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The theory of functional identities is used to obtain alge-
braic generalizations of some operator-theoretic results con-
cerning commutativity and normal preserving linear maps be-
tween algebras with involution.

1. Introduction.

Over the last decades there has been a considerable interest in linear algebra
and operator theory in the so-called linear preserver problems (see survey
articles [1, 13, 19, 20]). By a linear preserver we mean a linear map of
algebras which, roughly speaking, preserve certain properties of some ele-
ments in an algebra. In the literature these algebras are usually algebras
of matrices or algebras of bounded linear operators. The goal in the study
of linear preservers is to find their form. It turns out that often the only
solutions are just the most obvious ones, frequently (anti)isomorphisms or
at least maps related to them.

It is our impression that some linear preserver problems could be solved
in a more general setting using only ring-theoretic techniques. An example
illustrating this general conjecture is a characterization of bijective linear
maps of prime algebras that preserve commutativity, i.e., they map com-
muting pairs of elements into commuting pairs [10, Theorem 2] (see also
[2, 4] for some generalizations). This characterization was known before
only for some special prime algebras which are studied in linear algebra and
operator theory (see [10] for references). Moreover, it has turned out that
one does not really need to assume that the map, say θ, preserves the com-
mutativity of all elements, but only that θ(x) and θ(x2) commute for every
x. The fact that only this milder condition has to be asssumed has proved to
be useful when this result was applied to another linear preserver problem,
namely, the one concerning maps on the algebra of bounded linear operators
on a Hilbert space that preserve normal operators [12].

The proof of [10, Theorem 2] was based on a characterization of commut-
ing traces of biadditive maps [10, Theorem 1], which was one of the first
results in the area which is now called the theory of functional identities
in rings. Over the last few years this theory has been systematically devel-
oped. It is our goal in this paper to show that some of its most recent results
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[5, 6, 7] can be used to obtain some further improvements in the study of
linear maps preserving commutativity or normal elements.

First we introduce some terminology and fix the notation. A prime al-
gebra A over a field F is said to be centrally closed over F if both the
center and the extended centroid of A are equal to F . We will consider
centrally closed prime algebras A,A′ over F with involution ∗ (by an invo-
lution we mean an additive involution, that is, ∗ satisfies (x+ y)∗ = x∗ + y∗,
(xy)∗ = y∗x∗ and (x∗)∗ = x). We say that a linear map θ : A → A′ is
∗-linear if θ(x∗) = θ(x)∗ for all x ∈ A. Let S = {x ∈ A | x∗ = x} be the
set of all symmetric elements in A, and K = {x ∈ A | x∗ = −x} be the set
of all skew elements in A. Similarly, by S′ and K ′ we denote the sets of all
symmetric and skew elements in A′, respectively. Next we set Fs = F

⋂
S.

We say that the involution ∗ is of the first kind if F = Fs (equivalently, ∗ is
F -linear); otherwise we say that ∗ is of the second kind. Given a subset R
of A, we write 〈R〉 for the subalgebra of A generated by R.

The concepts of the extended centroid and centrally closed prime alge-
bras are explained in detail in the book [8]. Nevertheless, as some readers
may be primarily interested in what is the meaning of our results in linear
algebra and operator theory, let us just mention that the algebras of square
matrices over a division ring, bounded linear operators on a Banach space
(and moreover, all its subalgebras containing the identity and all finite rank
operators) and prime unital C∗-algebras (in particular, von Neumann fac-
tors) are all examples of prime algebras centrally closed over their centers.
Also, if one wants to restrict the attention to the case when A and A′ are
algebras consisting of linear operators on a Hilbert space H and x∗ is the
adjoint of the operator x, then ∗ is of the first kind when H is a real space,
and ∗ is of the second kind when H is a complex space.

In Section 2 we gather together some results of the theory of functional
identities that are needed later on.

In Section 3 we extend the treatment of commutativity-preserving maps of
prime algebras [10] by considering maps from S onto S′. The result which
we obtain is a ring-theoretic extension of the results on maps preserving
commutativity of symmetric matrices (operators) [15, 14, 24]. Actually, as
in [10], we do not really assume that the map θ preserves the commutativity
of all elements in S, but only that θ(s) and θ(s2) commute for every s ∈ S.

In Section 4 we consider bijective linear maps of algebras with involution
of the second kind which preserve normal elements. As already mentioned,
the special case when the algebras under consideration are algebras of all
bounded linear operators on a complex Hilbert space was treated in [12]
(see also [15, 16]). It has turned out that Fuglede’s theorem [25, Corollary
1.18], upon which the proof in [12] depends, can be avoided when treating
this problem, and so we will be able to prove a ring-theoretic generalization
of the result of [12].
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The problem of describing normal-preserving maps is much more difficult
when the involution is of the first kind. First of all, the involution is then
a linear operator and so, for instance, a map of the form x 7→ µ1x + µ2x

∗,
where µ1, µ2 ∈ F , is linear and preserves normal elements. Thus, we cannot
expect the same result as in Section 4. Moreover, consider the following
example.

Let A = F 〈x, y〉, where F is a field, be a free algebra in two indeterminates
x and y (incidentally, A is a centrally closed prime algebra [8, Theorem
2.4.4]), and equip A with standard involution (given by x∗ = x, y∗ = y
and λ∗ = λ, λ ∈ F ). Let U be a linear span of all monomials in which
both x and y appear, and V be a linear span of all monomials xn, yn with
n ≥ 1 (in particular, V ⊂ S). Then A = F ⊕ U ⊕ V and note that a
nonzero element in U never commutes with a nonzero element in V . Now
let T : V → V be any bijective linear operator. Then the map A → A
defined by λ+ u+ v 7→ λ+ u+ T (v) is ∗-linear, bijective and maps normal
elements onto normal elements.

This example somehow indicates that it is almost impossible to obtain a
definitive result for preservers of normal elements in the case the involution
is of the first kind. Nevertheless, even in this example the map acts very
simply on a rather large piece of A, namely on F ⊕U . In Section 5 we shall
see that under some technical conditions (in particular, we have to assume
that our map is ∗-linear) the action of normal-preservers can be described
on 〈K〉, which can certainly be considered as a “large piece” of A. In par-
ticular, except in some very special case, it contains a nonzero ideal of A
[8, Lemma 9.1.4 and Corollary 9.1.8]. Therefore, in simple algebras satisfy-
ing our technical assumptions, normal-preserving maps can be completely
determined.

2. Preliminaries.

The aim of this section is to give a brief and self-contained outline of some
parts the theory of functional identities, namely, those parts that shall really
be needed in the subsequent sections. For a more detailed account on this
theory we refer the reader to [11].

Throughout, the denotations F, Fs, A,K, S,A
′,K ′ and S′ shall have the

meaning already explained in the introduction. Though not always needed,
we assume for simplicity that char(F ) 6= 2. Given x, y ∈ A, we set

[x, y] = xy − yx and x ◦ y = xy + yx.

Next, by deg(x) we shall mean the degree of x over F (if x is algebraic over
F ) or ∞ (if x is not algebraic over F ). Next we set

deg(A) = sup{deg(x) | x ∈ A}.
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For instance, deg(Mn(F )) = n for any field F . Moreover, from the structure
theory of rings with polynomial identities [23, 26] it can be deduced that
deg(A) = n < ∞ if and only if A is a subring of Mn(F ) such that FA =
Mn(F ), where F is the algebraic closure of F .

The goal in the study of functional identities is, roughly speaking, to
describe the form of maps satisfying certain identities. The first functional
identities that have been considered were those concerned with the so-called
commuting maps, i.e., maps whose values commute with the variable. Let
us now reword the basic result on commuting maps [9, Theorem 3.2] in the
following somewhat unusual but useful form.

Theorem 2.1. Let f, θ : A → A′ be linear maps such that [f(x), θ(x)] = 0
for all x ∈ A. If θ is bijective, then there is τ ∈ F and a linear map
ζ : A→ F such that f(x) = τθ(x) + ζ(x) for all x ∈ A.

Actually, [9] considers only the case when A = A′ and θ is the identity
map. However, the seemingly more general condition treated in Theorem 2.1
can be reduced to that one by replacing the map f by the map fθ−1. We
also remark that in [9] the result is stated for additive maps on rings and
not linear maps on algebras, but the necessary modifications in the proof are
obvious. The same remarks apply for the remaining results in this section.
Moreover, in these three theorems such terms as linearity and vector space
should be understood with respect to the field Fs rather than F .

A map q : A→ A′ is said to be a trace of a k-linear map if there is a map
B : Ak → A′, linear in each argument and such that q(x) = B(x, . . . , x) for
all x ∈ A (by a trace of a 0-linear map we shall mean a constant). In the case
when char(F ) = 0 or char(F ) > k, there is no loss of generality in assuming
that this map B is symmetric (namely, otherwise replace B(x1, . . . , xk) by
1
k!

∑
π∈Sk

B(xπ(1), . . . , xπ(k))).
The next theorem follows from [7, Theorem 5.5] and [5, Lemma 2.2].

Theorem 2.2. Let R be a vector subspace of A, and let R′ be either S′ or
K ′. Suppose that a trace of an n-linear map q : R→ A′ satisfies

m∑
i=0

µiθ(x)iq(x)θ(x)m−i = 0 for all x ∈ R,

where µ0, . . . , µm belong to F and not all of them are 0, and θ : R → R′

is a bijective linear map. Suppose that char(F ) = 0 or char(F ) > n and
deg(A′) > 2(m+ n). Then:

(i) q(x) =
∑n

k=0 λk(x)θ(x)n−k, x ∈ R, where each λk : R → F is a trace
of a k-linear map;

(ii) if
∑m

i=0 µi 6= 0, then q = 0.

Keeping the notation of Theorem 2.2, assume that q(x)θ(x) ∈ F for all
x ∈ R, where q(x) = B(x, . . . , x) and B is an n-linear map. A standard
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approach, the so-called complete linearization, then shows that∑
π∈Sn+1

B(xπ(1), . . . , xπ(n))θ(xπ(n+1)) ∈ F.

Applying [7, Lemma 4.3] together with [5, Lemma 2.2] we then obtain:

Theorem 2.3. Let R be a vector subspace of A, and let R′ be either S′ or
K ′. Suppose that q : R → A′ is a trace of an n-linear map B : Rn → A′

such that q(x)θ(x) ∈ F for all x ∈ R (or θ(x)q(x) ∈ F for all x ∈ R),
where θ : R → R′ is a bijective linear map. If deg(A′) > 2n + 2, then∑

π∈Sn
B(xπ(1), . . . , xπ(n)) = 0. Thus, if char(F ) = 0 or char(F ) > n, then

q = 0.

We conclude this section with a result which might appear somewhat
strange. However, the conditions treated in this result really appear in the
proof of Theorem 5.1.

Theorem 2.4. Let f(x1, . . . , xm) be a multilinear polynomial in noncom-
muting variables x1, . . . , xm such that f(k1, . . . , km) ∈ K for all k1, . . . , km

∈ K. Let φ be a linear map of K onto K ′ such that

φ(f(k1, . . . , km)) = λf(φ(k1), . . . , φ(km)) for all k1, . . . , km ∈ K,

where λ is a nonzero element in F . Further, let a map B : K ×K → A′ be
such that

B(k, l) = −B(l, k)

for all k, l ∈ K, and

B(f(k1, . . . , km), l)

=
m∑

i=1

λf(φ(k1), . . . , φ(ki−1), B(ki, l), φ(ki+1), . . . , φ(km))

for all k1, . . . , km, l ∈ K. If deg(A′) > 4m+ 1, then there exists ρ ∈ F such
that

B(k, l)− ρ[φ(k), φ(l)] ∈ F for all k, l ∈ K.

For λ = 1, Theorem 2.4 can be deduced at once from the statements of
[5, Theorems 2.4] and [6, Theorem 2.9]. Almost the same proof, however,
still works in the case when λ is any nonzero element in F .

We have seen that excluding algebras of “small” degree one can obtain
definite results on functional identities. As a consequence, the proofs of our
main results will work as long as the degree of the algebra will be big enough.
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3. Commutativity-preservers on symmetric elements.

Having Theorems 2.2 and 2.3 in hand, the following result can be easily
obtained just by modifying the proof of [10, Theorem 2].

Theorem 3.1. Let A be A′ be centrally closed prime algebras over a field F
with involution. Let θ : S → S′ be a bijective Fs-linear map such that θ(s)
and θ(s2) commute for every s ∈ S. Suppose that deg(A) > 4, deg(A′) > 8
and char(F ) 6= 2, 3. Then θ is of the form θ(s) = αφ(s) + β(s) where
α ∈ Fs, α 6= 0, β is a Fs-linear map from S into Fs and φ : 〈S〉 → 〈S′〉 is
an Fs-algebra isomorphism.

Proof. We have θ(s)θ(s2) − θ(s2)θ(s) = 0 for all s ∈ S. Clearly, the map
s 7→ θ(s2) is a trace of a bilinear map and so Theorem 2.2 implies that

θ(s2) = λθ(s)2 + µ(s)θ(s) + ν(s)(1)

where λ ∈ F , µ : A → F is a linear and ν : A → F is a trace of a bilinear
map (again, the term linearity refers to Fs and not F ). We claim that
λ ∈ Fs and µ(s), ν(s) ∈ Fs for all s ∈ S. Indeed, since both θ(s) and θ(s2)
are symmetric for any s ∈ S, it follows that

λθ(s)2 + µ(s)θ(s) + ν(s) = λ∗θ(s)2 + µ(s)∗θ(s) + ν(s)∗

and so

{(λ− λ∗)θ(s) + µ(s)− µ(s)∗}θ(s) ∈ F for all s ∈ S.

Since deg(A′) is, in particular, > 4, Theorem 2.3 first gives

(λ− λ∗)θ(s) + µ(s)− µ(s)∗ = 0 for all s ∈ S,

which in turn implies, again by Theorem 2.3, that λ = λ∗ and µ(s) = µ(s)∗.
But then also ν(s) = ν(s)∗ for any s ∈ S.

Next we claim that θ(1) is a central element, that is, it lies in Fs. Just
as in [10, p. 535], substituting s + 1 for s in [θ(s2), θ(s)] = 0 we arrive
at [θ(s2 + s), θ(1)] = 0, and then repeating the same substitution we get
that [θ(s), θ(1)] = 0 for all s ∈ S. But then, since deg(A′) > 2, applying
Theorem 2.2 again (or just referring to the standard theory of rings with
involution) we infer that θ(1) is central.

Suppose that λ = 0. Then, since θ is Fs-linear, it follows that θ(s2 −
µ(s)s) ∈ Fs, which in turn implies, again using the Fs-linearity of θ together
with θ(1) ∈ Fs, that (s−µ(s))s ∈ Fs for all s ∈ S. Since deg(A) is assumed
to be > 4, Theorem 2.3 yields s−µ(s) = 0, which contradicts the assumption
deg(A) > 2. Therefore, λ 6= 0.

Now define ϕ : S → S′ by

ϕ(s) = λθ(s) +
1
2
µ(s), s ∈ S.
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Using (1) one can check that ϕ(s2) − ϕ(s)2 ∈ F for all s ∈ S. Hence
ϕ(s ◦ t) = ϕ(s) ◦ ϕ(t) + τ(s, t) for all s, t ∈ S, where s ◦ t = st + ts and
τ(s, t) ∈ F . Since (s ◦ s) ◦ (s ◦ s) = {(s ◦ s) ◦ s} ◦ s for all s ∈ S, we have

0 = ϕ([(s ◦ s) ◦ (s ◦ s)− {(s ◦ s) ◦ s} ◦ s])
= {ϕ(s) ◦ ϕ(s) + τ(s, s)} ◦ {ϕ(s) ◦ ϕ(s) + τ(s, s)}+ τ(s ◦ s, s ◦ s)
− {{ϕ(s) ◦ ϕ(s) + τ(s, s)} ◦ ϕ(s) + τ(s ◦ s, s)} ◦ ϕ(s) + τ({s ◦ s} ◦ s, s)

= 4τ(s, s)ϕ(s)2 − 4τ(s2, s)ϕ(s) + 2τ(s, s)2 + 4τ(s2, s2)− 4τ(s3, s)

for all s ∈ S. Substituting λθ(s) + 1
2µ(s) for ϕ(s) we see that

[λτ(s, s)θ(s)− (τ(s2, s)− τ(s, s)µ(s))]θ(s) ∈ F

for all s ∈ S. Using Theorem 2.3 twice we conclude that τ(s, s) = 0 for all
s ∈ S and so ϕ is a Jordan homomorphism. Let us show that ϕ is bijective.
Basically we shall just repeat arguments given at the end of the proof of
[10, Theorem 2]. Suppose that ϕ(s) = 0. Then θ(s) = − 1

2λµ(s) ∈ F . Since
0 6= θ(1) ∈ Fs, θ(Fs) = Fs, and so s ∈ Fs. Therefore the linearity of ϕ
implies that ϕ(1) = 0. Since ϕ is a Jordan homomorphism, this yields

2ϕ(t) = ϕ(1 ◦ t) = ϕ(1) ◦ ϕ(t) = 0 for all t ∈ S

forcing θ(S) ⊆ Fs and so S′ = Fs, a contradiction. Hence ϕ is injective.
Further, 2ϕ(1) = ϕ(1) ◦ ϕ(1) and ϕ(1) ∈ Fs together yield that ϕ(1) = 1.
Since ϕ is linear, ϕ(σ) = σ for all σ ∈ Fs. It is now straightforward to
check that θ(s) = ϕ(λ−1s − 1

2λ
−1µ(s)) for all s ∈ S and so ϕ is a Jordan

isomorphism of S onto S′. Now it follows from [17] (see also [21, 22]) that
ϕ can be extended to a surjective ∗-linear homomorphism (which we also
denote by ϕ) of associative Fs-algebras 〈S〉 and 〈S′〉. If I = ker(ϕ), then
I∗ = I and I ∩ S = 0. Therefore x∗ + x ∈ I ∩ S = 0 for all x ∈ I and so
x2 ∈ I ∩ S = 0 for all x ∈ I. On the other hand, the ring 〈S〉 is prime [18,
Theorem 3.4], and so I = 0. That is, ϕ is an isomorphism.

Let us finally mention that the bound deg(A′) > 8 in the theorem is not
the best possible. For example, one can lower it to deg(A′) > 6 arguing
similarly as in the proof [10, Theorem 2]. However, this makes the proof
considerably longer.

4. Normal-preservers: The case of involution of the second kind.

Theorem 4.1. Let A be A′ be centrally closed prime algebras over a field F
with involution of the second kind. Suppose that deg(A) > 2, deg(A′) > 2,
and that char(F ) 6= 2, 3. Let θ : A→ A′ be a bijective F -linear map with the
property that θ(x) is normal whenever x ∈ A is normal. Then θ is of the
form θ(x) = αφ(x) + β(x) where α ∈ F , α 6= 0, β : A → F is a linear map
and φ is either a ∗-isomorphism or a ∗-antiisomorphism of A onto A′.
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Proof. Let ε ∈ F be such that ε∗ = −ε. Then A = S + εS.
First we show that θ(1) ∈ F , that is, that θ(1) is a central element in A′.

Since s + λ is a normal element for every s ∈ S and λ ∈ F , it follows that
θ(s+λ) = θ(s) +λθ(1) is normal, that is, [θ(s) +λθ(1), θ(s)∗ +λ∗θ(1)∗] = 0
and hence λ[θ(1), θ(s)∗] + λ∗[θ(s), θ(1)∗] = 0. First setting λ = 1 and then
λ = ε it follows that [θ(1), θ(s)∗] = 0, which in turn implies that θ(1) is
central for A = S + εS and θ is bijective.

Next, s2 + λs is normal for s ∈ S and λ ∈ F , and so θ(s2) + λθ(s) is
normal which implies that [θ(s2), θ(s)∗] = 0. Linearizing we get

[θ(s2), θ(t)∗] + [θ(s ◦ t), θ(s)∗] = 0 for all s, t ∈ S.
Again using A = S + εS it follows easily that [θ(x2), θ(x∗)∗] = 0 for all
x ∈ A. Replacing x by x+1 and using the fact that θ(1) is central it follows
that [θ(x), θ(x∗)∗] = 0 for all x ∈ A. Now, using Theorem 2.1 we see that
there is τ ∈ F and a map ζ : A→ F such that θ(x∗)∗ = τθ(x)+ζ(x), x ∈ A.
Of course, τ 6= 0 for otherwise A′ would be commutative, contrary to the
assumption. Consequently, [θ(x2), θ(x)] = 0 for all x ∈ A. Thus, all the
requirements of [10, Theorem 2] are fulfilled, and so it follows that θ is of
the form θ(x) = αφ(x)+β(x) where α ∈ F , α 6= 0, β is a linear map from A
into the center of A′ and φ is either an isomorphism or an antiisomorphism
of A onto A′.

All it remains to show is that φ(x∗) = φ(x)∗, x ∈ A.
Assume that φ is an isomorphism. Then ψ(x) = φ(x∗)∗ also defines an

isomorphism. We want to show that φ = ψ. We have

α∗ψ(x) + β(x∗)∗ = θ(x∗)∗ = τθ(x) + ζ(x) = ταφ(x) + τβ(x) + ζ(x).

Since α 6= 0 and τ 6= 0 it follows that ν(x) = ψ(x) − γφ(x) ∈ F for every
x ∈ A, where γ = ατ

α∗ is a nonzero element in F . Whence

ν(xy) = ψ(x)ψ(y)− γφ(x)φ(y) = ν(x)ψ(y) + γφ(x)(ψ(y)− φ(y)).

Commuting this expression with ψ(y) it follows, since γ 6= 0 and ψ(y)−φ(y)
commutes with ψ(y), that [φ(x), ψ(y)](ψ(y) − φ(y)) = 0 for all x, y ∈ A.
Replacing x by xz we get at once that [A′, ψ(y)]A′(ψ(y) − φ(y)) = 0 for
every y ∈ A. Since A′ is prime this shows that given y ∈ A, either ψ(y) is
central or ψ(y) = φ(y). Since a group cannot be the union of two proper
subgroups and since A′ is noncommutative, it follows that ψ(y) = φ(y) for
all y ∈ A. Similarly we discuss the case when φ is an antiisomorphism.

5. Normal-preservers: The case of involution of the first kind.

Theorem 5.1. Let A be A′ be centrally closed prime algebras over a field F
with involution of the first kind. Suppose that deg(A) > 6, deg(A′) > 13 and
char(F ) 6= 2, 3. Further, let θ : A→ A′ be a bijective ∗-linear map with the
property that θ(x) is normal whenever x ∈ A is normal. Then there exist
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µ1, µ2 ∈ F , µ1 6= ±µ2, a linear map ω : 〈K〉 → F , and a ∗-isomorphism ψ
of 〈K〉 onto 〈K ′〉 such that θ(x) = ψ(µ1x+µ2x

∗)+ω(x+x∗) for all x ∈ 〈K〉.
First note that, since θ is ∗-linear, the condition that θ maps normal

elements into normal elements is equivalent to the condition that θ(s) and
θ(k) commute whenever s ∈ S and k ∈ K commute. In particular, for any
k ∈ K, k2 is a symmetric element commuting with skew elements k and k3,
so that [θ(k2), θ(k)] = 0 and [θ(k2), θ(k3)] = 0. One can note from the proof
that this is essentially all that we need; more precisely, in the theorem we
could replace the condition that θ preserves normal elements by a milder
condition that θ satisfies these two identities and that θ(F ) = F .

The proof of Theorem 5.1 is broken up into a series of lemmas. We begin
with:

Lemma 5.2. There exists λ0 6= 0 in F such that the map φ = λ0θ satisfies
φ(k2)− φ(k)2 ∈ F for all k ∈ K.

Proof. As already observed, [θ(k), θ(k2)] = 0 for all k ∈ K. But then it fol-
lows from Theorem 2.2 that there exist λ0 ∈ F and a linear map µ0 : K → F
such that θ(k2)− λ0θ(k)2 − µ0(k)θ(k) ∈ F for every k ∈ K. However, since
θ is ∗-linear and ∗ is of the first kind, µ0 must be zero. Hence we see that
φ = λ0θ indeed satisfies φ(k2) − φ(k)2 ∈ F , k ∈ K. Finally, assuming that
λ0 is zero we arrive at θ(k2) ∈ F ; however, θ(F ) = F for θ(1) ∈ F (namely,
θ(1) commutes with K ′ = θ(K) and deg(A′) > 2 — cf. the proof of Theo-
rem 2.2), and so k2 lies in F for every k ∈ K. But Theorem 2.3 tells us that
this is impossible. The lemma is thereby proved.

Of course, φ has the same properties as θ, that is, it is ∗-linear, bijective
and preserves normal elements.

Define ε : K ×K → F by

ε(k, l) =
1
2
{φ(k ◦ l)− φ(k) ◦ φ(l)}.(2)

Clearly, ε is a bilinear symmetric map.

Lemma 5.3. There exist λ 6= 0 in F and a symmetric bilinear map µ :
K ×K → F such that

φ(klk) = λφ(k)φ(l)φ(k) + µ(k, l)φ(k)

for all k, l ∈ K.

Proof. If k ∈ K, then k2 ∈ S and k3 ∈ K, so that [φ(k3), φ(k2)] = 0.
However, φ(k2) = φ(k)2 + ε(k, k) and so [φ(k3), φ(k)2] = 0 for every k ∈ K.
Since deg(A′) > 10, Theorem 2.2, together with the fact that φ is ∗-linear
and ∗ is of the first kind, shows that there are λ ∈ F and a symmetric
bilinear map µ : K ×K → F such that

φ(k3) = λφ(k)3 + µ(k, k)φ(k) for all k ∈ K.(3)
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Note that λ = 0 yields k3 = µ(k, k)k which is, since deg(A) > 6, impossible
by Theorem 2.3. Thus, λ 6= 0.

Linearizing (3) we get

φ(k2l + klk + lk2) = λ{φ(k)2φ(l) + φ(k)φ(l)φ(k) + φ(l)φ(k)2}(4)

+ µ(k, k)φ(l) + 2µ(k, l)φ(k).

Next we compute φ(k2lk + klk2) in two different ways. First using (2) we
get

2φ(k2lk + klk2)

= φ(k ◦ {k2 ◦ l + klk})− φ(k3 ◦ l)
= φ(k) ◦ φ(k2 ◦ l + klk) + 2ε(k, k2 ◦ l + klk)− φ(k3) ◦ φ(l)− 2ε(k3, l),

so that

2φ(k2lk + klk2)− φ(k)φ(k2l + klk + lk2)

− φ(k2l + klk + lk2)φ(k) + φ(k3)φ(l) + φ(l)φ(k3) ∈ F.

Applying (3) and (4) it follows that

2φ(k2lk + klk2)

− φ(k){λφ(k)2φ(l) + λφ(k)φ(l)φ(k) + λφ(l)φ(k)2

+ µ(k, k)φ(l) + 2µ(k, l)φ(k)}
− {λφ(k)2φ(l) + λφ(k)φ(l)φ(k) + λφ(l)φ(k)2

+ µ(k, k)φ(l) + 2µ(k, l)φ(k)}φ(k)

+ {λφ(k)3 + µ(k, k)φ(k)}φ(l) + φ(l){λφ(k)3 + µ(k, k)φ(k)} ∈ F,

and hence

φ(k2lk + klk2)− λ(φ(k)2φ(l)φ(k) + φ(k)φ(l)φ(k)2)− 2µ(k, l)φ(k)2 ∈ F.

On the other hand, (2) implies that

φ(k2lk + klk2) = φ(k ◦ {klk}) = φ(k) ◦ φ(klk) + 2ε(k, klk).

Comparing we obtain

φ(k) ◦ {φ(klk)− λφ(k)φ(l)φ(k)− µ(k, l)φ(k)} ∈ F

for all k, l ∈ K. According to the statement (ii) of Theorem 2.2 we must
then have φ(klk)− λφ(k)φ(l)φ(k)− µ(k, l)φ(k) = 0 for all k, l ∈ K, and the
lemma is proved.
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We shall need the conclusion of Lemma 5.3 in the following form

φ(k1lk2 + k2lk1) = λ{φ(k1)φ(l)φ(k2) + φ(k2)φ(l)φ(k1)}(5)

+ µ(k1, l)φ(k2) + µ(k2, l)φ(k1)

for all k1, k2, l ∈ K.

Lemma 5.4. µ(k, l) = 0 for all k, l ∈ K.

Proof. The proof is based on computing φ(kl1kl2k+ kl2kl1k), where k, l1, l2
are arbitrary elements in K, in two different ways. First, applying (5) we
get

φ(kl1kl2k + kl2kl1k)

= φ((kl1k)l2k + kl2(kl1k))

= λ{φ(kl1k)φ(l2)φ(k) + φ(k)φ(l2)φ(kl1k)}+ µ(kl1k, l2)φ(k)

+ µ(k, l2)φ(kl1k)

= λ2{φ(k)φ(l1)φ(k)φ(l2)φ(k) + φ(k)φ(l2)φ(k)φ(l1)φ(k)}
+ 2λµ(k, l1)φ(k)φ(l2)φ(k) + λµ(k, l2)φ(k)φ(l1)φ(k)

+ {µ(kl1k, l2) + µ(k, l2)µ(k, l1)}φ(k).

However, l1 and l2 appear symmetrically in the expression kl1kl2k+kl2kl1k
and so, on the other hand, we must have

φ(kl1kl2k + kl2kl1k)

= λ2{φ(k)φ(l2)φ(k)φ(l1)φ(k) + φ(k)φ(l1)φ(k)φ(l2)φ(k)}
+ 2λµ(k, l2)φ(k)φ(l1)φ(k) + λµ(k, l1)φ(k)φ(l2)φ(k)

+ {µ(kl2k, l1) + µ(k, l1)µ(k, l2)}φ(k).

Comparing both relations we obtain

λφ(k){µ(k, l2)φ(l1)− µ(k, l1)φ(l2)}φ(k) = {µ(kl1k, l2)− µ(kl2k, l1)}φ(k)

for all k, l1, l2 ∈ K. Now using Theorem 2.3 twice it follows that

µ(k, l2)φ(l1)− µ(k, l1)φ(l2) = 0 for all k, l1, l2 ∈ K,

which readily implies the assertion of the lemma.

Thus, (5) now reduces to

φ(k1lk2 + l2kl1) = λ{φ(k1)φ(l)φ(k2) + φ(k2)φ(l)φ(k1)}.(6)
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Lemma 5.5. There exists ρ ∈ F such that ρ2 = λ and φ([k, l]) =
ρ[φ(k), φ(l)] for all k, l ∈ K.

Proof. We have arrived at the situation when Theorem 2.4 can be applied.
Taking a polynomial f to be f(x1, x2, x3) = x1x2x3 + x3x2x1 and a map
B to be equal to B(k, l) = φ([k, l]), we see, by making use of (6), that
all the conditions of this theorem are fulfilled (this is the place when the
condition deg(A′) > 13 is used). It follows that there exists ρ ∈ F such
that φ([k, l]) − ρ[φ(k), φ(l)] ∈ F for all k, l ∈ K; however, since ∗ is of the
first kind, this clearly yields φ([k, l]) = ρ[φ(k), φ(l)]. It remains to show that
ρ2 = λ. We have

φ([[k1, k2], k3]) = ρ[φ([k1, k2]), φ(k3)] = ρ2[[φ(k1), φ(k2)], φ(k3)].

On the other hand, using (6), we get

φ([[k1, k2], k3]) = φ(k1k2k3 + k3k2k1)− φ(k2k1k3 + k3k1k2)

= λ[[φ(k1), φ(k2)], φ(k3)].

Whence (ρ2 − λ)[[K ′,K ′],K ′] = 0. Suppose that [[K ′,K ′],K ′] = 0. Then
applying [8, Theorem 9.1.13] we get that deg(A′) ≤ 2, a contradiction.
Therefore ρ2 = λ and the lemma is proved.

Lemma 5.6. There exist a ∗-isomorphism ψ of an algebra 〈K〉 onto an
algebra 〈K ′〉 and a linear map τ : K ◦K → F such that ψ(k) = ρφ(k) for
all k ∈ K and ψ(s) = λφ(s)− τ(s) for all s ∈ K ◦K.

Proof. We first define ψ on K by ψ(k) = ρφ(k), k ∈ K. Since φ = λ0θ and
θ is a ∗-linear map, ψ(K) = θ(K) = K ′. It follows from Lemmas 5.3, 5.4
and 5.5 together that

ψ([k, l]) = [ψ(k), ψ(l)] and ψ(k3) = ψ(k)3 for all k, l ∈ K.(7)

Now both (7) and [8, Lemma 9.4.5] imply that ψ can be uniquely extended
to an isomorphism (which we also denote by ψ) of associative rings 〈K〉 and
〈K ′〉. Since ψ|K is a linear map and K generates 〈K〉, ψ is an isomorphism
of algebras. Clearly

ψ(K) = K ′ and ψ(K ◦K) = ψ(K) ◦ ψ(K) = K ′ ◦K ′.(8)
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According to [8, Lemma 9.1.5], 〈K〉 = K + K ◦ K and 〈K ′〉 = K ′ + K ′ ◦
K ′. Obviously K (respectively, K ◦ K) is the set of skew (respectively,
symmetric) elements of the algebra 〈K〉. It now follows from (8) that ψ is
a ∗-isomorphism.

Now define a linear map τ on K ◦K by τ(s) = λφ(s) − ψ(s). We claim
that τ(s) lies in F for any s ∈ K ◦K. Indeed, clearly the vector space K ◦K
is spanned by the set {k2 | k ∈ K}. Given k ∈ K, we have

τ(k2) = λφ(k2)− ψ(k2) = λφ(k2)− ψ(k)2

= λφ(k2)− {ρφ(k)}2 = λ{φ(k2)− φ(k)2} ∈ F

by Lemma 5.2 which proves our claim.

Finally, invoking the definition of φ we see from Lemma 5.6 that for any
x ∈ 〈K〉 we have

θ(x) = λ0φ(x) =
λ0

2
φ(x− x∗) +

λ0

2
φ(x+ x∗)

=
λ0ρ

−1

2
ψ(x− x∗) +

λ0λ
−1

2
ψ(x+ x∗) +

λ0λ
−1

2
τ(x+ x∗).

Now set µ1 = 1
2λ0(λ−1 + ρ−1), µ2 = 1

2λ0(λ−1 − ρ−1), ω(x− x∗) = 0, ω(x+
x∗) = 1

2λ0λ
−1τ(x+ x∗) and note that the desired conclusion holds true.
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270 BEIDAR, M. BREŠAR, CHEBOTAR, AND FONG

[6] , On functional identities and d-free subsets of rings II, Comm. Algebra, 28
(2000), 3953-3972, MR 2001j:16046.

[7] K.I. Beidar and W.S. Martindale 3rd, On functional identities in prime rings with
involution, J. Algebra, 203 (1998), 491-532, MR 99f:16024, Zbl 0904.16012.

[8] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, Rings with Generalized Iden-
tities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996, MR 97g:16035,
Zbl 0847.16001.
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