1 and H4 to separate cycles,
and also between Ẽ1 and L̃1 to break cycles and to maintain H̃1 · H̃1 =
−1 and H̃3 · H̃3 = −1. Thus if we blow down H̃1 the remaining branch
beyond L̃∞ consists of curves with self-intersection strictly less than −1.
Also H̃2 has self-intersection strictly less than −1 since we have to blow up
the intersection between H2 and H4 and the intersection between H2 and
L1 in order to break cycles and maintain H̃3 · H̃3 = −1. After blowing down
H̃1, L̃∞ has self-intersection 0 and valency 3 with two branches consisting of
curves of self-intersection strictly less than −1. Thus we can use Lemma 3.5
to get a contradiction. �

4. Non-isotrivial rational polynomials of simple type.

The configuration in Figure 4 is the starting point for any non-isotrivial
rational polynomial of simple type. Notice that we can fill one puncture in
each fibre of any such map to get an isotrivial family of curves and the punc-
ture varies linearly with c ∈ C. Notice also that there is an irregular fibre
for each of the r intersection points of the (1, 1) curve with (1, 0) horizontal
curves away from L∞. In fact there is at most one more irregular fibre which
can only occur in rather special cases, as we discuss in Subsection 4.1.
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From now on the configuration C is given by Figure 4 with r+2 horizontal
curves. Beginning with C we will list all of the rational polynomials of simple
type generated from this configuration. We shall give the splice diagrams
for these polynomials first. Although we compute the polynomials later,
geometric information of interest is often more easily extracted from the
splice diagram or from our construction of the polynomials than from an
actual polynomial.

The splice diagram encodes the topology of the polynomial. It represents
the link at infinity of the generic fibre, or it can be thought of as an efficient
plumbing graph for the divisor at infinity, D ⊂ X. It encodes an entire
parametrised family of polynomials with the same topology of their regular
fibres. See [7, 15, 16] for more details. Within this family, polynomials can
still differ in the topology of their irregular fibres. Our methods also give
all information about the irregular fibres, as we describe in Subsection 4.1.

The configuration C has r + 3 irreducible components so when we blow
up to get D by Lemma 3.1 (i) we will leave r + 1 exceptional curves behind
as cutting divisors. By Lemma 3.1 (ii) we must break the r cycles in C
with multiple blow-ups at the points of intersection leaving r exceptional
curves behind as cutting divisors. We blow up multiple times between the
rth (1, 0) horizontal curve and the (1, 1) horizontal curve in order to break
a cycle. Thus, we require those blow-ups to satisfy the condition that the
exceptional curve will break the cycle if removed. Equivalently, each new
blow-up takes place at the intersection of the most recent exceptional curve
with an adjacent curve. We call such a multiple blow-up a separating blow-up
sequence.

We have one extra cutting divisor. This will arise as the last exceptional
curve blown up in a sequence of blow-ups that does not break a cycle.
We will call this sequence of blow-ups a non-separating blow-up sequence.
A priori, this non-separating blow-up sequence could be a sequence as in
Figure 5, where the final −1 curve is the cutting divisor. However, we shall

P ◦

�
�
�
�

◦ __ ◦_ _ __ ◦_ _

◦ __ ◦ __
�
� ◦_ _

−1◦

Figure 5. Sequence of blow-ups starting at P and ending at
the −1 curve.

see that the extra nodes this introduces in the dual graph prohibit D from
blowing down to a Morrow configuration, so the sequence is simply a string
of −2 exceptional curves followed by −1 exceptional curve that is the cutting
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divisor. This arises from blowing up a point on a curve in the blow-up of C
that does not lie on an intersection of irreducible components.

Let us begin by just performing the separating blow-up sequences at the
points of intersection of C and leaving the non-separating blow-up sequence
until later. This gives the dual graph in Figure 6 with the proper transforms
of the r +1 (1, 0) horizontal curves and the (1, 1) horizontal curve indicated
along with L̃∞ and the exceptional curve E arising from the blow-up of
the triple point in C. There are r branches heading out from the proper
transform of (1, 1) consisting of curves of self-intersection less than −1 and
beyond each of the proper transforms of the r (1, 0) horizontal curves the
curves have self-intersection less than −1.

(f1,1) (f1,0)r

◦

III
III

III ◦

kkkkkkkkkkkkkk

E eL∞ (f1,0)r−1

◦

ww
ww

ww
ww

w ◦

RRRRRRRRRRRRRR ◦
(f1,0)0

◦ (f1,0)1 ◦

Figure 6. Dual graph of C blown up at points of intersection.

The self-intersection of each of (1̃, 0)0, E and L̃∞ is −1. The self-inter-
sections of (1̃, 1) and (1̃, 0)i, i = 1, . . . , r are negative and depend on how we
blow up at each point of intersection.

Lemma 4.1. There is at most one branch in D beyond (1̃, 1), and r − 1
of the horizontal curves (1̃, 0)i (those with index i = 1, . . . , r − 1 say) have
self-intersection −1 and only −2 curves beyond.

Proof. Since the self-intersection of each of the curves beyond (1̃, 1) is less
than −1 each branch beyond (1̃, 1) cannot be blown down before (1̃, 1).
Thus, there are at most two branches.

Furthermore, since the self-intersection of each of the curves beyond (1̃,0)i,
i = 1, . . . , r is less than −1, the branch beyond (1̃, 0)i can be blown down
before (1̃, 0)i only if (1̃, 0)i has self-intersection−1 and each curve beyond has
self-intersection −2. Thus, at most two branches beyond (1̃, 0)i, i = 1, . . . , r
do not consist of a −1 curve with a string of −2 curves beyond. If there are
two such branches then the blow-ups that create them create corresponding
branches beyond (1̃, 1) (or possibly just decrease the intersection number at
(1̃, 1)). These two branches cannot be fully blown down until everything
else connecting to the L̃∞ vertex are blown down, but the vertex (1̃, 1) and
any branches beyond it cannot blow down first. Thus D cannot blow down
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to a Morrow configuration. Thus there is at most one such branch, proving
the Lemma. �

Figure 7 gives the dual graph of the partially blown up C where the label
of each curve is now its self-intersection number. The branch beyond (1̃, 0)i

consists of a string of ai − 1 −2 curves and A =
∑r−1

i=1 ai. We have thus far
only blown up once between the rth (1, 0) horizontal curve and the (1, 1)
horizontal curve, indicating the exceptional divisor by ⊗. We may blow up
many more times—perform a separating blow-up sequence—leaving behind
the final exceptional curve as cutting divisor to get a branch beyond (1̃, 1)
and a branch beyond (1̃, 0)r. In addition, we still have to perform the non-
separating blow-up sequence at some point on the divisor.

−A −1

◦
KKKKKKKK ⊗______ ______ ◦

oooooooooo
−1 −1 −1 −2 −2

◦

tttttttt ◦
OOOOOOOOOO
WWWWWWWWWW ◦ ◦ {ar−1−1} ◦

−1

◦ −1 ◦
SSSSSSSSS

−2 ◦
{a1−1} −2

◦

Figure 7. Dual graph of partially blown-up configuration of curves.

Lemma 4.2. The non-separating blow-up sequence occurs beyond either (1̃, 1),
(1̃, 0)r, or (1̃, 0)0 and in the latter case (1̃, 1) · (1̃, 1) = −1.

Proof. If the non-separating blow-up sequence occurs on the branch beyond
(1̃, 0)i, i = 1, . . . , r−1 then that branch cannot be blown down. By the proof
of Lemma 4.1, in order to obtain a linear graph we must blow down r− 1 of
the branches beyond (1̃, 0)i, i = 1, . . . , r. Thus, if the non-separating blow-
up sequence does occur beyond (1̃, 0)i for some i ≤ r − 1, then the (1̃, 0)r

branch blows down, so we simply swap the labels i and r.
The non-separating blow-up sequence cannot occur on E or L̃∞ because

the resulting cutting divisor would not be sent to a finite value.
If the non-separating blow-up sequence occurs on the branch beyond

(1̃, 0)0 then we must be able to blow down the branch beyond (1̃, 1), hence
the branch must consist of (1̃, 1) with self-intersection −1. �

Lemma 4.3. We may assume the non-separating blow-up sequence does not
occur beyond (1̃, 0)0.
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Proof. By Lemma 4.2 if the non-separating blow-up sequence occurs beyond
(1̃, 0)0 then (1̃, 1) · (1̃, 1) = −1. In particular, 1 = A =

∑r−1
1 ai. Thus,

r = 2, a1 = 1. With only four horizontal curves, we can perform a Cremona
transformation to make (1̃, 0)0 the (1, 1) curve and hence we are in the first
case of Lemma 4.2. �

Lemma 4.4. The non-separating blow-up sequence occurs on either of the
last curves beyond (1̃, 1) or (1̃, 0)r and is a string of −2 curves followed by
the −1 curve that is a cutting divisor.

Proof. Arguing as previously, if the non-separating blow-up sequence occurs
anywhere else, or if it is more complicated, then it introduces a new branch
preventing the divisor D from blowing down to a linear graph. �

We now know that our divisor D results from Figure 7 by doing a sepa-
rating blow-up sequence between the (1, 1) curve and the r-th (1, 0) curve,
leaving behind the final −1 exceptional curve as a cutting divisor and then
performing a non-separating blow-up sequence on a curve adjacent to this
cutting divisor to produce second cutting divisor.

A priori, it is not clear that this procedure always gives rise to a divisor
D ⊂ X where X is a blow-up of P2 and D is the pre-image of the line at
infinity. The classification will be complete once we show it does.

Lemma 4.5. The above procedure always gives rise to a configuration that
blows down to a Morrow configuration (see Lemma 3.1) and hence deter-
mines a rational polynomial of simple type.

Proof. The calculation involves the relation between plumbing graphs and
splice diagrams described in [7] or [16], with which we assume familiarity.
In particular, we use the continued fractions of weighted graphs described
in [7]. If one has a chain of vertices with weights −c0,−c1, . . . ,−ct, its
continued fraction based at the first vertex is defined to be

c0 −
1

c1 −
1

c2 − . . .
− 1

ct

.

The dual graph for the curve configuration of Lemma 4.5 has chains start-
ing at the vertex (1̃, 1) and (1̃, 0)r. We claim these chains have continued
fractions evaluating to A−1+ P

Q and q
p respectively, where P,Q, p, q are arbi-

trary positive integers with Pq− pQ = 1. We describe the main ingredients
of this calculation but leave the details to the reader.

An easy induction shows that the initial separating blow-up sequence
leads to chains at (1̃, 1) and (1̃, 0)r with continued fractions A− 1 + n

m and
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m
n with positive coprime n and m. The non-separating blow-up sequence
then changes the fraction n

m or m
n that it operates on as follows. If the non-

separating blow-up sequence consists of k blow-ups at the end of the left
chain then n

m is replaced by N
M with Nm−nM = 1 and k ≤ M

m < N
n ≤ (k+1).

If the non-separating blow-up sequence is on the right then m
n is similarly

changed instead.
Renaming, we can describe this in terms of our chosen names p, q, P, Q

as follows. We either have P > p or q > Q. If P > p the initial separating
blow-up sequence leads to chains with continued fractions A − 1 + p

q and
q
p and the non-separating blow-up sequence then consists of a sequence of

k := bQ
q c blowups extending the left chain (and changing its continued

fraction to A− 1 + P
Q). If q > Q the continued fractions are A− 1 + P

Q and
Q
P after the separating blowup and the non-separating blow-up consists of
k := b p

P c blow-ups extending the right chain (and changing its continued
fraction to q

p).
To prove the Lemma we must show that the dual graph of our curve

configuration blows down to a Morrow configuration. We can blow down
the chains starting at (1̃, 0)i, i = 0, . . . , r − 1, to get a chain. To check
that this chain is a Morrow configuration we must compute its determinant,
which we can do with continued fractions as in [7]. We first replace the
two end chains by vertices with the rational weights −A + 1 − P

Q and − q
p

determined by their continued fractions to get a chain of four vertices with
weights

−A + 1− P

Q
, 0, −1 + A, −q

p
.

Then, computing the continued fraction for this chain based at its right
vertex gives q

p −
Q
P = Pq−pQ

Pp = 1
Pp , showing that the determinant is −1 as

desired, and completing the proof. �

Theorem 4.1. Given positive integers P,Q, p, q with Pq − pQ = 1 and
positive integers a1, . . . , ar−1, the splice diagram of our rational polynomial
f of simple type with non-isotrivial fibres is given in Figure 8 with

A = a1 + · · ·+ ar−1,

B = AQ + P −Q,

C = Aq + p− q,

bi = qQai + 1 for each i.

The degree of f is: deg(f) = A(Q + q) + P + p.

(In [17] an “additional” case was given, which is, however, of the above
type with P = Q = p = 1, q = a1 = 2.)
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Figure 8. Splice diagram for non-isotrivial rational polynomial.

Proof. For the following computations we continue to assume the reader is
familiar with the relationship between resolution graphs and splice diagrams
described in [16]. The arrows signify places at infinity of the generic fibre,
one on each horizontal curve. The fact that (1̃, 0)r is next to L̃∞ in the
dual graph says that the edge determinant of the intervening edge is 1. This
corresponds to the fact that Pq−pQ = 1, which we already know. Similarly,
(1̃, 0)i is next to L̃∞ for i = 1, . . . , r − 1 so the weight bi is determined by
the edge determinant condition bi = qQai + 1. The “total linking number”
at the vertex corresponding to each horizontal curve (before blowing down
(1̃, 0)0) is zero (terminology of [16]); this reflects the fact that the link
component corresponding to the horizontal curve has zero linking number
with the entire link at infinity, since at almost all points on a horizontal
curve, the polynomial has no pole. The weight C is determined by the zero
total linking number of (1̃, 1), giving C = Aq +p− q. For any i the fact that
vertex (1̃, 0)i has zero total linking gives B = AQ + P −Q. �

It is worth summarising some consequences of our construction that will
be useful later.

Lemma 4.6. The number of blow-ups in the final non-separating blow-up
sequence is k := max(bQ

q c, b
p
P c) and these blow-ups occurred at the (Q,−q)

branch or the (p,−P ) branch of the above splice diagram according as the
first or second entry of this max is the larger. Moreover, the non-separating
blow-ups occurred on the corresponding horizontal curve if and only if q = 1
resp. P = 1.

Proof. The first part was part of the proof of Lemma 4.5. For the second
part, note that if q = 1 then certainly q > Q must fail, so P > p and the
non-separating blow-ups were on the left. The continued fraction on the left
was A − 1 + p

q = A − 1 + p which is integral, showing that the left chain
consisted only of the exceptional curve before the non-separating blow-up.
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Conversely, if the non-separating blow-ups were adjacent to that exceptional
curve then the left chain was a single vertex, hence had integral continued
fraction, so q = 1. The argument for P = 1 is the same. �

Theorem 4.2. The moduli space of polynomials f : C2 → C with the above
regular splice diagram, modulo left-right equivalence (that is, the action of
polynomial automorphisms of both domain C2 and range C), has dimension
r+k−2 with k determined in the previous Lemma. In fact it is a Ck-fibration
over the (r − 2)-dimensional configuration space of r − 1 distinct points in
C∗ labelled a1, . . . , ar−1, modulo permutations that preserve the labelling and
transformations of the form z 7→ az.

Proof. The splice diagram prescribes the number of horizontal curves and
the separating blow-up sequences at each point of intersection. The only
freedom is in the placement of the horizontal curves in P1 × P1, and in the
choice of points, on prescribed curves, on which to perform the string of
blow-ups we call the non-separating blow-up sequence. The (1, 1) horizontal
curve is a priori the graph of a linear map y = ax+ b but can be positioned
as the graph of y = x by by an automorphisms of the image C.

The point in the configuration space of the Theorem determines the place-
ment of the horizontal curves (1, 0)1, . . . , (1, 0)r (after putting the (1, 0)0
curve at P1 × {∞} and the (1, 0)r curve at P1 × {0}). The fibre Ck deter-
mines the sequence of points for the non-separating blow-up sequence.

This proves the Theorem, except that we need to be careful, since some
diagrams occur in the form of Theorem 4.1 in two different ways, which
might seem to lead to disconnected moduli space. But the only cases that
appear twice have four horizontal curves and the configurations C are related
by Cremona transformations. �

This completes the classification of non-isotrivial rational polynomials of
simple type.

4.1. The irregular fibres. We can read off the topology of the irregular
fibres of the polynomial f of Theorem 4.1 from our construction, since any
such fibre is the proper transform of a vertical (0, 1) curve together with any
exceptional curves left behind as cutting divisors when blowing up on this
vertical curve.

We shall use the notation C(r) to mean C with r punctures (so C∗ =
C(1)), and for the purpose of this subsection we used C∪C ′ to mean disjoint
union of curves C and C ′, and C + C ′ to mean union with a single normal
crossing. The generic fibre of f is C(r + 1).

The irregular fibres of f arise through the breaking of cycles between the
(1, 1) curve and the (1, 0)i curve for i = 1, . . . , r, so there are r of them.
The non-separating blow-up also contributes, but it usually contributes to
the r-th irregular fibre. However, if P = 1 or q = 1 then the non-separating
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blow-up occurs on a horizontal curve and can thus have any f -value, so it
generically leads to an additional (r + 1)-st irregular fibre.

The irregular fibres are all reduced except for the r-th irregular fibre,
which is always non-reduced unless one of P,Q, p, q is 1.

We first assume q 6= 1 and P 6= 1, so there are exactly r irregular fibres.
Then for each i = 1, . . . , r−1 the i-th irregular fibre is C(r−1)+C∗ if ai = 1
and C(r)∪C∗ if ai > 1. The r-th irregular fibre is C(r)∪C∗ ∪C generically.
As mentioned above, this fibre is reduced if and only if Q = 1 or p = 1.
There is a single parameter value in the Ck factor of the parameter space of
Theorem 4.2 for which the r-th irregular fibre has different topology, namely
C(r) ∪ (C + C). In this case it is non-reduced even if Q = 1 or p = 1.

If q = 1 or P = 1 then write P
Q and q

p as 1
a and ak+1

k in some order. The
non-separating blow-up creates irregularity in a fibre which generically is
distinct from the the first r irregular fibres. The generic situation is that
the r-th irregular fibre is C(r) ∪ C∗ or C(r − 1) + C∗ according as a > 1 or
a = 1 and the (r +1)-st irregular fibre is C(r +1)∪C or C(r)+ C according
as k > 1 or k = 1, and both are reduced. But there are codimension 1
subspaces of the parameter space for which the topology is different. For
instance, the (r + 1)-st irregular fibre will be non-reduced if one blows up
more than once on a vertical curve while doing the non-separating blow-up
sequence that creates it.

4.2. Monodromy. We can also read off the monodromy for our polynomial
f . Consider a generic vertical (0, 1) curve C in our construction. Removing
its intersections with the horizontal curves gives a regular fibre F of f . Since
we have positioned the horizontal curve (1, 0)0 at ∞ we think of F as an
(r + 1)-punctured C. We call the intersection of the (1, 1) horizontal curve
with C the 0-th puncture of F and for i = 1, . . . , r we call the intersection
of the (1, 0)i curve with C the i-th puncture of F .

If the (r+1)-st irregular fibre exists the local monodromy around it is triv-
ial. For i = 1, . . . , r the monodromy around the i-th irregular fibre rotates
the 0-th puncture of the regular fibre C(r + 1) around the i-th puncture. In
terms of the braid group on the r+1 punctures, with standard generators σi

exchanging the (i− 1)-st and i-th puncture for i = 1, . . . , r, the local mon-
odromies are h1 = σ2

1, h2 = σ1σ
2
2σ

−1
1 , . . . , hr = σ1 . . . σr−1σ

2
rσ

−1
r−1 . . . σ−1

1 .
The monodromy h∞ = hr . . . h1 at infinity is σ1σ2 . . . σrσr . . . σ1. It is not
hard to verify that h1, . . . , hr freely generate a free subgroup of the braid
group.

5. Explicit polynomials.

The splice diagram gives sufficient information (Newton polygon, topological
properties, etc.) that one can easily find the polynomial without significant
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computation by making an educated guess and then confirming that the
guess is correct. The answer is as follows:

Case 1. k ≤ p
P < k + 1. (Then p

P < q
Q ≤ k + 1.)

Let s1 = α0 + α1x + · · · + αk−1x
k−1 + xky. Let β1, . . . βr−1 be distinct

complex numbers in C∗.

f(x, y) = xq−QksQ
1 + xp−PksP

1

r−1∏
i=1

(βi − xq−QksQ
1 )ai .

Case 2. k ≤ Q
q < k + 1. (Then Q

q < P
p ≤ k + 1.)

Let s2 = α0 + α1y + · · · + αk−1y
k−1 + xyk. Let β1, . . . βr−1 be distinct

complex numbers in C∗.

f(x, y) = yQ−qksq
2 + yP−pksp

2

r−1∏
i=1

(βi − yQ−qksq
2)

ai .

One can compute the splice diagram and see it is correct. One can verify
that the generic fibres are rational by the explicit isomorphism:

f−1(t) → C− {0, β1, . . . , βr−1, t}
{

(x, y) 7→ xq−QksQ
1 (Case 1),

(x, y) 7→ yQ−qksq
2 (Case 2),

for generic t. The irregular values of t are 0, β1, . . . , βr−1 if P 6= 1 and q 6= 1.
If P = 1 then t = α0

∏
βi is the additional irregular value that our earlier

discussion predicts, and if q = 1 then t = α0 is the additional irregular value.
The space of parameters (α0, . . . , αk−1, β1, . . . , βr−1) maps to the moduli

space we computed earlier with fibre of dimension 1. Indeed, with B,C as
in Theorem 4.1, the polynomial

fλ(x, y) = λ−1f(λBx, λ−Cy)

has the same form with the parameters βj replaced by λ−1βj and αj replaced
by λjB+A−1αj .

To put the above polynomials in the form of f1(x, y) of Theorem 1.1, in
Case 1 we rename the exponents q−Qk to q1, p−Pk to p1, Q to q, P to p.
In Case 2 we rename Q− qk to q1, P − pk to p1, and then exchange x and
y.

6. The isotrivial case.

After the first version of this paper was completed we realised that the
classification in [12] for the isotrivial case has omissions. In this section
we therefore sketch the corrected classification using the techniques of this
paper. The discussion of the parameter spaces and the irregular fibres for the
resulting polynomials is similar to the non-isotrivial case, so we leave it to
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the reader. One can give an alternative proof using Kaliman’s classification
[9] of all isotrivial polynomials.

We will restrict ourselves to the case of ample rational polynomials, i.e.,
those with at least three (1, 0) horizontal curves. The case of one (1, 0)
horizontal curve always gives a polynomial equivalent to a coordinate by
the Abhyankar-Moh-Suzuki theorem [1, 23]. The case of two (1, 0) hori-
zontal curves is dealt with from a splice diagram perspective in [15] and
earlier by analytic methods in [21]. The result is included in our summary
Theorem 1.1.

As before, compactify C2 to X and construct a map X → P1 × P1. The
map is essentially canonical (up to an automorphism of one factor.) The
image of the divisor at infinity D ⊂ X in P1 × P1 is given by a collection
of (1, 0) curves since we used three of the horizontal curves to get a map
to P1 × P1 and in order that the fibres give an isotrivial family, any other
horizontal curves must also be (1, 0) curves.

When there are at least three (1, 0) horizontal curves, by the following
lemma the original configuration of curves in P1 × P1 breaks into the two
cases of no vertical curves or one vertical curve.

Lemma 6.1. An ample rational polynomial with isotrivial fibres has at most
one vertical curve over a finite value.

Proof. We can argue as in the previous section. The curve over infinity,
L∞ is not blown up since there are no triple points. If there is more than
one vertical curve over a finite value then there are precisely three (1, 0)
horizontal curves since otherwise there would be at least two (1, 0) hori-
zontal curves that would be blown up at least twice and since all curves
beyond these horizontal curves (exceptional curves or vertical curves) have
self-intersection < −1 we would get two branches B1 and B2 made up of
the proper transforms of these two (1, 0) horizontal curves and all curves
beyond these, meeting at a valency > 2 curve, L∞, with self-intersection 0.
This is the impossible situation of Lemma 3.5.

There can be at most two vertical curves since if there are l vertical curves
we need to break 2l cycles but since there are precisely three (1, 0) horizontal
curves, we begin with l + 4 curves so we can break at most l + 2 cycles by
Lemma 3.1 (i). Therefore 2l ≤ l + 2 so l ≤ 2.

The lemma follows when we get rid of the case of two vertical curves
and three (1, 0) horizontal curves. The few cases are easily dismissed by
hand. �

So the beginning configuration is given by Figure 9 or Figure 10. We
analyse these below as Case 1 and Case 2.

Case 1. Denote by r the number of horizontal curves. In Figure 9 we must
leave behind r−1 curves as cutting divisors. To do so we do a non-separating
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.

.

.

Figure 9. Configuration of horizontal curves with L∞.

.

.

.

Figure 10. Configuration of horizontal curves with L∞ and
a vertical curve over a finite value.

blow-up sequence on each of r − 1 horizontal curves (anything else leads to
a configuration of curves whose intersection matrix has determinant 0, and
which can therefore not blow down to a Morrow configuration). Thus, on
the i-th horizontal curve we blow up ai times and then leave behind the final
exceptional divisor, giving a string of −2 curves of length ai − 1.

The resulting splice diagram is as in Figure 11.

◦a1

1

��

◦

•oo 1 0 ◦
1

−1 qqqqqqqqqqqqqq
1

−1 MMMMMMMMMMMMMM ...
...

◦
ar−1

1

��

◦

Figure 11. Splice diagram for Case 1 of isotrivial fibres.
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This splice diagram has been analysed in [16], where it is shown that its
general polynomial is

f(x, y) = y

r−1∏
i=1

(x− βi)ai + h(x),

where h(x) is a polynomial of degree <
∑r−1

i=1 ai.
This case covers the following cases from [12]: Case 1 of Theorem 3.3.,

Theorem 3.7, Case I of Theorem 3.10.

Case 2. Denote by r + 1 the number of horizontal curves. In Figure 10 we
must do separating blow-up sequences at r intersection points and then do
an additional non-separating blow-up sequence. As in Section 4, one finds
that each of r − 1 of the separating blow-up sequences creates a string of
−2 curves attached to the corresponding horizontal curve, while the last one
can be arbitrary, as described in the proof of Lemma 4.5. In Figure 12 we
show the situation after doing the first r − 1 separating blow-up sequences
and doing the first step of the r-th one.

−A−1 −1

◦
LLLLLLLL ⊗______ ______ ◦

ppppppppp
0 0 −1 −2 −2

◦ ◦
RRRRRRRRR
YYYYYYYYY ◦ ◦ {ar−1−1} ◦

−1 ◦
SSSSSSSSS

−2 ◦
{a1−1} −2

◦

Figure 12. Dual graph of partially blown-up configuration
of curves for Fig. 10.

Moreover, the non-separating blow-up sequence then occurs adjacent to
the exceptional curve left behind in the final separating blow-up sequence.
The analysis is almost identical to the proof of Lemma 4.5, with the result-
ing strings now having continued fractions A + P

Q and q
p respectively, with

notation as in that proof.
The resulting splice diagram is as in Figure 13, with notation exactly as

in Theorem 4.1. The polynomial in this case is exactly as in Section 5 ex-
cept that the first term xq−QksQ

1 respectively yQ−qksq
2 is omitted. Namely,

let β1, . . . βr−1 be distinct complex numbers in C∗ and let k be as in Theo-
rem 4.2.
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◦

◦
p

1
oo ◦

ar−1

1

��

◦

◦ AQ+P ◦
1

��

−Aq−p 1 • 1

−Q
◦

q

−P

1

−br−1 qqqqqqqqqqqqqq
1

−b1
MMMMMMMMMMMMMM ...

...

◦a1

1

��

◦

Figure 13. Splice diagram for Case 2 of isotrivial fibres.

If k ≤ p
P < k+1 (so p

P < q
Q ≤ k+1), let s1 = α0 +α1x+ · · ·+αk−1x

k−1 +
xky. Then

f(x, y) = xp−PksP
1

r−1∏
i=1

(βi − xq−QksQ
1 )ai .

If k ≤ Q
q < k+1 (so Q

q < P
p ≤ k+1), let s2 = α0 +α1y+ · · ·+αk−1y

k−1 +
xyk. Then

f(x, y) = yP−pksp
2

r−1∏
i=1

(βi − yQ−qksq
2)

ai .

This case covers the following cases from [12]: Cases 2, 3, 4 of Theorem
3.3 and Case II of Theorem 3.10. However, [12] only has examples in which
one of P,Q, p, q is equal to 1.

Note that the isotrivial splice diagrams of Case 1 and Case 2 can be
considered to belong to one family: putting (P,Q) = (1, 0) in Figure 13
gives Figure 11. Nevertheless, the two cases have rather different geometric
properties.

7. General rational polynomials.

In this section we will give a result for ample rational polynomials that are
not necessarily of simple type.

Proposition 7.1. An ample rational polynomial contains a (1, 0) horizontal
curve whose proper transform has self-intersection −1 and meets L̃∞.

Proof. By the classification of ample rational polynomials of simple type,
the proposition is true in this case. So, we may assume that there is a
horizontal curve of type (m,n) for m > 1.

Suppose there is no (1, 0) horizontal curve with the property of the propo-
sition. Then by the proof of Lemma 3.4 there are at least two (1, 0) hori-
zontal curves whose proper transforms have self-intersection < −1 and meet
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L̃∞. By Lemma 3.2 any curves beyond these horizontal curves have self-
intersection < −1.

A horizontal curve of type (m,n) must meet L∞ at exactly one point, and
hence with a tangency of order m or at a singularity of the curve. This is
because if a horizontal curve were to meet L∞ twice then we would not be
able to break cycles since when we blow up next to L∞, those exceptional
curves are sent to infinity under the polynomial and hence must be retained
in the configuration of curves. Thus we must blow up there to get a config-
uration of curves with normal intersections. The final exceptional curve in
such a sequence of blow-ups will have self-intersection −1 and valency > 2.

If we can blow down the configuration of curves then eventually at least
one curve adjacent to the −1 curve is blown down and hence the −1 curve
ends up with non-negative self-intersection. But the final configuration is not
a linear graph since the proper transforms of the two (1, 0) horizontal curves
and any curves beyond give two branches. Thus the final configuration is
not a Morrow configuration which contradicts Lemma 3.1. �

The following result is a generalisation of Lemma 3.3.

Corollary 7.1. For any ample rational polynomial, a smooth horizontal
curve of type (m,n) with m > 0 must be of type (m, 1).

Proof. The statement is true for m = 1 by Lemma 3.3 so will assume m > 1.
A curve of type (m,n) will intersect the (1, 0) horizontal curves m times,
with multiplicity, unless possibly if the (m,n) curve is singular at these
points of intersection. The latter possibility is ruled out by the assumption
of the corollary. Hence the (1, 0) horizontal curves will be blown up at least
m times and their proper transforms will have self-intersection < −m. This
contradicts the previous proposition so the result follows. �

When the rational polynomial is not ample, Russell has an example of a
horizontal curve of type (3, 2). See the examples in the next section. Note
that smoothness of the horizontal curve is necessary in the corollary (at the
points of intersection with the (1, 0) horizontal curves) since we can always
have two horizontal curves of types (l, 1) and (m, 1) and together they can
be considered as a singular horizontal curve of type (l + m, 2).

7.1. Adding horizontal curves. Consider the following construction on
C2. Blow up repeatedly starting at a point on the y-axis so that the resulting
exceptional curves form a chain from the y-axis to the last exceptional curve
blown up. If we now remove the y-axis and all but the last exceptional curve
from the blown-up C2 we get a new C2 that we call C2

1. Any polynomial
f : C2 → C induces a polynomial f1 : C2

1 → C. Suppose the y-axis intersects
generic fibres of f in d points. Then the generic fibres of f1 are simply
generic fibres of f with d extra punctures. In fact, this construction simply
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adds an extra degree d horizontal curve, namely the y-axis becomes a degree
d horizontal curve for f1.

From the point of view of the polynomials, what we have done is replaced
f(x, y) by

f1(x, y) = f(x, s), s = a0 + a1x + · · ·+ ak−1x
k−1 + xky,

that is, we have composed f with the birational morphism (x, y) 7→ (x, s) of
C2.

Since one can compose f first with a polynomial automorphism to raise
its degree, one can easily add horizontal curves of arbitrarily high degree by
this construction. This makes clear that any classification of non-simple-type
polynomials must take account of this sort of operation, including composi-
tion with more complicated birational morphisms.

Although this is a complication, it can also simplify some issues.
Here is a simple illustrative example. We start with the simplest rational

polynomial g(x, y) = x, apply a polynomial automorphism to get f(x, y) =
x + y2 and then apply the above birational morphism to get f1(x, y) =
x + (a0 + a1x + · · ·+ ak−1x

k−1 + xky)2 with one degree one horizontal and
one degree two horizontal. It is not hard to check (e.g., by listing possible
splice diagrams) that this gives, up to equivalence, the only non-simple-type
polynomials with generic fibre C−{0, 1}, so with the classification of simple
type polynomials, we get:

Proposition 7.2. A polynomial with general fibre C − {0, 1} is left-right
equivalent to one of the form f2(x, y) or f3(x, y) of Theorem 1.1 with r = 2
or r = 3 respectively, or to f(x, y) = x+(a0 +a1x+ · · ·+ak−1x

k−1 +xky)2.

This proposition also follows from Kaliman’s classification [9] of isotrivial
polynomials.

8. Examples.

It is worth including some interesting known examples of rational polyno-
mials from the perspective used in this paper. These examples are neither
of simple type nor ample.

Russell [20] (correctly presented in [3]) constructed an example of a ra-
tional polynomial with no degree one horizontal curves. This is an example
of a bad field generator—a polynomial that is one coordinate in a birational
transformation but not in a birational morphism. It is given by beginning
with three curves in P1 × P1 as in Figure 14. The (2, 1) curve and the (3, 2)
curve intersect at an order three tangency and at the same point the (3, 2)
intersects itself at a tangency. They are the two horizontal curves of the
polynomial. The vertical curve is L∞.

The actual polynomial in this case is, with s = xy + 1,

f(x, y) = (y2s4 + y(s + xy)s + 1)(ys5 + 2xys2 + x)
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(3,2)

(2,1)

Figure 14. A bad field generator.

and the splice diagram is

◦ 3◦
����

��
�� ��<

<<
<−4 • −2 ◦ 3

−13

◦

◦
__>>>>

����
��
−27 ◦

2

◦
Kaliman [10] classified all rational polynomials with one fibre isomorphic

to C∗. Figure 15 gives three curves in P1×P1, the two horizontal curves and
L∞. The (m, 1) curve has the property that when it is mapped downwards
onto a (1, 0) curve, there are only two points of ramification, both with
maximal ramification of m, at L∞ and at the irregular fibre isomorphic to
C∗. Kaliman’s entire classification begins with this configuration of curves.
The only points that can be blown up are those that are infinitely near to the
point of intersection of the two horizontal curves (besides the unnecessary
blowing up where the (m, 1) curve meets L∞) and one exceptional curve is
left behind as a component of the reducible fibre.
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(m,1)

Figure 15. Classification of rational polynomials with a C∗ fibre.
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complexes, Progress in Mathematics, 162 (1998), 317-343, MR 99k:32069,
Zbl 0964.32028.

[5] D. Daigle, Birational endomorphisms of the affine plane, J. Math. Kyoto Univ., 31
(1991), 329-335, MR 92k:14012, Zbl 0766.14006.

[6] , Local trees in the theory of affine plane curves J. Math. Kyoto Univ., 31
(1991), 593-634, MR 92h:14023, Zbl 0758.14018.

[7] D. Eisenbud and W.D. Neumann, Three-Dimensional Link Theory and Invariants of
Plane Curve Singularities, Ann. Math. Stud., 110, Princeton, Princeton Univ. Press,
1985, MR 87g:57007, Zbl 0628.57002.

[8] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley, New York,
1978, MR 80b:14001, Zbl 0408.14001.

[9] S. Kaliman, Polynomials on C2 with isomorphic generic fibres, Dokl. Akad. Nauk
SSSR, 288 (1986), 39-42; English tranls. in Soviet Math. Dokl., 33 (1986),
MR 87m:32009, Zbl 0623.14007.

[10] , Rational polynomials with a C∗-fiber, Pacific J. Math., 17(4) (1996), 141-194,
MR 97h:14026, Zbl 0868.32010.

[11] , Two remarks on polynomials in two variables, Pacific J. Math., 154 (1992),
285-295, MR 93b:32041, Zbl 0723.32001.

http://www.ams.org/mathscinet-getitem?mr=52:407
http://www.emis.de/cgi-bin/MATH-item?0332.14004
http://www.ams.org/mathscinet-getitem?mr=86c:32026
http://www.emis.de/cgi-bin/MATH-item?0718.14023
http://www.ams.org/mathscinet-getitem?mr=97m:32044
http://www.emis.de/cgi-bin/MATH-item?0878.32003
http://www.ams.org/mathscinet-getitem?mr=99k:32069
http://www.emis.de/cgi-bin/MATH-item?0964.32028
http://www.ams.org/mathscinet-getitem?mr=92k:14012
http://www.emis.de/cgi-bin/MATH-item?0766.14006
http://www.ams.org/mathscinet-getitem?mr=92h:14023
http://www.emis.de/cgi-bin/MATH-item?0758.14018
http://www.ams.org/mathscinet-getitem?mr=87g:57007
http://www.emis.de/cgi-bin/MATH-item?0628.57002
http://www.ams.org/mathscinet-getitem?mr=80b:14001
http://www.emis.de/cgi-bin/MATH-item?0408.14001
http://www.ams.org/mathscinet-getitem?mr=87m:32009
http://www.emis.de/cgi-bin/MATH-item?0623.14007
http://www.ams.org/mathscinet-getitem?mr=97h:14026
http://www.emis.de/cgi-bin/MATH-item?0868.32010
http://www.ams.org/mathscinet-getitem?mr=93b:32041
http://www.emis.de/cgi-bin/MATH-item?0723.32001


RATIONAL POLYNOMIALS OF SIMPLE TYPE 207

[12] M. Miyanishi and T. Sugie, Generically rational polynomials, Osaka J. Math., 17
(1980), 339-362, MR 82e:14019, Zbl 0457.13006.

[13] J.A. Morrow, Minimal normal compactifications of C2, in “Complex analysis, 1972
(Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of singularities,”
Rice Univ. Studies, 59 (1973), 97-112, MR 48 #11580, Zbl 0277.32019.

[14] W.D. Neumann, A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves, Trans. AMS, 268 (1981), 299-344,
MR 84a:32015, Zbl 0546.57002.

[15] , Complex algebraic curves via their links at infinity, Invent. Math., 3 (1989),
445-489, MR 91c:57014, Zbl 0734.57011.

[16] , Irregular links at infinity of complex affine plane curves, Quarterly J. Math.,
50 (1999), 301-320, MR 2000i:32047, Zbl 0958.32030.

[17] W.D. Neumann and P. Norbury, Monodromy and vanishing cycles of complex poly-
nomials, Duke Math. J., 101 (2000), 487-497, MR 2001j:32028.

[18] , Unfolding polynomial maps at infinity, Math. Ann., 318(1) (2000), 149-180,
CMP 1 785 580.

[19] C.P. Ramanujam, A topological characterization of the affine plane as an algebraic
variety, Ann. Math., 94 (1971), 69-88, MR 44 #4010, Zbl 0218.14021.

[20] P. Russell, Good and bad field generators, J. Math. Kyoto Univ., 17 (1977), 319-331,
MR 56 #2977, Zbl 0367.12013.

[21] H. Saito, Fonctions entière qui se reduisent à certains polynômes, I, Osaka J. Math.,
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