
Pacific
Journal of
Mathematics

DISCRETE BISPECTRAL DARBOUX
TRANSFORMATIONS FROM JACOBI OPERATORS
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We construct families of bispectral difference operators of
the form a(n)T + b(n) + c(n)T −1 where T is the shift opera-
tor. They are obtained as discrete Darboux transformations
from appropriate extensions of Jacobi operators. We con-
jecture that along with operators previously constructed by
Grünbaum, Haine, Horozov and Iliev they exhaust all bispec-
tral regular (i.e., a(n) 6= 0, c(n) 6= 0, ∀n ∈ Z) operators of the
form above.

1. Introduction.

Back in 1929 S. Bochner [6] posed and solved the problem of isolating all
families of orthogonal polynomials that are also eigenfunctions of a fixed,
but arbitrary, second order differential operator. He found that they were
given by what are nowadays called “the classical orthogonal polynomials”,
i.e., those of Jacobi, Hermite, Laguerre and (the less known) Bessel. Many
developments in the last few years which establish rich links between classical
function theory at one end and differential algebra at the other, can be seen
as the result of looking for answers to questions that are variants of that
of Bochner. Some of these developments are alluded to in the rest of the
introduction. Before going into details it is probably worth noticing that
while the original paper of Bochner poses and solves the problem in a few
pages, the extensions that have been considered in the last 15 years or so are
still awaiting complete resolution. This paper takes a step in that direction.

The bispectral problem, as originally formulated by Duistermaat and
Grünbaum [7], asks for a description of all situations where a pair of dif-
ferential operators in the variables x and z have a common eigenfunction
Ψ(x, z)

L(x, ∂x)Ψ(x, z) = λ(z)Ψ(x, z),(1.1)

B(z, ∂z)Ψ(x, z) = θ(x)Ψ(x, z).(1.2)

For simplicity we say that L, or B, or Ψ, are bispectral when the situation
above holds.

The results in [7] already revealed a number of interesting connections
with a variety of topics ranging from the Korteweg–deVries equation to
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the problem of isomonodromic deformations for differential operators with
rational coefficients. Later even more unexpected connections with different
areas of pure mathematics were found. These include automorphisms and
ideal structure of the Weyl algebra in one variable [5, 3], representations of
the W1+∞ algebra [2], Calogero–Moser system [25], Huygens’ principle [4],
traces of intertwiners for representations of (quantized) simple Lie algebras
[8, 9] (the last two in the multivariable case).

In [7] all bispectral differential operators L(x, ∂x) of second order were
classified. Notice that if one insists that B(z, ∂z) should also be of order two
then one is necessarily dealing with the Bessel or Airy cases. In that paper
very explicit use was made of the Darboux transformation mapping a given
second order differential operator into another one. When starting from
an appropriate bispectral L(x, ∂x) this was shown to produce another such,
with a different B(z, ∂z). Wilson [24] approached the problem from the
viewpoint of commutative algebras of differential operators. He classified all
maximal bispectral algebras of rank one (which by definition is the greatest
common divisor of the orders of all operators in the algebra). In [1, 18]
the idea of applying Darboux transformations to commutative algebras of
differential operators was developed. This allowed for a unification of the
apparently unrelated methods in [7, 24] and an extension of them to the
higher rank case. Further interesting results in this direction were obtained
in [17].

Grünbaum and Haine considered [10] a discrete–differential version of
the above problem when the variable x runs over the integer lattice Z and
accordingly one replaces the differential operator L(x, ∂x) by a difference
operator

L(n, T ) =
q∑

i=p

bi(n)T i, bp(n), bq(n) 6≡ 0

acting on a function f(n) : Z → C by

(Lf)(n) =
q∑

i=p

bi(n)f(n+ i).

Following [23, 22], we define the support of L(n, T ) to be the ordered pair
[p, q]. Such a difference operator will be called regular if the first and the last
coefficients bq(n) and bp(n) are nowhere vanishing functions on Z.

As indicated above, this problem is a generalization of the problem of
classifying orthogonal polynomials which are eigenfunctions of differential
operators. The point is that the standard three term recursion relation
gives rise to a very special type of difference operator, represented by a
semiinfinite tridiagonal matrix. In [10], Grünbaum and Haine showed that
all instances of difference operators with support [−1, 1] and second order
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differential operators satisfying (1.1)-(1.2) result by replacing the variable n
in the classical cases of the Hermite, Laguerre, Jacobi, and Bessel polynomi-
als (discovered by Bochner, see [6]) by a variable n+ ε with n running over
the integer lattice and ε arbitrary (see Section 2.2 for precise definitions).
The differential operator in z is the celebrated hypergeometric second order
differential operator of Gauss. It is worth noting that the corresponding
eigenfunctions Ψ(n, z) are no longer polynomials. For a recent survey of
this area, see [14].

Recently Haine and Iliev considered the classification problem for max-
imal bispectral difference algebras of rank one [15]. Their treatment is a
beautiful extension of Wilson’s work [24] where the Grassmannians asso-
ciated to Darboux transformations on differential operators are substituted
with flag varieties coming from such transformations on difference operators.
Among these some algebras that contain an operator with support [−1, 1]
were isolated in [16], where they were conjectured to be all of this type.

The aim of this paper is to make progress in obtaining a discrete–conti-
nuous analog of the result of [7], namely a classification of all discrete bispec-
tral operators of the form a(n)T+b(n)+c(n)T−1 (referred to as the extended
Bochner–Krall problem in [14]). In [12] the Darboux process was applied
to a biinfinite extension of the Laguerre difference operators considered in
[10]. A large class of bispectral difference operators of the form above was
thus constructed and many properties of the resulting objects were analyzed
in detail. It is fair to say that the results in [12] provide a general treat-
ment of the Laguerre case. The case of Jacobi difference operators has so
far not been amenable to a similar treatment and only some special cases of
Darboux maps were proved to preserve the bispectral property. The goal of
the present paper is to provide such a general treatment in the Jacobi case
and to state a conjecture for the classification problem above.

The rest of the introduction describes our results.
We take as a starting point the following natural extensions of the Jacobi

polynomials, constructed in [10]:

pα,β
ε (n, z) =

(ε+ α+ 1)n

(ε+ 1)n
F (−(n+ ε), n+ ε+ α+ β + 1, α+ 1, (1− z)/2).

Here and later we use F for Gauss’ 2F1 hypergeometric function. For neg-
ative integer values of α, see (2.17). They are no longer polynomials but
are still eigenfunctions of a biinfinite difference operator Lα,β;ε(n, T ) of the
form a0(n)T + b0(n) + c0(n)T−1 and a differential operator Bα,β(z, ∂z):

Lα,β;ε(n, T )pα,β
ε (n, z) = zpα,β

ε (n, z),

Bα,β(z, ∂z)pα,β
ε (n, z) = λε(n)pα,β

ε (n, z).

The operator Lα,β;ε(n, T ) is obtained by the formal change of variables n 7→
n+ε from the standard (difference) Jacobi operator and is explicitly defined
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in (2.9). The operator Bα,β(z, ∂z) and the spectral function λε(n) are given
in Equations (2.5) and (2.12).

The sets of difference operators that we consider are obtained by the fol-
lowing version of the Darboux map starting from the operators Lα,β;ε(n, T ).
Let P (n, T ) be a regular difference operator whose kernel is preserved by
Lα,β;ε(n, T ). Then there exists a (unique) difference operator L(n, T ) such
that

L(n, T )P (n, T ) = P (n, T )Lα,β;ε(n, T )(1.3)

which we refer to as a Darboux transformation from Lα,β;ε(n, T ). The ad-
vantage of this version is that this L(n, T ) is necessarily of the same form
as Lα,β;ε(n, T ), i.e., L(n, T ) = a(n)T + b(n) + c(n)T−1 for some functions
a(n), b(n), c(n), n ∈ Z.

If q(x) denotes the characteristic polynomial of the endomorphism L(n, T )
acting on the finite dimensional space KerP (n, T ), then

KerP (n, T )⊂Kerq(Lα,β;ε(n, T )).

In view of this it is natural to parametrize the sets of operators L(n, T ) by
the Grassmannians of special subspaces of Kerq(Lα,β;ε(n, T )) that can occur
as KerP (n, T ). Denote the set of difference operators L(n, T ) corresponding
to characteristic polynomial q(x) = (x− 1)k(x+ 1)l by

D(k,l)
α,β;ε.

The operators in D(k,l)
α,β;ε are the main objects of study in this paper. Their

explicit form is given in Section 3.3. Restricting to q(x) with roots at ±1
guarantees that L(n, T ) will have rational coefficients. This is an important
feature of bispectral operators. See [7] in the differential case.

It is an easy consequence of (1.3) that the function

Ψ(n, z) = P (n, T )pα,β
ε (n, z)(1.4)

is an eigenfunction of the operator L(n, T ), namely we have

L(n, T )Ψ(n, z) = zΨ(n, z).

Our main result is:

Theorem 1.1. The difference operators L(n, T ) from the sets D(k,l)
α,β;ε are

bispectral (or more precisely the functions Ψ(n, z) (1.4) are eigenfunctions
of differential operators in the variable z) in the following cases:

1) α ∈ Z and k ≤ |α|, l = 0,
2) β ∈ Z and l ≤ |β|, k = 0,
3) α, β ∈ Z and k ≤ |α|, l ≤ |β|.
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When ε = 0, and k = 1 and (or) l = 1 these results were established in
[19, 27]. All this work starts with the classical paper of H.L. Krall, [20].

The proof of Theorem 1.1 is based on a general result of Bakalov, Horozov
and Yakimov [3] which guarantees that a Darboux transformation preserves
the bispectral property under some conditions on the operator P (n, T ). We
will soon see that its application to the present situation is highly nontriv-
ial and requires, in particular, an intrinsic characterization of a space of
difference operators.

We will need some notation from [3], see Section 4.1 for more details.
Denote by Bα,β;ε the algebra of difference operators S(n, T ) with rational
coefficients for which there exists a differential operator G(z, ∂z) (also having
rational coefficients) satisfying

S(n, T )pα,β
ε (n, z) = G(z, ∂z)pα,β

ε (n, z).(1.5)

All such operators S(z, ∂z) form a “dual” algebra B′α,β;ε. The map

b : Bα,β;ε → B′α,β;ε, b(R(n, T )) = S(z, ∂z)

is an antiisomorphism of associative algebras. Let Kα,β;ε and K′α,β;ε be the
subalgebras of Bα,β;ε and B′α,β;ε consisting of rational functions. Bispec-

trality of pα,β
ε (n, z) is equivalent to Kα,β;ε and K′α,β;ε being both nontrivial.

Finally we arrive at the most important object for our consideration, namely
the space

Rα,β;ε = {(µ(n))−1P0(n, T ) | µ(n) ∈ Kα,β;ε, P0(n, T ) ∈ Bα,β;ε,

and the operator (µ(n))−1P0(n, T ) does not have poles atn ∈ Z}.

According to Theorem 1.2 of [3], Ψ(n, z) is an eigenfunction of a differential
operator in the variable z, if

P (n, T ) ∈ Rα,β;ε.

Thus to prove Theorem 1.1 we need a good description of the space Kα,β;ε

which can be used to check whether the operators P (n, T ) from (1.3) be-
long to Rα,β;ε. This is the hardest step in our paper. Let ∆ denote the
algebra of abstract difference operators with rational coefficients of the form∑q

i=p bi(n)T i with rational functions bi(n) (possibly having poles in Z). The
key point of our approach is to consider the involution I of ∆ acting on
rational functions h(n) by

(Ih)(n) := h(−(n+ 2ε+ α+ β + 1))

and on the shift operator T by I(T ) := T−1. In Section 4.2 we prove that
Rα,β;ε consists of those difference operators from ∆ that do not have poles
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in Z and after conjugation with the function

φ(n) =
(ε+ α+ 1)n

(ε+ 1)n

become I-invariant.
The final step of the proof of Theorem 1.1 is to show that the hypoth-

esis guarantees that the kernel of the operator P (n, T ) (defining L(n, T ))
has a basis of functions f(n) for which the ratio f(n)/φ(n) is an (almost)
I-invariant rational function in n. This is done in Section 5.1. Finally Sec-
tion 5.2 recapitulates the strategy of the proof of Theorem 1.1 for the special
case of the set D(2,0)

α,β,ε. The reader may find it useful to consult this section
while reading the paper.

Let us also note that in the case of Laguerre polynomials the situation
simplifies a lot due to a presense of a relation of the type (1.5) with a
difference operator S(n, T ) of the form s1(n)T + s0(n) and a first order
differential operator G(z, ∂z) (see expressions (2.3) and (2.8) in [12]). It is
not hard to show that as a consequence of this the analog of Rα,β;ε in that
case is simply the space of difference operators with rational coefficients.

Comparing with the differential case [7], it is natural to conjecture that
all second order regular bispectral difference operators (i.e., having support
[−1, 1]) are exhausted by the families of operators constructed in [10, 12,
16] and in this article. The operators in [16] are obtained as Darboux
transformations from the operators Lα,β;ε(n, T ) for half integer values of the
parameters α, β and are the analogs of “KdV family” in the differential case
[7].

For later use we introduce some convenient notation. If f(n) : Z → C is a
nowhere vanishing function and D1(n, T ), D2(n, T ) are difference operators
we denote

Adf(n)D1(n, T ) := f(n)D1(n, T )f(n)−1,

adD2(n,T )D1(n, T ) := D2(n, T )D1(n, T )−D1(n, T )D2(n, T ).

2. Biinfinite Jacobi operators.

In the first part of this section we review some properties of the classi-
cal Jacobi polynomials pα,β

n (z). The second one discusses certain functions
pα,β

ε (n, z) which are eigenfunctions of biinfinite analogs Lα,β;ε(n, T ) of the
Jacobi difference operators. The third part describes Darboux maps between
the operators Lα,β;ε(n, T ) with shifted indices α, β.

2.1. Jacobi polynomials. The Jacobi polynomials are the orthogonal
polynomials for the measure (1 − z)α(1 + z)βdz on the interval [−1, 1],
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(α, β > −1), normalized by

pα,β
n (1) = 2−n

(
n+ α

n

)
, n ∈ Z≥0.

They are given by

pα,β
n (z) =

(
n+ α

n

)
F (−n, n+ α+ β + 1;α+ 1; (1− z)/2)(2.1)

where F (a, b; c;x) denotes the Gauss’ hypergeometric function. The reader
can consult [21, pp. 209–217] for other explicit formulas and a list of major
relations for pα,β

n (z). Let

pα,β(n, z) =

{
pα,β

n (z), for n ∈ Z≥0

0, for n ∈ Z<0.
(2.2)

Now pα,β(n, z) are functions of a discrete parameter n and a continuous
parameter z. They satisfy a three term recursion relation

Lα,β(n, T )pα,β(n, z) = zpα,β(n, z)(2.3)

where Lα,β(n, T ) are the difference operators

Lα,β(n, T ) =
2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
T(2.4)

+
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)

+
2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
T−1

called Jacobi operators. In addition pα,β(n, z) are eigenfunctions of the dif-
ferential operators Bα,β(z, ∂z) given by

Bα,β(z, ∂z) = (z2 − 1)∂2
z + (α− β + (α+ β + 2)z)∂z,(2.5)

i.e.,

Bα,β(z, ∂z)pα,β(n, z) = λ(n)pα,β(n, z)(2.6)

for

λ(n) = n(n+ α+ β + 1).(2.7)

In view of (2.3) and (2.6), pα,β(n, z) are discrete–continuous bispectral func-
tions and Lα,β(n, T ), B(z, ∂z) bispectral difference (differential) operators.
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2.2. The functions pα,β
ε (n, z). In a study of the relation between the so

called “associated Jacobi polynomials” and the discrete–continuous bispec-
tral problem Grünbaum and Haine, see [10, 11, 13], introduced the func-
tions

pα,β
ε (n, z) =

(ε+ α+ 1)n

(ε+ 1)n
F (−(n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2)

(2.8)

(n ∈ Z, z ∈ C, |z| < 1) defined for those ε, α, β ∈ C such that α /∈ Z<0, and
ε /∈ Z<0, ε+α /∈ Z≥0. We will see later that the first restriction can be lifted.

The functions pα,β
ε (n, z) are no longer polynomials but satisfy relations,

similar to the ones for pα,β(n, z). In particular they are eigenfunctions of the
following difference operators with support [−1, 1]

Lα,β;ε(n, T ) =
2(n+ ε+ 1)(n+ ε+ α+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T(2.9)

+
β2 − α2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)
+

+
2(n+ ε+ α)(n+ ε+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1

and of the differential operators Bα,β(z, ∂z), Equation (2.5). The corre-
sponding relations are

Lα,β;ε(n, T )pα,β
ε (n, z) = zpα,β

ε (n, z),(2.10)

Bα,β(z, ∂z)pα,β
ε (n, z) = λε(n)pα,β

ε (n, z),(2.11)

where

λε(n) = (n+ ε)(n+ ε+ α+ β + 1).(2.12)

The difference operators Lα,β;ε(n, T ) will still be called Jacobi operators.
Further we will only deal with the case when they are regular, i.e., when
their coefficients of T and T−1 do not vanish for n ∈ Z. This amounts to the
conditions

ε, ε+ α, ε+ β, ε+ α+ β, 2ε+ α+ β /∈ Z.(2.13)

It may be useful to stress here that these will eventually be the only restric-
tions on our parameters α, β, ε.

The operators Lα,β;ε(n, T ) do satisfy certain “transformation properties”.
For instance the following relations hold

L−α,−β,ε+α+β(n, T ) = Lα,β;ε(n, T ),(2.14)

Ad(−1)nLβ,α,ε(n, T ) = Ad(−1)nL−β,−α,ε+α+β(n, T ) = −Lα,β;ε(n, T ).(2.15)
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It is tempting to use (2.14) to limit attention to the case α ≥ 0. However,
this would eventually bring an undesirable degree of asymmetry in the treat-
ment of the parameters α and β. For this reason we prefer to introduce the
appropriate functions pα,β

ε (n, z) for α ∈ Z<0 (and ε, ε+β, ε+α, ε+α+β /∈ Z)
by using (2.8) and recalling, see [21, p. 38] that for m ∈ Z≥0

lim
c→−m

1
Γ(c)

F (a, b; c; z)(2.16)

=
(a)m+1(b)m+1

(m+ 1)!
zm+1F (a+m+ 1, b+m+ 1;m+ 2; z).

We see below that this leads to the following expression for pα,β
ε (n, z) with

α ∈ Z<0 (as long as (2.13) is satisfied)

(2.17) C (ε+ β + 1)n

(ε+ α+ β + 1)n

· (1− z)−α

2−α
F (−(n+ ε+ α), n+ ε+ β + 1;−α+ 1; (1− z)/2)

where the constant C = C(α, β, ε) is explicitly given by

C = C(α, β, ε) =
(−1)α

(−α− 1)!
· (−ε)−α(ε+ α+ β + 1)−α

(−α)!
.

It is easy to check that the assumptions (2.13) imply that C(α, β, ε) is well-
defined and does not vanish.

The expression above can be derived by a continuity argument using (2.8)
and (2.16) when α approaches a value in Z<0. To see this it is important to
notice that for α ∈ Z<0 the identities

(ε+ α+ 1)n

(ε+ 1)n
=

(−ε)−α

(−(n+ ε))−α
and

(ε+ β + 1)n

(ε+ α+ β + 1)n
=

(n+ ε+ α+ β + 1)−α

(ε+ α+ β + 1)−α

allow one to rewrite the factor
(ε+ α+ 1)n

(ε+ 1)n
· (−(n+ ε))−α(n+ ε+ α+ β + 1)−α

(−α)!
as

(−α− 1)!
(−1)α

· C(α, β, ε) · (ε+ β + 1)n

(ε+ α+ β + 1)n
(2.18)

which except for the first constant is the factor in front of (2.17).
Then conditions (2.13) guarantee that pα,β

ε (n, z) is well-defined (see (2.8)
and (2.17)) and satisfies (2.10) and (2.11). It was proved in [10] that the
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space of common solutions of (2.10) and (2.11) in a domain Ω⊂C, not con-
taining ±1, is two dimensional. Notice also that (2.13) excludes, in partic-
ular, the original operators Lα,β(n, z) (ε = 0) since their leading coefficient
vanishes for n = −1.

Finally we explain how (2.10) follows from (2.3). Conjugate the operator
Lα,β(n, T ) with

(
n+a

n

)
= (α+1)n

n! . The resulting difference operator has ratio-
nal coefficients and the eigenfunction F (−n, n+α+ β+ 1;α+ 1; (1− z)/2),
cf. (2.1). The operator obtained from it by the formal change n 7→ n + ε
has the eigenfunction F (−n − ε, n + ε + α + β + 1;α + 1; (1 − z)/2) and
all we need to do is conjugate it with (ε + 1)n/(ε + α + 1)n. The result is
the operator Lα,β;ε(n, T ) which proves (2.10) in the case α /∈ Z<0. The case
α ∈ Z<0 follows from the definition (2.8) using the limit (2.16).

2.3. Darboux maps between Jacobi operators. There are four differ-
ence relations connecting the values of the Jacobi polynomials pα,β(n, z)
with shifted indices:

pα−1,β(n, z) =
(
n+ α+ β

2n+ α+ β
− n+ β

2n+ α+ β
T−1

)
pα,β(n, z),

pα,β(n, z) =
1

z − 1

(
2(n+ 1)

2n+ α+ β + 1
T − 2(n+ α)

2n+ α+ β + 1

)
pα−1,β(n, z),

and

pα,β−1(n, z) =
(
n+ α+ β

2n+ α+ β
+

n+ α

2n+ α+ β
T−1

)
pα,β(n, z),

pα,β(n, z) =
1

z + 1

(
2(n+ 1)

2n+ α+ β + 1
T +

2(n+ β)
2n+ α+ β + 1

)
pα,β−1(n, z),

(see for instance, [21, Eqs. pp. 209–219]). Similarly to the proof of (2.10) at
the end of the previous subsection, one shows the following analogs of these
identities for pα,β

ε (n, z)

pα−1,β
ε (n, z) = Dα

−(n, T )pα,β
ε (n, z), pα+1,β

ε (n, z) =
1

z − 1
Dα

+(n, T )pα,β
ε (n, z),

(2.19)

pα,β−1
ε (n, z) = Dβ

−(n, T )pα,β
ε (n, z), pα,β+1

ε (n, z) =
1

z + 1
Dβ

+(n, T )pα,β
ε (n, z),

(2.20)
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where the operators Dα
±(n, T ) and Dβ

±(n, T ) are given by

Dα
−(n, T ) =

(
ε+ α

α

)(
n+ ε+ α+ β

2n+ 2ε+ α+ β
− n+ ε+ β

2n+ 2ε+ α+ β
T−1

)
,

Dα
+(n, T ) =

(
α+ 1

ε+ α+ 1

)(
2(n+ ε+ 1)

2n+ 2ε+ α+ β + 2
T− 2(n+ ε+ α+ 1)

2n+ 2ε+ α+ β + 2

)
,

Dβ
−(n, T ) =

(
n+ ε+ α+ β

2n+ 2ε+ α+ β
+

n+ ε+ α

2n+ 2ε+ α+ β
T−1

)
,

Dβ
+(n, T ) =

(
2(n+ ε+ 1)

2n+ 2ε+ α+ β + 2
T +

2(n+ ε+ β + 1)
2n+ 2ε+ α+ β + 2

)
.

The constant in (2.17) was chosen to make the relations (2.19)-(2.20) hold
for all α ∈ C. We show only the dependence on the index α of the opera-
tors Dα

±(n, T ) because the index β is unchanged in both sides of Equation
(2.19), similarly for the operators Dβ

±(n, T ). Equations (2.19)-(2.20) and
(2.10) imply the following factorizations

Lα,β;ε(n, T )− 1 = Dα−1
+ (n, T )Dα

−(n, T ) = Dα+1
− (n, T )Dα

+(n, T ),(2.21)

Lα,β;ε(n, T ) + 1 = Dβ−1
+ (n, T )Dβ

−(n, T ) = Dβ+1
− (n, T )Dβ

+(n, T ).(2.22)

Hence the operators Lα±1,β;ε(n, T ), Lα,β±1;ε(n, T ) are Darboux transforma-
tions from Lα,β;ε(n, T ) and Equations (2.19) and (2.20) represent the Dar-
boux maps pα,β

ε (n, z) 7→ pα∓1,β
ε (n, z) and pα,β

ε (n, z) 7→ pα,β∓1
ε (n, z).

3. Darboux transformations from Jacobi operators.

The first part of this section contains some general facts about discrete
Darboux transformations in the form in which they will be used later (see,
for instance, [26] for the differential case). The goal of the second part is an
explicit description of the kernels of the operators (Lα,β;ε − 1)k(Lα,β;ε + 1)l.
Based on it, in the third part we construct Darboux transformations from
Lα,β;ε(n, T ) which are the main objects of study in the rest of the paper.
The conditions (2.13) are assumed throughout Sections 3.2-3.3.

3.1. General remarks on Darboux transformations. One says that
the difference operator L(n, T ) is obtained by a Darboux transformation
from the difference operator L0(n, T ) if there exists an operator P (n, T )
such that

L(n, T )P (n, T ) = P (n, T )L0(n, T ).(3.1)

Assume that L0(n, T ) has an eigenfunction Ψ0(n, z), i.e.,

L0(n, T )Ψ0(n, T ) = g0(z)Ψ0(n)(3.2)
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for some function g0(z). Then

Ψ(n, z) := P (n, T )Ψ0(n, z)

is an eigenfunction of L(n, T ):

L(n, T )Ψ(n, T ) = g0(z)Ψ(n).(3.3)

The map Ψ0(n, T ) 7→ Ψ(n, T ) is also called a Darboux transformation.
An important feature of the transformation (3.1) for a regular differ-

ence operator P (n, T ) is that the operator L(n, T ) has the same support
as L0(n, T ). Besides this L(n, T ) is regular if and only if L0(n, T ) is regular.

Given a difference operator L0(n, T ), all transformations of the type (3.1)
with a regular difference operator P (n, T ) can be described in terms of the
kernel of P (n, T ).

Proposition 3.1.
(i) For a regular difference operator P (n, T ) there exists an operator

L(n, T ) for which (3.1) holds if and only if

L0(n, T )(KerP (n, T ))⊂KerP (n, T ).(3.4)

The operator L(n, T ) satisfying (3.1) is unique.
(ii) Let P (n, T ) be a regular difference operator satisfying (3.4) and q(x)

be the characteristic polynomial of the linear map L0(n, T ) acting in
the space KerP (n, T ). Then KerP (n, T )⊂q(L0(n, T )) and there exists
an operator Q(n, T ) such that

q(L0(n, T )) = Q(n, T )P (n, T ),(3.5)

q(L(n, T )) = P (n, T )Q(n, T ).(3.6)

Note that the kernel of a regular difference operator P (n, T ) is finite
dimensional. More precisely, if P (n, T ) has support [m1,m2] for some mi ∈
Z, then dim KerP (n, T ) = m2 −m1. For any j ∈ Z the map

f 7→ (f(j + 1), . . . , f(j +m2 −m1)), for f : Z → C(3.7)

provides an isomorphism between KerP (n, T ) and Cm2−m1 .
The transformation Q(n, T )P (n, T ) 7→ P (n, T )Q(n, T ) is a more tradi-

tional version of the Darboux map. Although it is a special case of the
transformation L0(n, T ) 7→ L(n, T ) from Equation (3.1) and Proposition 3.1
shows that there always exists a polynomial q(x) for which q(L0(n, T )) 7→
q(L(n, T )) is a Darboux map in this sense.

Proof of Proposition 3.1. (i) If P (n, T ), L(n, T ) satisfy (3.1) and f(n) ∈
KerP (n, T ) then

P (n, T )(L0(n, T )f(n)) = L(n, T )P (n, T )f(n) = 0

which proves (3.4).
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In the opposite direction, let us notice that a comparison of the coefficients
of the two sides of Equation (3.1) for a fixed value of n gives a finite system
for the corresponding coefficients of the unknown operator L(n, T ) having
the same support as L0(n, T ). One shows that it has a solution using the
standard linear algebra fact that for a finite matrix A the system Au = b
has a solution if and only if vtb = 0, ∀v ∈ KerAt. In the particular case
which we consider the last condition is fulfilled because of (3.4).

The regularity of the difference operator P (n, T ) implies the uniqueness of
the operator L(n, T ) satisfying (3.1). Indeed if there are two such operators
L(n, T ) and L′(n, T ) one can subtract the resulting equalities (3.1). This
gives (L(n, T )− L′(n, T ))P (n, T ) = 0 which is a contradiction.

(ii) The relation KerP (n, T )⊂q(L0(n, T )) follows from the definition of
q(x). Similarly to Part (i), this implies the existence of an operator Q(n, T )
satisfying (3.5). Equations (3.1) and (3.5) imply

q(L(n, T ))P (n, T ) = P (n, T )q(L0(n, T )) = (P (n, T )Q(n, T ))P (n, T )

and as a consequence of this (3.6). �

A regular difference operator is reconstructed from its kernel by the fol-
lowing lemma.

Lemma 3.2. Assume that P (n, T ) is a regular difference operator with sup-
port [m1,m2] and leading coefficient 1. Let KerP (n, T ) = Span{f (i)(n)}m

i=1
where m = m2 −m2. Then the function

det(n) := det(f (i)(n− j))m,m2−1
i,j=1,m1

does not vanish for n ∈ Z and

P (n, T ) =
1

det(n)

∣∣∣∣∣∣
f (1)(n+m1) · · · f (m)(n+m1) Tm1

· · · · · · · · · · · ·
f (1)(n+m2) · · · f (m)(n+m2) Tm2

∣∣∣∣∣∣(3.8)

where the determinant is expanded from left to right (the shift operator T
does not commute with function multiplication).

Proof. The fact that the map (3.7) is an isomorphism between KerP (n, T )
and Cm implies that det(n) does not vanish for n ∈ Z. Clearly the functions
f (i)(n) belong to the kernel of the operator in the r.h.s. of (3.8). It has
leading term 1 and the nonvanishing of det(n) implies (3.8). �

Remark 3.3. The composition of two Darboux transformations L0(n, T )
7→ L1(n, T ) and L1(n, T ) 7→ L2(n, T ) of the type (3.1) is Darboux transfor-
mation L0(n, T ) 7→ L2(n, T ) of the same type. Indeed if

Li(n, T )Pi(n, T ) = Pi(n, T )Li−1(n, T ), i = 1, 2,

then

L2(n, T )P2(n, T )P1(n, T ) = P2(n, T )P1(n, T )L0(n, T ).
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3.2. Description of Ker(Lα,β;ε− 1)k(Lα,β;ε +1)l. The main idea is to first
find some functions ϕ(n, z) (depending on α, β, and ε) such that

Lα,β;ε(n, T )ϕ(n, z) = zϕ(n, z)(3.9)

and then to consider the derivatives

ϕ
(i)
± (n) =

1
i!
∂i

zϕ(n, z)
∣∣∣
z=±1

, i ∈ Z≥0.

They satisfy

(Lα,β;ε(n, T )∓ 1)ϕ(i)
± (n) = ϕ

(i−1)
± (n), ∀ i ∈ Z≥0(3.10)

with ϕ(−1)
± (n) = 0. As a consequence of this

(Lα,β;ε(n, T )∓ 1)iϕ
(j)
± (n) = 0, ∀ i ∈ Z>0, j = 0, . . . , i− 1.

Before stating the results from this subsection we recall a relation for the
hypergeometric function that is a consequence of Gauss’ relations between
contiguous hypergeometric functions. Denote F = F (a, b; c; (1−z)/2), TF =
F (a− 1, b+ 1; c; (1− z)/2), and T−1F = F (a+ 1, b− 1; c; (1− z)/2). Then
for c /∈ Z≤0

(3.11)
2(c− a)b

(b− a)(b− a+ 1)
TF +

2(a+ b− 1)(−2c+ a+ b+ 1)
(b− a− 1)(b− a+ 1)

F

+
2a(c− b)

(b− a)(b− a− 1)
T−1F = zF.

This can also be checked directly using the standard expansion of F (a, b; c, x)
for |x| < 1, c /∈ Z≤0

F (a, b; c;x) =
∞∑

j=0

(a)j(b)j

j!(c)j
xj .(3.12)

Lemma 3.4. The four functions

ϕ+(n, z) =
(ε+ α+ 1)n

(ε+ 1)n
(3.13)

· F (−(n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2),

ψ+(n, z) =
(ε+ β + 1)n

(ε+ α+ β + 1)n
(3.14)

· F (−(n+ ε+ α+ β), n+ ε+ 1;−α+ 1; (1− z)/2),
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ϕ−(n, z) =
(−1)n(ε+ β + 1)n

(ε+ 1)n
(3.15)

· F (−(n+ ε), n+ ε+ α+ β + 1;β + 1; (1 + z)/2),

ψ−(n, z) =
(−1)n(ε+ α+ 1)n

(ε+ α+ β + 1)n
(3.16)

· F (−(n+ ε+ α+ β), n+ ε+ 1;−β + 1; (1 + z)/2)

satisfy

(Lα,β;ε(n, T )− z)ϕ±(n, z) = (Lα,β;ε(n, T )− z)ψ±(n, z) = 0,(3.17)

provided that α /∈ Z<0 (Z>0) for ϕ+(n, z) (ψ+(n, z)) and β /∈ Z<0 (Z>0) for
ϕ−(n, z) (ψ−(n, z)).

Note that the assumptions (2.13) guarantee that the denominators of the
first factors of ϕ±(n, z) and ψ±(n, z) do not vanish.

Proof. The relation (3.17) for ϕ+(n, z) holds because ϕ+(n, z) = pα,β
ε (n, z).

To check the one for ψ+(n, z), we conjugate Lα,β;ε(n, T ) by (ε+β+1)n/(ε+
α+ β + 1)n (the factor in front of the r.h.s. of (3.14)).

The result is

Ad(ε+β+1)n/(ε+α+β+1)n
Lα,β;ε(n, T )

=
2(n+ ε+ 1)(n+ ε+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T

+
β2 − α2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)

+
2(n+ ε+ α)(n+ ε+ α+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1.

This is the difference operator from the l.h.s. of (3.11) with a = −(n +
ε + α + β), b = n + ε + 1, and c = −α + 1 which gives the proof of (3.17)
for ψ+(n, z). The cases of ϕ−(n, z) and ψ−(n, z) are handled in a similar
fashion. �

Next we consider the derivatives of ϕ+(n, z), ψ+(n, z) at z = 1 and of
ϕ−(n, z), ψ−(n, z) at z = −1:

ϕ
(i)
± (n) :=

1
i!
∂i

zϕ±(n, z)
∣∣∣
z=±1

,

ψ
(i)
± (n) :=

1
i!
∂i

zψ±(n, z)
∣∣∣
z=±1

,

i ∈ Z≥0 (with the restrictions on α and β made at the end of Lemma 3.4).
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Using the expansion (3.12) of the hypergeometric function, we obtain the
following explicit formulas for ϕ(i)

± (n) and ψ(i)
± (n)

ϕ
(i)
+ (n) =

(ε+ α+ 1)n

(ε+ 1)n
· (−(n+ ε))i(n+ ε+ α+ β + 1)i

(−2)ii!(α+ 1)i
(3.18)

ψ
(i)
+ (n) =

(ε+ β + 1)n

(ε+ α+ β + 1)n
· (−(n+ ε+ α+ β))i(n+ ε+ 1)i

(−2)ii!(−α+ 1)i
(3.19)

ϕ
(i)
− (n) =

(−1)n(ε+ β + 1)n

(ε+ 1)n
· (−(n+ ε))i(n+ ε+ α+ β + 1)i

2ii!(β + 1)i
(3.20)

ψ
(i)
− (n) =

(−1)n(ε+ α+ 1)n

(ε+ α+ β + 1)n
· (−(n+ ε+ α+ β))i(n+ ε+ 1)i

2ii!(−β + 1)i
·(3.21)

We define ϕ(i)
+ (n) (ψ(i)

+ (n)) for α ∈ Z<0 (α ∈ Z>0), i < |α| by (3.18), (3.19)
and ϕ(i)

− (n) (ψ(i)
− (n)) for β ∈ Z<0 (β ∈ Z>0), i < |β| by (3.20), (3.21). (Note

that these cases were excluded in Lemma 3.4.)

Theorem 3.5. Assuming (2.13) the following relations

(Lα,β;ε(n, T )− 1)ϕ(i)
+ (n) = ϕ

(i−1)
+ (n),(3.22)

(Lα,β;ε(n, T )− 1)ψ(i)
+ (n) = ψ

(i−1)
+ (n),(3.23)

hold for all i ∈ Z≥0 if α /∈ Z and for i = 0, . . . , |α| − 1 if α ∈ Z. Similarly
one has

(Lα,β;ε(n, T ) + 1)ϕ(i)
− (n) = ϕ

(i−1)
− (n),(3.24)

(Lα,β;ε(n, T ) + 1)ψ(i)
− (n) = ψ

(i−1)
− (n),(3.25)

for all i ∈ Z≥0 if β /∈ Z and for i = 0, . . . , |β| − 1 if β ∈ Z. (We set
ϕ

(−1)
± (n) = ψ

(−1)
± (n) = 0.)

The kernels of (Lα,β;ε(n, T )− 1)k and (Lα,β;ε(n, T ) + 1)l are given by

Ker(Lα,β;ε(n, T )− 1)k = Span{ϕ(i)
+ (n), ψ(i)

+ (n)}k−1
i=0 ,(3.26)

Ker(Lα,β;ε(n, T ) + 1)l = Span{ϕ(i)
− (n), ψ(i)

− (n)}l−1
i=0,(3.27)

for k ≤ |α| if α ∈ Z, for l ≤ |β| if β ∈ Z, and for all k, l ≥ 0 if α, β /∈ Z.

Proof. In the case α /∈ Z, the functions ϕ+(n, z) and ψ+(n, z) are well-
defined. From the remark in the beginning of this subsection it follows that
(3.17) and the definitions of ϕ(j)

+ (n), ψ(j)
+ (n) imply (3.22), (3.23). The case

α ∈ Z, i < |α| follows by continuity on α.
The inclusion ⊃ in (3.26), (3.27) clearly follows from (3.22)-(3.25). Be-

cause (Lα,β;ε(n, T )−1)k is a regular difference operator with support [−k, k],
to prove (3.26) it suffices to show that the functions ϕ(i)

+ (n), ψ(i)
+ (n), i =

0, . . . , k − 1 are linearly independent.
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Assume that
k0∑
i=0

(
aiϕ

(i)
+ (n) + biψ

(i)
+ (n)

)
= 0, ∀n ∈ Z

for some complex numbers a0, . . . , ak0 , b0, . . . , bk0 , such that ak0 6= 0 or
bk0 6= 0 (k0 ≤ k − 1). Applying (Lα,β;ε(n, T ))k0−1 to this equality and using
(3.22), (3.23), we get

ak0ϕ
(0)
+ (n) + bk0ψ

(0)
+ (n) = 0, ∀n ∈ Z,

i.e.,

ak0

(ε+ α+ 1)n

(ε+ 1)n
= −bk0

(ε+ β + 1)n

(ε+ α+ β + 1)n
, ∀n ∈ Z.(3.28)

For n = 0 this gives ak0 = −bk0 (6= 0). Dividing the two sides of Equation
(3.28) for two consecutive values of n, we get

(ε+ α+ n)(ε+ α+ β + n) = (ε+ n)(ε+ β + n), ∀n ∈ Z.

This gives α = 0 which is a contradiction. Equation (3.27) is proved analo-
gously. �

Remark 3.6. It is clear that

Ker(Lα,β;ε − 1)k ∩Ker(Lα,β;ε + 1)l = ∅.
Therefore

Ker(Lα,β;ε − 1)k(Lα,β;ε + 1)l = Ker(Lα,β;ε − 1)k ⊕Ker(Lα,β;ε + 1)l

and Theorem 3.5 describes the kernel of the operator (Lα,β;ε−1)k(Lα,β;ε+1)l

in the cases specified there.

3.3. The sets D(k,l)
α,β;ε of Darboux transformations from Lα,β;ε(n, z).

Let us fix two nonnegative integers k and l and choose 2(k + l) complex
numbers

Ai, Bi, i = 0, . . . , k − 1,
Cj , Dj , j = 0, . . . , l − 1.

If k > 0 (l > 0) we will assume α 6= −k+1, . . . , k−1 (β 6= −l+1, . . . , l−1).
Set

f (i)(n)

=


∑i

r=0

(
Arϕ

(i−r)
+ (n) +Brψ

(i−r)
+ (n)

)
, for i = 0, . . . , k − 1∑i−k

r=0

(
Crϕ

(i−k−r)
− (n) +Drψ

(i−k−r)
− (n)

)
, for i = k, . . . , k + l − 1

.
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The values of the parameters A,B,C,D ∈ C for which

det(n) = det(f (i)(n+ j))k+l−1,−1
i,j=0,−k−l 6= 0, ∀n ∈ Z,(3.29)

will be called admissible. For such values we define the operator

P (n, T ) =
1

det(n)

∣∣∣∣∣∣
f (0)(n− k − l) · · · f (k+l−1)(n− k − l) T−(k+l)

· · · · · · · · · · · ·
f (0)(n) · · · f (k+l−1)(n) 1

∣∣∣∣∣∣ .
(3.30)

By expanding (3.30) along the last column one sees that the term of T−(k+l)

is given by
det(n+ 1)

det(n)
6= 0

hence P (n, T ) is a regular difference operator. As a consequence of proper-
ties (3.22)–(3.25) we obtain

(Lα,β;ε(n, T )− 1)f (0)(n) = 0, (Lα,β;ε(n, T )− 1)f (i) = f (i−1)(n)(3.31)

for i = 1, . . . , k − 1 and

(Lα,β;ε(n, T ) + 1)f (k)(n) = 0, (Lα,β;ε(n, T ) + 1)f (j) = f (j−1)(n)(3.32)

for j = k + 1, . . . , k + l − 1. Thus KerP (n, T ) = Span{f (i)(n)}k+l−1
i=0 is

preserved by Lα,β;ε(n, T ) and according to Proposition 3.1 there exists a
difference operator L(n, T ) with support [−1, 1] such that

L(n, T )P (n, T ) = P (n, T )Lα,β;ε(n, T ).(3.33)

The set of all difference operators L(n, T ) for admissible values of the pa-
rameters A,B,C,D will be denoted by

D(k,l)
α,β;ε.

All operators L(n, T )∈D(k,l)
α,β;ε are Darboux transformations from Lα,β;ε(n, T )

and k, l refer to the multiplicity of the eigenvalues 1 and −1 of Lα,β;ε(n, T )
in KerP (n, T ), see Equations (3.31) and (3.32). (Recall from part (i) of
Proposition 3.1 that Lα,β;ε(n, T ) preserves KerP (n, T ).) Every L(n, T ) ∈
D(k,l)

α,β;ε is a regular difference operator with eigenfunction

Ψ(n, z) = P (n, T )pα,β
ε (n, z),(3.34)

more precisely:

L(n, T )Ψ(n, z) = zΨ(n, z).(3.35)

The admissibility condition (3.29) holds for almost all values of A,B,C,D
∈ Z. The complement of the corresponding set in C2(k+l) consists of the
zeros of countably many polynomials, obtained from det(n) for fixed n ∈
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Z (recall (3.29)). The latter do not vanish identically due to the linear
independence of the set of functions {ϕ(i)

± (n)}k−1
i=0 ∪ {ψ

(j)
± (n)}l−1

j=0 (see the
proof of Theorem 3.5) and the regularity of Lα,β;ε(n, T ).

There are in fact k + l free parameters in the definition of an element
L(n, T ) ∈ D(k,l)

α,β;ε since the operator P (n, T ) (see (3.30)) only depends on the
choice of the space Span{f (i)(n)}k+l−1

i=0 (= KerP (n, T )), and not on the choice
of the individual functions f (i)(n). Using again the linear independence of
{ϕ(i)
± (n)}k−1

i=0 ∪ {ψ
(j)
± (n)}l−1

j=0, the choice of span is equivalent to a choice of
flags

V0⊂V1⊂ . . .⊂Vk−1 and W0⊂W1⊂ . . .⊂Wl−1

where Vi = Span{f (r)(n)}i
r=0 and Wj = Span{f (r)(n)}k+j

r=k, cf. [12].
The relations (2.14) and (2.15) for Lα,β;ε(n, T ) imply similar relations for

the sets D(k,l)
α,β;ε:

D(k,l)
−α,−β,ε+α+β = D(k,l)

α,β;ε,(3.36)

Ad(−1)nD(l,k)
β,α,ε = Ad(−1)nD(l,k)

−β,−α,ε+α+β = −D(k,l)
α,β;ε.(3.37)

Here, in addition to (2.14) and (2.15), we use that the change of parameters
α→ −α, β → −β, ε→ ε+α+β exchanges ϕ(i)

+ (n) with ψ(i)
+ (n) and ϕ(i)

− (n)
with ψ

(i)
− (n). Analogously the change of parameters α → β, β → α, ε → ε

exchanges ϕ(i)
+ (n) with (−1)nϕ

(i)
− (n) and ψ(i)

+ (n) with (−1)nψ
(i)
− (n).

The Darboux maps between Jacobi functions (operators) represented by
the first identities in (2.19), (2.20) and Remark 3.3 imply the following
inclusion relations

Ad 2n+2ε+α+β
n+ε+α+β

D(k−1,l)
α−1,β;ε⊂D

(k,l)
α,β;ε,(3.38)

Ad 2n+2ε+α+β
n+ε+α+β

D(k,l−1)
α,β−1;ε⊂D

(k,l)
α,β;ε.(3.39)

The function (n+ ε+ α+ β)/(2n+ 2ε+ α+ β) is the leading coefficient of
the the operators Dα

−(n, T ) and Dβ
−(n, T ), see Section 2.3. Recall that the

operator P (n, T ) is normalized to have leading coefficient 1.

Remark 3.7. Note that (3.31), (3.32) imply that for the operator P (n, T )
(3.30) defining an element L(n, T ) in D(k,l)

α,β;ε the endomorphism Lα,β;ε(n, T )
on KerP (n, T ) has two Jordan blocks with eigenvalues 1 and −1 and lengths
k and l, respectively. Insisting on multiple blocks with equal eigenvalues does
not produce larger sets of transformations since the operator Lα,β;ε(n, T )
has a two dimensional kernel. Allowing k > |α| or l > β in the cases α ∈ Z
or β ∈ Z causes the operators P (n, T ) and L(n, T ) to have nonrational
coefficients which does lead to bispectrality of L(n, T ) as was noted in the
introduction.
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At the end of this subsection we compute explicitly the coefficients of the
operators L(n, T ) in D(k,l)

α,β;ε. Set

L(n, T ) = a(n)T + b(n) + c(n)T−1(3.40)

for some functions a(n), b(n), and c(n) (the dependence on A,B,C,D will
not be shown). For convenience we denote the coefficients of the operator
Lα,β;ε(n, T ) by a0(n), b0(n), and c0(n) :

Lα,β;ε(n, T ) = a0(n)T + b0(n) + c0(n)T−1(3.41)

(cf. Equation (2.9) for their values). Set also

det−r(n) := det(f (i)(n+ j))i=0,... ,k+l−1
j=−k−l,... ,−r̂,... ,0

for r = 0, . . . , k + l.(3.42)

Note that

det0(n) = det(n) and detk+l(n) = det0(n+ 1) = det(n+ 1).(3.43)

Expanding the determinant (3.30) defining P (n, T ) along the last column
gives

P (n, T ) =
k+l∑
r=0

(−1)r det−r(n)
det(n)

T−r.(3.44)

Proposition 3.8. The coefficients a(n), b(n), and c(n) of an operator
L(n, T ) ∈ D(k,l)

α,β;ε are expressed in terms of the coefficients a0(n), b0(n), and
c0(n) of Lα,β;ε(n, T ) and the functions f (i)(n) (see (3.42)) by the following
formulas

a(n) = a0(n),(3.45)

b(n) = b0(n) + a0(n)
det−1(n+ 1)
det(n+ 1)

− a0(n− 1)
det−1(n)
det(n)

,(3.46)

c(n) = c0(n− k − l)
det(n− 1)det(n+ 1)

(det(n))2
.(3.47)

Proof. We compare the coefficients of T and 1 in (3.33) and use the expres-
sion (3.44) for the operator P (n, T ). This gives the formulas

a(n) = a0(n),

b(n)− a(n)
det−1(n+ 1)
det(n+ 1)

= b0(n)− a0(n− 1)
det−1(n)
det(n)

,

which are equivalent to (3.45) and (3.46).
Similarly comparing the coefficients of T−k−l−1 in (3.33) gives

c(n)
det−(k+l)(n− 1)

det(n− 1)
= c0(n− k − l)

det−(k+l)(n)
det(n)

which implies (3.47), taking into account (3.43). �
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4. Bispectral Darboux transformation and an involution.

This section is a preparation for the next one where we show that the differ-
ence operators from D(k,l)

α,β;ε are bispectral under some natural conditions on
α and β. Our proof is based on a result of [3] on Darboux transformations
that preserve the bispectral property. Its application to the situation un-
der consideration is nontrivial and requires an intrinsic characterization of a
certain space of difference operators. This is done in terms of an involution
of the algebra of difference operators with rational coefficients.

4.1. A theorem on bispectral Darboux transformations. For a fixed
choice of the parameters α, β, ε we define Bα,β;ε as the algebra of difference
operators S(n, T ) with rational coefficients for which there exists a differen-
tial operator G(z, ∂z) (also with rational coefficients) such that

S(n, T )pα,β
ε (n, z) = G(z, ∂z)pα,β

ε (n, z).(4.1)

The set of all such operators G(z, ∂z) is an algebra which will be denoted
by B′α,β;ε. It is clear that

b (S(n, T )) := G(z, ∂z)(4.2)

correctly defines a map

b : Bα,β;ε → B′α,β;ε(4.3)

which is an antiisomorphism of algebras. In this setting Equations (2.10)
and (2.11) mean that λε(n), Lα,β;ε(n, T ) ∈ Bα,β;ε, z, Bα,β(z, ∂z) ∈ B′α,β;ε, and

b(λε(n)) = Bα,β(z, ∂z),(4.4)

b(Lα,β;ε(n, T )) = z.(4.5)

The triple (Bα,β;ε,B′α,β;ε, b) is an example of a bispectral triple in the sense
of [3]. Denote

Kα,β;ε = Bα,β;ε ∩ C(n),(4.6)

K′α,β;ε = B′α,β;ε ∩ C(z),(4.7)

where C(n) and C(z) stand for the algebras of rational functions in the
variables n and z, respectively. Let

Aα,β;ε = b−1
(
K′α,β;ε

)
,(4.8)

A′α,β;ε = b (Kα,β;ε) .(4.9)

It is obvious that

K′α,β;ε = C[z],(4.10)

A′α,β;ε = C[Bα,β(z, ∂z)],(4.11)
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and

Kα,β;ε⊃C[λ(n)],(4.12)

Aα,β;ε⊃C[Lα,β;ε(n, T )].(4.13)

Later in Remark 4.3 we will show that the inclusions in (4.12) and (4.13)
can be strengthen to give two equalities.

As was noted in Section 3.1, if a difference operator q(Lα,β;ε(n, T )) ∈
Aα,β;ε (q(x) ∈ C[x]) is factorized as a product of two operators Q(n, T ) and
P (n, T )

q(Lα,β;ε(n, T )) = Q(n, T )P (n, T ),

then the function

Ψ(n, z) = P (n, T )pα,β
ε (n, z)

is an eigenfunction of the difference operator P (n, T )Q(n, T ):

P (n, T )Q(n, T )Ψ(n, z) = q(z)Ψ(n, z).

We will give a version of Theorem 1.2 from [3] which provides general suffi-
cient conditions on the operators P (n, T ) and Q(n, T ) under which Ψ(n, z)
is also an eigenfunction of a differential operator in the variable z. (The
original result of [3] deals with “bispectral” Darboux transformations in an
arbitrary associative algebra but in the form to be used, needs an additional
refinement.)

Theorem 4.1. Assume that the operator q(Lα,β;ε(n, T )) ∈ Aα,β;ε is factor-
ized as

q(Lα,β;ε(n, T )) = (Q0(n, T )ν(n)−1)(µ(n)−1P0(n, T ))(4.14)

for some difference operators P0(n, T ), Q0(n, T ) ∈ Bα,β;ε and rational
functions µ(n), ν(n) ∈ Kα,β;ε, such that the coefficients of the operators
µ(n)−1P0(n, T ), Q0(n, T )ν(n)−1 are correctly defined for n ∈ Z. Then the
function

Ψ(n, z) = (µ−1(n)P0(n, T ))pα,β
ε (n, z)(4.15)

satisfies the relations

(µ(n)−1P0(n, T ))(Q0(n, T )ν(n)−1)Ψ(n, z) = q(z)Ψ(n, z),(4.16)

b(P0)(z, ∂z)b(Q0)(z, ∂z)q(z)−1Ψ(n, z) = µ(n)ν(n)Ψ(n, z),(4.17)

i.e., it is bispectral.

Note that in Theorem 4.1 we do not assume that the rational functions
µ(n)−1 and ν(n)−1 are well-defined for n ∈ Z, but only that the “ratios”
µ(n)−1P0(n, T ) and Q0(n, T )ν(n)−1 are. Because of this a small modifica-
tion of the original proof from [3] is necessary.



DISCRETE BISPECTRAL DARBOUX TRANSFORMATIONS 417

First of all since the algebra B′α,β;ε has no zero divisors, Equation (4.14)
implies (see [3])

(bν)(z, ∂z) (bµ)(z, ∂z) = (bP0)(z, ∂z)q(z)−1(bQ0)(z, ∂z).(4.18)

For all values of n for which µ(n) does not vanish we have

Ψ(n, z) = µ(n)−1(bP0)(z, ∂z)pα,β
ε (n, z)

and (4.17) holds, as a consequence of (4.18). The validity of (4.17) for
all n ∈ Z follows from the definition (4.15) of Ψ(n, z) and the fact that
pα,β

ε (n, z) has an expansion in z around z = 1 with coefficients that are
rational functions in n (recall (3.12)).

Returning to the sets D(k,l)
α,β;ε of Darboux transformations from the op-

erators Lα,β;ε(n, T ), we need to find which of the operators P (n, T ) from
Equation (3.30) can be expressed in the form µ(n)−1P0(n, T ) with µ(n) and
P0(n, T ) as above. According to Theorem 4.1 the corresponding operators
L(n, T ) ∈ D(k,l)

α,β;ε will be bispectral with bispectral eigenfunction (3.34) (see
also (4.15)). For this we need an invariant description of the linear space of
difference operators

(4.19) Rα,β;ε = Span
{
µ(n)−1S(n, T ) | S(n, T ) ∈ Bα,β;ε, µ(n) ∈ Kα,β;ε,

such that µ(n)−1S(n, T ) is well-defined for n ∈ Z
}
.

This will be obtained in the next subsection. Here we would like to note
that the dual object – the linear space of differential operators

R′α,β;ε = Span{g(z)−1G(z, ∂z) | G(z, ∂z) ∈ B′α,β;ε, g(z) ∈ K′α,β;ε}(4.20)

is much easier to describe. It is just the space of differential operators with
rational coefficients. This is a consequence of the fact that the commutator

[Bα,β(z, ∂z), z] = 2(z2 − 1)∂z + ((α− β) + (α+ β + 2)z)

is a first order differential operator that belongs to B′α,β;ε and z ∈ K′α,β;ε (see
Equation (4.10)). Unfortunately for our proof of the fact that the operators
from D(k,l)

α,β;ε are bispectral we need the spaceRα,β;ε, and not the spaceR′α,β;ε.

4.2. Description of Rα,β;ε. Denote by ∆ the abstract algebra of difference
operators M(n, T ) with rational coefficients; that is the algebra over C,
generated by rational functions in n, the shift operator T, and its inverse
T−1, subject to the relation

Th(n) = h(n+ 1)T, for all rational functions h(n).

Here we do not require that the coefficients of an operator M(n, T ) in ∆
be well-defined for n ∈ Z. More explicitly these coefficients could have poles
at some n ∈ Z. The subspace of ∆ consisting of operators having this extra
regularity property will be denoted by ∆reg. We will identify the space of
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difference operators with rational coefficients acting on functions f : Z → C
with ∆reg. In particular, B̃α,β;ε⊂R̃α,β;ε⊂∆reg.

Define an involution I in the algebra ∆ acting on rational functions h(n)
by

(Ih)(n) = h(−(n+ 2ε+ α+ β + 1))(4.21)

and on the shift operator T by

I(T ) = T−1.

The involution I is correctly defined since

I(T ) (Ih)(n) = (Ih)(n+ 1) I(T ).

Denote the fixed points of I in ∆ by ∆I :

∆I = {M(n, T ) ∈ ∆ | I(M(n, T )) = M(n, T )}.(4.22)

Let

φ(n) =
(ε+ α+ 1)n

(ε+ 1)n
(4.23)

(cf. the definition (2.8) of pα,β
ε (n, z) for α /∈ Z<0).

Theorem 4.2. The space of difference operators Rα,β;ε defined in (4.19) is
characterized by

Rα,β;ε = Adφ(n)

(
∆I ∩∆reg

)
,(4.24)

i.e., after conjugation by φ(n)−1 all operators from R̃α,β;ε are I-invariant.

Proof. Consider first the case α /∈ Z<0. Let

p̃α,β
ε (n, z) = φ(n)−1pα,β

ε (n, z).(4.25)

The expression (2.8) implies

p̃α,β
ε (n, z) = F (−(−n+ ε), n+ ε+ α+ β + 1;α+ 1; (1− z)/2).(4.26)

Let B̃α,β;ε, B̃′α,β;ε, K̃α,β;ε, K̃′α,β;ε, R̃α,β;ε, and R̃′α,β;ε, denote the B, K and R
objects associated with the functions p̃α,β

ε (n, z) (see the beginning of Sec-
tion 4.1 and Equations (4.6), (4.7), (4.19) and (4.20) for the appropriate
definitions). Obviously

R̃α,β;ε = Adφ(n)Rα,β;ε, B̃α,β;ε = Adφ(n)Bα,β;ε,

and K̃α,β;ε = Kα,β;ε, R̃′α,β;ε = R′α,β;ε, K̃′α,β;ε = K′α,β;ε, B̃′α,β;ε = B′α,β;ε. In this
notation, the statement of the theorem is equivalent to

R̃α,β;ε = ∆I ∩∆reg.(4.27)

To prove that the l.h.s. of (4.27) is contained in the r.h.s., let us fix
an operator R̃(n, T ) ∈ R̃α,β;ε. There exists a difference operator S̃(n, T ) ∈
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B̃α,β;ε and a function µ̃(n) ∈ K̃α,β;ε such that R̃(n, T ) = µ̃(n)−1S̃(n, T ). We
will prove that all operators from B̃α,β;ε are I-invariant. This in particular
shows that all functions from K̃α,β;ε⊂B̃α,β;ε are I-invariant and so are all
operators from R̃α,β;ε.

If S̃(n, T ) ∈ B̃α,β;ε, then there exists a differential operator G(z, ∂z) for
which

S̃(n, T )p̃α,β
ε (n, z) = G(z, ∂z)p̃α,β

ε (n, z).(4.28)

The fact that the hypergeometric function F (a, b; c;x) is symmetric with
respect to a and b, and formula (4.26) for p̃α,β

ε (n, z) imply

I
(
S̃(n, T )

)
p̃α,β

ε (n, z) = G(z, ∂z)p̃α,β
ε (n, z).(4.29)

Combining (4.28) and (4.29), we conclude that(
S̃(n, T )− I

(
S̃(n, T )

))
p̃α,β

ε (n, z) = 0.

This is only possible if

I
(
S̃(n, T )

)
= S̃(n, T ).

The harder part of the proof of (4.27) is to show that any I-invariant
difference operator from ∆reg belongs to R̃α,β;ε. It is sufficient to prove that
for any R̃(n, T ) ∈ ∆I there exists S̃(n, T ) ∈ B̃α,β;ε and µ̃(n) ∈ K̃α,β;ε such
that

R̃(n, T ) = µ̃(n)−1S̃(n, T ).

First let us write formulas (2.10) and (2.11) in terms of p̃α,β
ε (n, z). Equation

(2.11) remains unchanged:

λε(n)p̃α,β
ε (n, z) = Bα,β(z, ∂z)p̃α,β

ε (n, z),(4.30)

while Equation (2.10) becomes

L̃α,β;ε(n, T )p̃α,β
ε (n, z) = zp̃α,β

ε (n, z)(4.31)

with

L̃α,β;ε(n, T ) = φ(n)−1Lα,β;ε(n, T )φ(n)(4.32)

=
2(n+ ε+ α+ 1)(n+ ε+ α+ β + 1)

(2n+ 2ε+ α+ β + 1)(2n+ 2ε+ α+ β + 2)
T

+
α2 − β2

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 2)

+
2(n+ ε)(n+ ε+ β)

(2n+ 2ε+ α+ β)(2n+ 2ε+ α+ β + 1)
T−1.
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The algebra ∆ has a natural Z≥0 filtration where ∆d consists of all operators
from ∆ with support [−d, d]. Denote ∆I

d = ∆I ∩∆d.

We will prove that any difference operator RI
d(n, T ) ∈ ∆I

d, can be decom-
posed as a sum

RI
d(n, T ) = µ̃(n)−1S̃(n, T ) +RI

d−1(n, T )(4.33)

where

S̃(n, T ) ∈ B̃α,β;ε, µ̃(n) ∈ K̃α,β;ε,(4.34)

RI
d−1(n, T ) ∈ ∆I

d−1.(4.35)

Since ∆I
0 = C(λe(n)) (any I-invariant rational function in n is a rational

function in λe(n)), by induction on d Equation (4.33) implies that

RI
d(n, T ) ∈ R̃α,β;ε.

A straightforward computation yields

adλε(n)T
d = (λε(n)− λε(n+ d))T d(4.36)

= −d(2n+ 2ε+ α+ β + d+ 1)T d,

and thus

adλε(n)(adλε(n) + 1)L̃α,β;ε

= 2(Id + I)((n+ ε+ α+ 1)(n+ ε+ α+ β + 1)T ).

So (
adλε(n)(adλε(n) + 1)L̃α,β;ε

)d
(4.37)

= 2d(Id + I)

(
d∏

i=1

(n+ ε+ α+ i)(n+ ε+ α+ β + i)T d

)
+ Ud−1

for some Ud−1 ∈ ∆I
d−1. (Here we use the I-invariance of Lα,β;ε(n, T ).) Denote

for simplicity

cd(n) = 2d
d∏

i=1

((n+ ε+ α+ i)(n+ ε+ α+ β + i))

and let

RI
d(n, T ) =

d∑
i=−d

ai(n)
bi(n)

T i, ai(n), bi(n) ∈ C[n].
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Using (4.36) and (4.37) we obtain

ad

(
− 1

2d
adλε(n) −

α+ β + d+ 1
2

− ε

)(4.38)

· bd
(

1
2d

adλε(n) −
α+ β − d+ 1

2
− ε

)
· cd
(

1
2d

adλε(n) −
α+ β − d+ 1

2
− ε

)(
adλε(n)(adλε(n) + 1)L̃α,β;ε

)d

= (Id + I)
(
bd(n) (Ibd)(n) cd(n) (Icd)(n)

ad(n)
bd(n)

T d

)
+ Ud−1

for some other Ud−1 ∈ ∆I
d−1. There exists a polynomial qd(n) for which

bd(n) (Ibd)(n) cd(n) (Icd)(n) = qd(λε(n))

because the polynomial in the l.h.s. is clearly I-invariant. Denote by S̃(n, T )
the difference operator in (4.38). The l.h.s. of (4.38) implies that S̃(n, T )
belongs to B̃α,β;ε and the r.h.s. implies

RI
d(n, T )− (q(λε(n)))−1S̃(n, T ) ∈ ∆I

d−1

which completes the proof of Theorem 4.2. �

Remark 4.3. Any fuction µ̃(n) ∈ K̃α,β;ε is I-invariant and therefore is a
rational function in λε(n). In fact µ̃(n) should be a polynomial in λε(n).
Indeed if µ̃(n) = p(λε(n))/q(λε(n)) for two polynomials p(x), q(x) ∈ C[x]
such that q(x) 6 | p(x), then there exists a differential operator G(z, ∂z) with
rational coefficients such that

G(z, ∂z)p̃α,β
ε (n, z) =

p(λε(n))
q(λε(n))

p̃α,β
ε (n, z)

which implies

p(Bα,β(z, ∂z)) = G(z, ∂z)q(Bα,β(z, ∂z)).(4.39)

This is impossible; if z0 is a root of q(x) and p(x) of multiplicities d1 > d2,
then there exist a holomorphic function g(z) in a domain Ω⊂C such that

(Bα,β(z, ∂z)− z0)d1g(z) = 0 and q(Bα,β(z, ∂z)− z0)g(z) 6= 0

which contradicts with (4.39). Since Kα,β;ε = K̃α,β;ε we finally obtain

Kα,β;ε = C[λe(n)],

A′α,β;ε = C[Bα,β(z, ∂z)],

as promised following (4.12) and (4.13).
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Remark 4.4. The second order bispectral differential operators of the even
case of Duistermaat–Grünbaum’s classification [7] are obtained as Darboux
transformations from the Bessel operators

Lk(x, ∂x) = ∂2
x −

k(k − 1)
x2

, k ∈ Z +
1
2

in the sense of (3.1). More precisely for each operator L(x, ∂x) of this family
there exists a differential operator with rational coefficients P (x, ∂x) such
that

L(x, ∂x)P (x, ∂x) = P (x, ∂x)Lk(x, ∂x).

In addition, the operator P (x, ∂x) satisfies

P (x, ∂x) = P (−x,−∂x).(4.40)

Let I denote the involution of the algebra of differential operators with
rational coefficients induced by the diffeomorphism x 7→ −x of C (i.e.,
(IS)(x, ∂x) = S(−x,−∂x)). Then (4.40) means that P (x, ∂x) is invariant
under I. This gives the relation of the approach of this paper via the invo-
lution I and the space Rα,β;ε to the construction of [7].

5. Bispectrality of D(k,l)
α,β;ε.

In this section we prove our main result: When the parameters α and β are
subject to certain natural integrality conditions, the difference operators
from D(k,l)

α,β;ε are bispectral. As an example, for each L(n, T ) ∈ D(2,0)
2,0;ε we find

a dual differential operator of order 10.
The conditions (2.13) on α, β, ε are assumed throughout this section.

5.1. Proof of the main result. The conjugation by the function φ(n)
(see (4.23)), used in Theorem 4.2, leads us to consider the functions Φ(i)

± :=
ϕ

(i)
± (n)/φ(n), Ψ(i)

± := ψ
(i)
± (n)/φ(n). Because of Equations (3.18)–(3.21) they

are explicitly given by the formulas

Φ(i)
+ (n) =

(−(n+ ε))i(n+ ε+ α+ β + 1)i

(α+ 1)i(−2)i
,

(5.1)

Ψ(i)
+ (n) =

(ε+ β + 1)n(ε+ 1)n

(ε+ α+ 1)n(ε+ α+ β + 1)n

(−(n+ ε+ α+ β))i(n+ ε+ 1)i

(−α+ 1)i(−2)i
,

(5.2)

Φ(i)
− (n) =

(ε+ β + 1)n

(−1)n(ε+ α+ 1)n

(−(n+ ε))i(n+ ε+ α+ β + 1)i

(β + 1)i2i
,

(5.3)
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Ψ(i)
− (n) =

(ε+ 1)n

(−1)n(ε+ α+ β + 1)n

(−(n+ ε+ α+ β))i(n+ ε+ 1)i

(−β + 1)i2i
.

(5.4)

Lemma 5.1. If α ∈ Z, then for i ≤ |α| − 1, Φ(i)
+ (n) and Ψ(i)

+ (n) are I-
invariant rational functions of n.

If α ∈ Z and β ∈ Z then for i ≤ |α| − 1, j ≤ |β| − 1, Φ(i)
+ (n), Ψ(i)

+ (n),
(−1)nΦ(j)

− (n), and (−1)nΨ(j)
− (n) are rational functions of n, Φ(i)

+ (n), Ψ(i)
+ (n)

are I-invariant, and

I
(
(−1)nΦ(j)

− (n)
)

= (−1)α+β
(
(−1)nΦ(j)

− (n)
)
,(5.5)

I
(
(−1)nΨ(j)

− (n)
)

= (−1)α+β
(
(−1)nΨ(j)

− (n)
)
.(5.6)

Proof. First note that

(−(n+ ε))i(n+ ε+ α+ β + 1)i

=
i−1∏
r=0

(−(n+ ε) + r)(n+ ε+ α+ β + 1 + r)

= (−1)k
i−1∏
r=0

(λ(n)− r(α+ β + 1 + r))

and similarly

(−(n+ ε+ α+ β))i(n+ ε+ 1)i = (−1)i
i−1∏
r=0

(λ(n)− (α+ β − r)(r + 1))

are I-invariant polynomials in n.
To prove the first statement of the lemma we use a similar computation.

Restricting to the case α ∈ Z>0:
(ε+ β + 1)n(ε+ 1)n

(ε+ α+ 1)n(ε+ α+ β + 1)n

=
(ε+ 1)α(ε+ β + 1)α

(n+ ε+ 1)α(n+ ε+ β + 1)α

=
(ε+ 1)α(ε+ β + 1)α∏α

r=1(n+ ε+ r)(n+ ε+ β + α+ 1− r)

=
(ε+ 1)α(ε+ β + 1)α∏α

r=1(λ(n) + r(α+ β + 1− r))
.

The proof of the second statement is analogous. Assuming α, β ∈ Z>0

and β ≥ α we obtain
(ε+ β + 1)n

(ε+ α+ 1)n
=

(ε+ α+ n+ 1)β−α

(ε+ α+ 1)β−α
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=
q(n)

∏[β−α
2 ]

r=1 (n+ ε+ α+ r)(n+ ε+ β + 1− r)
(ε+ α+ 1)β−α

=
q(n)

∏[β−α
2 ]

r=1 (λ(n) + (α+ r)(β + 1− r))
(ε+ α+ 1)β−α

with

q(n) =

{
1, if β + α is even
n+ ε+ (α+ β + 1)/2, if β + α is odd

.

(Since α ∈ Z, the first condition is equivalent to 2|(β − α) and the second
one to 2 6 |(β − α).) To finish the proof of (5.5) we just observe that

I(n+ ε+ (α+ β + 1)/2) = −(n+ ε+ (α+ β + 1)/2).(5.7)

The remaining cases for α, β ∈ Z are treated analogously.
The identity (5.6) follows from the analogous formula

(ε+ 1)n

(ε+ α+ β + 1)n
=

(ε+ 1)α+β

q(n)
∏[β+α

2 ]
r=1 (λ(n) + r(α+ β + 1− r))

and Equation (5.7).
Throughout this proof, for a real number x by [x] we denote its integer

part. �

Theorem 5.2. Assuming (2.13), the following sets consist of bispectral dif-
ference operators:

1) D(k,0)
α,β;ε if α ∈ Z and k ≤ |α|,

2) D(0,l)
α,β;ε if β ∈ Z and l ≤ |β|,

3) D(k,l)
α,β;ε if α, β ∈ Z and k ≤ |α|, l ≤ |β|.

When the conditions (2.13) are not met but the operator Lα,β;ε(n, T ) is
still well-defined the arguments below can be adapted properly. We do not
pursue that here.

Proof. Because of the relation (3.37) the second case follows from the first
one.

Let us restrict to instances 1) and 3) of the theorem above. In each
of them we can assume that k + l is even using (3.38). Fix an operator
L(n, z) ∈ D(k,l)

α,β;ε, determined by a choice of the functions {f (i)(n)}k+l−1
i=0 ,

i.e., a choice of admissible values of the complex parameters A,B,C,D (see
Section 3.3). It has the eigenfunction Ψ(n, z) defined in (3.34)

L(n, T )Ψ(n, z) = zΨ(n, z),
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cf. (3.35). We need to show that there exists a differential operator B(z, ∂z)
having Ψ(n, z) as an eigenfunction, that is

B(z, ∂z)Ψ(n, z) = θ(n)Ψ(n, z)

for some function θ(n).
Define the functions

F (i)(n) = f (i)(n)/φ(n), i = 0, . . . , k + l − 1.

Let us put s := (k + l)/2 and consider the operator

P̃ (n, T ) = (−1)nl

∣∣∣∣∣∣
F (0)(n− s) . . . F (k+l−1)(n− s) T−s

. . . . . . . . . . . .

F (0)(n+ s) . . . F (k+l−1)(n+ s) T s

∣∣∣∣∣∣ .(5.8)

It is a regular difference operator with kernel given by Span{F (i)(n)}k+l−1
i=0 .

Hence it is related to the operator P (n, T ) (recall Equation (3.30)) by

P (n, T ) = d(n)−1φ(n)−1T−sP̃ (n, T )φ(n)(5.9)

where

d(n) = (−1)nldet(F (i)(n+ j))k+l−1,−1
i,j=0,−k−l

is the leading coefficient of T−sP̃ (n, T ). Lemma 5.1 implies that F (0)(n), . . . ,
F (k−1)(n), and (−1)nF (k)(n), . . . , (−1)nF (k+l−1)(n) are rational functions
in n. This implies that for i = k, . . . , k+l−1 and for all j ∈ Z, (−1)nF (i)(n+
j) are also rational functions in n and thus P̃ (n, T ) has rational coefficients.
In addition Lemma 5.1 gives

I
(
F (i)(n+ j)

)
= F (i)(n− j), i = 0, . . . , k − 1, j ∈ Z

and

I
(
(−1)nF (i)(n+ j)

)
= (−1)(α+β)/2

(
(−1)nF (i)(n− j)

)
,

i = k, . . . , k + l − 1, j ∈ Z.

Taking into account that I(T ) = T−1 we obtain

I
(
P̃ (n, T )

)
= (−1)s(−1)(α+β)lP̃ (n, T )(5.10)

where the factor (−1)s comes from exchanging the pairs of rows (1, k+l+1),
. . . , (s, s+ 2). Set

q(n) =

{
1, if s+ (α+ β)l is even
(n+ ε+ (α+ β + 1)/2), if s+ (α+ β)l is odd

and consider the operator

P (n, T ) = q(n)P̃ (n, T ).(5.11)
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Because of the conditions (2.13), q(n) does not vanish for n ∈ Z. Taking
into account (5.9) one sees that P (n, T ) is related to P (n, T ) by

P (n, T ) =
d(n)φ(n− s)
q(n− s)φ(n)

T−sφ(n)−1P (n, T )φ(n).(5.12)

Since P (n, T ) is a regular difference operator and φ(n) does not vanish
for n ∈ Z (recall (2.13)), there exists a difference operator with rational
coefficients Q(n, T ) such that

(Lα,β;ε(n, T )− 1)k(Lα,β;ε(n, T ) + 1)l

=
(
φ(n)−1Q(n, T )φ(n)

) (
φ(n)−1P (n, T )φ(n)

)
.

From Equations (5.10) and (5.11) it follows that P (n, T ) is I-invariant.
Finally combining this with the I-invariance of φ(n)−1Lα,β;ε(n, T )φ(n) =
L̃α,β;ε(n, T ) (see (4.32)) implies the I-invariance of the operator Q(n, T ).
Theorem 4.2 now gives

φ(n)−1P (n, T )φ(n), φ(n)−1Q(n, T )φ(n) ∈ Rα,β;ε.

Applying Theorem 4.1 we obtain that the function

Ψ(n, z) = φ(n)P (n, T )φ(n)−1pα,β
ε (n, z)(5.13)

is an eigenfunction of a differential operator B(z, ∂z)

B(z, ∂z)Ψ(n, z) = h(λε(n))Ψ(n, z),(5.14)

for some polynomial h(x). Because of (5.12) our original function Ψ(n, z) ∈
D(k,l)

α,β;ε is related to Ψ(n, z) by

Ψ(n, z) = P (n, T )pα,β
ε (n, z) =

d(n)φ(n− s)
q(n− s)φ(n)

T−(k+l)/2Ψ(n, z).(5.15)

Equation (5.14) implies that Ψ(n, z) is an eigenfunction of the same operator
B(z, ∂z) with eigenvalue T−(k+l)/2h(λε(n)):

B(z, ∂z)Ψ(n, z) = h(λε(n− (k + l)/2))Ψ(n, z).(5.16)

�

5.2. An example: The set D(2,0)
2,0,ε . In this final subsection we consider

in detail the case α = 2, β = 0, k = 2, l = 0 and use this example for
two different purposes. First we give the reader a guided tour through the
results in this paper: We start with the function p2,0

ε (n, z) from (2.8), give
the ingredients needed to build the difference operator P (n, T ) (3.30) and
the corresponding eigenfunction Ψ(n, z) (3.34), and end with a description
of the strategy used in the construction of a differential operator in the
variable z giving a bispectral situation. The algebra of possible differential
operators in z contains some whose order is lower than the one resulting from
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this construction. We close this subsection with an explicit expression for
the (essentially unique) bispectral operator of minimal order and material
related to this operator.

The functions ϕ(i)
+ (n) and ψ

(i)
+ (n) (i = 0, 1) from (3.18)-(3.19) are given

by

ϕ
(0)
+ (n) =

(n+ ε+ 1)2
κ

, ϕ
(1)
+ (n) =

(n+ ε)4
6κ

,(5.17)

ψ
(0)
+ (n) =

κ

(n+ ε+ 1)2
, ψ

(1)
+ (n) = −κ

2
,(5.18)

where

κ = (ε+ 1)(ε+ 2).(5.19)

The conditions (2.13) reduce to ε /∈ Z.
An element L(n, T ) ∈ D(2,0)

2,0,ε is determined by a choice of the functions

f (0)(n) = A0ϕ
(0)
+ (n) +B0ψ

(0)
+ (n),

f (1)(n) = A1ϕ
(0)
+ (n) +B1ψ

(0)
+ (n) +A0ϕ

(1)
+ (n) +B0ψ

(1)
+ (n),

cf. Section 3.3. We will restrict to the generic case when A0 6= 0. In this case
we can assume that A0 = 1 and A1 = 0 by dividing f (0)(n) by A0 and then
subtracting from f (1)(n) the term A1f

(0)(n). Recall that L(n, T ) depends
only on Span{f (0)(n), f (1)(n)}. Once this space has been specified by the
choice of B0, B1 we can build the difference operator P (n, T ) as in (3.30)
and we get the eigenfunction Ψ(n, z) of L(n, T ) from (3.34).

The theory developed in Sections 4 and 5 makes it convenient to introduce
the difference operators P̃ (n, T ), see (5.8), and P (n, T ), see (5.11), related
to P (n, T ) by (5.9) and (5.12).

The main point in the proof of Theorem 5.2 is that the operator P (n, T )
defined in (5.11) (see also (5.8)) is I-invariant and thus φ(n)P (n, T )φ(n)−1 ∈
R2,0;ε. This implies that the function

Ψ(n, z) = φ(n)P (n, T )φ(n)−1pα,β
ε (n, z)

(see (5.13)) can be expressed as

Ψ(n, z) = µ(n)−1G(z, ∂z)pα,β
ε (n, z)(5.20)

for some differential operator with rational coefficients G(z, ∂z) and some
polynomial µ(n) (recall the definition (4.19) of R2,0;ε). Now any opera-
tor B(z, ∂z) that is a Darboux transformation from h(B2,0(z, ∂z)) for some
h(x) ∈ C[x] via the operator G(z, ∂z), i.e.,

B(z, ∂z)G(z, ∂z) = G(z, ∂z)h(B2,0(z, ∂z))(5.21)

will satisfy

B(z, ∂z)Ψ(n, z) = h(λε(n))Ψ(n, z)
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(a differential analog of (3.3)). The function Ψ(n, z) is related to Ψ(n, z) by
(5.15) and is also an eigenfunction of B(z, ∂z) but with eigenvalue h(λ(n−1))

B(z, ∂z)Ψ(n, z) = h(λε(n− 1))Ψ(n, z),

see (5.16). Combined with (3.35)

L(n, T )Ψ(n, z) = zΨ(n, z)

this gives the desired bispectral pair (L(n, T ), B(z, ∂z)).
The I-invariance of the operator P (n, T ) in this special case can

be observed directly. Because of (5.17), (5.18) the functions F (i)(n) =
f (i)(n)/φ(n), i = 0, 1, see (4.23), are given in terms of

λε(n) = (n+ ε)(n+ ε+ 3)

by

F (0)(n) = 1 +
B0λε(n)

6κ
,

F (1)(n) =
B1λε(n)

6κ
+

κ

(λε(n) + 1)

(
κ

(λε(n) + 1)
− B0

2

)
.

The operator P (n, T ) is given by

P (n, T ) = (n+ ε+ 3/2)

∣∣∣∣∣∣
F (0)(n− 1) F (1)(n− 1) T−1

F (0)(n) F (1)(n) 1
F (0)(n+ 1) F (1)(n+ 1) T

∣∣∣∣∣∣
and it is I-invariant because of the I-invariance of λε(n) and the skew in-
variance of the factor in front compensating the effect of the exchange of
first and third row. An operator G(z, ∂z) satisfying (5.20) is generated from
the proof of Theorem 4.2. It is of high order and the one of minimal order
10 has the following form

G(z, ∂z) = (z − 1)6(z + 1)5∂10
z + (z − 1)5(z + 1)4(57z + 7)∂9

z

+ 4(z − 1)4(z + 1)3(311z2 + 68z − 43)∂8
z

+
(
3B0κ

2(z − 1)2(z + 1)2

+ 2(18793z4 + 5796z3 − 15734z2 − 3636z + 1501)
)
∂7

z + · · · .

Theorem 4.1 guarantees that (5.21) is satisfied for some polynomial h(x). It
also generates such a polynomial but it is again of high order. The one of
minimal order 5 is given by

h(x− 2) = x5 − 5x4 + (10B0κ
2 + 8)x3

− (30B1κ
2 + 20B0κ

2 + 4)x2 − 15B2
0κ

4x.
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Given G(z, ∂z) Equation (5.21) determines the dual bispectral operator
B(z, ∂z) of L(n, T ) of minimal order uniquely. It is given by

B(z, ∂z)

= (z − 1)5(z + 1)5∂10
z + 50(z − 1)4z(z + 1)4∂9

z

+ 5(z − 1)3(z + 1)3(11z − 5)(17z + 7)∂8
z

+ 160(z − 1)2(z + 1)2(52z3 − 7z2 − 28z + 1)∂7
z

+ (30B2
0κ

4z + 120B1κ
2(z − 1) + 120B0κ

2)∂6
z

+ (180B0κ
2(z − 1)2z(z + 1)2

+ 240(z − 1)2(337z3 + 504z2 + 141z − 30))∂5
z

+ (−30B1κ
2(z − 1)2(z + 1)2 + +120B0κ

2(z − 1)(z + 1)(8z2 − z − 3)

+ 120(z − 1)2(641z2 + 758z + 161))∂4
z

+ (−240B1κ
2(z − 1)z(z + 1) + 240B0κ

2(7z3 − 3z2 − 7z + 1)

+ 960(z − 1)2(26z + 19))∂3
z

+ (−60B1κ
2(z − 1)(7z + 5) + 120B0κ

2(2z + 1)(3z − 5) + 1440(z−1)2)∂2
z

− (30B2
0κ

4z + 120B1κ
2(z − 1) + 120B0κ

2)∂z.

In the cases k = 1, l = 0, 1 and ε = 0 the dual bispectral operator of
minimal order was determined in [19, 27].
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