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For a smooth map between spheres, we are concerned with
the relation between its homotopy class (topological complex-
ity) and its dilatation (geometrical complexity). This paper
(1) generalizes the results of Olivier and Roitberg on the
dilatation of Hopf fibrations and the elements of the sta-
ble homotopy groups of spheres. (2) Disproves two conjec-
tures of Olivier and Roitberg by showing that δ(2, 4) < 3 and
δ(3, 4) = 2.

1. Introduction.

Let f : Sm → Sn be a C1 map of the standard unit spheres and let df be
the differential of f . Following Olivier [Ol], we define δ(f), the dilatation
(or “stretching”) of f , by the formula

δ(f) = sup{|df(V )| | |V | = 1};

where V ranges over all unit tangent vectors of Sm, and | · | is the Euclidean
length. Moreover, for a homotopy class α ∈ πm(Sn), we define

δ(α) = inf{δ(f) | [f ] = α},

the infimum taken over all differentiable representatives f of α.
As stated in [Gr1], we ask how to estimate a measure of the topological

complexity of a map f : Sm → Sn by its geometry. It is natural to measure
geometrical complexity of f by its dilatation. The topological complexity of
f may be measured by its homotopy class or the Brouwer degree (when the
degree makes sense). We should point out in fact that our present paper
arose out of continuous attempt to represent homotopy class of spheres by
harmonic maps or algebraic maps (cf. [PT2], [PT3] and [PT4]).

Olivier remarked in [Ol, p. 387] that the Hopf fibrations S15 → S8, S7 →
S4, S3 → S2 have dilatation exactly 2. Furthermore, Roitberg investigated
the elements of the stable homotopy groups of spheres πsk = lim

n→∞
πn+k(Sn),

and was able to completely analyze the situation for those elements in πsk
which lie in the image of the stable J-homomorphism πk(O) → πsk. The
dilatation of any such nonzero element was shown to be always 2 [Ro, p. 202].
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To generalize these results, we try to get information on polynomial maps
between spheres. Using Bernstein-Szego Theorem, we can establish in Sec-
tion 2 a succinct but nice estimate which implies immediately the statements
mentioned above.

Theorem 1.1. Let f : Sm → Sn be a polynomial map of algebraic degree
k. Then δ(f) ≤ k.

Several interesting consequences of this theorem will be given in Section 2.
In Section 3, we make a deep study of problem of obtaining upper bounds

for the dilatation invariants of maps S2 → S2, S3 → S3 and S3 → S2,
respectively. In [Ol, p. 389], Olivier used the following definition (n ≥
0, k ≥ 0):

δ(n, k) = inf{δ(f) | f : Sn → Sn differentiable, deg(f) = k}

where deg(f) denotes the Brouwer degree of the map f , which determines
completely the homotopy class [f ] ∈ πnS

n = Z. It is worth summarizing
the following fundamental characterizations.

(i) δ(1, k) = k and δ(n, k) ≤ k [Ol];
(ii) δ(n, k) ≥ n

√
k [Ol] and [Gr2];

(iii) δ(n, 2) = 2 [Ol] and [He];
(iv) δ(n, k) ≥ 2 for |k| ≥ 2 [Ol] and [Gr1].

It was conjectured in [Ol] that δ(2, k) = k for k ≥ 0. Unfortunately, this
conjecture will be shown to be false for k = 4 by the following inequality.

Proposition 1.2. δ(2, 4) ≤ 2
√

2.

It would be interesting to know the exact value of δ(2, 4).
In order to estimate the dilatation of elements in π3S

3, Olivier [Ol, p.
389] constructed explicitly a map f : S3 → S3 and stated that this map
has dilatation exactly 2. However, we will show that his map has dilatation

more than
√

24
5 . In fact, we can prove that any differentiable join: S3 =

S1 ∗ S1 → S3 has dilatation more than 2. On the other hand, we will
construct a family of differentiable maps S3 → S3 of the Brouwer degree 4
whose dilatation approaches 2. These will imply the following:

Proposition 1.3. δ(3, 4) = 2.

It was conjectured in [Ro, p. 202] that δ(σ ◦ τ) = δ(σ) · δ(τ) = 2δ(τ),
at least if σ is one of the Hopf classes. The final section will provide a
counterexample.

Theorem 1.4. Let τ ∈ π3S
3 be the homotopy class of the Brouwer degree

2, and σ ∈ π3S
2 the Hopf class, then δ(σ ◦ τ) <

√
15 < 4 = 2δ(τ).
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2. Polynomial maps.

Recall that a map f : Sm → Sn is said to be a polynomial map if it is the
restriction to Sm of a polynomial map from Rm+1 to Rn+1. If, in addition,
the polynomials are all homogeneous of degree k , then f is called a k-form
(see, for example, [Wo]). In order to prove Theorem 1.1, we need to use the
Bernstein-Szego Inequality which bounds the derivative of a trigonometric
polynomial in terms of its supremum norm.

Bernstein-Szego Inequality ([BE, p. 232]). Let

f(θ) = a0 +
k∑

λ=1

(aλ cosλθ + bλ sinλθ), θ ∈ [0, 2π].

Then

|f ′(θ)| ≤ k · max
θ∈[0,2π]

|f(θ)|.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that f : Sm → Sn is a polynomial map of
degree k. Given any point x in Sm and a unit tangent vector V to x, denote
by S1 the great circle spanned by x and V . By a suitable orthogonal trans-
formation of Rm+1, we may assume that x = (1, 0, . . . , 0), V = (0, 1, . . . , 0)
and

S1 = {(cos θ, sin θ, 0, . . . , 0) | 0 ≤ θ ≤ 2π}.
Observe that any orthogonal transformation preserves the degree of the
polynomials.

Furthermore, by a suitable orthogonal transformation of Rn+1, we may
assume

f |S1 (cos θ, sin θ, 0, . . . , 0) = (f0, f1, . . . , fn)

with derivatives f ′0 = a, f
′
1 = f

′
2 = · · · = f

′
n = 0, at θ = 0. Thus the function

f0 = f0(θ) is represented by trigonometric polynomial of degree at most k,

f0(θ) = a0 + a1 cos θ + b1 sin θ + · · ·+ ak cos kθ + bk sin kθ(ai, bj ∈ R).

Since f2
0 + · · · + f2

n = 1, |f0(θ)| ≤ 1, by the Bernstein-Szego Inequality, we
finally obtain the vital inequality

|a| = |f ′0| ≤ k ·max |f0| ≤ k,

and thus |dfx(V )| = |a| ≤ k. �

Modelling on the proof of Theorem 1 in [La], we may obtain:

Lemma 2.1. Let f : Sm → Sn be a 2-form (quadratic map). Assume
moreover that f is onto. Then δ(f) ≥ 2.
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Proof. Suppose δ(f) < 2. Take any point x in Sm so that f(−x) = f(x).
Then each meridian in Sm from x to (−x) is mapped into a loop passing
through f(x) of length less than 2π. Hence −f(x) does not lie in the image
of f , and therefore f is not onto. �

Combining the preceding lemma with Theorem 1.1 we obtain at once:

Corollary 2.2. Let f : Sm → Sn be a 2-form. If f is onto, then δ(f) = 2.

Remark 2.3. In [Ro], Roitberg proved his Theorem 2 by computing the
dilatation of map f : Sn+k → Sn, defined by

f(a, b) = (2g(a) · b, |b|2 − |a|2)

for a = (a1, . . . , ak+1) ∈ Rk+1, b = (b1, . . . , bn) ∈ Rn, where g(Sk) ⊂ O(n).
Note that this map f is a quadratic map, the assertion δ(f) = 2 follows
immediately from Corollary 2.2.

Theorem 1.1 provides upper bounds for the dilatation of polynomial maps
between spheres. It is natural to ask the question: Given m,n, k ∈ Z+,
when does there exist a polynomial map f : Sm → Sn of degree k, with
δ(f) = k? If m > n, according to [Wo], it is in general not easy to solve
this question. However, if m = n, we can answer this question affirmatively
with the following:

Theorem 2.4. Let fk : Sn → Sn(k > 0) be defined by

(cos θ, sin θ · x) 7→ (cos kθ, sin kθ · x),

where 0 ≤ θ ≤ π and x ∈ Sn−1 ⊂ Rn. Then fk can be characterized as
follows:

(1) fk is actually a k-form;
(2) δ(fk) = k;
(3) the Brouwer degree of fk is given by

deg fk =


k if n is odd,
1 if n is even and k is odd,
0 otherwise.
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Proof. (1) It suffices to observe that

cos kθ + i sin kθ = (cos θ + i sin θ)k

=
∑
j

(
k
j

)
cosk−j θ · sinj θ · ij

=
∑
p

(−1)p
(

k
2p

)
cosk−2p θ · | sin θ · x|2p

+
∑
p

(−1)pi
(

k
2p+ 1

)
cosk−2p−1 θ · | sin θ · x|2p · sin θ.

(2) Since fk is a k-form, it follows from Theorem 1.1 that δ(fk) ≤ k. It
remains only to find a suitable point x in Sn and a suitable unit tangent
vector V to x satisfying |d(fk)x(V )| = k. The work is not difficult and left
to the reader.

(3) The conclusion can be proved in several way. We will make use of
moving frames to calculate the Brouwer degree of fk. Let Sn−1 = {x ∈ Rn |
〈x, x〉 = 1}. We choose a local field of orthonormal frame e1, e2, . . . , en−1 in
TSn−1. Define

ωi = 〈dx, ei〉, i = 1, 2, . . . , n− 1.

Then the volume element of Sn−1 can be written as

dSn−1 = ω1 ∧ · · · ∧ ωn−1.

Now write Sn as

Sn = {y ∈ Rn+1 | y = (cos θ, sin θ · x), 0 ≤ θ ≤ π, x ∈ Sn−1}.

Then

dy = (d cos θ, d(sin θ · x))
= (− sin θ, cos θ · x)dθ + (0, sin θdx)

= (− sin θ, cos θ · x)dθ +
n−1∑
i=1

(0, ei) sin θ · ωi.

For convenience we write

e0 = (− sin θ, cos θ · x), ei = (0, ei), i = 1, 2, . . . , n− 1.

It is clear to see that e0, e1, . . . , en−1 provides a local orthonormal frame
field of TSn. In addition, define

φj = 〈dy, ej〉, j = 0, 1, 2, . . . , n− 1.

We are led to

φ0 = dθ, φj = sin θ · ωi(i = 1, 2, . . . , n− 1).
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Further, we find

dỹ = dfk(y)
= d(cos kθ, sin kθ · x)
= (− sin kθ, cos kθ)kdθ + (0, ei) sin kθ · ωi.

It follows from the definition dỹ =
∑
ψjεj that

ψ0 = kdθ, ψi = sin kθ · ωi (i = 1, 2, . . . , n− 1).

By the definition of the Brouwer degree, we conclude that

deg fk · V (Sn) =
∫
Sn

f∗kdṼ

=
∫
Sn

ψ0 ∧ · · · ∧ ψn−1

=
∫
Sn

k sinn−1 kθdθ ∧ ω1 ∧ · · · ∧ ωn−1,

and hence

deg fk =
k
π∫
0

sinn−1 kθdθ

π∫
0

sinn−1 θdθ

from which the required result follows immediately. �

We turn to investigate the exact value of the dilatation of gradient maps
of isoparametric polynomials. Let f be a homogeneous polynomial of de-
gree g on the Euclidean space Rn+2. Recall that f is called an isoparametric
polynomial if it satisfies the following Cartan-Münzner’s differential equa-
tions:

|∇f |2 = g2|x|2g−2,

4f =
1
2
g2(m2 −m1)|x|g−2,

where ∇f and 4f denote the gradient and the Laplacian of f respec-
tively, and m1,m2 two (possible equal) natural numbers (see, for example,
[PT1], [CR]). E. Cartan has solved completely the classification problem
for isoparametric polynomials for g = 1, 2 or 3. By using cohomological ar-
guments, Münzner obtained the splendid result that the number g of distinct
principal curvatures of level sets can be only 1, 2, 3, 4 or 6.

Note that the gradient map Φ, defined by Φ = 1
k∇f , is a map from Rn+2

to Rn+2. Moreover, every component of Φ is a homogeneous polynomial of
degree g − 1. Since f satisfies the Cartan-Münzner’s differential equations,
the restriction of Φ on the unit sphere produces a (g − 1)-form from Sn+1

to Sn+1. In [PT1], the Brouwer degree of Φ was calculated. An analysis of
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the gradient map of isoparametric polynomial, given in [PT1], will imply
the following:

Proposition 2.5. Let Φ = 1
k∇f and f be an isoparametric polynomial of

degree g. Then δ(Φ) = g − 1.

Proof. The conclusion follows obviously from (1.8) and (1.18) in [PT1]. �

To conclude this section we wish to pose a natural question: Given n,k ∈
Z+, how many equivalence classes (under orthorgonal transformations) of
polynomial maps f : Sn → Sn of degree k with δ(f) = k are there?

It is well-known that classifying isoparametric polynomials amounts clas-
sifying their gradient maps. Let f1 and f2 be the isoparametric polynomials
of degree 4 with multiplicities (m1,m2) = (1, 3) and (2, 2), respectively. Ob-
viously f1 is not equivalent to f2, hence the gradient maps 1

4∇f1 : S9 → S9

and 1
4∇f2 : S9 → S9 are not equivalent, although they have equal dilata-

tion 3.
For spheres of lower dimensions, we are able to show the following unique-

ness result:

Proposition 2.6. Let f : S2 → S2 be a 3-form. If δ(f) = 3, then by suit-
able orthogonal transformations, f coincides with the “standard” f3 which
is given in Theorem 2.4.

The proof is entirely elementary, but full of precise analysis. We wish to
write down the detailed proof in a future paper.

3. Differentiable maps.

This section is devoted to the proofs of Propositions 1.2 and 1.3 and Theo-
rem 1.4. We begin by stating the following approximation result.

Lemma 3.1. Suppose a < c < b,and 0 ≤ k1 < k2. Let f be a piecewise
linear function defined by

f(x) =
{
k1x+ d, if x ∈ (a, c];
k2(x− c) + (k1c+ d), if x ∈ [c, b).

Then for any ε > 0 there exist δ > 0 and a differentiable function f̃ ∈
C1(a, b) such that:

(1) f̃(x) = f(x) for x ∈ (a, c− δ]
⋃

[c+ δ, b);
(2) |f̃(x)− f(x)| < ε and k1 ≤ f̃ ′(x) ≤ k2 for x ∈ (c− δ, c+ δ).

Proof. Obvious. �

We note that this lemma can be generalized to the general case where f
is a piecewise linear function of multiple pieces.
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Proof of Proposition 1.2. To prove δ(2, 4) ≤ 2
√

2, it suffices to construct a
C1-map f : S2 → S2 of the Brouwer degree 4, with δ(f) ≤ 2

√
2 + ε for any

given small ε > 0. The proof is divided into three steps.
(i) Write the two dimensional sphere S2 as

S2 = {(cos θ, sin θ · eiφ) | 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}.
S2 is then divided into two parts

S1 =
{

0 ≤ θ ≤ π

2

}
and S2 =

{π
2
≤ θ ≤ π

}
whose intersection is precisely the equator.

In this way we define F1 : S1 → S2 by

F1(cos θ, sin θ · eiφ) = (cos 2θ, sin 2θ · ei2φ),
and F2 : S2 → S2 by the composition: F2 = F1 ◦ j, where j : S2 → S2 is
defined by sending (x1, x2, x3) ∈ S2 ⊂ R3 to (−x1, x2,−x3). We finally get
a map F : S2 → S2 simply defined by F |S1= F1 and F |S2= F2. Since
the diffeomorphism j is orientation preserving, F has the Brouwer degree 4.
Intuitively, the map F wraps the source S2 around the target S2 four times.
We remark that F is not differentiable.

(ii) Define F̃1 : S1 → S2 by

F̃1(cos θ, sin θ · eiφ) = (cosα(θ), sinα(θ) · ei2φ),
where α : [0, π2 ] → [0, π] is a function given by

α(θ) =


0, θ ∈ [0, δπ];

5
4−16δ · (x− δπ), θ ∈ [δπ, π4 ];

11
4−16δ · (x−

π
2 + δπ) + π, θ ∈ [π4 ,

π
2 − δπ];

π, θ ∈ [π2 − δπ, π2 ].

Here δ > 0 is sufficiently small. In fact, α is a piecewise linear function
joining the points (0, 0), (δπ, 0),

(
π
4 ,

5π
16

)
,
(
π
2 − δπ, π

)
,
(
π
2 , π

)
together.

Again, define F̃2 : S2 → S2 by F̃2 = F̃1 ◦ j. Furthermore, we have
F̃ : S2 → S2 by simply defining

F̃ |S1= F̃1 and F̃ |S2= F̃2.

It is easily seen that F̃ is homotopic to F whose Brouwer degree is equal
to 4. Hence deg F̃ = 4. On the other hand, it is evident to verify

sup
0≤θ≤π

2 ,

θ 6=0,δπ,π
2
−δπ,π

2

{
2
∣∣∣∣sinα(θ)

sin θ

∣∣∣∣ , |α′
(θ)|
}
≤ 2

√
2

which implies that the dilatation of F̃ on the domain of smooth points is
not bigger than 2

√
2. It should be remarked that the particular α is not the
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optimal choice. In fact, one can improve the estimate 2
√

2 by altering α.
However, we don’t know the minimum.

(iii) It remains to uniformly approximate F̃ by a C1 map f such that
δ(f) ≤ 2

√
2 + ε. Of course, approximating does not change the homotopy

class, and then preserves the Brouwer degree. The desired map is guaranteed
by applying a variation of Lemma 3.1.

The proof of Proposition 1.2 is now complete. �

Remark 3.2. By making use of the sphere-packing method of Gromov in
[Gr2], one may get that δ(2, 4) ≤ π

arcsin
q

2
3

≈ 3.289. More precisely, in-

side the unit sphere S2, there exists an inscribed regular tetrahedron with

four vertices: (0, 0, 1),
(√

8
3 , 0,−

1
3

)
,
(
−
√

2
3 ,
√

2
3 ,−

1
3

)
and

(
−
√

2
3 ,−

√
2
3 ,−

1
3

)
.

Taking these four vertices as centers, we can construct four geodesic spheres

tangent to each other. It is straitforward to show ρ = arcsin
√

2
3 . Wrap-

ping the four geodesic spheres around the target S2 by geodesic streching
respectively (see [Gr2] for details), we obtain a map f : S2 → S2 such
that deg f = 4 and δ(f) = π

ρ . By contrast with this conclusion, Hefter [He]
stated that δ(2, 4) < 3 without detailed proof. On the other side, since S2

is simply connected, and thus any map f of degree different from ±1 has
at least one critical point, it follows from an integration inequality [Gr2,
p. 14] that there is no C1 map f : S2 → S2 satisfying both deg f = 4 and
δ(f) = 2.

To estimate the value of δ(3, 4), we first point out a mistake in [Ol, p. 389]
which claimed that δ(F ) = 2, where F is given as follows:

Proposition 3.3. As in [Ol], define F : S3 → S3 by

F (Z,W ) =

(
Z2√

|Z|4 + |W |4
,

W 2√
|Z|4 + |W |4

)

for (Z,W ) ∈ S3 ⊂ C × C. Then δ(F ) ≥
√

24
5 > 2.

Proof. Take x =
(√

3
2 , 0,

1
2 , 0
)

in S3 and V = (0, 1, 0, 0) a tangent vector to
x. It is not difficult to verify

|d(F )x(V )|2 =
24
5

as required.
This result is not special. In fact, we can prove that δ(fα) > 2 for general

differentiable join fα. More precisely, we state:
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Proposition 3.4. Define fα : S3 → S3 by

fα(cos θ · eiφ, sin θ · eiψ) = (cosα(θ) · ei2φ, sinα(θ) · ei2ψ)

for (cos θ · eiφ, sin θ · eiψ) ∈ S3 ⊂ C × C, where α = α(θ) : [0, π2 ] → [0, π2 ] is
a function so that fα is differentiable. Then deg fα = 4 and δ(fα) > 2.

Proof. As mentioned earlier, fα is homotopic to f : S3 → S3 defined by

f(cos θ · eiφ, sin θ · eiψ) = (cos θ · ei2φ, sin θ · ei2ψ)

whose Brouwer degree is easily seen to equal to 4. Therefore we obtain
deg fα = 4. Suppose now that δ(fα) ≤ 2. It follows that |dfα( ∂

∂φ)| ≤
2| ∂∂φ |. Since ∂

∂φ = (cos θ · ieiφ, 0) and dfα( ∂
∂φ) = (2 cosα(θ) · iei2φ, 0), we

have therefore that | cosα(θ)| ≤ | cos θ| for θ ∈ [0, π2 ], equivalently α(θ) ≡
θ. Hence fα coincides f , which is not differentiable. This contradicts the
assumption. �

Remark 3.5. The function α(θ) in [Ol, p. 389] is given by

α(θ) = arccos
cos2 θ√

cos4θ + sin4 θ
.

It seems that one does not know if there is a C1 map f : S3 → S3 of the
Brouwer degree 4 and δ(f) = 2. However, we have the following:

Lemma 3.6. For any small ε > 0, there exists a C1 map fα : S3 → S3

such that deg fα = 4 and δ(fα) ≤ 2 + ε.

Proof. Define fα : S3 → S3 by

fα(cos θ · eiφ, sin θ · eiψ) = (cosα(θ) · ei2φ, sinα(θ) · ei2ψ),

where α = α(θ) : [0, π2 ] → [0, π2 ] satisfies α(0) = 0 and α(π2 ) = π
2 . As

mentioned before, the Brouwer degree of fα is exactly 4. Assume that
fα is differentiable. Since ∂

∂φ = (cos θ · ieiφ, 0), ∂
∂ψ = (0, sin θ · ieiψ), ∂∂θ =

(− sin θ · eiφ, cos θ · eiψ), and then

δ(fα) = sup
0≤θ≤π

2

{
2
∣∣∣∣cosα(θ)

cos θ

∣∣∣∣ , 2 ∣∣∣∣sinα(θ)
sin θ

∣∣∣∣ , |α′
(θ)|
}
.

The inequality δ(fα) ≤ 2 + ε is therefore equivalent to the following in-
equalities: ∣∣∣∣cosα(θ)

cos θ

∣∣∣∣ ≤ 1 +
ε

2
;(∗1) ∣∣∣∣sinα(θ)

sin θ

∣∣∣∣ ≤ 1 +
ε

2
;(∗2) ∣∣α′(θ)∣∣ ≤ 2 + ε.(∗3)
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Finally, the existence of lim
θ→0

sinα(θ)

sin2(θ)
and lim

θ→π
2

cosα(θ)
cos2(θ)

guarantee that f is a

C1 map. We may construct such a satisfactory function α = α(θ) in two
steps.

(1) For odd n, let β = β(t) = 1
2n t

n(1−t2n), t ∈ [−1, 1]. Then, the following
properties are easily verified for t ∈ [−1, 1]:
(1a) β(±1) = β(0) = 0;
(1b) β

′
(±1) = −1, |β′

(t)| ≤ 1, and β
′
(t) = −1 if and only if t = ±1;

(1c) |β(t)| ≤ 1
2n ;

(1d) −1 ≤ t+ β(t) ≤ 1.

(2) Furthermore, let α = α(θ) = θ + π
4β( 4

πθ − 1) for θ ∈ [0, π2 ]. Then it
follows from (1) that
(2a) α(0) = 0, α(π4 ) = π

4 , α(π2 ) = π
2 ;

(2b) α
′
(0) = 0, α

′
(π2 ) = 0, and |α′

(θ)| ≤ 2;
(2c) |π4β( 4

πθ − 1)| ≤ π
8n ;

(2d) 0 ≤ α(θ) ≤ θ if θ ∈ [0, π4 ], and θ ≤ α(θ) ≤ π
2 if θ ∈ [π4 ,

π
2 ].

Summarizing the above arguments, we have finally∣∣∣∣sinα(θ)
sin θ

∣∣∣∣ ≤ 1 + sin
π

8n
;∣∣∣∣cosα(θ)

cos θ

∣∣∣∣ ≤ 1 + sin
π

8n
;

|α′
(θ)| ≤ 2;

lim
θ→0

sinα(θ)
sin2 θ

and lim
θ→π

2

cosα(θ)
cos2 θ

exist.

These imply that (∗1), (∗2) and (∗3) hold, if n is sufficiently large. We
get the desired function α = α(θ), and hence the proof of the lemma. �

Proposition 1.3 is an immediate consequence.
We should mention that Gromov in [Gr2] gave a map g : S3 → S3 by

g(cos θ · eiφ, sin θ · eiψ) = (cos θ · ei2φ, sin θ · ei2ψ) whose dilatation is equal to
2 and the Brouwer degree is just 4. However, this map g is only continuous,
not differentiable. Note that for continuous map, the dilatation is defined
by Lipschitz constant insead of sup{|df(V )|||V | = 1} (for more details, see
[He]). Indeed, Lemma 3.6 provides explicitly a smooth approximation to
the map g of Gromov.

The last part of this section will be devoted to:

Proof of Theorem 1.4. Define f : S3 → S3 by

f(cos θ · eiφ, sin θ · eiψ) = (cos θ · ei2φ, sin θ · eiψ)
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and denote by τ the homotopy class of f . It is easy to see that deg f = 2,
and it follows from [Ol, p. 389] that δ(τ) = 2.

Next, define πα : S3 → S2 by

πα(cos θ · eiφ, sin θ · eiψ) = (cosα(θ), sinα(θ) · ei(φ+ψ))

where α : [0, π2 ] → [0, π] satifies α(0) = 0, α(π2 ) = π. Note that if α(θ) ≡ 2θ,
then fα is precisely the Hopf fibration π : S3 → S2. Moreover, any such map
πα (called α-Hopf construction) is homotopic to the Hopf fibration (see, for
example, [PT2] and [Ba]). It follows from Theorem 1 in [La, p. 433] that
δ(σ) = 2 for σ = [πα] = [π] ∈ π3S

2.
Now observe that the composition πα ◦f : S3 → S2 sends (cos θ ·eiφ, sin θ ·

eiψ) in S3 to (cosα(θ), sinα(θ) · ei(2φ+ψ)) in S2. Using a similar argument
as before, we get

δ(πα ◦ f |0<θ<π
2
)

= sup
0<θ<π

2


∣∣∣∣∣∣
√
a2

1(α′(θ))2 +
(
a2

2 sinα(θ)
cos θ

+ a3
sinα(θ)

sin θ

)2
∣∣∣∣∣∣ a2

1 + a2
2 + a2

3 = 1

.
We are then left to construct a suitable function α = α(θ) such that the
composition π ◦ f is differentiable and the inequality δ(πα ◦ f) < 3 holds.

Let δ > 0 be sufficiently small, and define α = α(θ) by

α(θ) =


0, θ ∈ [0, δπ];
(θ − δπ) · 3−16δ

1−4δ , θ ∈ [δπ, π4 ];
(θ − π

2 + δπ) · 1+16δ
1−4δ + π, θ ∈ [π4 ,

π
2 − δπ];

π, θ ∈ [π2 − δπ, π2 ].

In other words, α is a piecewise linear function joining the points (0, 0),
(δπ, 0), (π4 , 3

4π − 4δπ), (π2 − δπ, π), (π2 , π) together. It is evident to see
that the function α has slopes 0, 3−16δ

1−4δ (< 3), 1+16δ
1−4δ (< 3

2) and 0 on the four
intervals, respectively. It is straitforward to verify that

sin2 α(θ) ≤ 3
2

sin 2θ;

sup
θ∈(0,π

2
),θ 6=δπ,π

4
,π
2
−δπ

{
|α′(θ)|, 2

∣∣∣∣sinα(θ)
cos θ

∣∣∣∣ , ∣∣∣∣sinα(θ)
sin θ

∣∣∣∣} < 3.

Hence δ(πα ◦ f |0 < θ < π/2) ≤
√

15. It remains to make a smooth
approximation to the map πα ◦ f . Applying a variation of Lemma 3.1 will
produce the desired map, which lies in the homotopy class σ ◦τ ∈ π3S

2 with
dilatation less than 3. The proof is now complete. �

To conclude this section we wish to point out that Theorem 1.4 still holds
for σ ∈ π7S

4 (or π15S
8) the Hopf class and τ ∈ π7S

7 (or π15S
15) of the

Brouwer degree 2. The proof is entirely analogous to that for π3S
2.
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