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We construct a birational invariant for certain algebraic
group actions. We use this invariant to classify linear repre-
sentations of finite abelian groups up to birational equivalence,
thus answering, in a special case, a question of E.B. Vinberg
and giving a family of counterexamples to a related conjec-
ture of P.I. Katsylo. We also give a new proof of a theorem
of M. Lorenz on birational equivalence of quantum tori (in
a slightly expanded form) by applying our invariant in the
setting of PGLn-varieties.

1. Introduction.

Let G be an algebraic group and let X be a smooth projective G-variety
(i.e., an algebraic variety with a G-action) defined over an algebraically
closed base field of characteristic zero. It is shown in [RY1] that for each
finite abelian subgroup H, the presence of an H-fixed points is a birational
invariant of X as a G-variety. In other words, if X and Y are birationally
isomorphic smooth projective G-varieties and H is a finite abelian subgroup
of G then XH 6= ∅ iff Y H 6= ∅. (Here as usual, XH denotes the subvariety of
H-fixed points ofX.) Note that only nontoral finite abelian subgroupsH are
of interest in this setting; if H lies in a torus T of G then XT (and thus XH)
can never be empty by the Borel Fixed Point theorem. In [RY1], [RY2]
and [RY3] we used H-fixed points for nontoral finite abelian subgroup H of
G to study the geometry of G-varieties (their essential dimensions, splitting
degrees, etc.) and properties of related algebraic objects (field extensions,
division algebras, octonion algebras, etc.).

In this paper we will associate (under additional assumptions on X, G
and H) a more subtle invariant i(X,x,H) to a point x ∈ XH ; the precise
definition is given in Section 4. Our main result about i(X,x,H) is stated
below.

Recall that the rank of a finite abelian group H is the minimal number of
generators of H (see Section 2) and that a G-variety X is called generically
free if Stab(x) = {1} for x in general position in X (see Section 3).

Theorem 1.1. Let G be an algebraic group of dimension d, H be a finite
abelian subgroup of G of rank r, and X, Y be birationally isomorphic smooth
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projective irreducible generically free G-varieties of dimension d+r. Assume
that Stab(x) is finite for every x ∈ XH and Stab(y) is finite for every
y ∈ Y H . Then for every x ∈ XH there exists a y ∈ Y H such that i(Y, y,H) =
i(X,x,H).

Informally speaking, the presence of H-fixed points x with a prescribed
value i(X,x,H) (on a suitable model) is a birational invariant of X as a G-
variety. Our proof of Theorem 1.1, presented in Section 6, relies on canonical
resolution of singularities. Note that Theorem 1.1 remains valid even if X
and Y are not assumed to be irreducible; see Remark 6.4.

We give two applications of Theorem 1.1.

A birational classification of linear representations. For our first ap-
plication recall that by the no-name lemma any two generically free linear
representations of a given algebraic group G are stably isomorphic as G-
varieties; see, e.g., [P, 1.5.3]. Thus it is natural to try to classify such
representations up to birational isomorphism. This problem was proposed
by E. B. Vinberg [PV2, pp. 494-496]; see also [P, 1.5.1]. P. I. Katsylo has
subsequently stated the following conjecture:

Conjecture 1.2 ([K]; see also [P, 1.5.10]). Let V and W be generically
free linear representations of an algebraic group G. If dim(V ) = dim(W )
then V and W are birationally isomorphic as G-varieties.

In this paper we will establish the following birational classification of
faithful linear representations of a diagonalizable group. Recall that every
diagonalizable group G can be uniquely written in the form

G = Gm(n1)× · · · ×Gm(nr) such that(1.1)
Gm(n1) ⊂ · · · ⊂ Gm(nr) and each ni = 0 or ≥ 2,

where Gm = k∗ = Gm(0) denotes the 1-dimensional torus, Gm(n) ' Z/nZ
is the n-torsion subgroup of Gm, and Gm(a) ⊂ Gm(b) iff either a divides b
or a = b = 0; see, e.g., [Bo, Proposition III.8.7] and [DF, Theorem 5.2.3].
Recall also that a representation of a diagonalizable group is faithful iff it is
generically free ([PV1, Proposition 7.2]) and that any such representation
has dimension ≥ r ([Bo, Proposition III.8.2(d)]).

Theorem 1.3. Let G be a diagonalizable group, as in (1.1).
(a) If d ≥ r+ 1 then any two faithful d-dimensional linear representations

of H are birationally equivalent.
(b) If n1 = 0 or 2 then any two faithful r-dimensional linear representa-

tions of H are birationally equivalent.
(c) If n1 ≥ 3 then H has exactly φ(n1)/2 birational equivalence classes

of faithful r-dimensional representations. Here φ denotes the Euler
φ-function.
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In particular, Conjecture 1.2 fails for G if and only if n1 = 5 or ≥ 7.

The birational equivalence classes of faithful linear representations of G
are explicitly described in Theorem 7.1. Later in Section 7 we will show that
Conjecture 1.2 also fails for some nonabelian finite groups G. On the other
hand, we remark that P. I. Katsylo [K] proved Conjecture 1.2 for G = SL2,
G = PGL2 and G = Sn (n ≤ 4), and that many interesting cases remain
open, including G = Sn (n ≥ 5) and G = arbitrary connected semisimple
group.

Birational equivalence of quantum tori. Our second application is
based on the fact that birational isomorphism classes of generically free
PGLn-varieties are in natural correspondence with central simple algebras
of degree n; see, e.g., [Se1, X.5] or [RY2, Section 3]. Thus Theorem 1.1
(with G = PGLn) will sometimes allow us to prove that certain division
algebras are not isomorphic over k.

Let ω1, . . . , ωr be roots of unity and let R(ω1, . . . , ωr) be the associative
k-algebra k{x±1

1 , . . . , x±1
2r }, where the variables x1, . . . , x2r are subject to

relations x2i−1x2i = ωix2ix2i−1 for i = 1, . . . , r and xaxb = xbxa for all
other pairs xa, xb. Denote the algebra of quotients of R(ω1, . . . , ωr) by
Q(ω1, . . . , ωr). Note that Q(ω1, . . . , ωr) is obtained from R(ω1, . . . , ωr) by
adjoining the inverses of all central elements and that Q(ω1, . . . , ωr) is a
finite-dimensional division algebra (in fact, it is a tensor product of symbol
algebras).

M. Lorenz [Lo1, Proposition 1.3] showed that Q(ω) and Q(ω′) are iso-
morphic as k-algebras if and only if ω′ = ω±1. In Section 8 we will give a
geometric proof of the following variant of this result.

Theorem 1.4. Suppose ωi is a primitive nith root of unity, ni divides ni+1

for i = 1, . . . , r − 1, n1 ≥ 2, and (mi, ni) = 1. Then Q(ω1, . . . , ωr) and
Q(ωm1

1 , . . . , ωmr
r ) are isomorphic as k-algebras if and only if m1 · · ·mr ≡ ±1

(mod n1).

The centers of the algebras Q(ω1, . . . , ωr) and Q(ωm1
1 , . . . , ωmr

r ) can be
naturally identified with the field K = k(xn1

1 , . . . , xn2r
2r ). Note that these

algebras may be k-isomorphic but not K-isomorphic, i.e., not Brauer equiv-
alent. More precisely, Q(ω1, . . . , ωr) and Q(ωm1

1 , . . . , ωmr
r ) are Brauer equiv-

alent iff mi ≡ 1 (mod ni) for every i = 1, . . . , r.
It is natural to think of R(ω1, . . . , ωr) and Q(ω1, . . . , ωr) as, respectively,

the “coordinate ring” and the “function field” of a quantum torus. Using
this terminology, one may view Theorem 1.4 as a result about birational
isomorphism classes of quantum tori.

Finally we remark that M. Lorenz has communicated to us a proof of
Theorem 1.4 based on the techniques of [Lo1] and [Lo2]. His argument
works in arbitrary characteristic.
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2. Linear algebra in abelian groups.

Recall that any finitely generated abelian group (A,+) can be written in
the form

A ' Z/n1Z× · · · × Z/nrZ , where each ni = 0 or ≥ 2(2.1)
and ni+1 ∈ niZ for every i = 1, . . . , r;

see, e.g., [DF, Theorem 5.2.3]. Here r and n1, . . . , nr are uniquely deter-
mined by the isomorphism type of A. We shall refer to the integer r as
the the rank of A; equivalently, the rank of A equals the minimal possible
number of generators of A.

Recall that if B is an abelian group then the dual group B∗ is defined as
Hom(B,Q/Z); we will often identify Q/Z with the multiplicative group of
roots of unity in k. The finitely generated group A of (2.1) and the diagonal-
izable group G of (1.1) are dual to each other. The rank of a diagonalizable
group G is defined as the rank of the finitely generated group G∗ (in par-
ticular, the group G of (1.1) has rank r). Note that this is consistent with
the way we defined rank for a finitely generated group: Indeed, if A is both
diagonalizable and finitely generated, i.e., is finite abelian, then A and A∗

are isomorphic, so that their ranks coincide.

Skew-symmetric powers. We will write
∧d(A) for the d-th skew-symme-

tric power of A, viewed as a Z-module.
The proof of the following lemma is elementary; we leave it as an exercise

for the reader.

Lemma 2.1. Let A be a finitely generated abelian group as in (2.1). Then
(a)

∧r(A) ' Z/n1Z.
(b)

∧d(A) = (0), if d ≥ r + 1.

Definition 2.2. Let A be a finite abelian group. Let ω : A×A −→ Q/Z be
a Z-bilinear form. As usual, we shall say that

(a) ω is alternating if ω(a, a) = 0 for every a ∈ A,
(b) ω is nondegenerate if ω(a, ·) is not identically zero for any a ∈ A−{0},
(c) ω is symplectic if it is both alternating and nondegenerate.

Lemma 2.3. Let A be a finite abelian group of rank 2r, ω be a symplectic
form of A, and ψ be an ω-preserving automorphism A −→ A. Then

(a) ∧2rψ is the trivial automorphism of
∧2r(A) and
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(b) ∧2rψ∗ is the trivial automorphism of
∧2r(A∗).

Proof. (a) It is well-known that A can be written in the form A = A0 ⊕A∗
0

such that

ω((a, a∗), (b, b∗)) = a∗(b)− b∗(a)(2.2)

for any a, b ∈ A0 and a∗, b∗ ∈ A∗
0; see, e.g., [TA, Theorem 4.1]. Write A0 as

Z/n1Z× · · · ×Z/nrZ, where ni divides ni+1 for i = 1, . . . , r− 1 and n1 ≥ 2.
Let ei ∈ A0 be a generator of the of the ith factor, and let fi ∈ A∗

0 be given
by fi : A0 −→ Z/niZ −→ Q/Z, where the first map the projection to the
ith factor, and the second map takes ei to 1/ni. Then every a ∈ A can
be written in the form a =

∑n
i=1(α2i−1ei + α2ifi), where α2i−1, α2i ∈ Z,

and (2.2) translates into

ω

[
n∑

i=1

(α2i−1ei + α2ifi),
n∑

i=1

(β2i−1ei + β2ifi)

]

=
n∑

i=1

1
ni

(α2iβ2i−1 − α2i−1β2i).

Suppose

ψ(e1) = c11e1 + c12f1 + · · ·+ c1,2r−1er + c1,2r−1fr ,
ψ(f1) = c21e1 + c22f1 + · · ·+ c2,2r−1er + c2,2rfr ,
...
ψ(er) = c2r−1,1e1 + c2r−1,2f1 + · · ·+ c2r−1,2r−1er + c2r−1,2rfr ,
ψ(fr) = c2r,1e1 + c2r,2f1 + · · ·+ c2r,2r−1er + c2r,2rfr ,

where C = (cij)i,j=1,...,2r ∈ Mn(Z). Since λ = e1∧ f1∧ · · · ∧ er ∧ fr generates∧2r(A∗) ' Z/n1Z and [∧2rψ](λ) = det(C)λ, it is sufficient to show that
det(C) = 1 (mod n1).

The condition that ψ preserves ω translates into CJCt = J (mod 1),
where Ct is the transpose of C and

J =


0 1/n1 . . . 0 0

−1/n1 0 . . . 0 0
...

...
...

0 0 0 1/nr

0 0 −1/nr 0

 .

In other words,

CJCt = J +N,(2.3)

where N is a skew-symmetric integral matrix. We shall deduce the desired
equality, det(C) = 1 (mod n1), by computing the Pfaffian on both sides
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of (2.3). On the one hand

Pf(CJCt) = det(C) Pf(J) = (−1)r det(C)
1

n1 . . . nr
;(2.4)

see, e.g., [Lang, XIV, 10, Theorem 7]. On the other hand, suppose X =
(xij), where xji = −xij for 1 ≤ i, j ≤ 2r. Then Pf(X) ∈ Z[xij | 1 ≤ i < j ≤
2r] has degree 1 in every xij , where i < j. (Indeed, det(X) has degree 2 in
every xij , and Pf(X)2 = det(X).) Consequently,

Pf(J +N) = Pf(J) +
z

n2 . . . nr
= (−1)r 1

n1 . . . nr
+

z

n2 . . . nr
,(2.5)

where z is an integer. (Here we used the fact that ni divides ni+1 for
every i = 1, . . . , r − 1.) Putting (2.3), (2.4) and (2.5) together, we see that
det(C) = 1 + (−1)rn1z, i.e., det(C) = 1 (mod n1), as claimed.

(b) Let i : A −→ A∗ be the isomorphism a 7→ ia, where ia(b) = ω(a, b).
It is easy to see that the automorphism ψ∗ : A∗ −→ A∗ preserves the
symplectic form ω∗ on A∗ given by ω∗(a∗, b∗) = ω(i−1a∗, i−1b∗). Applying
part (a) to ψ∗, we obtain the desired result. �

Elementary operations. Let A be an abelian group. We will say that
two d-tuples (a1, . . . , ad) and (b1, . . . , bd) ∈ Ad are related by an elementary
operation if (b1, . . . , bd) = (a1, . . . , ai−1, ai+maj , ai+1, . . . , ad) for some i 6= j
and m ∈ Z.

Lemma 2.4. Let a1, . . . , ad and b1, . . . , bd be two sets of generators for an
abelian group A. Then a = (a1, . . . , ad) and (b1, . . . , bd) are related by a
sequence of elementary operations if and only if a1 ∧ · · · ∧ ad = b1 ∧ · · · ∧ bd
in

∧d(A).

Proof. It is clear that if (a1, . . . , ad) and (b1, . . . , bd) are related by a sequence
of elementary operations then a1 ∧ · · · ∧ ad = b1 ∧ · · · ∧ bd. We will prove the
converse by induction on d.

If d = 1 there is nothing to prove, since
∧1(A) = A. For the induction

step, assume d ≥ 2 and A ' (Z/n1Z) × · · · × (Z/nrZ) is as in (2.1) Here
r = rank(A) ≤ d, since we are assuming A is generated by d elements.

A d-tuple of generators (a1, . . . , ad) of A can now be represented by a
d × r-matrix a = (aij) whose ith row is ai. Elements of the jth column of
this matrix lie in Z/njZ. Elementary operation on such matrices amount to
adding an integer multiple of the jth row to the ith row or some i 6= j.

Elementary operations allow us to perform the Euclidean algorithm in
the last column of (aij). Since a1r, . . . , adr generate Z/nrZ, after a sequence
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of elementary operations, we may assume that

(aij) =


0

X
...
0

∗ . . . ∗ 1

 ,

where X is a (d−1)× (r−1)-matrix. Since the rows of (aij) generate A, the
rows of X generate A = (Z/n1Z)× · · · × (Z/nr−1Z). Thus after performing
additional elementary operations, we may assume

(aij) =


0

X
...
0

0 . . . 0 1

 , and similarly (bij) =


0

Y
...
0

0 . . . 0 1

 .

In other words, we may assume (a1, . . . , ad−1) and (b1, . . . , bd−1) are (d−1)-
tuples of generators in A and ad = bd is the generator 1 ∈ Z/nrZ.

We claim that

a1 ∧ · · · ∧ ad−1 = b1 ∧ · · · ∧ bd−1 in
∧(d−1)(A).(2.6)

Indeed, if d ≥ r+1, this is obvious, since
∧d−1(A) = (0); see Lemma 2.1(b).

If d = r then the isomorphism
∧d(A) ' Z/n1Z identifies a1 ∧ · · · ∧ ad

with det(aij) (mod n1), and the isomorphism
∧(d−1)(A) ' Z/n1Z identifies

a1 ∧ · · · ∧ ad−1 with det(X) (mod n1). Since a1 ∧ · · · ∧ ad = b1 ∧ · · · ∧ bd, we
know that det(aij) = det(bij) (mod n1); hence, det(X) = det(Y ) (mod n1),
and (2.6) follows.

Now by the induction assumption (a1, . . . , ad−1) and (b1, . . . , bd−1) are
related by a sequence of elementary operations. Since ad = bd, so are
(a1, . . . , ad) and (b1, . . . , bd), as desired. �

Corollary 2.5. Let a1, . . . , ad and b1, . . . , bd be two sets of generators for
an abelian group A. Then the following conditions are equivalent.

(a) There exists a matrix N = (nij) ∈ GLd(Z) such that bi = ni1a1 + · · ·+
nidad for i = 1, . . . , d.

(b) a1 ∧ · · · ∧ ad = ±b1 ∧ · · · ∧ bd in
∧d(A).

Proof. The implication (a) =⇒ (b) is obvious. To prove the converse, note
that we may assume without loss of generality that a1 ∧ · · · ∧ ad = b1 ∧
· · · ∧ bd; indeed, if a1 ∧ · · · ∧ ad = −b1 ∧ · · · ∧ bd then we can simply replace
(a1, a2, . . . , ad) by (−a1, a2, . . . , ad). Now Lemma 2.4 says, (b1, . . . , bd) is
obtained from (a1, . . . , ad) by a sequence of elementary operations. Each
elementary operation relates the two sets of generators as in (a), with N
= elementary matrix ∈ SL(Z). Multiplying these matrices we obtain the
desired conclusion. �
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3. H-slices.

In this section we establish several simple properties of slices on a G-variety
X. Note that we do not assume that X is affine or that G is reductive.
(Under these assumptions, one can prove quite a bit more than we do here;
see [Lu] or [PV1, Section 6].)

Definition 3.1. Let G be an algebraic group and X be a G-variety. We
will call a locally closed subvariety V of X a slice at x ∈ V if X and V
are smooth at x and Tx(X) = Tx(Gx) ⊕ Tx(V ). (Here Tx(X) denotes the
tangent space to X at x.) If, moreover, V is invariant under the action of a
subgroup H of Stab(x), we will refer to V as an H-slice.

Remark 3.2. Note that since V is smooth at x, we may replace V by its
(unique) irreducible component passing through x and thus assume that V
is irreducible.

Example 3.3. Let G be an algebraic group, H be an algebraic subgroup
of G and V be an H-variety. Recall that the homogeneous fiber product
X = G ∗H X is defined as the geometric quotient X = (G × V )/H, where
H acts on G × V by h(g, v) = (gh−1, hv). (This geometric quotient exists
under mild assumptions on V ; in particular, it exists whenever V is quasi-
projective; see [PV1, Theorem 4.19].) Note that X = G ∗H V is naturally a
G-variety, where G acts by left multiplication on the first factor; the details
of this construction can be found in [PV1, Section 4.8].

The points of X are in 1-1 correspondence with H-orbits in G × V ; we
shall denote the point x ∈ X corresponding to the H-orbit of (g, v) in G×V
by x = [g, v]. Let Ṽ be the image of the H-equivariant map V −→ X given
by v 7→ [1, v]. With these notations, Ṽ is an H-slice for X at x = [1, v] for
every smooth point v of V ; see [PV1, Proposition 4.22].

Lemma 3.4. Let G be an algebraic group, X be an irreducible G-variety,
and V be a slice at x ∈ X. Then GV is dense in X.

Proof. Consider the map φ : G × V −→ X, given by φ(g, v) = gv. The dif-
ferential dφ(1,x) : T1(G)× Tx(V ) −→ Tx(X) is onto, since its image contains
both Tx(Gx) and Tx(V ). Consequently, dφ is onto at a general point of
G× V . Thus φ is dominant, and the lemma follows. �

Lemma 3.5. Let G be an algebraic group, H be a subgroup, X be a G-
variety, and x is a smooth H-fixed point of X. If H is reductive then X has
an H-slice at x.

Proof. Let Mx,X be the maximal ideal of the local ring of X at x. Consider
the natural H-equivariant linear maps Mx,X −→ Tx(X)∗ −→ Tx(Gx)∗.
Since H is reductive these maps have H-equivariant splittings as maps of
k-vector spaces. Thus we can choose a local coordinate system u1, . . . , un
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in Mx,X such that Spank(u1, . . . , ud) is an H-invariant k-vector subspace of
Mx,X and u1, . . . , ud (restricted to Gx) form a local coordinate system in
Ox,Gx. (Here n = dim(X) and d = dim(Gx).)

Note that u1, . . . , un are regular functions in someH-invariant open neigh-
borhood of x. In this neighborhood a slice V with desired properties is given
by u1 = · · · = ud = 0. �

Recall that a G-variety X is called generically free if Stab(x) = {1} for x
in general position in X.

Proposition 3.6. Let G be an algebraic group, H be a reductive subgroup,
X be a generically free G-variety and x be a smooth H-fixed point of X.
Then H acts faithfully on Tx(X)/Tx(Gx).

Proof. Let X0 be the unique component of X passing through x and G0 be
the subgroup of all elements of G that preserve X0. Note that G0 has finite
index in G and H ⊂ G0. After replacing X by X0 and G by G0, we may
assume X is irreducible.

We now argue by contradiction. Assume the kernel K of the H-action
on Tx(X)/Tx(Gx) is nontrivial. Since K is a normal subgroup of H and H
is reductive, K is not unipotent. Hence, we can find a nonidentity element
g ∈ K of finite order.

By Lemma 3.5 X has an H-slice V at x. Since Tx(V ) ' Tx(X)/Tx(Gx) as
H-representations, g acts trivially on Tx(V ). This implies that g acts triv-
ially on V ; see, e.g., [RY1, Lemma 4.2]. On the other hand, by Lemma 3.4
GV is dense in X; consequently, for every x ∈ X in general position Stab(x)
contains a conjugate of g. Thus the G-action on X is not generically free,
contradicting our assumption. �

4. Definition and first properties of i(X,x,H).

Throughout this section we shall make the following assumptions:

G algebraic group
H finite abelian subgroup of G of rank r
X G-variety of dimension dim(G) + r
x smooth H-fixed point of X whose stabilizer is finite.

Definition 4.1. The H-representation on Tx(X)/Tx(Gx) decomposes as a
direct sum of r characters χ1, . . . , χr ∈ H∗. We define

i(X,x,H) = χ1 ∧ · · · ∧ χr ∈
∧r(H∗).

Since the collection of characters χ1, . . . , χr is well-defined, up to reordering,
i(X,x,H) is well-defined in

∧r(H∗), up to multiplication by −1. Thus,
properly speaking, i(X,x,H) should be viewed as an element of the factor
set

∧r(H∗)/ ∼, where w1 ∼ w2 iff w1 = ±w2. By abuse of notation we will
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sometimes write i(X,x,H) ∈
∧r(H∗); in such cases it should be understood

that i(X,x,H) is only defined up to sign.

Remark 4.2. It is clear from the definition that if V is an H-slice for X at
x then i(X,x,H) = i(V, x,H). In particular, in the setting of Example 3.3,
if V is an r-dimensional H-variety, X = G ∗H V , and v is a smooth H-fixed
point of V then i(X, [1, v],H) = i(Ṽ , [1, v],H) = i(V, v,H).

Remark 4.3. Let g be an element of the normalizer NG(H) and let φg

be the automorphism of H sending h to ghg−1. Then it is easy to see
that i(X, gx,H) = (∧rφ∗g)

(
i(X,x,H)

)
, where ∧rφ∗g is the automorphism of∧r(H∗) induced by φg.

Example 4.4. Let G = H be a finite abelian group of rank r, χ1, . . . , χr

be a generating set for H∗, and V = Ar be a faithful r-dimensional linear
representation of H, given by

h : (v1, . . . , vr) −→ (χ1(h)v1, . . . , χr(h)vr).

Then the origin 0V is the only H-fixed point of V , and Definition 4.1 im-
mediately implies i(V, 0V ,H) = χ1 ∧ · · · ∧ χr. The extended H-action on
V = Pr, given by

h(v0 : v1 : · · · : vd) = (v0 : χ1(h)v1 : · · · : χd(h)vd),

has exactly r + 1 fixed points:

x0 = (1 : 0 : · · · : 0), . . . , xr = (0 : · · · : 0 : 1).

Note that x0 = 0V . We claim that, up to sign,

i(V , xj ,H) = i(V, x0,H) = χ1 ∧ · · · ∧ χr

for j = 1, . . . , r. To prove this claim, say for j = 1, note that v0/v1, v2/v1,
. . . , vr/v1 form an affine coordinate system on V near x1. The H-action
is diagonal in these coordinates, and the representation of H on Tx1(V )
is the direct sum of the characters χ−1

1 , χ2χ
−1
1 , . . . , χrχ

−1
1 . Consequently,

i(V , x1,H) = ±χ−1
1 ∧ χ2χ

−1
1 ∧ · · · ∧ χrχ

−1
1 = ±χ1 ∧ · · · ∧ χr, as claimed.

Lemma 4.5. Suppose X is a generically free G-variety. Then i(X,x,H)
generates

∧r(H∗) as a group.

Note that the statement of the lemma makes sense, even though i(X,x,H)
is only defined up to sign: If a generates

∧r(H∗) then so does −a.

Proof. By Proposition 3.6 H acts faithfully on Tx(X)/Tx(Gx). Hence, the
characters χ1, . . . , χr introduced in Definition 4.1 generate H∗ as an abelian
group, and the lemma follows. �
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5. i(X,x,H) and birational morphisms.

The purpose of this section is to prove the following:

Theorem 5.1. Let G be an algebraic group of dimension d, H be a finite
abelian subgroup of G of rank r, f : X −→ Y be birational morphism of
irreducible generically free G-varieties of dimension d + r, x is a smooth
H-fixed point of X, y = f(x) is a smooth point of Y , and Stab(y) is finite.
Then i(X,x,H) = i(Y, y,H).
Case I: G = H. As a first step towards proving Theorem 5.1, we will
consider the case where G = H is a finite abelian group. In this case
Theorem 5.1 can be restated as follows.

Proposition 5.2. Let H be a finite abelian group, and f : X −→ Y be a
birational morphism of irreducible generically free H-varieties of dimension
r = rank(H). Assume that x is a smooth H-fixed point of X and y = f(x)
is a smooth point of Y . Then i(X,x,H) = i(Y, y,H).

Before proceeding with the proof of Proposition 5.2, we introduce some
background material on the power series ring k[[u1, . . . , ur]].

Given w ∈ k[[u1, . . . , ur]] we shall denote by lm(w) the lowest degree
monomial in u1, . . . , ur which enters into w(u1, . . . , ur) with a nonzero coef-
ficient. Here “lowest degree” refers to a fixed lexicographic monomial order
� given by, say, u1 � · · · � ur.

Suppose v1, . . . , vm lie in the maximal ideal of k[[u1, . . . , ur]], i.e., lm(vi) �
1 for any i = 1, . . . ,m. Then we can substitute v1, . . . , vm into any power
series p ∈ k[[z1, . . . , zm]]; in other words, p(v1, . . . , vm) is a well-defined
element of k[[u1, . . . , ur]]. If p = Z is a monomial in k[[z1, . . . , zm]] then
clearly

lm
(
Z(v1, . . . , vm)

)
= Z

(
lm(v1), . . . , lm(vm)

)
.(5.1)

We shall write 〈u1, . . . , ur〉 for the group of all Laurent monomials in u1, . . . ,
ur (here we allow negative exponents).

Lemma 5.3. Suppose v1, . . . , vm ∈ k[[u1, . . . , ur]]. If lm(v1), . . . , lm(vm)
generate a rank m subgroup Λ in 〈u1, . . . , ur〉 ' Zr then lm

(
p(v1, . . . , vm)

)
∈

Λ for any p ∈ k[[z1, . . . , zm]].

Note that the conditions of the lemma imply m ≤ r; only the case m = r
will be used in the subsequent application.

Proof. Suppose p(z1, . . . , zm) =
∑
cZZ, where Z ranges over all monomi-

als in z1, . . . , zm with nonnegative exponents and each cZ ∈ K. By our
assumption lm(v1), . . . , lm(vm) are (multiplicatively) linearly independent,
i.e.,

Z(lm(v1), . . . , lm(vm)) 6= Z ′(lm(v1), . . . , lm(vm))
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for any two distinct monomials Z and Z ′. Suppose Z0(lm(v1), . . . , lm(vm)) is
the lexicographically smallest monomial (in u1, . . . , um) of the form Z(lm(v1),
. . . , lm(vm)), with cZ 6= 0. Then (5.1) tells us that

lm(Z(v1, . . . , vm)) � lm(Z0(v1, . . . , vm)) = Z0(lm(v1), . . . , lm(vm))

for any Z 6= Z0 with cZ 6= 0. Thus

lm(p(v1, . . . , vm)) = lm(Z0(v1, . . . , vm)) = Z0(lm(v1), . . . , lm(vm)) ∈ Λ,

as claimed. �

Proof of Proposition 5.2. Diagonalizing the action of H on the cotangent
space T ∗

x (X), we obtain a basis u1, . . . , ur ∈ T ∗
x (X) such that hui = χi(h)ui

for every h ∈ H; here χ1, . . . , χr ∈ H∗. Since the k-linear map Mx,X −→
Mx,X/M2

x,X = T ∗
x (X) has an H-invariant k-linear splitting, we can find a

local system of parameters u1, . . . , ur ∈Mx,X such that

hui = χi(h)ui(5.2)

for every h ∈ H and i = 1, . . . , r. Similarly, we can find a local coordinate
system v1, . . . , vr ∈My,Y for Y at y and η1, . . . , ηr ∈ H∗ such that

hvi = ηi(h)vi(5.3)

for every h ∈ H and i = 1, . . . , r. Clearly i(X,x,H) = χ1 ∧ · · · ∧ χr and
i(Y, y,H) = η1 ∧ · · · ∧ ηr.

We shall identify the elements v1, . . . , vr with their images in Ox,X under
f∗ : Oy,Y ↪→ Ox,X . The H-action on Ox,X naturally extends to k[[u1, ..., ur]];
in view of (5.2) the leading term map w 7→ lm(w) is H-equivariant. Suppose
lm(vi) = uai1

1 . . . uair
r for some nonnegative integers aij . Then (5.2) and (5.3)

imply ηi =
∏

j χ
aij

i , and thus, up to sign,

i(Y, y,H) = η1 ∧ · · · ∧ ηr = det(aij)χ1 ∧ · · · ∧ χr = ±det(aij)i(X,x,H).

There are two conclusions we can draw from this formula. First of all, by
Lemma 4.5 we know that both i(X,x,H) and i(Y, y,H) generate

∧r(H∗);
thus det(aij) 6= 0. Secondly, in order to prove the proposition, it is sufficient
to show that

det(aij) = ±1 in Z.(5.4)

We now proceed with the proof of (5.4). Let 〈u1, . . . , ur〉 be the free abelian
multiplicative group generated by u1, . . . , ur. Since det(aij) 6= 0, the leading
monomials lm(v1), . . . , lm(vr) generate a (free abelian) subgroup Λ of rank
r in 〈u1, . . . , ur〉 ' Zr; in other words, Λ has finite index in 〈u1, . . . , ur〉. On
the other hand, (5.4) holds if and only if Λ = 〈u1, . . . , ur〉. It is therefore
sufficient to prove that ui ∈ Λ for every i = 1, . . . , r.

Since Ox,X and Oy,Y have the same field of fractions, each ui can be
written as p/q, where p, q ∈ Oy,Y − {0}. Represent p and q by power series
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in v1, . . . , vr. By Lemma 5.3 lm(p(v1, . . . , vr)) and lm(q(v1, . . . , vr)) lie in Λ;
thus taking the leading monomials on both sides of the equation

q(v1, . . . , vr)ui = p(v1, . . . , vr),

we conclude that ui ∈ Λ, as desired. �

Case II: G - arbitrary. We are now ready to finish the proof of Theo-
rem 5.1. The idea is to replace X and Y by suitable H-slices, then appeal
to Proposition 5.2.

Diagonalizing the H-action on T ∗
y (Gy), we obtain a basis v1, . . . , vd such

that hvi = αi(h)vi for some characters α1, . . . , αd of H. Since the natural
H-equivariant k-vector space maps My,Y −→ T ∗

y (Y ) −→ T ∗
y (Gy) have H-

equivariant splittings, we can lift v1, . . . , vd to v1, . . . , vd ∈ My,Y such that
such that hvi = αi(h)vi for each h ∈ H. In other words, v1, . . . , vd form a
local coordinate system for Gy at y.

Since both Stab(x) and Stab(y) are finite, dfx : Tx(Gx) −→ Ty(Gy) is an
isomorphism. Thus f∗(v1), . . . , f∗(vr) form a local coordinate system for Gx
at x. Define W ⊂ Y as the irreducible component of {v1 = · · · = vd = 0}
passing through y and V ⊂ X as the irreducible component of {f∗(v1) =
· · · = f∗(vd) = 0} passing through x. Then W is an H-slice for Y at y and
V is an H-slice for X at x.

Clearly f(V ) ⊂ W , i.e., f|V : V −→ W is a well-defined morphism. We
claim that f|V is, in fact, a birational morphism. Theorem 5.1 follows from
this claim because

i(X,x,H) Remark 4.2= i(V, x,H) Proposition 5.2= i(W, y,H) Remark 4.2= i(Y, y,H).

To show that f|V is dominant, assume, to the contrary, that dim(f(V )) <
r. SinceX is irreducible, GV is dense inX by Lemma 3.4 and thus dim(Y ) =
dim(f(X)) = dim(f(GV )) = dim(Gf(V )) ≤ d + dim(f(V )) < d + r, a
contradiction.

It remains to show that f|V is generically 1-1 on closed points. Since f is
a birational morphism (i.e., has degree 1), there exists a dense G-invariant
open subset Y0 of Y such that for every y0 ∈ Y0, f−1(y0) is a single point in
X. Since GW is dense in Y (by Lemma 3.4), Y0 ∩W is a dense open subset
of W . Thus a general point of W has exactly one preimage in X. On the
other hand, a general point of W has at least deg(f|V ) ≥ 1 preimages in X.
This shows that deg(f|V ) = 1, i.e., f|V is birational, as claimed. �

6. Proof of Theorem 1.1.

In this section we deduce Theorem 1.1 from Theorem 5.1. Our proof relies on
canonical resolution of singularities. (We remark that canonical resolution
of singularities is not used elsewhere in this paper.)

We begin with two simple preliminary results.
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Lemma 6.1. Let H be an algebraic group, f : Z −→ X be a birational
morphism of complete irreducible H-varieties and X1 be an irreducible H-
invariant codimension 1 subvariety of X. If X1 passes through a normal
point of X then there exists an H-invariant irreducible codimension 1 sub-
variety Z1 ⊂ Z such that f|Z1

: Z1 −→ X1 is a birational morphism.

Proof. Since X1 contains a normal point of X, the rational map f−1 : X −→
Z is defined at a general point of X1. Now Z1 = the closure of f−1(X1) in
Z, has the desired properties. �

Proposition 6.2. Let H be a diagonalizable group, α : Z −→ X be a bi-
rational morphism of complete irreducible H-varieties and x be a smooth
H-fixed point of X. Then there exists an H-fixed point z ∈ Z such that
α(z) = x.

This result can be established by the argument used in the proof of [RY1,
Proposition A.4], due to J. Kollár and E. Szabó. (In fact, if H is a p-group
then Proposition 6.2 follows from [RY1, Proposition A.4].) We give a simple
self-contained proof below.

Proof. We argue by induction on dim(X). The base case, dim(X) = 0, is
obvious. For the induction step, assume dim(X) ≥ 1. We claim that there
exists codimension 1 H-invariant irreducible subvariety X1 such that x is
a smooth point of X1. Arguing as we did at the beginning of the proof of
Proposition 5.2, we see that there exists a nonzero element u ∈ Mx,X such
that for every h ∈ H, hu = α(h)u, where α is a character of H. Then
the (locally closed) subvariety {u = 0} of X is H-invariant and smooth
at x. Hence, its unique irreducible component passing through x is also H-
invariant, and we can define X1 as the closure of this irreducible component.
This proves the claim.

Now by Lemma 6.1 there exists a codimension 1 irreducible H-invariant
subvariety Z1 of Z such that α|Z1

: Z1 −→ X1 is a birational morphism
of H-varieties. Applying the induction assumption to this morphism, we
construct z ∈ Z1 ⊂ Z with desired properties. �

We are now ready to complete the proof of Theorem 1.1. The idea is to
construct a complete smooth model Z of X (or Y ) that dominates them
both, i.e., fits into a diagram

Z
α
↙

β

↘
X Y .

where α and β are birational morphisms of G-varieties. If we find such a Z,
Theorem 1.1 will easily follow. Indeed, by Proposition 6.2 there exists an
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H-fixed point z ∈ Z such that α(z) = x. Setting y = β(z) and applying The-
orem 5.1 to α and β, we conclude that i(X,x,H) = i(Z, z,H) = i(Y, y,H),
as desired.

It remains to construct Z. Let W ⊂ X × Y be the closure of the graph
of a birational isomorphism f between X and Y . Then W is a complete
G-variety that dominates both X and Y . In other words, W satisfies all of
our requirements for Z, with one exception: It may not be smooth. Let

π : Z = Wn
πn−→ · · · π1−→W0 = W,(6.1)

be the canonical resolution of singularities of W , as in [V, Theorem 7.6.1]
or [BM, Theorem 1.6]. Here Z is smooth, and each πi is a blowup with
a smooth center; since these centers are canonically chosen, they are G-
invariant. Thus the G action can be lifted to Z so that π is a birational
morphism of complete G-varieties. The smooth complete G-variety Z con-
structed in this way has the desired properties. �

Remark 6.3. An alternative construction of Z is given by the equivariant
version of Hironaka’s theorem on elimination of points of indeterminacy
(proved in [RY4]), which asserts that for every rational map f : X −→ Y
of G-varieties there exists a sequence of blowups

π : Z = Xn
πn−→ · · · π1−→ X0

with smooth G-equivariant centers such that fπ : Z −→ Y is regular. The
advantage of this approach is that it only uses Proposition 6.2 in the case
where α is a single blowup with a smooth G-equivariant center (in which case
the proof is immediate; see, e.g., [RY1, Lemma 5.1]). On the other hand,
since the theorem on equivariant elimination of points of indeterminacy is
itself deduced from canonical resolution of singularities in [RY4], we opted
for a direct proof here.

Remark 6.4. A rational map f : X −→ Y (respectively, a morphism f : X
−→ Y ) of reducible varieties is called a birational isomorphism (respectively,
a birational morphism) ifX and Y have irreducible decompositionsX1∪· · ·∪
Xn and Y1∪· · ·∪Yn such that f restricts to a birational isomorphism Xi −→
Yi (respectively, a birational morphism) for each i. With this definition, the
irreducibility assumption in Proposition 6.2 can be removed. Indeed, we can
reduce to the case where X and Z are irreducible by replacing them with
suitable irreducible components.

The irreducibility assumption in Theorem 1.1 (respectively, Theorem 5.1
and Proposition 5.2) can also be removed, if we assume dimx(X) = d + r
(respectively, dimx(X) = d + r and dimx(X) = r). Indeed, if X1 is the
(necessarily unique) irreducible component ofX containing x and G1 = {g ∈
G | g(X1) = X1}, then H ⊂ G1, [G : G1] <∞, and i(X,x,H) = i(X1, x,H),
so that in each case we may replace X, Y , and G by X1, Y1 and G1.
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Remark 6.5. One may ask if the condition that Stab(x) is finite for every
x ∈ XH (and similarly for Y ) of Theorem 1.1 is ever satisfied. Indeed, if H is
contained in a torus T of G then the answer is “no”, since Stab(x) is infinite
for every x ∈ XT ⊂ XH , andXT 6= ∅ by the Borel Fixed Point Theorem. On
the other hand, if the centralizer CG(H) is finite, then we claim that every
generically free G-variety X has a birational model satisfying this condition.
Indeed, by [RY1, Theorem 1.1] X has a model with the property that the
stabilizer of every point is of the form U >/ D, where D is diagonalizable
and U is unipotent. Assume x ∈ XH . By the Levi decomposition theorem,
we may choose D so that D contains H. Now [RY1, Lemma 7.3] tells us
that U = {1}. Thus Stab(x) = D ⊂ CG(H), which is finite, as claimed.

Examples of pairs H ⊂ G, where G is a semisimple algebraic group and
H is an abelian subgroups of G whose centralizer is finite can be found, e.g.,
in [Gr], [Se2] or [RY1, Section 8].

7. A birational classification of linear representations.

It is not difficult to see that Conjecture 1.2 fails if G is a finite cyclic group
of order n = 5 or ≥ 7. Indeed, let Vω be the 1-dimensional representation of
G such that σ acts on Vω by the character x 7→ ωx, where ω is a primitive
nth root of unity. Since any birational automorphism of A1 lifts to a regular
automorphism of P1, it is easy to see that Vω is birationally isomorphic to
Vω′ iff ω′ = ω or ω′ = ω−1. (The two G-fixed points in P1 are preserved in
the former case and interchanged in the latter.) If n = 5 or ≥ 7, we can find
two primitive nth roots of unity ω and ω′ such that ω′ 6= ω±1, so that Vω

and Vω′ are not birationally isomorphic. (P.I. Katsylo has informed us that
this observation was independently made by E.A. Tevelev.)

In this section we will classify faithful linear representations of diagonal-
izable group G up to birational equivalence and show that Conjecture 1.2
fails for a number of groups, both abelian and nonabelian. These results
have the same general flavor as the observation in the previous paragraph
but the arguments are more complicated due to the fact that we will be
working with higher-dimensional varieties, rather than curves.

Representations of diagonalizable groups. Recall that every linear rep-
resentation V of G decomposes as a sum of 1-dimensional character spaces
([Bo, Proposition III.8.2(d)]); if the associated characters of G are χ1, . . . ,
χd, we shall write V = χ1 ⊕ · · · ⊕ χd.

Theorem 7.1. Let G be a diagonalizable group of rank r and let V = χ1⊕
· · ·⊕χd and W = η1⊕· · ·⊕ηd be faithful d-dimensional linear representations
of G. (In particular, d ≥ r.) Then V and W are birationally isomorphic as
G-varieties if and only if χ1 ∧ . . . ∧ χd = ±η1 ∧ · · · ∧ ηd in

∧d(G∗).
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Proof. Since G acts faithfully on V and W , we have

〈χ1, . . . , χd〉 = 〈η1, . . . , ηd〉 = G∗.(7.1)

Assume χ1 ∧ . . . ∧ χd = ±η1 ∧ · · · ∧ ηd. Then by Corollary 2.5 there
exists an N = (nij) ∈ GL(Z) such that ηi = χn1i

1 . . . χndi
d . The desired

birational isomorphism V −→ W is can now be explicitly given, in the
natural coordinates on V and W , by (x1, . . . , xd) −→ (y1, . . . , yd), where
yi = xn1i

1 . . . xndi
d .

Conversely, suppose

χ1 ∧ . . . ∧ χd 6= ±η1 ∧ · · · ∧ ηd in
∧d(G∗).(7.2)

We want to prove that V and W are not birationally isomorphic as G-
varieties. Note that (7.2) is impossible if d ≥ r + 1, since in this case∧d(G∗) = (0); see Lemma 2.1(b). Thus we will assume from now on that
d = r = rank(G). We will consider three cases.
Case 1. G = (Gm)r is a torus. In this case χ1 ∧ . . . ∧ χr and η1 ∧ · · · ∧ ηr

are both generators of
∧r(G∗) = Z, so that (7.2) is impossible.

Case 2. G is a finite abelian group. The G-action on V = Ar (respec-
tively W = Ar) naturally extends to the projective space V = Pr (re-
spectively, W = Pr). Example 4.4 shows that for every G-fixed point
x ∈ V , i(V , x,G) = ±χ1 ∧ · · · ∧ χr and for every G-fixed point y ∈ W ,
i(W, y,G) = ±η1 ∧ · · · ∧ ηr. Thus in view of (7.2), Theorem 1.1 says that V
andW (and, hence, V andW ) are not birationally isomorphic asG-varieties.
Case 3. G is a diagonalizable group but not a torus. Write G = Gm(n1)×
· · ·×Gm(nr), as in (2.1). Since G is not a torus, n1 ≥ 2. Let H = Gm(n1)r =
(Z/n1Z)r be the n1-torsion subgroup of G. It is sufficient to show that V
and W are not birationally isomorphic as H-varieties; then they certainly
cannot be birationally isomorphic as G-varieties. By Case 2, it is enough to
show that

χ′1 ∧ . . . ∧ χ′r 6= ±η′1 ∧ · · · ∧ η′r in
∧r(H∗)(7.3)

where χ′i and η′j are the characters of H obtained by restricting χi and
ηj from G to H. Note that the inclusion φ : H ↪→ G induces a surjec-
tion φ∗ : G∗ −→ H∗ of the dual group, which, in turn, induced a map of
cyclic groups

∧r(φ∗) :
∧r(G∗) −→

∧r(H∗). Elementary group theory tells
us that G∗ = (Z/n1Z) × · · · × (Z/nrZ), H∗ = (Z/n1Z)r, φ∗ : G∗ −→ H∗

is (componentwise) reduction modulo n1, and
∧r(φ∗) is the identity map∧r(G∗) = Z/n1Z

'−→ Z/n1Z =
∧r(H∗). Applying

∧r(φ∗) to both sides
of (7.2), we obtain (7.3), as desired. �

Proof of Theorem 1.3. Let G be a diagonalizable group G of rank r of
the form (1.1), and let V = χ1 ⊕ · · · ⊕ χd and W = η1 ⊕ · · · ⊕ ηd be faithful
d-dimensional linear representations of G.
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(a) If d ≥ r+ 1 then
∧r(G∗) = (0), so that χ1 ∧ . . .∧χd = 0 = η1 ∧ · · · ∧ ηd.

Thus V and W are birationally isomorphic as G-varieties by Theorem 7.1.
From now on we will assume d = r. Note that in this case both χ1∧. . .∧χr

and η1 ∧ · · · ∧ ηr are generators of
∧r(G∗) = Z/n1Z.

(b) Suppose n1 = 2. Since
∧r(G∗) = Z/2Z has only one generator, χ1∧ . . .∧

χr = η1 ∧ · · · ∧ ηr. Thus V and W are birationally isomorphic as G-varieties
by Theorem 7.1.

Now assume n1 = 0. Then
∧r(G∗) = Z. The only generators of this group

are ±1; thus χ1 ∧ . . . ∧ χr = ±η1 ∧ · · · ∧ ηr, and, once again, Theorem 7.1
tells us that V and W are birationally isomorphic.
(c) Suppose n1 ≥ 3. By Theorem 7.1, birational isomorphism classes of r-
dimensional linear representations of H are in 1-1 correspondence with the
generators of

∧r(H∗) ' Z/n1Z (as an additive group), modulo multiplica-
tion by −1. Since nr ≥ 3, a 6= −a for any generator a of Z/n1Z. Thus
in this case the number of isomorphism classes of faithful r-dimensional
H-representations is φ(nr)/2, as claimed. �

Further counterexamples to Conjecture 1.2. Theorem 1.3 shows that
Conjecture 1.2 fails for many diagonalizable groups. We will now see that
this conjecture also fails for some nonabelian finite groups.

Proposition 7.2. Let n and r be a positive integers, P be a subgroup of Sr,
and G = (Z/nZ)r >/P , where P acts on (Z/nZ)r by permuting the factors.
Assume there exists an m ∈ Z such that (m,n) = 1 and mr 6≡ ±1 (mod n).
Then there exist two birationally inequivalent r-dimensional representations
of G. In particular, Conjecture 1.2 fails for this group.

We remark that an integer m satisfying the requirements of Proposi-
tion 7.2 always exists if the exponent of Un does not divide 2r; here Un is
the (multiplicative) group of units in Z/nZ. In particular, m exists if there
is a prime power pe such that pe |n but φ(pe) = (p− 1)pe−1 6 | 2r.

Proof. Let ω be a primitive nth root of unity. We define the r-dimensional
representations V and W of G as follows:

((a1, . . . , ar), σ) : (v1, . . . , vr) 7→ (ωa1vσ−1(1), . . . , ω
arvσ−1(r))

and

((a1, . . . , ar), σ) : (w1, . . . , wr) 7→ (ωma1wσ−1(1), . . . , ω
marwσ−1(r)).

Here a1, . . . , an ∈ Z/nZ, σ ∈ P ⊂ Sr, (v1, . . . , vr) ∈ V and (w1, . . . , wr) ∈W .
It is easy to see that V andW are, indeed, well-defined faithful r-dimensional
representations of G.

To prove the proposition it is sufficient to show that V and W are not
birationally isomorphic as (Z/nZ)r-varieties. Let χi be the character of
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(Z/nZ)r given by χ(a1, . . . , ar) = ωai . Then, as Z/nZ-representations, V =
χ1 ⊕ · · · ⊕ χr and W = χm

1 ⊕ · · · ⊕ χm
r . By our assumption

χm
1 ∧ · · · ∧ χm

r = mrχ1 ∧ · · · ∧ χr 6= ±χ1 ∧ · · · ∧ χr

in
∧r(Z/nZ∗) ' Z/nZ. Thus Theorem 7.1 tells us that V and W are not

isomorphic as (Z/nZ)r-varieties (and hence, as G-varieties). �

Remark 7.3. The same argument proves the following stronger result. Let
n1, n2, . . . , ns, r1, . . . , rs be positive integers such that ni divides ni+1 for
i = 2, . . . , r, let Pi be a subgroup of the symmetric group Sri and let Gi =
(Z/niZ)ri>/Pi. Assume there exist integers m1, . . . ,ms such that (mi, ni) =
1 and mr1

1 . . .mrs
s 6≡ ±1 (mod n1). Then G = (Gm)a × G1 × · · · × Gs has

two birationally inequivalent (a+ r1 + · · ·+ rs)-dimensional representations.
In particular, Conjecture 1.2 fails for any G of this form.

Remark 7.4. The proof of Proposition 7.2 shows that G = (Z/nZ)r >/
P has at least | ± U r

n|/2 birational isomorphism classes of r-dimensional
representations. Here, as before, Un denotes the multiplicative group of
units in the ring Z/nZ, and ±U r

n denotes the subset of Un consisting of
elements of the form ±mr, as m ranges over Un.

A similar estimate can be given for the number of birational isomorphism
classes of (a + r1 + · · · + rs)-dimensional representations of the group G in
Remark 7.3. In particular, if n1 = · · · = ns and (r1, . . . , rs) = 1 then there
are at least φ(n1)/2 such classes.

8. Birational equivalence of quantum tori.

In this section we will use the invariant i(X,x,H) to classify PGLn-varieties
(and consequently central simple algebras) of a certain form. In particular,
we will prove Theorem 1.4.

Abelian subgroups of PGLn. Let A be a finite abelian group of order n
and let V = k[A] be the group ring of A. For a ∈ A and χ ∈ A∗ define
Pa, Dχ ∈ GL(V ) by Pa(b) = ab and Dχ(b) = χ(b)b for every b ∈ A. It is
easy to see that DχPa = χ(a)PaDχ. Thus if pa and dχ denote the elements
of PGL(V ) represented, respectively, by Pa and Dχ ∈ GL(V ), then

φ : A×A∗ ↪→ PGL(V ) = PGLn

(a, χ) −→ padχ

defines an embedding of A×A∗ in PGLn.
Let H be an abelian subgroup of PGLn. Then H is naturally equipped

with an alternating bilinear form ωH : H ×H −→ µn (cf. Definition 2.2(a)).
Here µn is the group of nth roots of unity in k, identified with the center
of SLn, and ωH(a, b) = ABA−1B−1, where A and B ∈ SLn represent a and
b ∈ PGLn respectively.
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Lemma 8.1. Let A be a finite abelian group of rank r, H = φ(A × A∗) =
{padχ | a ∈ A, χ ∈ A∗} be the subgroup of PGLn defined above. Then

(a) the elements of PaDχ span the matrix algebra Mn = Mn(k) as a k-
vector space; here as a ranges over A and χ ranges over A∗, and

(b) the alternating bilinear form ωH is symplectic (i.e., nondegenerate).

Let g be an element of the normalizer NPGLn(H), and ψg : H −→ H be
conjugation by g. Then

(c) ψg preserves ωH , and
(d) ψg induces the identity map

∧2r(H∗) −→
∧2r(H∗).

Proof.
(a) See [RY3, Lemma 3.2].
(b) See [RY2, Lemma 7.8].
(c) Choose a and b ∈ H ⊂ PGLn and lift them to A and B ∈ SLn. Since
ABA−1B−1 is a central element of SLn, we have

ωH(ψg(a), ψg(b)) = ωH(gag−1, gbg−1)

= (gAg−1)(gBg−1)(gA−1g−1)(gB−1g−1)

= g(ABA−1B−1)g−1 = ABA−1B−1 = ωH(a, b) ,

as claimed.
(d) Follows from (b), (c) and Lemma 2.3(b). �

PGLn-varieties.

Proposition 8.2. Let A be a finite abelian group of order n and rank r
and let H = φ(A × A∗) be the subgroup of PGLn defined above. Suppose
V = χ1⊕· · ·⊕χ2r and W = η1⊕· · ·⊕ η2r are faithful representations of H.
Then the following are equivalent:

(a) χ1 ∧ · · · ∧ χ2r = ±η1 ∧ · · · ∧ η2r in
∧2r(H∗),

(b) V and W are birationally isomorphic as H-varieties,
(c) X = PGLn ∗H V and Y = PGLn ∗H W are birationally isomorphic as

PGLn-varieties.

Here PGLn ∗H V and PGLn ∗H W are homogeneous fiber products; see
Example 3.3.

Proof. (a) and (b) are equivalent by Theorem 7.1. The implication (b) =⇒
(c) is obvious.

Thus we only need to show (c) =⇒ (a). The idea of the proof is to
appeal to Theorem 1.1. We begin by observing that X and Y naturally
embed as dense open subsets in projective varieties X = (P(Mn) × V )/H
and Y = (P(Mn) × W )/H respectively. Here V = P2r is the projective
completion of V = A2r; PGLn acts on P(Mn)× V by left multiplication on
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the first factor; this action commutes with the H-action on P(Mn)×V given
by h : (x, y) −→ (xh−1, hy) and thus descends to the geometric quotient
X = (P(Mn) × V )/H. We shall denote the point x ∈ X corresponding
to the orbit of (g, v) ∈ P(Mn) × V by [g, v]. The H-variety W and the
PGLn-variety Y are defined in a similar manner.

Our goal is to show that

(i) everyH-fixed points ofX is of the form x = [g, v], where g ∈ NPGLn(H)
and v is an H-fixed point of V , and for any such point x,

(ii) Stab(x) = H and
(iii) up to sign, i(X,x,H) = χ1 ∧ · · · ∧ χ2r.

These assertions, in combination with Theorem 1.1, will prove that if X
and Y (and hence, X and Y ) are birationally isomorphic then χ1∧· · ·∧χ2r =
±η1 ∧ · · · ∧ η2r, i.e., (c) =⇒ (a).

To prove (i), assume x = [g, v] is an H-fixed point of X for some g ∈
P(Mn) and v ∈ V . This means that for every h ∈ H there exists an h′ ∈ H
such that (hg, v) = (gh′, (h′)−1v) in P(Mn)× V . Equivalently, hg = gh′ and
(h′)−1v = v.

Consider the vector space kn of (n × 1)-row vectors. The multiplication
by g on the right yields a linear map kn −→ kn; let RKer(g) be the kernel
of this map. Note that since g ∈ P(Mn), this linear map is only defined up
to a nonzero constant multiple but RKer(g) is well-defined.

The equality hg = gh′ implies that RKer(g) is an H-invariant subspace
of kn with respect to the right action of H; again, as H ⊂ PGLn, the right
multipication by an element h ∈ H is a linear map kn −→ kn defined up
to a nonzero constant multiple, but the notion of H-invariance of a linear
subspace of kn is well-defined.

Now recall that by Lemma 8.1(a) the n2 elements of the form PaDχ which
represent the elements of H ⊂ PGL(V ) = PGLn in GL(V ) = GLn span Mn

as a k-vector space. Thus the only H-invariant subspaces of kn are the ones
that are invariant under all of Mn, namely kn and (0). If RKer(g) = kn then
g is the zero matrix, which is impossible since g ∈ P(Mn). Thus we conclude
that RKer(g) = (0). This means that g is nonsingular, i.e., g ∈ PGLn. Now
we can rewrite hg = gh′ as g−1hg = h′ ∈ H; this shows that g ∈ NPGLn(H).
Moreover, as h ranges over H, h′ = g−1hg also ranges over all of H. Thus
the equality (h′)−1v = v implies that v is an H-fixed point of V . This proves
(i).

From now on let x = [g, v] be an H-fixed point of X, where g ∈ NPGLn(H)
and v is an H-fixed point of V .

To prove (ii), assume g′ ∈ Stab(x), i.e., g′[g, v] = [g, v]. Then g′g = gh′

for some h′ ∈ H ′. Since g ∈ NPGLn(H), we conclude that g′ = ghg−1 ∈ H,
as desired.
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To prove (iii), first note that i(X, [g, v],H) = ∧2rψ∗g

(
i(X, [1, v],H)

)
,

where ψg : H −→ H is conjugation by g ∈ NPGLn(H) and ∧2r(ψ∗g) is the au-
tomorphism of

∧2r(H∗) induced by ψg; see Remark 4.3. By Lemma 8.1(d)
∧2rψ∗g is the identity automorphism. Thus i(X, [g, v],H) = i(X, [1, v],H).
On the other hand, by Remark 4.2 i(X, [1, v],H) = i(V , v,H). Finally, re-
call that for any v ∈ V

H , i(V , v,H) = i(V, 0V ,H) = χ1 ∧ · · · ∧ χ2r; see
Example 4.4. In summary,

i(X, [g, v],H) = i(X, [1, v],H) = i(V , v,H) = χ1 ∧ · · · ∧ χ2r ,

as claimed. �

Remark 8.3. The exceptional group E8 has a nontoral subgroup H iso-
morphic to (Z/5Z)3; see [Gr, Lemma 10.3]. Modifying the proof of Propo-
sition 8.2, we can show the following:
Let V = χ1 ⊕ χ2 ⊕ χ3 and W = η1 ⊕ η2 ⊕ η3 be faithful 3-dimensional rep-
resentations of H, where χi and ηj are characters of H. Then the following
are equivalent:

(a) χ1 ∧ χ2 ∧ χ3 = ±η1 ∧ η2 ∧ η3 in
∧3(H∗) ' Z/5Z,

(b) V and W are birationally isomorphic as H-varieties, and
(c) E8 ∗H V and E8 ∗H W are birationally isomorphic as E8-varieties.

In particular, there are exactly two birational isomorphism classes of E8-
varieties of the form E8 ∗H V , where V is a faithful 3-dimensional represen-
tation ofH: One corresponds to ±1, and the other to ±2 in Z/5Z '

∧3(H∗).

Remark 8.4. Note that the PGLn-varieties X = PGLn ∗H V and Y =
PGLn ∗H W of Proposition 8.2, are stably isomorphic (as PGLn-varieties).
In fact, X ×A1 ' Y ×A1 because X ×A1 = PGLn ∗H (V ×A1), Y ×A1 =
PGLn ∗H (W ×A1), and V ×A1 'W ×A1 as H-varieties by Theorem 7.1.
For the same reason X × A1 and Y × A1 are isomorphic E8-varieties, if X
and Y are as in Remark 8.3.

Proof of Theorem 1.4. Recall that birational isomorphism classes of gener-
ically free irreducible PGLn-varieties X with k(X)PGLn = K are in 1-1 cor-
respondence with central simple algebras of degree n over K; see e.g., [Se1,
X.5] or [RY2, Section 3].

In particular, by [RY3, Lemma 4.2], the algebra Q(ω1, . . . , ωr) of The-
orem 1.4 corresponds to the variety X = PGLn ∗H V , where V is a faith-
ful 2r-dimensional representations of H = A × A∗ constructed as follows.
Choose a set of generators a1, . . . , ar for A = Z/n1Z × · · · × Z/nrZ and a
“dual” set of generators χ1, . . . , χr for A∗ so that

χi(aj) =
{

1 if i 6= j
ωi if i = j.
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Now note that each a ∈ A defines a character ofH = A×A∗ by (b, η) 7→ η(a).
Similarly, each χ ∈ A∗ gives rise to a character H = A × A∗ −→ k∗ via
(b, η) 7→ χ(b); we shall denote these characters by c(a) and c(χ) respectively.
In these notations,

V = c(a1)⊕ · · · ⊕ c(ar)⊕ c(χ1)−1 ⊕ · · · ⊕ c(χr)−1,

see [RY3, Proof of Lemma 4.2].
Similarly the PGLn-variety associated toQ(ωm1

1 , . . . , ωmr
r ) is Y =PGLn∗H

W , where W = c(a′1)⊕ · · ·⊕ c(a′r)⊕ c(χ′1)−1⊕ · · ·⊕ c(χ′r)−1. Here a′1, . . . , a
′
r

are generators of A and χ′1, . . . , χ
′
r are generators of A∗ such that

χ′i(a
′
j) =

{
1 if i 6= j
ωmi

i if i = j.

A natural choice for a′i and χ′i is a′i = ai and χ′i = χmi
i , so that

W = c(a1)⊕ · · · ⊕ c(ar)⊕ c(χ1)−m1 ⊕ · · · ⊕ c(χr)−mr .

As we mentioned above, Q(ω1, . . . , ωr) and Q(ωm1
1 , . . . , ωmr

r ) are isomor-
phic as k-algebras iff their associated PGLn-varieties, X = PGLn ∗H V and
Y = PGLn ∗H W , are birationally isomorphic. By Proposition 8.2 X and Y
are birationally isomorphic iff

c(a1) ∧ · · · ∧ c(ar) ∧ c(χ1)−1 ∧ · · · ∧ c(χr)−1

= ±c(a1) ∧ · · · ∧ c(ar) ∧ c(χ1)−m1 ∧ · · · ∧ c(χr)−mr in
∧2r(H∗) ' Z/nrZ.

The last condition is equivalent to m1 . . .mr = ±1 (mod n1). �
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