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THE PRODUCT FORMULA FOR THE SPHERICAL
FUNCTIONS ON SYMMETRIC SPACES IN THE
COMPLEX CASE

P. GRACZYK AND P. SAWYER

In this paper, we prove the existence of the product formula
for the spherical functions in the complex case and we study
properties of the integral kernel of this formula.

1. Introduction.

Let G be a semisimple noncompact Lie group with finite center and K a
maximal compact subgroup of G and X = G/ K the corresponding Riemann-
ian symmetric space of noncompact type. We have a Cartan decomposition
g =t + p and we choose a maximal abelian subalgebra a of p. In what fol-
lows, ¥ corresponds to the root system of g and X7 to the positive roots. We
have the root space decomposition g = go + > 5 da- Let n =3 5t da-
Denote the groups corresponding to the Lie algebras a and n by A and N
respectively. We have the Cartan decomposition G = K A K and the Iwa-
sawa decomposition G = KAN. Let at ={H € A: o(H) >0V v € ¥}
and AT = exp(a™).

If X\ is a complex-valued functional on a, the corresponding spherical func-
tion is

oa(e™) = /K (A=) (M) g,

where g = ke"@Wn € K AN. A spherical function, like any K-biinvariant
function, can also be considered as a K-invariant function on the Riemannian
symmetric space of noncompact type X = G/K. Naturally, such a function
is completely determined by its values on A (or on AT). The books [6, 7]
constitute a standard reference on these topics.

Let us assume throughout the paper that X, Y € a™ and that the sym-
metric space G/K is irreducible.

n [7, (32), page 480], Helgason shows that if X # 0, Y # 0 and Y ¢
W - {—X} (or equivalently that X ¢ W - {—Y}) then there exists a Weyl-
invariant measure px,y on the Lie algebra a such that

INE /m ) dpx.y (H)
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(unlike us, Helgason states his results at the group level). In fact, this is
true for all X and Y.

The support of the measure px y is shown to be included in C(X)+C(Y)
where C'(H) is the convex hull of the orbit of H under the action of the Weyl
group W.

The measures §,x and d,v are not K-invariant on G, except in the ex-
cluded cases X, Y = 0. If §x denotes the Haar measure on K, then define
the K-biinvariant probability measures (5£ < and (5gy by convolving the Dirac
masses with dx on both sides. Comparing the spherical Fourier transforms
we see that

pxy =08y %8ty

It is known [7] that

or(X) (Y = / or(eX ke¥) dk
K

The measure pxy is then to satisfy

/fe keY dk—/f )dux,y (H)

for all functions f which are biinvariant under the action of K.

The natural question is whether the measure py y is absolutely contin-
uous with respect to the Lebesgue measure on a, i.e., whether we have a
“product formula”

(1) oA(X) Ba(eY) = / or(e™) K(H, X, Y) dH

where k(H, X,Y) is Weyl invariant in each of the variables. Helgason also
discusses this measure and some partial results in [8].

The question of existence of the density of the measure p1x )y is related to
the question of absolute continuity of the measure vx on a defined by

/ F(H(E k) )dk: = / f(H)dvx (H), | € Cola),
K a

answered positively by Flensted-Jensen and Ragozin ([3]) when G/K is ir-
reducible and X # 0.

Following the general idea of their proof one can prove the absolute con-
tinuity of pxy when X,Y € at and in some boundary cases X, Y € da™
([5]). This requires however considerable care due to the non-analyticity of
the Cartan decomposition. Moreover, this general approach does not allow
us to obtain the density explicitly or even to study its basic properties.

Koornwinder gave explicit formulae for the function k(H,X,Y’) for the
rank one case in [11]. In fact, he gives a product formula for a larger class of
special functions, namely the Jacobi functions. The formulae given can be
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derived using an addition formula which is not currently available in higher
rank situations. The reader may also wish to consult [1, 2,9, 10,11, 12, 13].

In this paper, we show directly the product formula (1) for symmetric
spaces in the complex case, which is easy, as opposed to the general case.
We also give a lot of information on the kernel k£ and its support.

Our formula has applications in special functions theory and multivariate
statistics because it may be equivalently expressed in terms of the Schur or
zonal polynomials on Hermitian positive definite matrices.

There are also important relations between product formulae for spherical
functions and arithmetic of probability measures. Ostrovskii ([14]) and
Trukhina ([15]) showed that the only measures without indecomposable
factors (in the sense of convolution product), respectively in the set of radial
measures on R™ and in the set of K-invariant measures on real hyperbolic
spaces, are the Gaussian measures. Also Voit ([16]) studied this question on
some hypergroups. The main tool of all this research is a product formula
(1) with some information on its kernel. We think that our formula will give
similar characterization of Gaussian measures on symmetric spaces with G
complex.

Two more intrinsic applications of (1) are given in the end of Section 2.

We thank Tom Koornwinder for helpful remarks and Amos Nevo for point-
ing out to us the application of the product formula given in the Corol-
lary 2.6. We thank the referee for helpful comments.

2. The product formula on complex Lie groups.

We consider the spherical functions on complex groups.

We require some preliminaries.

We first note that there exists a function K (X, H) which is Weyl-invariant
in both of its arguments such that

(2) Pr(eX) = / M) K (X, H)dH
C(X)

(K is defined for X # 0).

The existence of the kernel K(X, H) in (2) is shown in [7, p. 479]. It is
simply the kernel of the Abel transform. This is valid for every symmetric
space of noncompact type.

If we use the Cartan decomposition, the integration on G can be written
in polar coordinates. With suitable normalization, we have

/f dg—/// Fky e ko) S(H) dH dkey dks

where 6(H) = [[,ex+ sinh™* a(H) and m, denotes the multiplicity of the
root .
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In the complex case m, = 2 for each o and we have
(3) FX) =) e(w)elr ),
weWw

It is worthwhile to mention that as it is written in (3), the function §'/2
is skew Weyl-invariant i.e., 6'/2(w - H) = e(w) 6'/2(H).
Still in the complex case, we have

_ 7(p) Lwew e(w) el
() = (i) W(51/2(X)

Theorem 2.1. Suppose G is a complex Lie group. Then we have the fol-
lowing product formula

oA Ba(eY) = / or(e™) k(H, X, ) 6(H) dH

where

1 1
(4)  k(H,X,Y)= S CE SR Y T z;v e(w) K(X,w -H-Y).

Proof. We observe first that
K(X,H)§'*(H+Y
/ ¢)\(6H+Y) ( ) )6 ( + )dH
C(X)

§1/2(Y)

m(p) / w iy K(X, H)6Y2(H+Y)

_ 7 dH
m(p) el A Y] / (iw-\, H)

= — e(w) ——— e K(X H)dH
w2 T Jo (%, H)

_ o) o)

= oale”) oale™)

(we note first that ¢,.n = ¢, and then we add over w).

Hence,
y. K(X,H-Y)
/C<X)+y N S m) 5172(7)
_ oy K(X,H)0Y2(H+Y)
N /C(X) Pa(e 512(Y)

We finish by ensuring that the kernel is Weyl-invariant in every argument.
O

§(H)dH

dH = ¢x(e") pa(e™).

Corollary 2.2. Suppose G is a complex group.
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1) The support of the measure pux,y is contained in
(Uwew w - (C(X) +Y)) N (Unwew w - (C(Y) + X)) C C(X) + CY).
2) 0 ¢ support (ux,y) if and only if Y ¢ W - {—X}.

Proof. 1) We note that K (X, H) is strictly positive for H € C(X)° and 0
on the complement of C'(X) and we use the symmetry of the product
formula in X and Y.

2) Suppose that 0 € support(px,y). Then 0 e C(Y)+X and 0 € C(X)+
Y which means that —X € C(Y) and X € —C(Y) = C(-Y). In the
same way, Y € C(—X). This is only possible when Y belongs to the
W-orbit of —X. The converse is clear.

O

Corollary 2.3. X +Y € support (uxy).

Proof. Without loss of generality we suppose that X, Y € at.

Naturally, X +Y € C(X) + Y. Suppose that X +Y € C(X) +w Y for
w € W. This means that X —v = w-Y —Y for a vector v € C(X). Let
ta={Heca: H=Y7",ca; ¢ >0} where aq, ..., o, are the simple
roots. Recall that if H € a™ and w € W then H —w H € *+a ([7, Chapter
IV]). Tt follows that X —v € Ta and w-Y —Y € —Fan ta = {0}, so
w-Y =Y. AsY € a’, we deduce that w = id.

The sets C(X) + w - Y being closed and bounded, it follows that a
nonempty neighbourhood U of X + Y is disjoint with all C(X) + w - Y
except for w = id.

By Theorem 2.1, for any H € U N (C(Y') + X)° the function

1 1

k(H,X,Y) = ST $7CE) ] K(X,H-Y)>0.

Hence X +Y € support(k(-, X,Y)). O

Remark 2.4. If we convolve two uniform distributions on centered spheres
of radii 0 < r < s in R™, we obtain an absolutely continuous measure
supported by the annulus of radii s — 7 and s 4+ r. Our results show that
a similar property holds on symmetric spaces with G complex; however the
description of the support of 5£ ¥ % 5iy, the symmetric space analogue of the
annulus, is more complicated.

Let us give two simple applications of our product formula.

Corollary 2.5. Let G be a complex semisimple Lie group and let u, v be
two K -biinvariant finite measures on G such that u(e K) = v(e K) =0 and
u(KOAT K) =0 or v(K A" K) = 0. Then the measure ju* v is absolutely
continuous.
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Proof. We identify K-biinvariant measures on G with W-invariant measures
on a. Observe that the spherical Fourier transform of u * v is equal to

/ / 6x(eX) dr(eV)dp(X)dw (V) = 4(N)

where 7 is a K-biinvariant measure with density

dv(H) = / / E(H, X,Y)du(X)dv(Y).
a a
The use of the Fubini theorem is justified by
/ k(H,X,Y)0(H)dH =1

a

which is the product formula for A = —i p and by the boundedness of ¢y. [

Corollary 2.6. Let G be a simple complex Lie group and let g € K AT K.
Then the orbit K g K generates G.

Proof. Let g = k1 eX ko with X € a. The existence of a continuous density of
5‘%( * 5‘%( = px,x implies that K g K g K contains a nonempty K-biinvariant
open set. O

3. An explicit product formula for the complex groups.

The result [4, Proposition 2] give us a method to construct the Abel kernel
K in (2) and therefore the product formula kernel & in (1).

Suppose aq, ... , a4 are the positive roots and a4, ... , a;, are the simple
positive roots. We have integers ay; > 0 such that

n
af = E Ak Q5
j=1

fork=n+1,...,q Fory; >0, ..., y, >0, define

A(yla" . 7yn) =

n
{(ynJrlv'-"yq): ynJrl?"'ayqzoand Zak]ykgij ]:1,,TL}
k=1

We then define
\Il(yla"'ayn) :/ dyn+1...dyq and
A(ylv--wyn)

T(y10é1++yn0¢n) :\I/(y177yn)

The support of T’ is ta = {Hea:H=yia1+ - +ypan, y; >0, i =
1,...,n}. If the rank is 1, then T jumps from 1 (inside its support) to 0
(outside its support). When the rank is greater than 1, T is continuous.
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It is not difficult to see that ¥ will be locally a polynomial of degree ¢ —n

nyy, ..., Yn-
Note that T is the distribution on a which satisfies

(T7f):/R f Z Tk O d:r:l...dxq.

(-10— aEXT
We have 9(m) T = dp and, in particular, £(T)(\) = ﬁ
Then
__m(p)
(5) K(X,H) = 5172(X) u;v e(w)T(wX — H).

One of the drawbacks of the formula (4) is that it is not immediately
clear that k(H,X,Y) = k(H,Y, X) for every X and Y € a (it is clear from
(1) that this should be the case). The following result makes this symmetry
explicit.

Proposition 3.1. Suppose G is a complex Lie group. Then the kernel
k(H,X,Y) of Theorem 2.1 can be written as

k(H,X,Y)

_ 7(p) 1
W[ 8Y2(H) 612(X) 61/2(Y)

Y e e(w)TwX +wY — H).
v,weW

Proof. We have

k(H.X,Y)
1 1
= STAE T T u;y e(w)K(X,w-H-Y)
! . > e(w)K(X,H—w'Y)

~ OU2(H) 01(Y) [W] -

_ 1 1 (p)
T SU2(H)S12(Y) W wezw e(w) §1/2(X)
)

veW

_ 7(p) 1
W[ 8Y2(H) 612(X) 61/2(Y)

Y e e(w)TwX +wY — H).
v,weW
O
Definition 3.2. We will say that the function F' is piecewise polynomial if

there is a finite partition of support(F) into domains P satisfying P° = P
on which F' is given by a fixed polynomial.
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We will say that the function F' is piecewise continuous if there is a finite
partition of support(F) into domains P satisfying P° = P on which F is
given by a continuous function.

Corollary 3.3. The function (H,X,Y) — 6Y2(H)&Y%(X)5V2(Y) k(H,

X,Y) is a piecewise polynomial continuous function on its support.

Remark 3.4. It is interesting to note that k(—H,X,-Y) = k(Y, X, H)
(refer to (4)) and, in particular, that k is symmetric in H, X and Y if
—id € W which is the case when G = SL(2,C). It is not difficult to find
examples that show that this symmetry is not true when G = SL(3, C).

Proposition 3.5. Suppose G is a complex Lie group of rank greater than 1.
1) When X € a*, the function H — K(X, H) is continuous.
When X € 0a™t\{0},the function H — K (X, H) is piecewise contin-
uwous. Moreover, if Ax denotes the set of all positive roots annihilating
X then

7(p) [laeny PaU(X, H)
[Tacay llal? TIgear\ay sinh(B, X)

where U(X,H) =3 cw €(w)T(wX — H) and D, denotes the deriv-
ative in the direction of a.
2) When X, Y € a™, the function H — k(H, X,Y) is continuous on a™
and piecewise continuous on da™ \ {0}.
When X € da™ \ {0} and Y € at (or vice-versa), the function

H — k(H,X,Y) is piecewise continuous. Moreover, in the first case,
when H € a™

(6) K(X, H) =

k(H,X,Y) = 7\TV(VP\)

HaEAX Dé(V(H, X, Y)
oY/2(H) [laeay el HﬁeA+\AX sinh(8, X) [[ e+ sinh(3,Y)
where V(H, X,Y) =% cw €v)e(w)T(v X +wY — H).

Proof. 1) The only case to be considered is X € da™\ {0}, i.e., X belongs
to a wall of a*. In the formula we have for K:

K(X,H) = 517;2(@)() U(X, H),

there is a singularity when §'/2(X) = 0.
As written in [4, (8)], the (ordinary) Fourier transform of H —
U(X, H) is equal, up to a constant ﬁ, to the numerator

Z e(w) e(iw-)\,X)

weW
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of the formula for the spherical function ¢, which is equal to
L §1/2(X) g (eX).

The injectivity of Fourier transform and the properties of spherical
functions imply that U(X,H) = 0 for all H if and only if a(X) =0
for a positive root a.

We know that T is continuous and piecewise polynomial, and there-
fore, so is U(X, H). From this, one may deduce that in a neighbour-
hood of X, the function U(-, H) is a product of [],ca, (@,-) and a
piecewise polynomial function. The formula (6) then follows.

2) The proof is similar, using Proposition 3.1 and Remark 3.4.
O

The following examples are instructive.
1) Let G = SL(3,C). For X = Aoy + Bay = [A,B — A,—B] and
H=uvuaj; +vay = [u,v—u,—v] in at, we have

K(X, H) = mint{2A - B,A—u,B—v,2B— A}
"7/ sinh(2 A — B) sinh(2 B — A) sinh(A + B)’

Note also that if H € C(X)°, we have u < A and v < B (see
Lemma 4.1).

Now, take any X # 0 in {a; = 0} NaT. We then have X =
xoq + 22 ao with > 0. If we fix H € a™ with v < z and v < 2z,
Proposition 3.5 tells us that

K(X,H) =+ .
sinh®(3 x)
That shows that H — K (X, H) is not continuous on dC(X) since
K(X,H) =0 for H outside C(X).
2) When X, Y € at, H — k(H, X,Y) may not be continuous on a* (con-
sider for example X = [4,3,-7], Y = [6,—2,—4] and H = [2,2,—4] on
SL(3,C)/SU(3)).

Let us now consider an example where K and k are easy to compute. If
G = SL(2,C), we have T(X) = 1 if X € a™ and 0 otherwise. This means
that for X and H € a™, we have

K(X,H) = 517;2((@() (T(X — H) — T(-X — H)),

= m(p) if Xo < H1 < X; and 0 otherwise

§1/2(X)
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and therefore if X, Y and H € a™,

m(p)
k(H,X,Y)= S1/2(H) 6Y/2(X) 61/2(Y)

if | X7 —Y1| <|Hy| < X7+ Y7 and 0 otherwise.
This formula is given in [8, p. 369].

However, even for SL(n,C), the computations become quickly onerous
when n > 3. We will discuss the case SL(3, C) in the next section.

4. The support in the case of SL(3,C).

In this section, we will assume throughout that G = SL(3, C). In this case,
we have T'(X) = min* {X7, — X3} (n = 2 and ¢ = 3) which brings

w(p i
K(X,H) = 51/2(())() min* {X; — Xy, Xy — X3,

X1 — Hy, X1 — Hy, X1 — Hs, H| — X3, Hy — X3, X3 — Y3}.

Pictures of the support of the measure p1xy are shown in Figure 1 (two
cases are shown).

~7.0, Y =[3.0, 1.0, —4.0] -7.0], Y =[3.0,-1.0, -2.0]

e, -

Figure 1. The support of px y.

The following result will be used repeatedly in what follows to determine
under which conditions an element H belongs to a set of the form C(X)+Y
with X € a™.

Lemma 4.1. Suppose X € at. Then C(X)={H €a: X3 < H; < Xy, i =
1,2,3} and C(X)° = {H € a: X3 < H; < X1, i =1,2,3}.
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Proof. The sides of C(X) N a®™ which do not lie on the axes of symmetry
belonging to W are given by Hs = X3 and H; = X;. Since the coordinates
of the origin satisfy 0 > X3 and 0 < X7, we have at N C(X) = {H €
at: Hy > X3,H; < X1}. The result follows by invariance under W; the
elements of W act on H = (Hy, Hy, H3) by permuting the indices. O

Lemma 4.2. Suppose X andY € at. Then

(Uwew w - (C(X) +Y)) N (Uwew w - (C(Y) + X)) na*
= (CX)+Y)n(CY)+X)Nnat.

Proof. Clearly, the set on the right hand side is included in the set on the
left hand side.

Let H € (Upew w - (C(X) +Y)) N (Upew w - (C(Y) + X))) Nat. We
have

Xs< Hi—Y,n <Xi,
Ys< Hi—X,;5) <N

where : =1, ..., 3 and w and v € W = S3. Recall that H; > Hy > Hs,
X1 > Xo > X3and Y7 > Y5 > Y;. We have:

1) H—Y1 < H - Y, < Xy

2) Hy — Yy < Hy — Y9y < Xy if v(2) =2 or 3. If v(2) = 1 then v(1) = 2

or 3. We then have Hy — Yy < Hy — Yoa) < X1

3) Let i be such that v(i) = 3. Then H3 — Y3 < H; — Y3 < Xj.

Using a similar approach, we show that H; — Y; > X3 for each ¢ and
therefore, H € C'(X) + Y. In the same manner, H € C(Y) + X. O

Note that
(CX)+Y)N(CY)+X)Nnat) =(C(X)°+Y)N(C(Y)°+X)Na™.

Lemma 4.3. Let X, Y € at. Suppose H € (C(X)°+Y)N(C(Y)°+X)Na™.
Then one of the following is true.

1) H belongs to no other C(X)° +w-Y.

2) H belongs to no other C(Y)° +v - X.

3) H belongs to exactly one other C(X)°+w-Y, we W.

4) H belongs to exactly one other C(Y)° +v- X, veW.

Proof. Suppose the result is not true. This means that we can find H €
(C(X)+Y)N(C(X)° 4w - Y)N(C(X)°+w2-Y)N(C(Y)°+X)N(C(Y)°+
v1 - X)N(C(Y)° + vy - X)Nat with wy # e, wy # e, w1 # we and vy # e,
vg # €, U1 # V.

In that case, we can find ¢ < 3 such that w;(i) = 3 or wa(i) = 3 (aside
from the identity, there is only one element of W = S5 that fixes any given
index). In the same way, we can find j > 1 such that v1(j) =1 or ve(j) = 1.
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To simplify the notation, assume that w; (i) = 3 and v1(j) = 1. This means
that i < j.

We have H; — Y3 = H; — Yy, 5 < Xi since H € C(X)°+w;y - Y and
Hj — X1 = Hj — X,,(j) > Y3 since H € C(Y)° +v; - X. This means that
X1 < Hj — Y3. Therefore X; < H; — Y3 < H; — Y3 < X (recall that i < j)
which is absurd. g

Proposition 4.4. Suppose X, Y € at. Let
S=CX)+Y)n(CY)° +X)nat.

Let H € a*. Then k(H,X,Y) is nonzero (and therefore strictly positive)
if and only if

HeSN{Hs < Xa+ Yo} N{H > X5+ Ya}.

Note that if X andY are both above p (i.e., Xo > 0 and Y2 > 0) then the
condition Hz < X9 + Y5 is automatically satisfied for H € a*. In the same
manner, if X and Y are both below p (i.e., Xo < 0 and Ya < 0) then the
condition Hy > X9 + Y5 is automatically satisfied for H € a™.

Proof. If we refer to Corollary 2.2 and to Lemma 4.2, we can assume that
He(C(X)+Y)N(C(Y)+ X)Na' since otherwise k(H, X,Y) = 0.

Let Sp be the set consisting of H € (C(X)°+Y)N(C(Y)°+ X)Na™t such
that H belongs to no other C(X)° 4+ w -Y or to no other C(Y)° +v - X,
v, w € W. For i =1 and 2, let S; be the set consisting of H ¢ Sy and
He(CX)+Y)n(CY)+X)°N(C(X)°+w;-Y)N(C(Y)° +w;- X)Na™
where w; = (1 —-1,2—3,3 —=2)andws = (1 —2,2—-1,3—-3) e W.

We will show that for H € a™, k(H,X,Y) > 0 if and only if

H e S()U(Slﬂ{Hg <X2+Y2})U(SQQ{H1 >X2+Y2}).
This will prove the result once we observe the following two facts:
HIfH e (CX)+Y)N(C(Y)+ X)Nat does not belong to S; then
Hs < X9+ Yo,
It is sufficient to prove that H € (C(X)+Y)N(C(Y)+X)Na' and
Hs > X5+ Y5 imply that H € C(Y)° +w; - X. Then, by symmetry of
the above expressions in X and Y, we will also have H € C(X)+w;-Y
and therefore H € S.
We note that H € C(Y')° 4+ w; - X is equivalent to the inequalities:
Ys<H — X1 <Y,Ys< Hy—X3<Yand Y3 < H3 — X5 <Yj.
The first inequality is obvious since H € C(Y) + X°, Y3 < Hy — X3
is true since Hy > H3 > Xo + Yy > X3+ Y3. Suppose Hy — X3 < Y]
is false. Then —Hy — H3 = Hy > X3+Y; and H3 < —X3—-Y; — H;
which combined with Hs > X5 + Y5 yields Xo + Yo < — X3 —-Y; — H
or Xo+X34+Y1+Y, <—Hy, ie, —X; —Ys < —H; which contradicts
H; — Xy > Y3 since H € C(Y) 4+ X. Finally, H3 — X2 < Y7 holds
because H3 — X9 < Hy — X9 < Yj.



THE PRODUCT FORMULA FOR SPHERICAL FUNCTIONS 389

2)If H e (C(X)+Y)N(CY)+ X)Na' does not belong to Sy then
Hi > Xo+Y5.
The proof is similar.

Consider now Lemma 4.3. If Cases 1) or 2) are verified, then H € Sp. In

that case, we either have k(H, X,Y) = m IV%/I K(X H-Y)>0
or k(H,X,Y) = leV'K(YH X) > 0.

If H ¢ Sy then H satisfies Cases 3) and 4) of Lemma 4.3 and we have
He(CX)+Y)Nn(CY)+X)°N(C(X)°+w-Y)N(CY)°+v-X)Nat.
Note that we cannot have w(l) = 3 or w(3) = 1 (and similarly for v).
Indeed, if w(1) = 3 then H; — Y3 < X; which means that H; — X; < Y3
which is absurd while if w(3) = 1 then Hs — X; > Y3 which means that
H; — Ys > X; which is absurd. Therefore, the only possibilities for w and
v are wy and wy. We also have v = w. Indeed, if we had v # w, it is not
difficult to see by inspection (say by taking w = w; and v = ws) that we
would reach a contradiction by using a similar argument. We then have
E(H,X,Y)= m| |(K(X H-Y)-K(X,H—-w;-Y)) > 0since

e(wy) = e(wz) = —1.

It remains to show that for H € Sy, k(H,X,Y) > 0 if and only if H3 <
Xso + Y5 and that for H € S5, k‘(H, X, Y) > 0 if and only if H; > X3 + Y5.
Since the reasoning in the two cases are very similar, we will show only the
first case.

Suppose H € §1. We deduce easily that X; + Y3 — Hs is strictly smaller
than X1 —Xs, X14+Ys—Hy, X1+Y3—H3s and X1+Ys— H3 while H3—Ys— X3
is strictly smaller than X; +Y; — Hy, Ho — Yy — X3, H3 — Y3 — X3 and
Hj — Y3 — X3. This implies that K(X,H -Y) - K(X,H —w;-Y) > 01is
equivalent to

(7) min{XQ — X3, H —Y] — Xg} > min{X1 +Y3—Hy,H3 — Yy — Xg}

Note that Xo — X3 > H3— Y5 — X3 and Hy — Y7 — X3 > X1+ Y3 — Hy are
both equivalent to H3 < X9+ Y. The latter inequality is therefore sufficient
for (7) to be true. It remains to show that it is necessary.

Now, we get down to several cases:

1) Suppose X; — X9 < X9 — Xz and Y7 —Ye <Y, — Y3 (ie., X9 >0 and
Y5 > 0). Since H € a™, the condition Hs < X5 + Y5 is satisfied and
there is nothing to prove.

2) Suppose X1 — Xo < Xo— Xz and Y1 — Yy > Yo — Y3 (i.e., X2 > 0 and
Y, < 0).

Suppose H; — Y7 — X3 > min{X1 +Ys — Hy, H3 — Yy — X3} and
Hj3 > X5+ Ys. That is only possible if H; — Y} > Hs — Ys.

We have Hi — Y] > H3 — Yy > Xo+ Yo — Y5, = X5 > 0. Now,
H3 > X5+ Y5 if and only if —Ys > —Hs 4+ X5 which implies Y1 + Y3 =
—Y3 > —Hs = Hi+ Hy which is equivalent to Y1 > Hi+(H2—Y3) > Hy
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since Hy — Y3 > X9 > 0 (Hy — X2 > Y3 since H € C(Y)° + X). This
contradicts H; — Y7 > 0.
3) By symmetry, we do not have to consider the case Y1 — Yy <Y, — Y3
and X7 — Xo > Xo — X3.
4) Suppose X1 — X9 > Xo— Xgand Y1 — Y2 > Y, — V3 (i.e, Xo <0 and

Ys < 0).
Suppose that (7) is true and that Hs > X5 + Y5. This means that

Xo—X3<H3—-Ys—Xgand Hy —Y; — X3 < X1 +Y3 - Ho.
We consider two cases:

a) H -Y 1  —X3>Xo—X3>X1+Y;— Ho:
We have H1—Y;— X3 > Xo— X3 if and only if H1—Y7; > X5. On the
other hand, Hy > X9+ Y5 if and only if —Xo+ Y7 + Y3 > H| + Ho.
To this last inequality, we apply Xo — X3 > X; + Y3 — Hy if and
only if Hy > X1 + Y3 — X9 + X3. We obtain —Xo + Y7 + Y3 >
Hi+X1+Ys—Xo+Xsifandonlyif Y7 > Hi+ X1+ X3 = Hi — Xo
if and only if Xy > H; — Y;. This contradicts H; — Y7 > Xo.

b) Xo—Xs3>H1—Y1 — X3 > Hs3—Yy — X3
We have Xo — X3 > Hy — Y7 — X3 if and only if Xo > Hy — Y.
On the other hand, H; — Y7 — X3 > H3 — Yy — X3 if and only if
—Hs; > —H{+Y, —Ys. We have Hy > X5 + Y5 if and only if
—Xo > —-H3+Yy, > -Hi +Y1 — Yy +Y, = —Hy + Y7 which is
equivalent to Xo < Hy — Y7. This contradicts Xo > H; — Y7.

O

Remark 4.5. Let H, X and Y € at. We note that computing k(H, X,Y)
requires one evaluation of K when H € Sy while it requires taking the
difference of two values of K when H € S; N{Hs < Xy + Y2} or H €
So N {Hl > Xo + YQ}.

Remark 4.6. When we refer to Figure 1, we can describe the support in a
more informal and more concrete manner:

support(px,y) = C\ (D1 U Ds)

where C' = (Uyew w- (C(X)+Y)) N (Upew w- (C(Y)+ X)) and Dy, Dy are
either empty or equilateral triangles in the plane a such that 0 is their centre
and such that a side is, respectively, on the line —vg = H3 = X9+ Y < 0
(uH:H1 =Xo0+Y, >0).

Naturally, Dy =W. ({Hg > X9 + YQ} N ClJr) and Dy = W - ({Hl <
X9 + YQ} N ClJr).

5. The function 7T in the case of SL(n,C).

By Proposition 3.1, in order to know the kernel k(H, X,Y") of the product
formula, it is sufficient to know explicitly the function 7" defined in Section 3.
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We give here some more information available about the function 7" in the
case G = SL(n, C).

Note that when writing A € a* in terms of the simple positive roots, i.e.,
A= Z?_ll a; o;, we find that

n—1
®)  wN) =] M) =]] l@i(a+ai1) ... (a+ - +an1)].
a>0 =1
Using Maple, it is possible to compute the function T for SL(4, C) since
it is simply a matter of computing the Laplace inverse transform of ﬁ

Recall that T'(y; a1 + y2 2 + y3 a3) = 0 unless all y;’s are positive. Let
x4 =max {0,z}. We find

T(y1 01 + y2 2 + Y3 03)
(

s 0 < y2 < min{yi,y3}
-2y} +3yi e 0<y1 <y <us
=< —2y8+3y3 0<ys<yo<uyi

i3y — (it —u3)t 0<y <y <
k—y§+3y§y1—(y1+y2—y3)i 0<ys <y <o

Here is a more general result for the function 7"

Proposition 5.1. The function T' for SL(n, C) is given by
Tyrar+ -+ Yn—10n-1)
= i<y} 0(dy2, - - -, dyn—1) * Ly, <y} O0(dys, - - -, dyn—1)
* 1y <ya<ys} 00(dyy, ..., dyn—1)
*o ok Ly <yp <<y 2} 00(dYn—1) * Ly <yp<<yn 1)
Proof. If we consider (8), we can write %A) as

1

w(\)

n—1 1
P (ak (ak—1 +ak) (ak—2 + ag—1+ag) ... (a1 + a2+ +ag-1+ ak))
and then compute the inverse Laplace transform of each factor. O

Lemma 5.2. If X € at then C(X) = {H: >\ | Hy, <> X, (ki) €
Sp,r <n—1}.

Proof. Similar to the proof of Lemma 4.1. O

Corollary 5.3. On SL(n,C), the convex envelope of the support of pxy
isC(X+Y)=C(X)+CY).
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Proof. One observes easily that C(X +Y) = C(X) 4 C(Y) using the above
lemma. We then use Corollary 2.2, Corollary 2.3 and the fact that the
support is Weyl invariant. O

1]

2

3

4

5

[6]
[7]
8]
[9]
(10]
(11]
(12]

(13]

(14]

(15]

References

R. Askey, Jacobi polynomials, 1. New proofs of Koornwinder Laplace type integral
representation and Bateman’s bilinear sum, SIAM J. Math. Anal., 5(1) (1974), 119-
124, MR 52 #6062, Zbl 0269.33014.

M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi expan-
sions, Ark. Mat., 10 (1973), 245-262, MR 49 #5688, Zbl 0267.42009.

M. Flensted-Jensen and D.L. Ragozin, Spherical functions are Fourier transforms of
L1 -functions, Annales scientifiques de I'Ecole Normale Supérieure, 6 (1973), 457-458,
MR 51 #807, Zbl 0293.22020.

P. Graczyk and J.-J. Loeb, Spherical analysis and central limit theorems on sym-
metric spaces, Probability measures on groups and related structures, XI (Oberwol-
fach, 1994), 146-166, World Sci. Publishing, River Edge, NJ, 1995, MR 98b:43017,
Zbl 0907.43011.

P. Graczyk and P. Sawyer, The product formula for the spherical functions on sym-
metric spaces of noncompact type, preprint, 124, Département de Mathématiques,
Université d’Angers, January 2001.

S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic
Press, New York, 1978, MR 80k:53081, Zbl 0451.53038.

, Groups and Geometric Analysis, Academic Press, New York, 1984,
MR, 86¢:22017, Zbl 0543.58001.

, Geometric analysis on symmetric spaces, Mathematical surveys and mono-
graphs, 39, American Mathematical Society, 1994, MR 96h:43009, Zbl 0809.53057.

T. Koornwinder, The addition formula for Jacobi polynomials, 1. Summary of results,
Indag. Math., 34 (1972), 188-191, MR 46 #7590, Zbl 0247.33017.

, The addition formula for Jacobi polynomials and spherical harmonics, STAM
J. Appl. Math., 25(2) (1973), 236-246, MR 49 #10938, Zbl 0276.33023.

, Jacobi polynomials, 11. An analytic proof of the product formula, SIAM J.
Math. Anal., 5(1) (1974), 125-137, MR 52 #6063, Zbl 0269.33015.

, A new proof of a Paley- Wiener type theorem for the Jacobi transform, Archiv
fiir Mathematik, 13 (1975), 145-159, MR 51 #11028, Zbl 0303.42022.

, Jacobi functions and analysis on noncompact semisimple Lie groups. Special
functions: Group theoretical aspects and application, R.A. Askey & al. (eds), Reidel,
1984, MR 86m:33018, Zbl 0584.43010.

1.V. Ostrovskii, Description of the class Ip in a special semigroup of probability mea-
sures, Selected Transl. in Math. Statist. and Prob., 15 (1981), 1-8, MR 47 #9680,
Zbl 0292.60033.

I.P. Trukhina, Arithmetic of spherically symmetric measures on Lobatchevsky space
(in Russian), Teor. Fun’kcii, Funkc. Anal. Pril., 34 (1980), 136-146, MR 81h:60017,
Zbl 0444.28011.



http://www.ams.org/mathscinet-getitem?mr=52:6062
http://www.emis.de/cgi-bin/MATH-item?0269.33014
http://www.ams.org/mathscinet-getitem?mr=49:5688
http://www.emis.de/cgi-bin/MATH-item?0267.42009
http://www.ams.org/mathscinet-getitem?mr=51:807
http://www.emis.de/cgi-bin/MATH-item?0293.22020
http://www.ams.org/mathscinet-getitem?mr=98b:43017
http://www.emis.de/cgi-bin/MATH-item?0907.43011
http://www.ams.org/mathscinet-getitem?mr=80k:53081
http://www.emis.de/cgi-bin/MATH-item?0451.53038
http://www.ams.org/mathscinet-getitem?mr=86c:22017
http://www.emis.de/cgi-bin/MATH-item?0543.58001
http://www.ams.org/mathscinet-getitem?mr=96h:43009
http://www.emis.de/cgi-bin/MATH-item?0809.53057
http://www.ams.org/mathscinet-getitem?mr=46:7590
http://www.emis.de/cgi-bin/MATH-item?0247.33017
http://www.ams.org/mathscinet-getitem?mr=49:10938
http://www.emis.de/cgi-bin/MATH-item?0276.33023
http://www.ams.org/mathscinet-getitem?mr=52:6063
http://www.emis.de/cgi-bin/MATH-item?0269.33015
http://www.ams.org/mathscinet-getitem?mr=51:11028
http://www.emis.de/cgi-bin/MATH-item?0303.42022
http://www.ams.org/mathscinet-getitem?mr=86m:33018
http://www.emis.de/cgi-bin/MATH-item?0584.43010
http://www.ams.org/mathscinet-getitem?mr=47:9680
http://www.emis.de/cgi-bin/MATH-item?0292.60033
http://www.ams.org/mathscinet-getitem?mr=81h:60017
http://www.emis.de/cgi-bin/MATH-item?0444.28011

THE PRODUCT FORMULA FOR SPHERICAL FUNCTIONS 393

[16] M. Voit, Factorization of probability measures on symmetric hypergroups, J. Austral.
Math. Soc., A50 (1991), 417-467, MR 92i:60015, Zbl 0731.60008.

Received October 12, 2000 and revised June 15, 2001. The first author is supported by
the European Commission (TMR 1998-2001 Network Harmonic Analysis). The second
author is supported by a grant from NSERC.

DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE D’ ANGERS

2 BOULEVARD LAVOISIER

49045 ANGERS CEDEX 01, FRANCE

E-mail address: graczyk@tonton.univ-angers.fr

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE
LAURENTIAN UNIVERSITY

SUDBURY, ONTARIO

CaNADA P3E 5C6

E-mail address: sawyer@cs.laurentian.ca


http://www.ams.org/mathscinet-getitem?mr=92i:60015
http://www.emis.de/cgi-bin/MATH-item?0731.60008
mailto:graczyk@tonton.univ-angers.fr
mailto:sawyer@cs.laurentian.ca

