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Together with M. Boyle and D. Huang (2000), this paper
gives an alternate development of the Huang classification of
shifts of finite type up to flow equivalence, and provides ad-
ditional functorial information, used to analyze the action of
the mapping class group of the mapping torus of a shift of fi-
nite type on the “isotopy futures” group, which is introduced
here. For a shift of finite type σA, this group is isomorphic to
the Bowen-Franks group cok(I−A). The action on the isotopy
futures group of a subshift is the flow equivalence analogue of
the dimension group representation.

1. Introduction.

Shifts of finite type (SFTs) are the fundamental building blocks of sym-
bolic dynamics, with applications to hyperbolic dynamics, ergodic theory,
topological dynamics, matrix theory and other areas [Bow, DGS, Ki, LM,
Rob, S]. Any SFT is conjugate to an SFT σA defined by a matrix A with
nonnegative integer entries. A fundamental question about SFTs, when are
they flow equivalent, is important also for the study of certain C∗-algebras
[C, CK, H2, H3, R]. This question was solved in the irreducible case by
Franks [F], extending earlier work of Parry and Sullivan [PS] and Bowen and
Franks [BowF], and then in the general case by Huang [H4, H5], following
earlier work on more tractable special cases [H1, H3]. Huang [H4, H5] de-
veloped complete algebraic invariants (defined in terms of the given matrix
A) for flow equivalence of SFTs.

This paper has three main features.
(1) Taken together with [BH], the paper gives a self-contained alternate

development of the Huang classification of SFTs up to flow equiva-
lence. This development separates algebraic and positivity issues, and
provides additional functorial information.

(2) We introduce the isotopy futures group FS of the mapping torus YS of
a subshift S, and when S is an SFT σA we construct an isomorphism of
FS and the Bowen-Franks group cok(I −A), and analyze the induced
action of the mapping class group of YS on FS .
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(3) We integrate the study of flow equivalence of SFTs into the “positive
K-theory” framework for classification problems in symbolic dynamics.

We now discuss these features in more detail.
1. To study reducible SFTs, we work with certain infinite block trian-

gular integral matrices with block rows and columns indexed by a finite
poset P: If i � j in P, then the ij block of the matrix must be zero. The
elements of P, and their ordering, correspond to the irreducible compo-
nents of the SFT, and their asymptotic transitions; the isomorphism class
of the poset P is an invariant of flow equivalence. We say two such matrices
B,B′ are SLP(Z) equivalent if there are matrices U, V satisfying the same
zero-subblock conditions, and with all diagonal blocks having determinant
1, such that UBV = B′. After fixing a choice of P, and allowing a per-
mutation of P, we show that A,A′ define flow equivalent SFTs if and only
if the matrices I − A and I − A′ are SLP(Z) equivalent by an equivalence
which is “positive on cycle components”(a technical condition which may
be removed after reduction to a standard form, see Theorem 3.4). The key
to this result is the Factorization Theorem 3.3, which gives necessary and
sufficient conditions for an SLP(Z) equivalence to be a composition of “pos-
itive” elementary equivalences (which induce flow equivalences). Complete
algebraic invariants for SLP(Z) equivalence are contained in the joint work
[BH] with Danrun Huang. (The proofs in the current paper are very differ-
ent from those of Huang [H4, H5], but the algebraic sequel [BH] depends
completely on the ideas introduced by Huang in [H4, H5].)

In Huang’s development, the proofs involve creating positive matrix mod-
els realizing given isomorphisms of an associated “K-web” of exact sequences
of associated groups; the difficult positivity and algebraic issues are inter-
twined. By interposing the SLP(Z) equivalence relation between the SFTs
and the complicated K-web algebraic invariants, we separate the positivity
issues (which we address in this paper) from purely algebraic issues (which
are addressed in [BH]). This clarifies the meaning of the invariants and
the structure of the problem. It also facilitates the application of algebraic
results.

2. The analysis of the induced action on cok(I−A) uses the Factorization
Theorem 3.3 together with purely algebraic results from [BH] on SLP(Z)
equivalence. There is a plausible program (7.15) for extending these ideas
to obtain more information.

It seems to be nontrivial to construct a functor which attaches isomor-
phisms of Bowen-Franks groups to isotopy classes of flow equivalences of
SFTs. (For example, we do not know if it is possible to construct a ho-
momorphism from Ȟ1(YσA) onto the Bowen-Franks group cok(I − A) such
that the natural action of the mapping class group on Ȟ1(YσA) induces an
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automorphism of cok(I − A); and we suspect there is no such homomor-
phism.) An alternate approach using work of Badoian is discussed at the
end of Section 7. Another possible approach would be to extend ideas of
Bowen and Franks, who computed cok(I −A) as a relative homology group
in the context of basic sets of Smale flows ([BowF, F]).

3. In the framework of positive K-theory (a term introduced by Wagoner),
some class of matrices A presents some category of dynamical system, and
multiplication of I − A by elementary matrices satisfying some positivity
condition induces isomorphisms of the system presented by A. This frame-
work was born in [KRW2, KRW3], where matrices over tZ+[t] presented
SFTs, and multiplication of I −A by certain elementary matrices over Z[t]
gave a completely new method of constructing topological conjugacies, which
allowed the solution of a difficult and important open problem. This frame-
work for SFT’s is developed or exploited further in [BW, B1, KR1, W2];
in the last reference [W2], the K-theory connection is more than a for-
mal analogy and gives new counterexamples to Williams’ shift equivalence
conjecture. In [G], the matrix entries lie in a certain ring of formal power
series, and the elementary matrix multiplications induce good finitary iso-
morphisms of Markov chains. In this paper and in [Ba1], the matrices have
integer (or zero-one) entries, and the elementary multiplications induce flow
equivalences. There is a passage from the topological conjugacy case to the
flow equivalence case by “setting t equal to 1” (applying the coinvariants
functor), as described in [B1]. The positive K-theory approach gives a uni-
fied and useful framework for classification problems in symbolic dynamics,
and we view this paper as a significant piece of the theory for the case of
flow equivalence of SFTs. It is possible that the methods of this paper may
be suggestive for the case of topological conjugacy of SFTs.

Some of our results on flow equivalence have alternate proofs based on
the work of Leslie Badoian [Ba1], who develops for irreducible SFTs a flow
equivalence theory analogous to the theory created by Wagoner for topolog-
ical conjugacies of SFTs. At the end of Section 7, we summarize the main
results of [Ba1], and discuss those alternate proofs.

Now some words on the structure of the paper. In Section 2 we give
some definitions and technical results necessary for the statement of the
main results in Section 3. The proof of the Factorization Theorem is carried
out in Sections 4-5 and the Appendix. Shifts of finite type and the relation
of flow equivalence to the matrix results are addressed in Section 6. The
isotopy futures group and connections to flow equivalence are studied in
Section 7. For the simple general statement of our Factorization Theorem for
matrices, we need preliminary technical arguments to reduce our matrices to
a nondegenerate form. These preliminaries are complicated, and we banish
them to the Appendix.
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The basic approach of this paper, and the Factorization Theorem in the
“no cycle components” case under additional technical assumptions since
removed, were announced in [B1].

I thank Danrun Huang for many helpful comments, and for a very satis-
fying collaboration in our sequel paper [BH]. Also, without his earlier work,
this paper would not exist.

2. Definitions.

2.1. Poset blocked matrices. For the rest of the paper, we let P =
{1, . . . , N} denote a finite poset (partially ordered set). We describe the
order with a relation ≺ satisfying the following conditions (in which < refers
to the usual order on N) for all i, j, k in P:

i ≺ j =⇒ i < j,

i ≺ j ≺ k =⇒ i ≺ k.

We write i � j to mean that i ≺ j or i = j. We can visualize the poset as
an acyclic directed graph with vertex set {1, . . . , N} and transitions i → j
iff i ≺ j.

We say that a matrix (or a block in a matrix) is square if its rows and
columns are indexed by the same set (which may be finite or countably
infinite). Suppose that n1, . . . , nN lie in the set {1, 2, . . . ,∞}. Let n =
(n1, . . . , nN ). We say a square matrix M is “n-blocked” if it splits into
blocks Mij , 1 ≤ i, j ≤ N , where Mij denotes the intersection of the ith block
row and the jth block column, and has size ni × nj . (We will also use the
notation M{i, j} to denote Mij .) Given an n-blocked matrix M , we let Ij
denote the set of indices for rows/columns through the block Mjj .

Definition 2.1. MP(n, Z) is the set of n-blocked matrices with entries in
Z satisfying the following conditions:

(1) For 1 ≤ i ≤ N , the block Mii equals the identity matrix in all but
finitely many entries.

(2) For 1 ≤ i, j ≤ N and i 6= j, the block Mij is zero in all but finitely
many entries.

(3) If i 6� j, then the block Mij is zero.

The matrices in the semiring MP(n, Z) are block upper triangular and in
addition certain blocks above the diagonal must be zero. MP(n, Z) is closed
under addition and (because ≺ is transitive) under matrix multiplication.

A nonnegative matrix A is irreducible if it is square with all entries non-
negative, and for every (i, j) there exists n > 0 such that An(i, j) > 0. (In
particular, for us a zero matrix is not irreducible.) A square matrix is essen-
tially irreducible if it has a unique principal submatrix which is irreducible
and which is contained in no larger irreducible principal submatrix.
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Definition 2.2. M◦
P,+(n, Z) is the set of n-blocked nonnegative integral

matrices with only finitely many nonzero entries, satisfying the following
conditions:

(1) Each diagonal block Mii is essentially irreducible.
(2) If i 6� j, then the block Mij is zero.
(3) If i ≺ j, then there is an index i′ occuring on a cycle of Mii and an

index j′ occuring on a cycle of Mjj and a positive integer n, such that
An(i′, j′) > 0.

Definition 2.3. SLP(n, Z) is the set of matrices M in MP(n, Z) such that
det(Mii) = 1 for 1 ≤ i ≤ N .

Abbreviations 2.4. MP(Z), M◦
P,+(Z) and SLP(Z) denote the sets

MP(n, Z), M◦
P,+(n, Z) and SLP(n, Z) for which n = (n1, . . . , nN ) with every

ni =∞. Whenever any such matrix family appears with no subscript P, it
means that P = {1} (the block structure is trivial).

We say two matrices B,B′ in MP(n, Z) are SLP(n, Z)-equivalent in
MP(n, Z) if there are matrices U, V in SLP(n, Z) such that UBV = B′,
and we write this as (U, V ) : B → B′. We say a matrix is a basic elementary
matrix if it equals the identity matrix except in at most one offdiagonal
entry. It is not difficult to check that SLP(n, Z) is a group under multipli-
cation which is generated by basic elementary matrices [BH]. Given n ≤ r,
we have natural truncation and embedding maps between n-blocked and
r-blocked matrices,

trun : MP(r, Z)→MP(n, Z),

ιr : MP(n, Z)→MP(r, Z).

The truncation map replaces an ij block with its ni × nj upper left corner.
The embedding map embeds an ij block as the upper left corner of an ij
block. If i 6= j, then the image ij block is zero outside this embedded left
corner; if i = j, it is the identity outside this left corner. We will use A∞ to
abbreviate ιn(A) in the case that every ni = ∞. We will also use trun, ιr
and A∞ for matrix families other than MP . The only potentially ambiguous
point, which should be clear from context, is whether the embedded block
corners should be extended as above with MP to match the identity matrix,
or should be extended to match the zero matrix (e.g., when the range is
M◦

P,+).

2.2. Positive equivalence. Suppose for some (i, j) that E is a basic el-
ementary matrix with offdiagonal entry E(i, j) = 1, A ∈ M◦

P,+(n, Z), and
A(i, j) > 0. Then we say that each of the equivalences

(E, I) : (I −A)→ E(I −A), (E−1, I) : E(I −A)→ (I −A),

(I, E) : (I −A)→ (I −A)E, (I, E−1) : (I −A)E → (I −A)
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is a basic positive equivalence in I −M◦
P,+(n, Z). Note, E ∈ SLP(n, Z). We

say that an SLP(n, Z) equivalence is a positive equivalence in I−M◦
P,+(n, Z)

if it is a composition of basic positive equivalences in I −M◦
P,+(n, Z).

To understand the meaning of a basic positive equivalence, suppose A ∈
M◦

P,+(n, Z) with A(i, j) > 0 and E is basic elementary matrix with offdiag-
onal entry E(i, j) = 1. We first discuss the case (E, I) : (I−A)→ E(I−A).
Define A′ by the requirement E(I − A) = (I − A′). Then A and A′ agree
except perhaps in row i, where

A′(i, k) = A(i, k) + A(j, k) if j 6= k, and

A′(i, j) = A(i, j) + A(j, j)− 1.

View A as the adjacency matrix of a directed graph GA with edge set EA
and vertex set given by the n1 + · · · + nN indices for the rows/columns of
A. (There can be edges joining only finitely many of those vertices.) We
can describe a directed graph GA′ which has A′ as its adjacency matrix as
follows. GA′ has the same vertex set as GA. Now pick an edge e which runs
from vertex i to vertex j in GA (e exists because by assumption A(i, j) > 0).
The edge set EA′ will be derived from EA as follows: Remove e from EA; and
then for every vertex k, for every edge f in EA from j to k add in a new
edge (named [ef ]) from i to k. It is easy to verify that with this edge set
EA′ , the directed graph GA′ has adjacency matrix A′.

With this notation, now define a map γ : EA′ → (EA)∗ by γ : f 7→ f and
γ : [ef ] 7→ ef . Then γ induces an injective map (also called γ), from the set
ΣA′ of biinfinite paths through GA′ to the set ΣA of biinfinite paths through
GA, sending x′ to x by the rule

γ : . . . x′−2x
′
−1|x′0x′1 . . . 7→ . . . γ(x′−2)γ(x′−1)|γ(x′0)γ(x′1) . . .

(in which the placement of the vertical bar indicates the indexing for x, e.g.,
x0x1 · · · = γ(x′0)γ(x′1) . . . ). Briefly: We get x from x′ by replacing each A′

edge [ef ] with ef .
The injective map γ : ΣA′ → ΣA is not surjective precisely because the

image will not contain points x for which x−1 = e (the image will contain the
shifted point σ−1x which is defined by (σ−1x)i = xi−1). However, although
γ is generally not a bijection, it does induce a bijection of orbits (under the
shift) in ΣA and ΣA′ . Also, γ induces a bijection of finite orbits: That is, γ
induces a bijection (also called γ) of cycles in GA and GA′ (which need not
respect the cycle length). If 1 ≤ t ≤ N and c is a cycle for the block Att,
then γ(c) is a cycle for A′

tt, because if i and j are not indices for the same
component then γ is the identity on cycles. Also, if x in ΣA is backwardly
asymptotic (under the shift) to a cycle c and forwardly asymptotic to a cycle
c̃, then γ(x) is backwardly asymptotic to γ(c) and forwardly asymptotic to
γ(c̃). It follows that the matrix A′ satisfies the conditions of Definition 2.2
and lies in M◦

P,+(n, Z).
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The discussion of the case (I, E) : (I −A)→ (I −A)E = (I −A′) is much
the same. Let f be an A-edge from i to j. To form the A′ graph from the
A graph in this case, delete f , and add a new edge [ef ] for each edge e with
terminal vertex i. Then define γ as before.

The following lemma, fundamental to the sequel, is implicit in Franks’
paper [F].

Lemma 2.5. Suppose A ∈ M◦
P,+(n, Z), E is a basic elementary matrix in

SLP(n, Z) whose nonzero offdiagonal entry is E(i, j) = 1, and there is a
positive integer k such that Ak(i, j) > 0.

(1) If (E(I −A))(i, j) ≤ 0, then (E, I) : (I −A)→ E(I −A) is a positive
equivalence in I −M◦

P,+(n, Z).
(2) If ((I −A)E)(i, j) ≤ 0, then (I, E) : (I −A)→ (I −A)E is a positive

equivalence in I −M◦
P,+(n, Z).

Proof. We will consider the claim for the first equivalence (E, I); the other
case is similar. By assumption, there is a list i = i0, i1, . . . , ik = j (which we
take to be of minimal length, so the indices i0, i1, . . . , ik are distinct) such
that for 0 ≤ t < k we have A(it, it+1) > 0. If k = 1, then the equivalence is
a basic positive equivalence (and we know a basic positive equivalence takes
a matrix in I −M◦

P,+(n, Z) to a matrix in I −M◦
P,+(n, Z)). So suppose

k > 1. Let Ft be the elementary matrix whose which acts to add row it to
row i. Let F = Fk−1 . . . F1. Then we have basic positive equivalences

(I −A) → F1(I −A) → F2F1(I −A) → · · · → (Fk−1 · · ·F2F1)(I −A)

= F (I −A) → EF (I −A) → (Fk−1)−1EF (I −A)

→ · · · → (F1)−1 · · · (Fk−2)−1(Fk−1)−1EF (I −A)

= F−1EF (I −A) = E(I −A).

�

2.3. Cycle components. The technical discussion of this subsection is
only required for the case when the matrix A in M◦

P,+(n, Z) has a diag-
onal block whose maximal irreducible submatrix is a permutation matrix.

Lemma 2.6. Suppose A is an S ×S nonnegative integral matrix which has
as its unique irreducible submatrix a cyclic permutation matrix. Then the
cokernel group cok(I−A) = ZS/(I−A)ZS is isomorphic to Z. Let I denote
the set of indices involved in the cyclic permutation. Then the canonical
basis vectors satisfy the following conditions:

(1) [ei] is a generator of cok(I −A) if i ∈ I.
(2) [ei] = [ej ] if i and j are in I.
(3) [ei] = 0 if i /∈ I.
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Proof. (3) If i /∈ I, then for large n, Anei = 0, and ei = (I − An)ei =
(I −A)(I + A + · · ·+ An−1)ei. Then [ei] = 0 in cok(I −A).

(2) Let π denote the given permutation and suppose i and j are in I.
Then there exists n > 0 such that Anei = ej , so in cok(I − A) we have
[ei]− [ej ] = [ei − ej ] = [(I −An)ei] = 0.

(1) Clearly now, if i ∈ I, then [ei] generates cok(I − A). Also, because
det(I−A) = 0, Z is a subgroup of cok(I−A). Therefore cok(I−A) ∼= Z. �

For a matrix A satisfying the hypotheses of the lemma, we make cok(I−A)
an ordered group by declaring its positive set to be the collection of those
[w] such that (in the notation of the statement of the lemma)

∑
i∈I wi ≥ 0.

(This sum does not depend on the representative w of [w].) We say an
isomorphism between two such cokernel groups is positive if it takes the
positive set in the domain to the positive set in the range.

If A ∈ M◦
P,+(n, Z), then for 1 ≤ i ≤ N the diagonal block Aii contains

a unique maximal irreducible principal submatrix. If this matrix is a per-
mutation matrix, then we say that i is a cycle component of A. We let CA
denote the set of cycle components of A. For each i in CA, we make the
cokernel group

cok(I −A)ii = Zni/(I −A)iiZ
ni ∼= Z

an ordered group as described above. For A and A′ in M◦
P,+(n, Z), if (U, V )

is an SLP(Z) equivalence from A to A′, then for 1 ≤ i ≤ N the equiv-
alence (U, V ) induces an SL(Z) equivalence (Uii, Vii) from Aii to A′

ii, and
this induces an isomorphism from cok(I − A)ii to cok(I − A′)ii by the rule
[x] 7→ [Uiix]. We say that the SLP(Z) equivalence (U, V ) is positive on cy-
cle components if this induced isomorphism of the ith component cokernel
groups is positive whenever i is a cycle component for both A and A′. For
example, if

Aii = A′
ii =

(
0 1
1 0

)
and Uii = Vii =

(
−1 0
0 −1

)
,

then (U, V ) is not positive on cycle components.

Proposition 2.7. Suppose (U, V ) is a positive SLP(n, Z) equivalence from
(I −A) to (I −A′) in I −M◦

P,+(n, Z). Then:
(1) A and A′ have the same cycle components, and
(2) (U, V ) is positive on cycle components.

Proof. It suffices to consider the case (U, V ) = (E, I) where E is a basic
elementary matrix with offdiagonal entry E(i1, j1) = 1 such that i1 and j1

index rows through Aii and i is a cycle component of A.
(1) It is clear from the earlier discussion on positive equivalence that the

ith component of A has a unique cycle iff the ith component of A′ has a
unique cycle.
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(2) For any canonical basis vector es, the vector Ees is nonnegative be-
cause E is nonnegative. It follows that (E, I) must be positive on compo-
nents. �

3. Statement of results.

In this section we state the main results (Theorem 3.1 and Theorem 3.3)
which do not involve the mapping class group. We also give Theorems 3.4
and 3.5, which clarify computational issues. The definition of flow equiv-
alence is given in Section 6, and all discussion of the mapping class group
results is deferred to Section 7.

We need a little more notation. Given P, we will use the same index set
IP , a disjoint union of countably infinite sets IPp , p ∈ P, for all matrices
with P × P blocking into infinite subblocks. Given finite posets P,P ′, let
Iso[P,P ′] be the set of poset isomorphisms from P to P ′. For each ν in
Iso[P,P ′], fix an infinite permutation matrix P = Pν such that

P (i, j) = 1 and j ∈ IPp ⇒ i ∈ IP ′

ν(p).

Informally, a block P{p, q} is zero if q 6= ν(p) and is the (infinite) identity
matrix if q = ν(p).

Theorem 3.1 (Classification Theorem). Suppose A is in M◦
P,+(Z) and A′

is in M◦
P ′,+(Z). The following are equivalent:

(1) The SFTs σA and σA′ are flow equivalent.
(2) For some ν ∈ Iso[P,P ′], with P = Pν : there exists a positive SLP(Z)

equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

(3) For some ν ∈ Iso[P,P ′], with P = Pν : A and P−1A′P have the same
cycle components, and there exists an SLP(Z) equivalence from (I−A)
to (I − P−1A′P ) which is positive on cycle components.

Remarks 3.2.
(1) There are only finitely many automorphisms ν : P → P ′, and they are

easily computed. So, we can decide (3) in Theorem 3.1 if we can decide
it in the case where P = I and P = P ′.

(2) The content of Theorem 3.1 is contained in [H4, H5]. We will prove
the equivalence (1) ⇐⇒ (2) in Section 6. The implication (2) =⇒
(3) is trivial. The implication (3) =⇒ (2) follows from the main
contribution of this paper, which is the next theorem.

Theorem 3.3 (Factorization Theorem). Suppose A and A′ are in M◦
P,+(Z),

and (U, V ) : (I−A)→ (I−A′) is an SLP(Z) equivalence. The following are
equivalent:

(1) (U, V ) : (I − A) → (I − A′) is a positive SLP(Z) equivalence in I −
M◦

P,+(Z).
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(2) A and A′ have the same cycle components, and (U, V ) is positive on
cycle components.

Below, given a matrix A in any M◦
P,+(n, Z), we let A∞ denote its embed-

ding in M◦
P,+(Z).

Theorem 3.4. Suppose A and A′ are in M◦
P,+(n, Z), where n = (n1, . . . ,

nN ) and the following hold for 1 ≤ i ≤ N:

• ni = 1 ⇔ i is a cycle component of A ⇔ i is a cycle component of A′,
• ni = 1 or ni =∞.

Then the following are equivalent:

(1) There exists a positive SLP(Z) equivalence from (I−A∞) to (I−A′
∞)

in I −M◦
P,+(Z).

(2) (I −A) and (I −A′) are SLP(n, Z) equivalent.

Proof of Theorem 3.4. (2) =⇒ (1) Suppose (U, V ) is the SLP(n, Z) equiv-
alence. If ni = 1, then Uii = Vii = 1 because {U, V } ⊂ SLP(n, Z).
So, the embeddings of U and V in SLP(Z) give an SLP(Z) equivalence
(I − A∞) → (I − A′

∞) in I −M◦
P,+(Z) which is positive on cycle compo-

nents.
(1) =⇒ (2) This follows from Lemmas A.3 and A.7. �

The point of Theorem 3.4 is to give a flow equivalence criterion in terms
of just SLP(n, Z) equivalence (which is characterized in [BH]), without a
“positive on cycle components” condition. Given matrices A1 and A′

1 in
M◦

P,+(n, Z), Lemmas A.1 and A.2 give us positive equivalences, from I−A1

to I −A and from I −A′
1 to I −A′, such that A∞ and A′

∞ are of the form
described in Theorem 3.4.

Theorem 3.5 ([BH]). Suppose B and B′ are matrices in MP(n, Z) such
that for each diagonal block in B or B′, the greatest common divisor of the
entries of the block is 1. Suppose n ≤ r, and let ι be the embedding of
MP(n, Z) into MP(r, Z).

Then B is SLP(n, Z) equivalent to B′ if and only if ιB is SLP(r, Z) equiv-
alent to ιB′.

Theorem 3.5, taken from the Stabilization result in [BH], reduces the
problem of SLP(Z) equivalence of the matrices (I − A) and (I − A′) in
Theorem 3.4 to an equivalence problem for finite matrices.

4. Factorization: The proof.

To begin, we describe a matrix class in which our positivity considerations
will be simplified.



FLOW EQUIVALENCE 283

Definition 4.1. Given a subset C of {1, . . . , N}, and a vector n with pos-
itive integer entries such that ni = 1 if i ∈ C, define M++

P (C,n, Z) to be the
set of n-blocked integral matrices M whose blocks Mij satisfy the following
conditions:
• Mii = 0 if i ∈ C,
• Mij = 0 if i 6= j and i 6≺ j,
• Mij > 0 otherwise.

(So, each block of M has all entries zero or all entries greater than zero,
Mii = 0 when i ∈ C, and otherwise Mij > 0 if and only if i � j. If
−M = I −A, then C is the set of cycle components of A.)

Definition 4.2. An elementary positive equivalence in M++
P (C,n, Z) is

an SLP(n, Z) equivalence (U, V ) : B → B′ = UBV such that {B,B′} ⊂
M++

P (C,n, Z); one of U, V equals Id; and the other is a basic elementary
matrix. A positive equivalence in M++

P (C,n, Z) is a composition of elemen-
tary positive equivalences in M++

P (C,n, Z). For such an equivalence (U, V ),
we use notations such as

(U, V ) : B −−−→
+

B′
or B

(U,V )−−−→
+

B′ or B −−−→
+

B′
.

Observation 4.3. Suppose B = (A− I), B′ = (A′ − I) and

(U, V ) : B −−−→
+

B′
.

Then (U, V ) : (I −A)→ (I −A′) is a positive equivalence in M◦
P,+(n, Z).

Outline of the proof. Now we can give an outline of the proof of the Factor-
ization Theorem (3.3), which we break into four steps.

Step 1 of the proof (“block positive reduction”) is to reduce it to proving
the following theorem:

Theorem 4.4. Suppose B = A− I and B′ = A′ − I, satisfying
• B and B′ are in M++

P (C,n, Z)
• (U, V ) : B → B′ is an SL(n, Z) equivalence
• if i /∈ C, then dim(ker(Aii)) ≥ 2.

Then
(U, V ) : B −−−→

+
B′

.

Step 2 (“the positive case”) is to prove Theorem 4.4 in the case B and
B′ are positive (i.e., P = {1} and C = ∅). This step is the heart of the
proof and it is carried out in Section 5. This is the only step which uses the
condition dim(ker(Aii)) ≥ 2.

Step 3 (“the unipotent case”) is to prove Theorem 4.4 in the case that
U and V lie in UP(n, Z), where UP(n, Z) denotes the set of matrices M in
SLP(n, Z) such that Mii = I for all i in P.
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Step 4 (“the general case”) is to finish the proof of Theorem 4.4.

Step 1: Block positive reduction. We will accomplish this step by proving
the following proposition. Let CA = C denote the set of cycle components
of A. For each cycle component i, let Csec

i denote the set of indices for
rows/columns through Aii such that i does not lie on a cycle, and let Cprim

i
denote the set of indices i for rows/columns through Aii which lie on the
unique cycle in Aii. Let Cprim = ∪Cprim

i and Csec = ∪Csec
i .

Proposition 4.5. Suppose {A,A′} ⊂ M◦
P,+(n, Z); CA = CA′ = C; (U, V ) :

(I − A) → (I − A′) is an SLP(n, Z) equivalence which is positive on cycle
components; and n = (n1, . . . nN ) has positive integer entries. Then there is
a commuting diagram of SLP(n, Z) equivalences

(I −A) −−−→ (I −A)

(U,V )

y y(U,V )

(I −A′) −−−→ (I −A
′)

such that:

(1) The horizontal arrows are positive SLP(n, Z) equivalences in
M◦

P,+(n, Z).

(2) For both A and A
′, the principal submatrix indexed by the complement

of Csec is strictly positive wherever the P ordering permits a nonzero
entry, and in addition the diagonal blocks (A− I)tt and (A′ − I)tt are
strictly positive whenever t /∈ C.

(3) For both A and A
′, Cprim is the set of indices ` such that for some

i ∈ C, (`, `) indexes the upper left corner of the ii block.
(4) A(i, j) = A′(i, j) = 0 whenever {i, j} ∩ Csec 6= ∅.
(5) U(i, j) = V (i, j) = δij whenever {i, j} ∩ Csec 6= ∅.

For matrices A,A
′ in M◦

P,+(n, Z), we say an SLP(n, Z) equivalence (U,V ) :

(I −A)→ (I −A
′) is nondegenerate if it satisfies Conditions (2), (3), (4)

and (5) of Proposition 4.5. Note Condition (3) implies that A(`, `) = 1 if
` ∈ Cprim.

Let us see that Proposition 4.5 reduces the proof of (2) =⇒ (1) in the
Factorization Theorem 3.3 to the proof of Theorem 4.4. Given (I − A),
(I − A′) and (U, V ) satisfying (2) in the statement of Theorem 3.3, pick a
vector n with positive integer entries large enough that:

• For all i, j in P, the ij blocks of U, V, I −A and I −A′ agree with δijI
outside the upper left ni × nj corner, and
• if i /∈ C, then the upper left ni×ni corners of Aii and A′

ii have kernels
of dimension at least two.
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Replace A,A′, U and V with their trunctations to n-blocked matrices. Then
it suffices to prove that (U, V ) : (I − A) → (I − A′) is a positive SL(n, Z)
equivalence in M◦

P,+(n, Z). To do this, first apply Proposition 4.5 to the
matrices U, V,A, A′. Then truncate the resulting U, V ,A,A′ by removing all
rows and columns indexed by Csec, and call the resulting matrices U, V,A, A′.
To finish the proof of the Factorization Theorem 3.3, it suffices to show
(U, V ) : (I − A) → (I − A′) is a positive equivalence, and this now follows
by an application of Theorem 4.4 and Observation 4.3.

We want Proposition 4.5 in order to have a completely general result about
factoring equivalences into positive equivalences, and in order to see the main
arguments more clearly in the less technical setting of M++

P (C,n, Z). Be-
cause the proof of Proposition 4.5 is tedious (almost entirely on account of
technicalities involving cycle components), we relegate the proof of Propo-
sition 4.5 to Appendix A.

Below, we use UP to denote UP(n, Z) and we use M++
P to denote M++

P (C,
n, Z). For i, j in P and B a matrix with a P-indexed block structure, we let
B{i, j} denote the ij block of B.

Step 2: The positive case. This is carried out in Section 5.

Step 3: The unipotent case.

Lemma 4.6. Suppose U and V are matrices in UP , B and B′ are in M++
P ,

and UBV = B′. Then

B
(U,V )−−−→

+
B′.

Proof. Write U as a product of matrices in UP , U = Un · · ·U1, where for
each Ut there is an associated pair (it, jt), such that the following hold:

• Ut = I, except in the block Ut{it, jt}, and
• if s 6= t, then (is, js) 6= (it, jt).

Note, whenever is is an immediate predecessor of js in P and B{is, is} = 0,
these conditions imply

(UsB){is, js} = B′{is, js}.(4.7)

We claim there are nonnegative matrices Q1, . . . , Qn in UP such that (with
Q = Q1 · · ·Qn)

B
(U1,Q1)−−−−−→

+
· (U2,Q2)−−−−−→

+
· · · (Un,Qn)−−−−−→

+
Un · · ·U1BQ1 · · ·Qn = UBQ.(4.8)

To show (4.8), first we will produce Q1 such that

B
(U1,Q1)−−−−−→

+
U1BQ1.
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Denote (i1, j1) as (i, j). Factor U1 as U1 = U−
1 U+

1 , where U−
1 and U+

1 equal
I outside the {i, j} block, U+

1 {i, j} is the nonnegative part of U1{i, j}, and
U−

1 {i, j} is the nonpositive part of U1{i, j}. Clearly

(U+
1 , I) : B −→

+
U+

1 B.

For U−
1 there are two cases.

Case I: B{i, i} > 0. We have U−
1 (U+

1 B) = U+
1 B outside blocks {i, k} such

that i ≺ j � k. Because (U+
1 B){i, i} = B{i, i} > 0, we can pick Q1 in

UP , with sufficiently large nonnegative entries in such blocks {i, k}, to put
U−

1 (U+
1 B)Q1 into M++

P . Then

U+
1 B

(I,Q1)−−−−→
+

U+
1 BQ1

(U−
1 ,I)

−−−−→
+

U−
1 U+

1 BQ1 = U1BQ1.

Case II: B{i, i} = 0. Again, U−
1 (U+

1 B) = U+
1 B outside blocks {i, k} such

that i ≺ j � k. Because B{i, j} > 0, we can choose Q1 nonnegative in UP
such that for all k satisfying i ≺ j ≺ k, we have U−

1 (U+
1 B)Q1{i, k} > 0. (A

positive entry in the block Q{j, k} acts here to add a multiple of a column
through the {i, j} block to a column in the {i, k} block.) If there is some
h such that i ≺ h ≺ j, then suitable positive entries in Q1{h, k} will also
achieve U−

1 (U+
1 B)Q1{i, j} > 0. If there is no such h, then i is an immediate

predecessor of j in P, and by appeal to (4.7) we have(
U−

1 (U+
1 B)Q1

)
{i, j} = (U1B){i, j}

= B′{i, j} > 0.

Therefore

U+
1 B

(I,Q1)−−−−→
+

U+
1 BQ1

(U−
1 ,I)

−−−−→
+

U1BQ1

as required.
Thus in either case we have

B
(U1,Q1)−−−−−→

+
U1BQ1 ∈M++

P .

An easy induction on the argument gives (4.8), with

B
(U,Q)−−−→

+
UBQ ∈M++

P ,

with Q a product of nonnegative elementary matrices in UP . The transposed
argument gives a matrix P in UP such that P is a product of nonnegative
elementary matrices such that

B′ (P,V −1)−−−−−→
+

PB′V −1 ∈M++
P .
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Then

B
(U,Q)−−−→

+
UBQ

(P,I)−−−→
+

PUBQ = PB′V −1Q
(I,Q)←−−−

+
PB′V −1 (P,V −1)←−−−−−

+
B′

so

(P−1PU,QQ−1V ) = (U, V ) : B −→
+

B′

as required. �

Step 4: The general case.

Lemma 4.9. Suppose i /∈ C, E is a basic elementary matrix in SLP(n, Z),
E{j, k} = (Id){j, k} when (j, k) 6= (i, i), {B,B′} ⊂M++

P (C,n, Z) and

(E{i, i}, Id) : B{i, i} −→
+

B′{i, i}.

Then there exists V in UP such that

(E, V ) : B −→
+

B′.

Similarly, if

(Id, E{i, i}) : B{i, i} −→
+

B′{i, i}

then there exists U in UP such that

(U,E) : B −→
+

B′.

Proof. We will consider the equivalence (E, I), the other case is similar. Let
E(s, t) be the nonzero offdiagonal entry of E. If E(s, t) = 1, then set V = Id.
Now suppose E(s, t) = −1, so E acts from the the left to subtract row t
from row s. Then possibly there are nonpositive entries in blocks (EB){i, j}
where i ≺ j. To correct for this, pick r an index for a column through the
ii block; note that B(s, r) > B(t, r) because (EB){i, i} > 0 by assumption;
consider a positive integer M ; and let V be the matrix in UP which acts
from the right to add column r to column q, M times, for every q indexing
a column through an ij block for which i ≺ j. For these q,

(EBV )(s, q) = M(B(s, r)−B(t, r)) + B(s, q)−B(t, q).

So, if M is large enough, then this gives

B
(I,V )−−−→

+
BV

(E,I)−−−→
+

EBV

as required. �
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Proof of the general case. Now let (U, V ) : B → B′ be the SLP(n, Z) equiv-
alence, with {B,B′} ⊂ M++

P (C,n, Z). By Step 2 (Theorem 5.1), for each
i ∈ P \ C, we have

(U{i, i}, V {i, i}) : B{i, i} −→
+

B′{i, i}.

So, we may find a string of elementary equivalences, say (E1, F1), . . . (Et, Ft),
with every Et{i, j} = Ft{i, j} = (Id){i, j} unless i = j /∈ C, which accom-
plishes the elementary positive equivalence decomposition inside the diago-
nal blocks. By Lemma 4.9, we may find (U1, V1), . . . , (Ut, Vt) with each Us

and Vs in UP , such that

B
(U1,F1)−−−−→

+
· (E1,V1)−−−−→

+
· · · (Ut,Ft)−−−−→

+
· (Et,Vt)−−−−→

+
B′′.

Let X = EtUt · · ·E2U2E1U1. Let Y = F1V1F2V2 · · ·FtVt. Then for all i in
P, X{i, i} = U{i, i} and Y {i, i} = V {i, i}, so UX−1 ∈ UP and Y −1V ∈ UP .
It follows from Step 3 (Lemma 4.6) that

B′′ (UX−1,Y −1V )−−−−−−−−−→
+

B′.

Thus (U, V ) : B → B′ is the composition

B
(X,Y )−−−→

+
B′′ (UX−1,Y −1V )−−−−−−−−−→

+
B′

and this finishes the proof. �

5. Factorization: The positive case.

In this section, all matrices are K ×K, where K is a positive integer and
K > 1. We let M+ denote the set of K ×K matrices with strictly positive
integer entries.

We say an equivalence (U, V ) : B → B′ is a positive equivalence through
M+ if it can be given as a chain of positive elementary equivalences

B = B0 → B1 → B2 → · · · → Bn = B′

in which every Bi is in M+.
The purpose of this section is to prove the following theorem.

Theorem 5.1. Suppose U and V are in SL(K, Z), and B and UBV are
in M+. Suppose also that B is SL(K, Z) equivalent to a diagonal matrix in
which at least two entries equal 1.

Then (U, V ) : B → UBV is a positive equivalence through M+.

Remark 5.2. The “two entries” technical assumption may be excessive,
but is harmless for our applications. Except for the final argument which
addresses the possibility that UB is nonpositive, we only use the weaker
assumption that B has rank greater than one.
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The proof of Theorem 5.1 rests on three lemmas. We begin the prepara-
tions.

By a signed transposition matrix, we mean a matrix which is the matrix
of a transposition, but with one of the off-diagonal 1’s replaced by -1. By
a signed permutation matrix we mean a product of signed transposition
matrices. Since K > 1, any K ×K permutation matrix with determinant 1
is a signed permutation matrix. A K ×K matrix S is a signed permutation
matrix if and only if detS = 1 and the matrix |S| is a permutation matrix
(where |S|(i, j) := |S(i, j)|).

Lemma 5.3. Suppose B ∈M+, E is a basic elementary matrix with non-
zero offdiagonal entry E(i, j), and the ith row of EB is not the zero row.

Then in SL(K, Z) there are a nonnegative matrix Q and a signed permu-
tation matrix S such that (SE,Q) : B → SEBQ is a positive equivalence
through M+.

Proof. If E(i, j) = 1, then let Q = I = S. Now suppose E(i, j) = −1, so E
acts from the left by subtracting row j from row i, and the rows i and j of
B are not equal.

Case I: For some k, B(i, k) > B(j, k).
Here we may repeatedly add column k of B to other columns, until we

have a matrix B′ with B′(i,m) > B′(j, m) for all m. This B′ is BQ for
some Q which is a product of nonnegative basic elementary matrices. Now
(E,Q) : B → EBQ is the composition of positive equivalences, (I,Q) : B →
BQ followed by (E, I) : BQ→ EBQ. Let S = I.

Case II: For every k, B(i, k) ≤ B(j, k).
Because the rows i and j of B are not equal, after multiplying from the

right by a suitable Q we can assume in this Case that 0 < B(i, k) < B(j, k)
for all k. Now (I, Q) : B → BQ in M+, so for notational simplicity from
here we may assume Q = I.

For concreteness of notation, let (i, j) = (1, 2). For the rest of this Case,
for simplicity we will restrict what we write to these two rows, e.g.,

E =
(

1 −1
0 1

)
and B =

(
B1

B2

)
,

where B1 and B2 denote the first and second rows of B, and we have B1 <

B2. Let S =
(

0 1
−1 0

)
. Then

(SE)B =
(

0 1
−1 1

) (
B1

B2

)
=

(
B2

B2 −B1

)
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and the latter matrix is positive. Let E′ =
(

1 1
0 1

)
and let E′′ =

(
1 0
−1 1

)
,

then

SE =
(

0 1
−1 1

)
= E′E′′.

Now (E′′, I) : B → E′′B is a positive equivalence in M+, since row 2 of B
is positive and greater than row 1; and (E′, I) : E′′B → E′E′′B is also a
positive equivalence in M+. �

Lemma 5.4. Suppose B is a K ×K integral matrix of rank at least 2, and
U is in SL(K, Z), and no row of B or UB is the zero row. Then U is the
product of basic elementary matrices, U = Ek · · ·E1, such that for 1 ≤ j ≤ k
the matrix EjEj−1 · · ·E1B has no zero row.

Proof. Without loss of generality, assume K ≥ 3 and U is not the identity.
Let E(i) denote the set of integral matrices which equal I both on the diag-
onal and outside of row i. Let U be the set of factorizations U = Un · · ·U1

such that for 1 ≤ h ≤ n, the matrix Uh is not the identity and there is an
index ih such that Uh ∈ E(ih). Given such a factorization U = Un · · ·U1, let

z = #{h : 1 ≤ h ≤ n and row ih of Uh · · ·U1B is the zero row}.

Step 1. We will produce an element of U for which z = 0.
By induction, it suffices to begin with a factorization U = Un · · ·U1 from

U for which z > 0, and produce another factorization from U with reduced
z. Pick s minimal such that row is of Us · · ·U1B is zero, and let t be minimal
such that t > s and it = is. (This t exists because row is of UB is nonzero.)
We will change the factorization by replacing the subword Ut · · ·Us with a
suitable word U ′

T · · ·U ′
s, to be defined recursively.

First pick js 6= is such that row js of Us−1 · · ·U1B is nonzero (Us−1 · · ·U1B
just denotes B in the case that s = 1). Choose Fs an elementary matrix
which acts to add a multiple of row js to row is, such that (for notational
simplicity) F−1

s Us 6= I. Define U ′
s = F−1

s Us ∈ E(is). Now Ut · · ·Us =
Ut · · ·Us+1FsU

′
s and row is of U ′

sUs−1 · · ·U1B is not zero.
Now we give the recursive step. Suppose s < m ≤ t and we have produced

Ut · · ·Fm−1U
′
r · · ·U ′

s = Ut · · ·Us such that there is a nonzero integer cm−1

and an index jm−1 6= is such that Fm−1(is, jm−1) = cm−1 and otherwise
Fm−1 = I. We will replace UmFm−1 with new terms. There are three cases.

Case 1: m < t and jm−1 6= im. Set Fm = Fm−1 and U ′
r+1 = F−1

m UmFm.
For example, if K = 3 and (is, im, jm−1) = (1, 2, 3), then we would have for
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some a, b, c that

U ′
r+1 = F−1

m UmFm =

 1 0 0
0 1 0
−c 0 1

 1 0 0
a 1 b
0 0 1

 1 0 0
0 1 0
c 0 1


=

 1 0 0
0 1 0
−c 0 1

  1 0 0
a + bc 1 b

c 0 1

 =

 1 0 0
a + bc 1 b

0 0 1

 .

Now U ′
r+1 ∈ E(im) and FmU ′

r+1 = UmFm−1 and row im of U ′
r+1U

′
r · · ·U ′

sUs−1

· · ·U1B equals row im of Um · · ·U1B.

Case 2: m < t and jm−1 = im. Choose an index jm such that jm /∈ {im, is}
and row jm of U ′

r · · ·U ′
sUs−1 · · ·U1B is not zero. This is possible because

rows is and jm−1 of U ′
r · · ·U ′

sUs−1 · · ·U1B are linearly dependent (since row
is of FmU ′

r · · ·U ′
sUs−1 · · ·U1B equals row is of Um · · ·U1B which is the zero

row) and rank(B) ≥ 2. Pick Fm with Fm(is, jm) = 1 and otherwise Fm = I.
Set U ′

r+1 = F−1
m Fm−1 and U ′

r+2 = F−1
m UmFm. Now

• FmU ′
r+2U

′
r+1 = Fm(F−1

m UmFm)(F−1
m Fm−1) = UmFm−1,

• U ′
r+1 ∈ E(is) and row is of U ′

r+1 · · ·U ′
sUs−1 · · ·U1B is not zero,

• U ′
r+2 ∈ E(im) and row im of U ′

r+2 · · ·U ′
sUs−1 · · ·U1B equals row im of

Um · · ·U1B.

Case 3: m = t. If UtFt−1 6= I, then set U ′
T = U ′

r+1 = UtFt−1 ∈ E(is):
Row is is the same in the matrices Um · · ·U1B and U ′

T · · ·U ′
sUs−1 · · ·U1B.

If UtFt−1 = I, then simply delete UtFt−1, so U ′
T = U ′

r.
The new factorization has z reduced. This concludes Step 1.

Step 2. Suppose we have the factorization from U with z = 0, U = Un · · ·U1,
with Uh ∈ E(ih). For 1 ≤ h ≤ n, we will replace Uh with a suitable product
of elementary matrices in E(ih). The argument will be clear from the case
h = 1. For notational simplicity, suppose i1 = 1. Write U1 as a product
U1 = Ek · · ·E1 of basic elementary matrices which agree with I outside row
1. Now, choose a row m > 1 of B which is not a rational multiple of row 1 of
U1B (such a row m exists because rank(B) > 1). Let E0 be the elementary
matrix which adds row m to row 1: If s > 0, then (E0)sB has row 1 nonzero.
Choose a nonnegative integer M large enough that for 1 ≤ j ≤ k, row 1 of
[Ej · · ·E1(E0)M ]B is nonzero. Then for 0 ≤ s ≤M ,

[E−s
0 ][Ek · · ·E1(E0)M ]B = [EM−s

0 ][Ek · · ·E1]B

= [EM−s
0 ]U1B

and therefore row 1 of [E−s
0 ][Ek · · ·E1(E0)M ]B cannot be zero. Thus the

factorization U1 = (E0)−MEk · · ·E1(E0)M has the required properties. �
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Lemma 5.5 (Key Lemma). Suppose B and B′ are in M+, U and W are in
SL(K, Z), the matrix UB has at least one strictly positive entry, and UB =
B′W . Then the equivalence (U,W−1) : B → B′ is a positive equivalence
through M+.

Proof. Step 1: Reduction to the case UB > 0.
Consider an entry (UB)(i, j) > 0. We can repeatedly add column j to

other columns until row i of UB has all entries strictly positive. This corre-
sponds to multiplying from the left by a nonnegative matrix Q in SL(K, Z),
giving UBQ = B′WQ. Then we can repeatedly add row i of UBQ to other
rows until all entries of UBQ are positive. This corresponds to multiplying
from the left by a matrix P in SL(K, Z), giving

(PU)(BQ) = (PB′)(WQ) > 0

with positive equivalences in M+ given by

(I, Q) : B → BQ, (P, I) : B′ → PB′.

Therefore, after replacing (U,B,B′,W ) with (PU,BQ, PB′,WQ), we may
assume without loss of generality that UB > 0.

Step 2: Reducing the length of an elementary factorization.
By Lemma 5.4, we can write U has a product of basic elementary matrices,

U = Ek · · ·E1, such that for 1 ≤ j ≤ k, the matrix Bj = Ej · · ·E1B has no
zero row. By Lemma 5.3, given the pair (E1, B), there is a nonnegative Q1

in SL(K, Z) and a signed permutation matrix S1 such that

(S1E1, Q1) : B → S1E1BQ1

is a positive equivalence in M+. We observe that

UBQ1 = S−1
1 [S1EkS

−1
1 ] · · · [S1E2S

−1
1 ][S1E1]BQ1.

Now, for 2 ≤ j ≤ k, the matrix S1EjS
−1
1 is again a basic elementary matrix

E′
j , and the matrix E′

j · · ·E′
2(S1E1BQ1) has no zero rows.

Again using Lemma 5.3, for the pair ([S1E2S
−1
1 ], [S1E1BQ1]) choose a

signed permutation matrix S2 and nonnegative Q2 producing a positive
equivalence in M+

(S2[S1E2S
−1
1 ], Q2) : S1E1BQ1 → S2[S1E2S

−1
1 ]S1E1BQ1Q2

so that we get a positive equivalence in M+

([S2S1E2S
−1
1 ][S1E1], Q1Q2) : B → [S2S1E2E1BQ1Q2]

and we observe that

UBQ1Q2 = S−1
1 S−1

2 [S2S1EkS
−1
1 S−1

2 ] · · ·
[S2S1E3S

−1
1 S−1

2 ][S2S1E2S
−1
1 ][S1E1]BQ1Q2.
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Continue this, to obtain a signed permuation matrix S = Sk · · ·S1 and
nonnegative Q = Q1 · · ·Qk such that

UBQ = S−1[Sk · · ·S1EkS
−1
1 · · ·S

−1
k−1] · · · [S2S1E2S

−1
1 ][S1E1]BQ

= S−1(SUBQ)

and (SU,Q) : B → SUBQ is a positive equivalence in M+.

Step 3: Realizing the permutation.
We continue from Step 2. It remains to show that

(S, I) : UBQ→ SUBQ

is a positive equivalence in M+. Since S is a product of signed transposition
matrices, it may be described as a permutation matrix in which some rows
have been multiplied by −1. Since UBQ and SUBQ are strictly positive,
it must be that S is a permutation matrix. Also, det(S) = 1, so if S 6= I
then S is the matrix of a permutation which is a product of 3-cycles. So it
is enough to realize the positive equivalence in M+ in the case that S is the
matrix of a 3-cycle. For this we write the matrix

C =

0 1 0
0 0 1
1 0 0


as the following product C0C1 · · ·C5:1 0 0

0 1 0
0 −1 1

  1 0 0
−1 1 0
0 0 1

 1 0 −1
0 1 0
0 0 1


·

1 1 0
0 1 0
0 0 1

 1 0 0
0 1 0
1 0 1

 1 0 0
0 1 1
0 0 1

 .

For 0 ≤ i ≤ 5, the matrix CiCi+1 · · ·C5 is nonnegative. Therefore the
equivalence (C, I) : B → CB is a positive equivalence through M+ whenever
B ∈M+. �

We can now complete the proof of Theorem 5.1. It only remains to address
the technical point that in the equivalence (U, V ) : B → B′, all the entries
of UB might be nonpositive. (For example, with K even we could have
(U, V ) = (−I,−I).)

Proof of Theorem 5.1. By assumption there are X, Y in SL(K, Z) such that

XBY = D, where D is diagonal and has the block form D =
(

I 0
0 F

)
, where

I is 2 × 2. For any H in SL(2, Z), the K ×K matrix G = GH =
(

H 0
0 I

)
yields a self equivalence (X−1GX, Y G−1Y −1) : B → B.



294 MIKE BOYLE

For a matrix Q, we let Q{12; ∗} denote the submatrix consisting of the
first two rows. The matrix (XBY ){12; ∗} = D{12; ∗} has rank two, so
the matrix (XB){12; ∗} has rank two, and we may choose H ′ ∈ SL(2, Z)
such that the first row r of H ′[(XB){12; ∗}] has both a positive entry and

a negative entry. For M ∈ N, let HM =
(

M −1
1 0

)
, H = HMH ′, and

G = GH . Let c denote the first column of X−1. Since c is not the zero
vector, the K ×K matrix cr has a positive entry and a negative entry.

If M is sufficiently large, then the entries of the two matrices X−1GXB
and Mcr will have the same sign wherever the entries of Mcr are nonzero,
and X−1GXB will have a positive entry. Then the Key Lemma 5.5 shows
that (X−1GX,Y G−1Y −1) gives a positive equivalence in M+ from B to B.

Similarly, for large enough M the entries of UX−1GXB will agree in
sign with the entries of UMcr wherever the entries of the latter matrix are
nonzero. Because U is nonsingular, the matrix Ucr is nonzero, and then
contains positive and negative entries because r does.

So, using M sufficiently large, we obtain (U, V ) : B → B′ as a posi-
tive equivalence in M+, the inverse of (X−1GX,Y G−1Y −1) followed by
(UX−1GX,Y G−1Y −1V ). �

6. Flow equivalence.

The purpose of this section is to prove the claims of Theorem 3.1 involving
flow equivalence. As sketched in [B1] (see also [Ba1]), the positive K-theory
framework is most natural for this. Because a complete development of this
connection has not yet appeared, for brevity we will make no direct use of
it below.

We begin with some background. For S a selfhomeomorphism of a com-
pact metric space X, the mapping torus YS of S is the quotient space
(X × R)/ ∼ where (x, n + t) ∼ (Snx, t) if n ∈ Z. YS admits a natural
flow,

YS × R→ YS

([(x, t)], s) 7→ [(x, s + t)].

This flow has the copy X0 = {[(x, 0)] : x ∈ X} of X as a cross section, and the
return map to X0 under the flow (given by [(x, 0)] 7→ [(Sx, 0)]) is obviously
topologically conjugate to S. Let T be another selfhomeomorphism of a
compact metric space. Then S and T are flow equivalent if and only if there
is a homeomorphism YS → YT which takes flow lines onto flow lines and
respects the direction of the associated flows. (Equivalently: S and T are
conjugate to return maps of cross sections of a common flow.)

For example, consider S = σA, T = σA′ and the map γ arising from a
basic positive equivalence in Subsection 2.2. It is not difficult to see that γ
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is the restriction of a homeomorphism YS → YT which takes flow lines onto
flow lines and respects the direction of the associated flows, and therefore
σA and σA′ are flow equivalent.

Now fix A in M◦
P,+(Z) and A′ in M◦

P ′,+(Z). Let F and F ′ be finite
matrices such that F∞ = A and F ′

∞ = A′. Let σA = σF and σA′ = σF ′

be the associated SFTs. (So, for example σA is the left shift on the path
space ΣA, which is given the natural zero dimensional metrizable topology.)
Parry and Sullivan [PS] showed that σF and σF ′ are flow equivalent if and
only if σF is topologically conjugate to some SFT which after a time change
is topologically conjugate to σF ′ . It follows ([PS]) that σF and σF ′ are flow
equivalent if and only if F ′ can be obtained from F by a finite sequence
of basic flow moves, which are state splittings and stretchings and their
inverses. The inverse of a splitting is called an amalgamation. We will
describe the splitting and stretching moves now.

Let B and B′ be finite square matrices. B′ is obtained from B by an
elementary row amalgamation if there exist indices i1, i2 and i such that the
columns i1 and i2 of A′ are equal, and A is obtained from A′ as follows:
Add row i1 to row i2, then remove the row and column indexed by i1. The
reverse move is that B is obtained from B′ by a row splitting. Analogously
there are column splittings and amalgamations. By state splittings we mean
row splittings and column splittings.

We say B′ is obtained from B by a state stretching if for some indices i, j
the following hold: B′(i, j) = 1, the other entries of row i and column j are
zero, and B is the matrix obtained from B′ by adding column i to column
j and then removing row i and column i.

We are now ready for the proof. Suppose A is in M◦
P,+(Z) and A′ is in

M◦
P ′,+(Z). We will show the following are equivalent:

(1) σA and σA′ are flow equivalent.
(2) There exists ν ∈ Iso [P,P ′] such that for P = Pν , there exists a positive

SLP(Z) equivalence from (I −A) to (I − P−1A′P ) in I −M◦
P,+(Z).

Proof. Given (2), it follows from Lemma 2.5 that there is a chain of basic
positive SLP(Z) equivalences from (I − A) to (I − P−1A′P ). Each basic
positive equivalence gives rise to a flow equivalence as discussed above. It
follows that (2) implies (1).

Now we assume (1) and will deduce (2). Let F and F ′ be finite matrices
such that F∞ = A and F ′

∞ = A′. After using Lemmas A.1 and A.2 to pass
to flow equivalent SFTs, we may assume that for each i ∈ P, the diagonal
blocks Fii and F ′

ii are strictly positive.
From [PS] we are given a sequence of basic moves through finite matrices,

F = F0 → F1 → · · · → Fm = F ′. We may regard P and P ′ as the posets of
irreducible components of F and F ′ respectively, where e.g., i � j in P when
there exists a transition from i to j (by which we mean that there exists a
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point in the SFT ΣA forwardly asymptotic to a cycle from component j and
backwardly asymptotic to a cycle from component i). Each move Fi → Fi+1

induces a bijection of irreducible components, respecting transitions, and
thus the composition induces a poset isomorphism ν : P(A)→ P(A′). After
replacing A′ with P−1A′P , where P = Pν , we may assume P = P ′ and
ν = Id.

Next, for 1 ≤ i ≤ n, we will associate to Fi a matrix Ai in M◦
P,+(Z) such

that (modulo permutations of indices) tru(Ai) = Fi. We must take a little
care with the indices, to be able to lift each of the moves Fi → Fi+1 to a
(positive) SLP(Z) equivalence (I − Ai) → (I − Ai+1). Let Ind(B) denote
the set indexing the rows and columns of a square matrix B. For each Fj ,
we will define an injection τj : Ind(Fj)→ IP , and then define Aj = ι(Fj) by
setting

Aj(s, t) = F (s′, t′) if (s, t) = (τj(s′), τj(t′))
= 0 otherwise.

The maps τj will be defined recursively. For j = 0, we set A0 = A and
take τj to be compatible with the embedding of F as a principal submatrix
of A. Now suppose 0 ≤ j < n and τj and Aj are given. The transition
Fj → Fj+1 is given by a basic flow move, and under such a move, every
element of Ind(Fj+1) is naturally related to one or two elements of Ind(Fj).
(An element i of Ind(Fj+1) is related to two elements i1, i2 of Ind(Fj) when
the move Fj+1 → Fj is a splitting or stretching of the state i into the states
i1, i2.) In any case, for each i in Ind(Fj+1), fix a related vertex rel(i) in
Ind(Fj). Then choose any map τj+1 : Ind(Fj+1) → IP such that τj(rel(i))
and τj+1(i) lie in IPp for the same element p of P. (When i is related to
two indices, this p may depend on the choice for rel(i).) This defines the
matrices A = A0, A1, . . . , Am.

Next we will show that each elementary flow move Fj → Fj+1 gives rise
to a positive SLP(Z) equivalence (I − Aj) → (I − Aj+1). Each of the
equivalences we give will be accomplished by elementary matrices which
must lie in SLP(Z) on account of our choices of indices.

First we show how an elementary row splitting gives rise to a positive
SLP(Z) equivalence. The general construction can be understood from the
example

B =

 a b 0
c1 + c2 d1 + d2 0

0 0 0

 →

 a b b
c1 d1 d1

c2 d2 d2

 = B′.
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Here the positive equivalence (I−B)→ (I−B′) is accomplished as follows:

(I −B) =

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1


→

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0

0 0 1

  1 0 0
0 1 0
−c2 −d2 1


=

 1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1


→

1 0 0
0 1 −1
0 0 1

  1− a −b 0
−(c1 + c2) 1− (d1 + d2) 0
−c2 −d2 1


=

1− a −b 0
−c1 1− d1 −1
−c2 −d2 1


→

1− a −b 0
−c1 1− d1 −1
−c2 −d2 1

 1 0 0
0 1 1
0 0 1


=

1− a −b −b
−c1 1− d1 −d1

−c2 −d2 1− d2

 .

The positive equivalence for a column splitting is constructed similarly.
Next we show that a state stretching gives rise to a positive equivalence.

The general construction can be understood from the example

B =

0 0 0
0 a b
0 c d

→
0 1 0

a 0 b
c 0 d

 = B′.

Here the positive equivalence (I−B)→ (I−B′) is accomplished as follows.

(I −B) =

1 0 0
0 1− a −b
0 −c 1− d


→

 1 0 0
−a 1 0
−c 0 1

 1 0 0
0 1− a −b
0 −c 1− d

 =

 1 0 0
−a 1− a −b
−c −c 1− d


→

 1 0 0
−a 1− a −b
−c −c 1− d

 1 −1 0
0 1 0
0 0 1

 =

 1 −1 0
−a 1 −b
−c 0 1− d

 .
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At this point we have a positive SLP(Z) equivalence (I −A)→ (I −A′
n),

where there is a permutation matrix Q such that Q−1A′
nQ = A′. Because

A′ = F ′
∞ and F ′ has all diagonal blocks positive, if A′(i, j) > 0 then i lies

on an A′ cycle and j lies on an A′ cycle. Therefore the permutation given
by Q can be chosen compatible with the poset isomorphism ν = Id, and
the matrix Q is a block diagonal matrix in SLP(Z). It remains to check
that I −A′

n → Q−1A′
nQ is accomplished by a positive SLP(Z) equivalence.

Because Q is block diagonal and we can use compositions, it is enough to give
the equivalence in the case that Q is the transposition matrix for indices i, j
which lie in some IPp . Choose indices α, β in IPp such that A′

n is identically
zero in the rows and columns indexed by α and β. Let P be the permutation
matrix for the product of transpositions (i, j)(α, β). Then P is in SLP(Z)
and PA′

nP = Q−1A′
nQ. This finishes the proof. �

7. The mapping class group.

In this section the symbols S, T denote subshifts (e.g., T is the restriction
of some full shift σ[n] to a closed shift-invariant subset, which we also call
T ). As in Section 6, let YS denote the mapping torus of S. We regard YS

as an oriented space, in the sense that the associated flow gives an orienta-
tion to each of its orbits (i.e., to each connected component of YS). A flow
equivalence from a subshift S to a subshift T is an orientation preserving
homeomorphism ϕ : YS → YT (where “orientation preserving”means orien-
tation preserving on each orbit). Two such homeomorphisms ϕ0, ϕ1 are
isotopic (ϕ0 ∼ ϕ1) if there is a continuous map t 7→ ϕt, 0 ≤ t ≤ 1, which
connects them in the metrizable space of homeomorphisms from YS to YT .
Let Is(S, T ) denote the set of isotopy classes of flow equivalences from S
to T . We let Is(S, S) = Is(S) and call this the mapping class group of the
oriented space YS .

The isotopy futures group of YS.
Given S, x ∈ S and n ∈ Z, define

r(x, n) = {[(w, 0)] ∈ YS : w ∈ S, wi = xi for i ≤ n}.

We call such a set a ray in YS . We say two sets E,E′ in YS are isotopic
(E ∼ E′) if there is a homeomorphism ϕ : YS → YS such that ϕ(E) = E′

and ϕ is isotopic to the identity. An isotopy ray is a set isotopic to a ray.
A beam is a disjoint union of finitely many rays. An isotopy beam is a set
isotopic to a beam. Let B = B(S) denote the set of isotopy beams of YS .

We define F(S), the isotopy futures group of S, to be ZB/K, where ZB
is the free abelian group with generating set B = B(S), and K = K(S) is
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the subgroup of ZB generated by all elements of the following forms:

b− b′, if {b, b′} ⊂ B and b ∼ b′,(7.1)

b−
k∑

j=1

bj , if {b, b1, . . . , bk} ⊂ B, k ∈ N, and b = ∪̇jbj .(7.2)

For S a subshift, let Pn(S) denote the partition of S into clopen sets of the
form C(x, n) = {w ∈ S : wi = xi if |i| ≤ n}.

Lemma 7.3. Suppose S, T are subshifts and ϕ : YS → YT is an orientation
preserving homeomorphism and b ∈ B(S). Then ϕ(b) ∈ B(T ).

Proof. Exploiting the zero dimensionality of S as in [PS], after postcompos-
ing ϕ with a suitable map isotopic to the identity we may assume that there
is a positive integer M such that for any C in PM (S) there is a constant
h = hC and a homeomorphism f = fC from C to a clopen subset D of T
such that ϕ([(x, 0)]) = [(f(x), h)], for all x in C.

Because ϕ respects disjoint union and pushes Is(S) forward to Is(T ) (by
the rule [h] 7→ [ϕhϕ−1]), it suffices to consider the case that b is a ray r(x, n)
with n ≥ M . Let C ′ = {w ∈ S : wi = xi if i ≤ n} ⊂ C ∈ PM (S), with
h = hC and f = fC . Choose k ∈ N such that for all x in C, the sequence
x(−∞, n] determines (fx)(−∞, n − k] and the sequence (fx)(−∞, n + k]
determines x(−∞, n]. So, if w ∈ f(C ′), then {z ∈ T : zi = wi if i ≤ n+k} ⊂
f(C ′). LetW be the (finite) set of words {w[n−k, n+k] : w ∈ f(C ′)}. Then
ϕ(b) = ϕ(r(x, n)) = ∪W∈W{[(z, h)] : z(−∞, n − k − 1] = (fx)(−∞, n − k −
1] and z[n− k, n + k] = W}, so ϕ(b) is an isotopy beam. �

The following proposition follows easily from the lemma.

Proposition 7.4. Suppose S and T are subshifts and ϕ : YS → YT is an
orientation preserving homeomorphism. Then the mapping of isotopy beams
b 7→ ϕ(b) induces an isomorphism ϕ∗ : F(S)→ F(T ).

Let Iso(F(S),F(T )) denote the set of group isomorphisms from F(S) to
F(T ). Let Aut(F(S)) = Iso(F(S),F(S)). The next proposition is now
obvious.

Proposition 7.5. The rule ϕ 7→ ϕ∗ induces a group homomorphism ρ :
Is(S) → Aut(F(S)).

Remark 7.6. The construction of FS is one of several variations on the
dimension group construction introduced by Krieger [Kr1, Kr2]; our con-
struction was influenced also by [LM] and [BFF]. The construction of FS is
a flow equivalence analogue of Krieger’s construction of a dimension group
from a subshift S. The map ρ : Is(YS) → Aut(FS) is the analogue for flow
equivalence of the dimension representation of the automorphism group of
a subshift.
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The isomorphism β : F(σA)→ cok(I −A).
Suppose A is a matrix in M◦

P,+(Z). Let I denote the index set of the rows
and columns of A. Let ZI be the group of (infinite) row vectors indexed by
I, with all but finitely many entries zero. For a symbol/edge xn of σA, let
τ(xn) denote the terminal vertex of the edge xn (so, τ(xn) ∈ I).

The group cok(I − A) is the cokernel of the map ZI → ZI given by
v 7→ v(I −A) (i.e., cok(I −A) = ZI/image(I −A)). Given a ray r = r(x, n)
with i = τ(xn), let ei be the ith canonical basis vector in ZI , and define
β(r) = [ei] ∈ cok(I −A).

First note, given k ∈ Z and a ray r = r(x, n), if we set r′ equal to
{[(w, k)] : [(w, 0)] ∈ r(x, n)}, then r′ is again a ray,

r′ = r(σkx, n− k) and β(r′) = β(r).(7.7)

Here the equality of sets follow from the manipulations

{[(w, k)] : [(w, 0)] ∈ r(x, n)} = {[(σkw, 0)] : w(−∞, n] = x(−∞, n]}
= {[(z, 0)] : z(−∞, n− k] = x(−∞, n]}

= {[(z, 0)] : z(−∞, n− k] = (σkx)(−∞, n− k]}

and then β(r) = β(r′) because the edges xn and (σkx)n−k are equal.
Next, given x ∈ σA, n ∈ Z and k ∈ N, for each σA-word W = W1 · · ·Wk

which can follow xn, choose a point y = yW such that y(−∞, n] = x(−∞, n]
and y[n + 1, n + k] = W . Then the equality

β(r(x, n]) =
∑
W

β(r(yW , n + k)) ∈ cok(I −A)(7.8)

follows for k = 1 by direct computation and for k > 1 by induction.
Given a beam b which is a disjoint union of finitely many rays r(x(i), n(i)),

we now define
β(b) =

∑
i

β(r(x(i), n(i))).

(We will use the symbol β for various maps derived from the map β on
rays.) To see that this definition is independent of the particular choice
of rays, suppose b is also the union of rays r(w(j),m(j)). Choose M ≥
maxi,j{n(i),m(j)}. Then b is the disjoint union of rays r(z(k),M), each of
the r(x(i), n(i)) and r(w(j),m(j)) is a union of some of the rays r(z(k),M),
and by (7.8) we have∑

i

β(r(x(i), n(i))) =
∑

k

β(r(z(k),M)) =
∑

j

β(r(w(j),m(j))).

Therefore β(b) is well-defined.
We will write YA for the mapping torus of σA.

Lemma 7.9. If b and b′ are beams in YA such that b ∼ b′, then β(b) = β(b′).
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Proof. Without loss of generality, choose M ∈ N and a finite set E of YA such
that b is the disjoint union of rays r(x,M), x ∈ E. Let {ϕt} be an isotopy
such that ϕ0 = id and ϕ1(b) = b′. Because ϕ1 ∼ id, there is a continuous
function k(x) such that for all [(x, 0)] in b, ϕ1 : [(x, 0)] 7→ [(x, k(x))]. Because
ϕ(b) is a beam, the function k is integer valued. Possibly after increasing
our choice of M , we may assume that k is constant on each ray r(x, M). By
(7.7), ϕ1 takes each ray r = r(x,M) onto a ray r′ such that β(r) = β(r′), b′

is the disjoint union of these rays r′, and

β(b) =
∑

r

β(r) =
∑
r′

β(r′) = β(b′).

�

An isotopy beam b is isotopic to some beam b′. Define β(b) = β(b′).
It follows from the lemma that β(b) does not depend on the choice of b′.
Likewise we have a well-defined homomorphism of groups

β : ZB → cok(I −A),(7.10) ∑
nibi 7→

∑
niβ(bi).

Proposition 7.11. The kernel of the map β in (7.10) is the subgroup K
with generators (7.1, 7.2). So, there is an induced isomorphism of groups

βA : F(σA)→ cok(I −A).

Proof. First we show K ⊂ Kerβ by showing that β vanishes on the gener-
ators of K. For (7.1), suppose b ∼ b′; then β(b − b′) = 0 by Lemma 7.9.
For (7.2), suppose b is an isotopy beam and b is the disjoint union of finitely
many isotopy beams bi. Without loss of generality, suppose b is a beam.
The bi are a finite collection of disjoint compact sets, so for sufficiently large
m, for any C in Pm(S) such that b∩C 6= ∅, the set (b∩C) will be contained
in one of the bi. If m is large enough, then b ∩ C if nonempty will be a ray.
Thus, taking sums over C in Pm, and for notational convenience defining β
to be zero on the empty set, we get

β(b) =
∑
C

β(C ∩ b)

=
∑

j

∑
C

β(C ∩ bj) =
∑

j

β(bj).

Now we show kerβ ⊂ K. Suppose g =
∑

njbj ∈ kerβ. There ex-
ists M ≥ 0 such that for each j, there are rays r(x(jk),M) such that
bj −

∑
k r(x(jk),M) ∈ K. so g =

∑
jk njr(x(jk),M) (mod K). For any

x, β(r(σMx, 0)) = β(r(x,M)); also, r(x, 0)− r(x′, 0) ∈ K if x0 and x′0 have
the same terminal vertex i. So, we may choose for each i an element x(i)
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such that (x(i))0 has terminal vertex i, for each x(jk) replace x(jk) with the
appropriate x(i), and after reindexing obtain integers mi such that

g =
∑

i

mir(x(i), 0) (mod K).

Because β(g) = 0 and K ⊂ kerβ, there is an integral row vector w such that∑
i miei = w(I −A), and therefore

g =
∑

i

wi

[
r
(
x(i), 0

)]
−

∑
j

Aij

[
r
(
x(j), 0

)] (mod K).

For each i, we have r(σAx(i),−1)− r(x(i), 0) ∈ K, and also

r(σAx(i),−1)−
∑

j

Aijr(x(j), 0) ∈ K.

It follows that g = 0 (mod K). �

In our definition of F(S) and cok(I − A) we used sets r(x, n) and row
vectors. (So, cok(I −A) = rowcok(I −A).) In the same way, using sets

r+(x, n) := {[(w, 0)] ∈ YS : w ∈ S and wi = xi for i ≥ n}
we may define the pasts group P(S); and using column vectors, we obtain an
isomorphism P(σA) → colcok(I − A). For a flow equivalence ϕ : YA → YB,
the isomorphism ϕ∗ : F(σA)→ F(σB) given by Proposition 7.4 induces the
isomorphism

ϕrow
∗ := (βB)ϕ∗(βA)−1 : rowcok(I −A)→ rowcok(I −B).

Likewise, the action of ϕ on P(σA) induces an isomorphism

ϕcol
∗ : colcok(I −A)→ colcok(I −B).

The action of Is(σA) on cok(I −A).
For a flow equivalence ϕ : YA → YA, we have group homomorphisms

Is(σA)→ Aut(rowcok(I −A)) and Is(σA)→ Aut(colcok(I −A))

ϕ 7→ ϕrow
∗ ϕ 7→ ϕcol

∗ .

As described in Subsection 2.2, if (U, V ) is a basic positive SLP(n, Z) equiv-
alence from (I −A) to (I −B) = U(I −A)V , and B plays the role of A′ in
Subsection 2.2, then there is an associated map γ from σA to σB, and it is
easy to see that this map is the restriction (to the cross section σA) of an
orientation preserving homeomorphism YA → YB. More generally, if (U, V )
is the composition of basic positive SLP(n, Z) equivalences (Ui, Vi), and ϕ
is the corresponding composition of the flow equivalences associated to the
(Ui, Vi), then we will write ϕ = ϕ(U,V ). This is an abuse of notation in that
we are not claiming that (U, V ) determines ϕ (the map ϕ may depend on
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the particular factorization of (U, V )); we are only indicating that ϕ arises
via some factorization of (U, V ).

Proposition 7.12. Suppose A ∈ M◦
P,+(Z). Suppose (U, V ) : (I − A) →

(I−B) is a positive SLP equivalence, and ϕ(U,V ) is an associated flow equiv-
alence.

Then the induced map ϕrow
∗ : rowcok(I −A)→ rowcok(I −B) is given by

the rule [w] 7→ [wV ], and the induced map ϕcol
∗ : colcok(I −A)→ colcok(I −

B) is given by the rule [w] 7→ [Uw].

Proof. We will check the proposition in the case that (U, V ) = (E, I) and
E is a basic elementary matrix with unique offdiagonal entry E(i, j) =
1. The argument for (I, E) is similar and then the proposition follows by
composition. For concreteness, suppose E(1, 2) = 1 (in other entries E =
I). Let ϕ = ϕ(E,I) be defined via the map γ and edge e described in
Subsection 2.2.

Suppose x ∈ σA and x−1 has terminal vertex i. Then the edge (γx)−1

has terminal vertex i and ϕ maps r(x,−1) onto r(γx,−1). It follows that
the diagram

F(σA)
ϕ∗−−−→ F(σB)

βA

y βB

y
rowcok(I −A) Id−−−→ rowcok(I −B)

commutes; that is, ϕrow
∗ = Id.

If x ∈ σB and x0 has initial vertex not equal to 2, then ϕ maps r+(x, 0)
onto r+(γx, 0). Thus the map (ϕcol

∗ )−1 sends [ei] in colcok(I − A) to [ei] in
colcok(I−B) whenever i 6= 2. If the initial vertex of x0 is 2, then ϕ−1 sends
r+(x, 0) to the set of all points (w, 0) in r+(γ−1x, 0) such that w−1 6= e.
Consequently, if y is a point in σA such that yi = (γx)i if i ≥ 0 and y−1 = e,
then

ϕ−1
(
r+(x, 0)

)
= r+(γ−1x, 0) \ r+(y,−1).

We also have

βcol
B : r+(x, 0) 7→ [e2] ∈ colcok(I −B),

βcol
A : r+(γ−1x, 0) 7→ [e2] ∈ colcok(I −A),

βcol
A : r+(y,−1) 7→ [e1] ∈ colcok(I −A).

Therefore (ϕcol
∗ )−1 : [e2] 7→ [e2] − [e1], hence for all integral column vectors

v we have (ϕcol
∗ )−1 : [v] 7→ [E−1v] as required. �

Theorem 7.13. Suppose A ∈ M◦
+(Z) and the mapping torus of σA is not

a circle. Then the induced map Is(YA)→ Aut(cok(I −A)) is surjective.
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Remark 7.14. Of course, the theorem is true for colcok as well as for
rowcok. In the case that the mapping torus of σA is a circle (i.e., A has
a unique irreducible component, and this component is a permutation ma-
trix), any orientation preserving homeomorphism from YA to YA is isotopic
to the identity, but cok(I − A) ∼= Z and Aut(cok(I − A)) ∼= Z/2, so the
map Is(YA) → Aut(cok(I − A)) is not surjective. Theorem 7.13 says that
apart from this case, every automorphism of the isotopy futures group of an
irreducible shift of finite type is induced by a flow equivalence.

Proof of Theorem 7.13. It is proved in [BH] that any automorphism of
rowcok(I −A) or colcok(I −A) is induced by an SL(Z) equivalence (by the
rules described in the statement of Proposition 7.12). By the Factorization
Theorem 3.3, such an equivalence is a positive equivalence. By Proposi-
tion 7.12, a flow equivalence associated to this positive equivalence has the
desired action on the cokernel group. �

From the view of symbolic dynamics, Theorem 7.13 stands in contrast to
the Kim-Roush-Wagoner result [KRW1] that the dimension representation
of a mixing shift of finite type is not in general surjective. (The contrast
is meaningful because the invariants are related by “setting t equal to 1”
[B1].)

When A ∈M◦
+(Z) (i.e., A is essentially irreducible) and σA is not a circle,

the flow equivalence class of σA is given by the SL(Z) equivalence class of
I −A, for which det(I −A) and cok(I −A) give complete invariants. When
P is nontrivial and A ∈ M◦

P,+(Z) (i.e., the SFT σA is reducible), the flow
equivalence class of A (modulo a permutation of P) is given by its positive
SLP(Z) equivalence class, and the complete algebraic invariants (introduced
by Huang) are more subtle, involving the “K-web” of the matrix I − A,
denoted K(I − A). The K-web is a diagram of exact sequences of certain
kernel and cokernel groups of submatrices of I−A. The K-web invariants are
completely analyzed in [BH], which also characterizes the automorphisms
of K(A) which can be induced by an SLP(Z) equivalence. We believe that
the type of analysis carried out to describe the action of Is(σA) on cok(I−A)
in the irreducible case can be extended to describe the possible actions of
Is(σA) on the more complicated algebraic structure of the K-web which
classifies in the reducible case. Specifically, we expect that the following
program can be carried out. Together with [BH], this program would give
a complete description of the possible actions of Is(σA) on the K-web.

Program 7.15. For A,B in MP(Z+), we conjecture the following.
(1) The K-web data for I −A can be described in terms of isotopy beams

of subsystems of YA, and the map on isotopy beams by an orienta-
tion preserving homeomorphism ϕ : YA → YB induces an isomorphism
K(A)→ K(B).
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(2) For a positive SLP(Z) equivalence (U, V ) from A to B, the isomorphism
K(A)→ K(B) induced by ϕ(U,V ) is the natural isomorphism induced
by (U, V ) as described in [BH].

(3) If ϕ is an orientation preserving homeomorphism from YA to YB, then
there is a positive SLP(Z) equivalence (U, V ) such that ϕ is isotopic
to ϕ(U,V ).

The most fundamental of the three steps above is the last one, and a
version of this has already been carried out in the irreducible case (i.e.,
P = {1}) by Badoian [Ba1], as we discuss below.

The work of Badoian.
We’ll describe some of the work [Ba1] of Leslie Badoian, which gives

alternate proofs of some of our results. The work [Ba1] is too extensive for
a full summary here; roughly speaking, Badoian carries out for irreducible
shifts of finite type a flow equivalence version of the strong shift equivalence
theory Wagoner [W1] built on the foundation laid by Williams [Wi].

Badoian builds an infinite oriented CW complex, denoted FK. A zero-cell
for FK is an equivalence class of infinite, essentially irreducible, finitely sup-
ported zero-one matrices, where two matrices are equivalent iff their unique
maximal irreducible principal submatrices are equal. A one-cell [A] → [B]
corresponds to an elementary equivalence (I − B) = U(I − A)V satisfying
certain conditions. Two-cells are also defined, by certain matrix relations.
The two main results of [Ba1] are the following:
• Classification Theorem. σA and σB are flow equivalent if and only if

A and B lie in the same connected component of FK.
• Flow Equivalence Theorem. π1(FKA) ∼= Is(σA). (I.e., a path along

one-cells gives rise to a flow equivalence, and two paths give rise to
isotopic flow equivalences if and only if the paths are homotopic in
FK.)

The elementary equivalences of [Ba1] are not the same as our elementary
positive equivalences, but Badoian has found short arguments [Ba2] which
show directly that that her elementary equivalences and ours generate the
same set of flow equivalences up to isotopy. With this fact and some tech-
nical remarks, the results of Section 6 for irreducible shifts of finite type
follow directly from Badoian’s Classification Theorem (which in turn rests
on Parry-Sullivan [PS] and Williams [Wi], as does our Section 6).

The Flow Equivalence Theorem gives an alternate route in the irreducible
case to the representation Is(σA, σB) → Iso(cok(I − A), cok(I − B)): We
could take the natural definition along an edge (given by the associated flow
equivalence), compose along paths of edges, and consult the definition of
two-cells in FK to verify that the definition only depends on the homotopy
class of the path of edges. All of this is parallel to the development of the
dimension representation in Wagoner’s strong shift equivalence theory [W1].



306 MIKE BOYLE

We have not relied in proofs on citation of [Ba1], for a few reasons. Al-
though there should be no fundamental problem with extending Badoian’s
approach to reducible shifts of finite type, the results in [Ba1] are only
for irreducible shifts of finite type. We also wanted self-contained and rea-
sonably brief arguments. (The long work [Ba1] deals with a fundamental
difficult problem which we avoid: We do not try to understand when two
paths give rise to the same flow equivalence up to isotopy.) Finally, al-
though the CW complex approach has rather spectacularly proved its worth
[KR2, KRW1, W1], the Krieger-style construction remains important, and
its more earthy definition (by actions on sets) makes sense directly for gen-
eral subshifts. Matsumoto [Ma] has a far reaching extension of Williams’
theory to general subshifts, and this offers hope for some analogue of Wag-
oner’s strong shift equivalence theory for general subshifts; but there is no
such theory yet.

Appendix A. Reduction to nondegenerate form.

This appendix is devoted to the proof of Proposition 4.5.
We will prove Proposition 4.5 by composition in a larger commuting dia-

gram (to be assembled in three stages):

(I −A) −−−→ (I −A1) −−−→ (I −A2) −−−→ (I −A)

(U,V )

y (U1,V1)

y (U2,V2)

y y(U,V )

(I −A′) −−−→ (I −A′
1) −−−→ (I −A′

2) −−−→ (I −A′) .

The horizontal arrows will be positive equivalences and the vertical equiva-
lences to the right of (U, V ) will be defined from them by composition (then
the diagram will commute). Stage I will produce the left square with A1 and
A′

1 satisfying Conditions (2), (3) and (4) of Proposition 4.5. Stage II will
produce the middle square, with (U2)ii = (V2)ii = Id for i ∈ C, and with A2

and A′
2 still satisfying Conditions (2), (3) and (4) of Proposition 4.5. Stage

III will produce the right square to finish the proof. The individual stages
will follow from several lemmas.

Lemma A.1. Suppose A ∈M◦
P,+(n, Z). Then there is a positive SLP(n, Z)

equivalence in I −M◦
P,+(n, Z) from I − A to a matrix I − C such that for

all i ∈ CA the following hold:

(1) The block Cii has its upper left corner entry equal to 1, and Cii has no
other nonzero entry.

(2) Let (`, `) be the entry of C which is the upper left corner of Cii. Then
for j 6= i, every row of a block Cij other than row ` is zero, and every
column of a block Cji other than column ` is equal to zero.
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Proof. Suppose i ∈ CA. Let i1, . . . , ik be nonrepeated indices such that
Aii(it, it+1) = 1, 1 ≤ t < k, and Aii(ik, i1) = 1.

Cycle-shortening construction. Suppose k > 1. Let A = A(0). For 1 ≤
j < k, define A(j) by the equation I − A(j) = Ej(I − A(j−1)), where Ej

denotes the basic elementary matrix which acts to add row ik−j+1 to row
ik−j . Each A(j) is nonnegative. Then add the columns i2, . . . , ik of A(k) to
column i1 of A(k). By Lemma 2.5, each step in this process gives a positive
equivalence in I −M◦

P,+(n, Z), and in the last matrix A′, the block A′
ii has

as its unique cycle the 1-cycle (i1). Below is an example of the process, with
(i1, i2, i3, i4) = (1, 2, 3, 4), viewed in the principal submatrices on indices
1, 2, 3, 4:

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

→


1 −1 0 0
0 1 −1 0
−1 0 1 0
−1 0 0 1

→


1 −1 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

→


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Now without loss of generality, we suppose k = 1 with A(i1, i1) = 1.
Because (i1) is the unique Aii cycle, if Aii is nonzero at any entry other
than (i1, i1), then it is nonzero at some entry (j, l) such that row l of A is
zero or column j of A is zero. In the former case, let E be the elementary
matrix which acts from the left to add row l to row j, then (E, I) : (I−A)→
E(I −A) = (I −A′′) is a positive equivalence in which A′′ = A except that
A′(j, l) = 0. The latter case is treated similarly, by adding column j to
column l. Iterating, we produce a positive equivalence in I −M◦

P,+(n, Z)
from I −A to a matrix I −A′ such that A′(i1, i1) is the only nonzero entry
of A′

ii.
Next, given i in CA′ with A′(i1, i1) = 1, we may for each j ≺ i add rows

of I − A′ through the ii block to rows through the ji block (never adding
row i1) until every column of the block (I − A′)ji except column i1 is zero.
We do this for all the cycle components i, for i in decreasing order, so that
no block zeroed out for some i is made nonzero by subsequent operations.
Then similarly, taking i in CA in increasing order, we add columns through
the ii block to columns through the ji blocks with i ≺ j, to end with a
matrix C ′ which satisfies the statement of the lemma (with C ′ in place of
C), except that the distinguished indices i1 might not be the corner indices
`.

So, suppose i is a cycle component for which ` 6= i1. We apply four
basic positive equivalences to give (I − C ′) → (I − C ′′), as viewed below
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in principal submatrices on indices {i1, `, k} (where k is any index not in
{i1, `}). (In the very special case that C ′ is 2×2, there can be no third index
k and these principal submatrices should be restricted to indices {i1, `}.) For
concreteness we use (`, i1, k) = (1, 2, 3):1 0 0

0 0 x
0 y z

 →

 1 0 0
−1 1 0
0 0 1

 1 0 0
0 0 x
0 y z

 =

 1 0 0
−1 0 x
0 y z


→

 1 0 0
−1 0 x
0 y z

 1 −1 0
0 1 0
0 0 1

 =

 1 −1 0
−1 1 x
0 y z


→

 1 −1 0
−1 1 x
0 y z

 1 0 0
1 1 0
0 0 1

 =

0 −1 0
0 1 x
y y z


→

1 1 0
0 1 0
0 0 1

 0 −1 0
0 1 x
y y z

 =

0 0 x
0 1 x
y y z

 .

If above for any k we have x 6= 0, then x < 0 and the (i1, k) entry lies in an
ij block with i ≺ j; then y = 0 and it is a positive equivalence to add column
i1 of C ′′ |x| times to column k. Doing this as needed, and dealing similarly
with nonzero entries y using rows in place of columns, we produce another
version of C ′′ which enjoys the additional property that i1 = ` for the cycle
component i. Then we repeat until i1 = ` for every cycle component i. The
resulting matrix C satisfies the statement of the lemma. �

Lemma A.2. Suppose A ∈ M◦
P,+(n, Z), and n = (n1, . . . , nN ) is a vector

with positive integer entries. Then there is a positive SLP(n, Z) equivalence
in I −M◦

P,+(Z) from (I −A) to a matrix with Properties (2), (3) and (4) of
Proposition 4.5.

Proof of Lemma A.2. We will describe a sequence of row and column oper-
ations (corresponding, by repeated tacit appeal to Lemma 2.5, to positive
SLP(n, Z) equivalences in I −M◦

P,+(Z)) which put the matrix I − A into
the required form. To simplify notation, rather than renaming I − A after
an equivalence, we will discuss changing properties of I −A. We begin with
a matrix A with the properties stated (for C) in Lemma A.1, i.e., A satisfies
Properties (3) and (4) of Proposition 4.5.

Our first goal will be, given t ∈ P which is not a cycle component, to
arrange that the block (I − A)tt be strictly negative. Recall It denotes the
index set for rows/columns of Att. Let S denote the index set for the unique
maximal irreducible submatrix of Att, let S ′ denote the complement of S in
It, and e.g., let A{S} denote the principal submatrix of A on index set S. We
will arrange (in order) the following properties (after each stage keeping the
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properties achieved at earlier stages, and not changing entries in any block
Ass with s 6= t, and not losing Properties (3) and (4) of Proposition 4.5).

(1) ∃i ∈ S such that (I −A)(i, i) ≤ 0.
(2) {i, j} ∩ S ′ 6= ∅ =⇒ (I −A)(i, j) = δij .
(3) If S ′ 6= ∅, then |S| > 1.
(4) S ′ = ∅.
(5) The block (I −A)tt is strictly negative.

(1) If necessary achieve this with the initial row operations of the cycle-
shortening construction of the Lemma A.1.

(2) First suppose this condition does not hold for some {i, j} ⊂ It. Then
pick some i ∈ S ′ and j ∈ It such that j 6= i and one of the following hold:
• (I −A)(i, j) 6= 0 and column i of Att is zero, or
• (I −A)(j, i) 6= 0 and row i of Att is zero.

In the former case, add column i of (I − A) to other columns j where
(I − A)(i, j) < 0, until (I − A)(i, j) = δij for all j ∈ It. In the latter case,
similarly use row additions to achieve (I −A)(j, i) = δij for all j ∈ It. This
procedure reduces the cardinality of the set of entries in (I −A)tt at which
Condition (2) fails, and it may be repeated until Condition (2) holds for
{i, j} ⊂ It. We then add rows and columns indexed by S ′ to others as
needed until (2) holds in general.

(3) Suppose (for concreteness) that S = {1} and 2 ∈ S ′. Then we must
have A(1, 1) = k > 1 (since t is not a cycle component). Now, subtract
row 2 of (I − A) from row 1; then subtract column 2 from column 1. The
effect of these moves is to enlarge S = {1} to S = {1, 2}. The moves are
summarized below in principal submatrices on indices {1, 2, 3}, where 3 is
an arbitrary additional index:1− k 0 w

0 1 0
x 0 z

→
1− k −1 w

0 1 0
x 0 z

→
−(k − 2) −1 w

−1 1 0
x 0 z

 .

(4) Suppose S ′ 6= ∅. By (1) and (3), we may pick i1, j1 in S such that
i1 6= j1, (I −A)(i1, i1) ≤ 0, and (I −A)(i1, j1) ≤ −1. Add row i1 of (I −A)
to row j1, (|S ′|+ 1) times, producing (I − A)(j1, j1) ≤ −|S ′|. For each j in
S ′, subtract row j of (I − A) from row j1. Then subtract each S ′ column
from column j1. This produces A with S ′ = ∅.

(5) With i1, j1 as in (4): Add row i1 to row j1 (now (I − A)(j1, j1) < 0);
for each i in S with i 6= j1, add column j1 to column i (now row j1 of (I−A)
is negative); and for each i in S with i 6= j1, add row j1 to row i. We now
have (I −A)tt strictly negative as required.

After applying a positive equivalence, then, we may assume that (I −
A)ii < 0 for every noncycle component i. Consequently, if i ≺ j, and i or j is
not a cycle component, then for large n the block (An)ij is strictly positive.
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We can then get a positive equivalence to (I − A) whose block (I − A)ij

is strictly negative, by adding columns through i to columns through j (if
i 6∈ CA) or by adding rows through j to rows through i (if j 6∈ CA). Similarly,
for every noncycle component j and cycle component i, with Cprim

i = {`},
add a j-row to row ` if i ≺ j, and add a j-column to column ` if j ≺ i.

Note, if i ≺ j and {i, j} ⊂ C, with say Cprim
i = {`i} and Cprim

j = {`j},
then A(`i, `j) > 0, because the block Aij is not the zero block (because A ∈
Mo

P,+(C,n, Z)) and the only possible nonzero entry is A(`i, `j) > 0. Finally,
whenever (I−A)ij < 0 with {i, j} ⊂ CA and i ≺ k ≺ j for some k in P, pick
k such that i ≺ k ≺ j, and add columns of I − A through component k to
columns through component j. The resulting matrix satisfies the statement
of the lemma. �

Lemmas A.1 and A.2 finish the proof for Stage I. We now shift our focus
to the form of the equivalence (U, V ). The next lemma gives the proof for
Stage II.

Lemma A.3. Suppose (U, V ) : (I − A) → (I − A′) is an SLP(n, Z) equiv-
alence which is positive on cycle components, and A,A′ satisfy Conditions
(2), (3) and (4) of Proposition 4.5. Then there is a commuting diagram

(I −A) −−−→ (I − Ã)

(U,V )

y y(eU,eV )

(I −A′) −−−→ (I − Ã′)

in which the horizontal arrows are positive equivalences; Ã and Ã′ still satisfy
Conditions (2), (3) and (4); and for each i ∈ C, Ũii = Ṽii = Id.

Proof. Suppose i is a cycle component for which ni > 1 (otherwise there is

nothing to prove). Then (I − A)ii = (I − A′)ii = Q, where Q =
(

0 0
0 I

)
,

in which I is (ni − 1) × (ni − 1). Considering blocks of UiiQ = QV −1
ii ,

we see Uii and Vii have the corresponding block forms Uii =
(

a 0
x Z

)
and

Vii =
(

b y
0 Z−1

)
. The positive on cycle components assumption implies

a = 1. Then det(U) = 1 implies det(Z) = 1. Then det(Z−1) = 1 = detV
implies b = 1. So we have

Uii =
(

1 0
x Z

)
and Vii =

(
1 y
0 Z−1

)
(A.4)

for some Z in SL(ni − 1, Z).
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Now suppose E is a basic elementary matrix with offdiagonal entry E(j, k)
= 1, where j, k index rows of the ii block other than the first row. Then

(I −A)
(I,E−1)−−−−−→ · (E,I)−−−→ (I −A)(A.5)

gives a factorization of (E,E−1) : (I − A) → (I − A) into basic positive
equivalences. For example, if rows 1,2,3 run through Q and Q(1, 1) = 0, then

in the principal submatrix on indices 1,2,3 we could have E =

1 0 0
0 1 1
0 0 1

,

and (A.5) would become0 0 0
0 1 0
0 0 1

 (I,E−1)−−−−−→

0 0 0
0 1 −1
0 0 1

 (E,I)−−−→

0 0 0
0 1 0
0 0 1

 .

Now we can factor (U, V ) as

(I −A)
(I,E−1)−−−−−→ · (E,I)−−−→ (I −A)

(UE−1,EV )−−−−−−−→ (I −A′).(A.6)

Because Z is a composition of elementary matrices, and Conditions (2), (3)
and (4) are not disturbed by this move, we can repeat this move to obtain
a positive equivalence (G, G−1) : (I − A) → (I − A) such that the (U, V )
equals (G, G−1) followed by (UG−1, GV ) where (UG−1)ii and (GV )ii have
the forms (A.4) with Z = I. After doing this as needed for every cycle
component i, we can assume for each i ∈ C with ni > 1 that we have the

forms Uii =
(

1 0
x(i) I

)
and Vii =

(
1 y(i)

0 I

)
.

Let D and D′ be the block diagonal matrices equal to Id except in cycle
component diagonal blocks, where Dii = Uii and D′

ii = V −1
ii . We will

produce matrices P,Q in UP(n, Z) such that (D,Q) : (I −A)→ D(I −A)Q
and (P,D′) : (I − A′) → P (I − A′)D′ are positive equivalences, and the
matrices D(I − A)Q and P (I − A′)D′ satisfy Conditions (2), (3) and (4).
Then the lemma will follow by defining (Ũ , Ṽ ) by requiring the following
diagram to commute:

(I −A)
(D,Q)−−−→ D(I −A)Q

(U,V )

y y(eU,eV )

(I −A′) −−−−→
(P,D′)

P (I −A′)D′

.

We will prove the first claim, for (D,Q); the proof of the second claim is
similar. Let i1 < i2 < · · · < ik be the elements of C. (Recall, i ≺ j =⇒
i < j.) To begin, let i = ik and let 1, 2, . . . m index the rows through Uii.
For 2 ≤ j ≤ m, let Rj be the elementary matrix which acts from the right



312 MIKE BOYLE

to subtract column j from column 1. Let R = R2 · · ·Rm and let 1 denote a
vector with every entry equal to 1, then

((I −A)R)ii =
(

0 0
−1 I

)
, and

((I −A)R)rs = (I −A)rs if rs 6= ii,

and we get a positive equivalence

(I −A)
(I,R2)−−−−→ · · · (I,Rm)−−−−→ (I −A)R.

Next, let Dk be a product of elementary matrices, E = En · · ·E1, where
Et acts from the left to add εt (εt = 1 or εt = −1) times row 1 to row jt,
and 2 ≤ jt ≤ m. Consider the equivalence (E1, I) : (I−A)R→ E1(I−A)R.
Notice (E1(I−A)R)ii = ((I−A)R)ii. So, this equivalence (E1, I) is positive
unless (E1(I−A)R)(j, k) > 0 for some columns p to the right of the ii block.
Let F1 be the product of basic elementary matrices F1,t, 1 ≤ t ≤ T say, which
act from the right to subtract column j1 from such columns p enough times
to guarantee (with F1 = F1,1 · · ·F1,T ) that (E1(I−A)RF1)(j1, p) < 0. Then

(I −A)R
(I,F1,1)
−−−−→ · · ·

(I,F1,T )
−−−−−→ · (E1,I)−−−−→ E1(I −A)RF1

gives a positive equivalence (E1, F1) : (I−A)R→ E1(I−A)RF1. Recursively,
for 1 ≤ t < m, apply this procedure, to produce Ft+1 giving a positive
equivalence

Et · · ·E1(I −A)RF1 · · ·Ft
(I,Ft+1)−−−−−→ · (Et+1,I)−−−−−→ Et+1 · · ·

E1(I −A)RF1 · · ·Ft+1.

Let Qk = F1 · · ·Fm: then we have a positive equivalence

(I −A)
(Dk,RQk)−−−−−−→ Dk(I −A)RQk

(I,R−1)−−−−−→ Dk(I −A)RQkR
−1.

Because RQk = QkR, altogether we get

(I −A)
(Dk,Qk)−−−−−→ Dk(I −A)RQk.

Notice, Qk ∈ UP(n, Z). Moreover, if j ∈ P and j < ik, then for any t the tj
blocks of (I −A) and (Dk(I −A)kQk) are equal.

Next, for the cycle components ik−1, . . . , i1 (in that order) we repeat
the procedure used above for (Dk, Qk) to produce pairs (Dk−1, Qk−1), . . . ,
(D1, Q1) with D = DkDk−1 · · ·D1 and Q(−) := QkQk−1 · · ·Q1 giving a pos-
itive equivalence

(I −A)
(Dk,Qk)−−−−−→ · (Dk−1,Qk−1)−−−−−−−−→ · · · (D1,Q1)−−−−−→ D(I −A)Q(−).

To see that the (Di, Qi) define positive equivalences, note that for is 6= ik,
the column-subtracting moves we use to prepare the entries in a block isj
to the right of the isis block do not change the sign of entries outside the
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isj block (because we are subtracting columns through the isis block with
diagonal entry 1, and these columns have no other nonzero entry at this
stage, because the earlier subtractions of columns through block irir with
r ≥ s do not affect the is block column).

For every cycle component i, the ii block of the matrix D(I − A)Q(−)

equals Id. Suppose there exists (r, s) such that r ∈ Csec and (D(I −
A)Q(−))(r, s) < 0; then choose such an (r, s) with r minimal, and add column
r to column s. Because the (r, s) entry cannot lie in a diagonal block, this
elementary positive equivalence is implemented by multiplication from the
right by a matrix in UP(n, Z). Repeat this move until a matrix is produced in
which the (r, s) entry is zero whenever r ∈ Csec. Let the corresponding posi-
tive equivalence be denoted (I,Q(+)) : D(I −A)Q(−) → D(I −A)Q(−)Q(+).
The proof is finished by setting Q = Q(−)Q(+). �

The next lemma gives the last ingredient, Stage III, for the proof of
Proposition 4.5.

Lemma A.7. Suppose U, V, A,A′ satisfy the assumptions of Lemma A.3
and in addition assume that Uii = Vii = Id for every i ∈ C. Then there is a
commuting diagram of SLP(n, Z) equivalences

(I −A) −−−→ (I −A)

(U,V )

y y(U,V )

(I −A′) −−−→ (I −A′)

satisfying the conclusion of Proposition 4.5. (Moreover, A = A and A′ =
A′.)

Proof. We will build a suitable commuting diagram

(I −A)
(E−1,H)−−−−−→ (I −A)

(H,E
−1

)−−−−−→ (I −A)

(U,V )

y (U3,V3)

y y(U,V )

(I −A′) −−−→
(I,I)

(I −A′) −−−→
(I,I)

(I −A′)

and then use (HE−1,HE
−1) and (I, I) for the upper and lower horizontal

arrows in the diagram required for the lemma. First we work on the left
half of the diagram. We will choose E,H, U3 satisfying:

(i) U3(i, j) = δij , ∀i ∈ Csec,
(ii) (E−1,H) : (I −A)→ (I −A) is a positive equivalence, and
(iii) H−1(i, j) = δij , ∀i /∈ Csec.

Recall, Is denotes the set of indices for rows/columns through Ass. To
choose E, let the entries (i, j) for which i ∈ Csec and U(i, j) 6= δij be listed
as (i1, j1), . . . , (in, jn), where ik ∈ Is(k) and s(1) � s(2) � · · · � s(n).
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(So, jk ∈ It(k) with s(k) ≺ t(k) since by assumption Us(k)s(k) = Id.) Let
µk = U(ik, jk). Define matrices Ek, 1 ≤ k ≤ n, by Ek(ik, jk) = −µk and
otherwise Ek(i, j) = δij . Then (UEk)(ik, jk) = 0. Define E = E1E2 · · ·En.
Then by our ordering s(1) � s(2) � · · · � s(n), we have (UE)(i, j) = δij

for i ∈ Csec. Let U3 = UE, now (i) holds, and U = (UE)E−1 = U3E
−1

as required for the diagram to commute. Also E(i, j) = δij if i /∈ Csec, so
E−1(i, j) = δij if i /∈ Csec.

Next for 1 ≤ k ≤ n, we will define Hk such that (E−1
k ,Hk) : (I−A)→ (I−

A) is a positive equivalence and Hk(i, j) = δij when i /∈ Csec. Then we will set
(E−1,H) = (E−1

n · · ·E−1
1 ,H1 · · ·Hn), so that (E−1,H) : (I−A)→ (I−A) is

the composition of positive equivalences and satisfies (ii). To prepare for the
definition of Hk, given k pick M a positive integer greater than the absolute
value of any entry in row ik of E−1

k (I−A), and define a matrix Fk as follows:
Fk(ik, j) = −M if ik 6= j and (E−1

k (I − A))(ik, j) 6= 0, and Fk(i, j) = δij

otherwise. Define a matrix Gk by setting Gk(ik, j) = −(E−1
k (I−A)Fk)(ik, j)

and Gk(i, j) = δij otherwise. Then we have the positive equivalence

(I −A)
(I,Fk)−−−→ ·

(E−1
k ,I)

−−−−−→ · (I,Gk)−−−−→ (I −A).

Let Hk = FkGk. Note Hk(i, j) = δij if i /∈ Csec, so H(i, j) = δij if i /∈
Csec, and therefore also H−1(i, j) = δij if i /∈ Csec. We now have E,H, U3

satisfying (i)-(iii).
To get the right half of the commuting diagram, we apply to the equiva-

lence (U3, V3) the transpose of the procedure above to get matrices E,H, V ,
U satisfying:

(i) V (i, j) = δij , ∀j ∈ Csec,
(ii) (H,E

−1) : (I −A)→ (I −A) is a positive equivalence, and
(iii) H

−1(i, j) = δij , ∀j /∈ Csec,

where U and V are defined by U = U3H
−1 and V = EV3. Using (i) and the

forms of (I −A) and (I −A′), we get for every j ∈ Csec and every i that

U(i, j) = (U(I−A))(i, j) = (U(I−A)V )(i, j) = (I−A′)(i, j) = δij = V (i, j).

Now suppose i ∈ Csec. We claim that U(i, j) = δij . Suppose not. Pick
j 6= i such that U(i, j) 6= 0. Because U = U3H

−1, it follows from (i) that
U(i, j) = H

−1(i, j), and then from (iii) that j ∈ Csec. This is a contradiction.
Finally, for i ∈ Csec we obtain

V (i, j) = ((I −A)V )(i, j) = (U(I −A)V )(i, j) = (I −A′)(i, j) = δij .

This finishes the proof. �
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