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We use a notion of differentiability for functions on Alexan-
drov spaces and prove a splitting theorem for Alexandrov
spaces admitting affine functions with such differentiability.

0. Introduction.

A classical result of Toponogov [12] states that if a complete Riemannian
manifold M with nonnegative sectional curvature contains a straight line,
then M is isometric to the metric product of a nonnegatively curved manifold
and a line. We then know that the Busemann function associated with the
straight line is an affine function, namely, a function which is affine on each
unit speed geodesic in the one variable sense. After the theorem, many
generalizations were proved. Cheeger-Gromoll’s theorem [2] is the most
excellent one among them.

An Alexandrov space with curvature bounded below by κ ∈ R is a lo-
cally compact, complete and path connected inner metric space on which
the triangle comparison theorem holds (see [1]). For simplicity, we denote
by curv ≥ κ the lower curvature bound. The direct generalization of the
Toponogov theorem for Alexandrov spaces with curv ≥ 0 was proved early
in 1967 by A. Milka [8]. We see that this is essentially implied by the rigid-
ity of geodesic triangles and hinges in the Global Comparison Theorem (see
Fact 1.0).

The author has shown in [7] that if a 2-dimensional Alexandrov space X
with curv ≥ −κ2 without boundary admits a nontrivial affine function, then
X is isometric to flat R2 or flat S1×R. In the present paper, we extend this
to higher dimensional Alexandrov spaces, possibly with nonempty boundary,
admitting affine functions with a new notion of differentiability. Innami [6]
showed that every complete Riemannian manifold admitting a nontrivial
affine function splits isometrically into the metric product of a line and a
Riemannian manifold. Affine functions on complete Riemannian manifolds
naturally possess the differentiability introduced in this paper.

We shall define some notion needed to state our main theorem. Let X
be an n-dimensional Alexandrov space with curv ≥ −κ2 and n ≥ 2, κ > 0.
We denote by pq a minimal geodesic from p to q and by |p, q| the distance
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between p and q. We put

Σ̃pX := {pq|q ∈ X − {p}}/ ∼,

where the equivalence relation ∼ is defined such that pq ∼ pr iff pq ⊂ pr
or pq ⊃ pr. Then the space of directions ΣpX at p in X is defined to be
the metric completion of Σ̃pX. For u ∈ ΣpX we denote by γu the geodesic
tangent to u with γu(0) = p if it exists. For a function f : X −→ R, we
define the directional derivative d̃pf : Σ̃pX −→ R at p by d̃pf(u) := (f ◦
γu)′+(0) if the right-hand derivative exists. We denote by dpf : ΣpX −→ R

the continuous extension of d̃pf if it exists. Remarking that ΣpX is an
Alexandrov space with curv ≥ 1, we consider the composition d̃u1 ◦ dp of
the two operators d̃u1 and dp for p ∈ X and u1 ∈ ΣpX. We put d̃fp,u1 :=
d̃u1 ◦ dpf and denote by dfp,u1 : Σu1ΣpX −→ R the cotinuous extension
of d̃fp,u1 : Σ̃u1ΣpX −→ R. Repeating the procedure, we define for k with
1 ≤ k < n = dim X,

ΣkX := {(p, u1, u2, . . . , uk)| p ∈ X, u1 ∈ ΣpX,

ui ∈ Σui−1Σui−2 · · ·Σu1ΣpX (i = 2, . . . , k)},

d̃fp,u1,u2,...,uk
:= d̃uk

◦ · · · ◦ du2 ◦ du1 ◦ dpf : Σ̃uk
Σuk−1

· · ·Σu1ΣpX −→ R

for a function f : X −→ R and for (p, u1, u2, . . . , uk) ∈ ΣkX.

Definition 0.1. A function f : X −→ R belongs to the class Dr (1 ≤ r ≤
n = dim X), or simply, f is of Dr class iff d̃fp,u1,u2,...,uk−1

is defined and has
the continuous extension

dfp,u1,u2,...,uk−1
: Σuk−1

Σuk−2
· · ·Σu1ΣpX −→ R

for all (p, u1, u2, . . . , uk−1) ∈ Σk−1X and for all k with 1 ≤ k ≤ r. We
agree that a function f : X −→ R is of D1 class if and only if d̃fp has the
continuous extension dfp.

To control the behavior of the directional derivatives, we introduce a
quantity associated with f : X −→ R as follows:

∆1f(p) :=
1

Hn−1(ΣpX)

∫
ΣpX3u

dfp(u) dHn−1(u), for p ∈ X,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure on ΣpX.
This means the total flow of the gradient of f at the point p. If f is a
diffenrentiable function on a Riemannian manifold, then f is of Dn class and
∆1f(p) = 0 at every point p. On the other hand, there exists an Alexandrov
space on which ∆1f(p) 6= 0 at some singular point p for an affine function f
of D3 class and the whole space does not split (see Example 1.4). To avoid
this case, we need the following definition.
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Definition 0.2. A function f : X −→ R is of Dr,s class, s ≤ r, iff f is of
Dr class and

∆1dfp,u1,u2,...,uk−2
(uk−1) = 0

for all (p, u1, u2, . . . , uk−1) ∈ Σk−1X and for all k with 1 ≤ k ≤ s.

With these definitions, we now state our main theorem of this paper:

Theorem A. Let X be an n-dimensional Alexandrov space with curv ≥
−κ2. Then, X admits a nontrivial affine function ϕ : X −→ R of D2,2 class
if and only if X is isometric to the metric product X̃ × R, where X̃ is an
(n− 1)-dimensional Alexandrov space with curv ≥ −κ2.

Since every constant function on X is an affine function of D2,2 class, the
dimension of the space of all affine functions on X of D2,2 class is at least
one. Thus we obtain the following corollary:

Corollary B. The linear space of all affine functions on X of D2,2 class is
of dimension k + 1 if and only if X is isometric to X̃ × Rk, where X̃ does
not admit any nontrivial affine function of D2,2 class.

For the proof of Theorem A, it suffices to show that, for each minimal
geodesic γ in X, there exists a totally geodesic and flat strip including γ.
Under the assumption that X admits an affine function of D2,2 class, we
will show in Proposition 4.3 that the strip is spanned by the gradient curves
of ϕ. Recently, G. Perelman and A. Petrunin [10] considered the existence
of gradient curves in more general situation. The arguments in this paper
is more elementary than theirs, and the author believes that his arguments
will be shortend by their existence theorem.

1. Preliminaries and examples.

Throughout this paper, let X be an Alexandrov space with curv ≥ −κ2 for
κ > 0.

1.0. Global Comparison Theorem. The most basic tool in Alexandrov
geometry is the following theorem.

Fact 1.0 (Global Comparison Theorem). (See [1, §3], [5, Theorem 1.1] and
[4, Appendix].) If Z is an n-dimensional Alexandrov space, n ≥ 2, with
curv ≥ k, then the following holds:

(i) For any triple (p0, p1, p2) in Z there is a unique (up to isometry) triple
(p0, p1, p2) in M2(k) with |pi, pj | = |pi, pj |. Moreover, for any segment
p1p2 and 0 ≤ t ≤ |p1, p2|

(a) |p0, p1p2(t)| ≥ |p0, p1p2(t)|.

(If k > 0 we must also assume that |p0, p1|+|p1, p2|+|p2, p0| < 2π/
√

k.)
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(ii) If equality holds in (a) for some 0 < t0 < |p1, p2| and ct0 is a segment
from p0 to p1p2(t0), then ct0(s), 0 < s < |p0, p1p2(t0)|, is joined their
limit segments from p0 to p1 and p2, form a surface which has totally
geodesic interior and which is isometric to the triangular surface in
M2(k) with vertices p0, p1, p2.

(iii) For any hinge (p0p1, p0p2) in Z with 0 < ∠(p0p1, p0p2) < π we have

(b) |p1, p2| ≤ |p1, p2|,

where (p0p1, p0p2) is the corresponing hinge in M2(k).
(iv) If equality holds in (b), then (p0p1, p0p2) spans a surface which has

totally geodesic interior and which is isometric to the triangular sur-
face in M2(k) spanned by (p0p1, p0p2). In fact, any such surface is
determined uniquely by a segment in Z between interior points of p0p1

and p0p2.

1.1. Drectional derivative Df and the tangent cone. We denote by
K( · ) the Euclidean cone over a metric space (see [1, §4] for the definition
of the Euclidean cone). The following fact is well-known:

Fact 1.1. The pointed Hausdorff limit limε→0(ε−1X, p) of the (ε−1)-scaling
of the metric around p is isometric to the Euclidean cone K(ΣpX) for every
p ∈ X.

We set KpX := K(ΣpX) and call it the tangent cone at p in X. Let p∗

denote the vertex of KpX and αu, for α ≥ 0 and u ∈ ΣpX, the point in KpX
such that |αu, p∗| = α and pr(αu) = u, where pr : KpX\{p∗} −→ ΣpX is
the projection.

Let f : X −→ R be a function of Dr class and 1 ≤ k ≤ r. Then we obtain
the extension

Dfp,u1,u2,...,uk−1
: Kuk−1

Kuk−2
· · ·Ku1KpX −→ R

of dfp,u1,u2,...,uk−1
: Σuk−1

Σuk−2
· · ·Σu1ΣpX −→ R with the condition de-

scribed as follows. We see that Kuk−1
Kuk−2

· · ·Ku1KpX splits isometrically
into the product

K(Σuk−1
Σuk−2

· · ·Σu1ΣpX)× 〈u1, u2, . . . , uk−1〉

for every (p, u1, u2, . . . , uk−1) ∈ Σk−1X, where 〈·〉 denotes the linear span.
Under this identification, we have for u = (αkuk, αk−1uk−1 + αk−2uk−2 +
· · ·+ α1u1) ∈ K(Σuk−1

Σuk−2
· · ·Σu1ΣpX)× 〈u1, u2, . . . , uk−1〉

(†) Dfp,u1,u2,...,uk−1
(u) =

√
α2

kdfp,u1,u2,...,uk−1
(uk)2 + α2

k−1 + · · ·+ α2
1.

In particular for k = 1 in (†), we agree that Dfp(α1u1) = α1dfp(u1) for all
α1u1 ∈ KpX and u1 ∈ ΣpX.
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1.2. Generalized gradient and gradient curves. Let f : X −→ R be
a function of D1 class. Then by the compactness of ΣpX, dfp : ΣpX −→
R attains the maximum and minimum values on ΣpX for each p ∈ X.
We denote by M(dfp) the maximum level set of dfp and by m(dfp) the
minimum level set of dfp. If M(dfp) consists of only one element, we express
it by ∇̂f(p) and put ∇f(p) := |∇f |(p) · ∇̂f(p) ∈ KpX, where |∇f |(p) :=
maxu∈ΣpX dfp(u). We call ∇f(p) the generalized gradient of f at p. In this
notation, if m(dfp) consists of only one element, ∇̂(−f)(p) coincides with
the element of m(dfp).

A curve c : [a, b] −→ X by definition has the right (left) tangent direction
v ∈ Σc(t) at t ∈ [a, b) (resp. t ∈ (a, b]) if any initial direction of any minimal
segment from c(t + h) to c(t) converges to v as h ↓ 0 (resp. h ↑ 0). The
gradient curve c : [a, b] −→ X of a function g on X is defined such that c

has the right tangent ∇̂g(c(t)) for every t ∈ [a, b).

Example 1.3. Let X̃ be an Alexandrov space with curv ≥ −κ2. Then the
metric product X := X̃×R is an Alexandrov space with curv ≥ −κ2. Define
η : X −→ R by η((p̃, t)) := t. Then η is a nontrivial affine function of D2,2

class (see Proposition 3.2). Then ΣpX is the spherical suspension of ΣpX̃

with its suspension points ∇η(p) (= ∇̂η(p)) and ∇(−η)(p) (= ∇̂(−η)(p)) for
every p ∈ X. If X̃ has singular points, then so does X = X̃ ×R.

Example 1.4. Let C be an unbounded convex body in Rn with nonempty
interior and with boundary. Then C is a noncompact n-dimensional Alexan-
drov space with curv ≥ 0 (with boundary). We take an arbitrary unit vector
z ∈ Rn and denote by hz : C −→ R the height function in the direction z,
i.e., hz(p) := 〈z, p〉, where 〈 , 〉 is the cannonical inner product in Rn. Then
hz is affine. If there is a point on the boundary of C such that the diameter
of Σp is less than π, then C does not split into the product of a line and a
space, and then hz is of Dn class but not of Dn,1 class.

2. Affine functions of D1 class.

Throughout this section we assume that ϕ : X −→ R is an affine function
of D1 class. We first prove the following lemma, which will frequently be
used in this paper.

Lemma 2.1. Fix an arbitrary point p ∈ X. Then Dϕp : KpX −→ R
becomes an affine function again. In other words, we have

(∗) (sin |u, v|) dϕp(σ(t)) = sin(|u, v| − t) dϕp(u) + sin t dϕp(v)

for all u, v ∈ ΣpX, for every minimal geodesic σ : [0, |u, v|] −→ ΣpX from u
to v and for every t ∈ [0, |u, v|].

Differentiating (∗) in t at t = 0 yields the following:
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Corollary 2.2. We have the directional derivative of second order at (p, u)
∈ ΣX,

(∗∗) (sin |u, v|) d̃ϕp,u(σ̇(0)) = dϕp(v)− dϕp(u) cos |u, v|,

where σ̇(0) is the initial direction of σ.

Proof of Lemma 2.1. From the continuity of dϕp, it suffices to show (∗)
for all u, v ∈ Σ̃pX with 0 < |u, v| < π and for t ∈ (0, |u, v|). Identifying
u, v with two unit vectors in R2 which makes angle |u, v|ΣpX , we define a
number λ = λ(t) ∈ (0, 1) such that ∠(u, (1 − λ)u + λv) = t. Let γu and
γv be the geodesics tangent to u and v respectively and {si} a sequence
of numbers such that si ↘ 0 as i → ∞. We can choose an appropriate
subsequence {sj} ⊂ {si} so that a sequence {τj : [0, 1] −→ (1/sj)X} of
minimal geodesics in (1/sj)X from γu(sj) to γv(sj) tends to a segment τ on
KpX as j →∞. Here each τj is parameterized proportionally to arclength,
and the segment τ is projected to a minimal geodesic σ : [0, |u, v|] −→ ΣpX
from u to v.

Let αj : [0, |p, τj(λ)|] −→ X be a minimal geodesic from p to τj(λ). By the
continuity of dϕp and Fact 1.1, we have dϕp(α̇j(0)) → dϕp(σ(t)) as j →∞.
Using Fact 1.1 and the definition of affine functions, we obtain

dϕp(σ(t)) = lim
j→∞

dϕp(α̇j(0)) = [(1− λ)dϕp(u) + λdϕp(v)]
sin t

λ sin |u, v|
.

In elementary Euclidean geometry, we have (1− λ)/λ = sin(|u, v| − t)/sin t.
Thus we obtain (∗).

For the first assertion, we need to prove that dϕp(u) = −dϕp(v) for u, v ∈
ΣpX with |u, v| = π. This is obvious from the continuity of dϕp and (∗).
Hence this completes the proof. �

Lemma 2.3. If maxu∈ΣpX dϕp(u) > 0 (minu∈ΣpX dϕp(u) < 0) at some
point p ∈ X, then the maximum level set M(dϕp) of dϕp (resp. the min-
imum level set m(dϕp) of dϕp) consists of only one element. In particular,
the generalized gradient ∇ϕ(p) (resp. ∇(−ϕ)(p)) is defined for all p ∈ X
with ϕ(p) < supX ϕ (resp. ϕ(p) > infX ϕ).

Proof. We prove this lemma only in the case maxu∈ΣpX dϕp(u) > 0. Sup-
pose that M(dϕp) contains two elements u1 and u2 under the assump-
tion max dϕp > 0. If |u1, u2| = π, then we have dϕp(u1) = −dϕp(u2)
by Lemma 2.1. Hence dϕp(u1) = max dϕp = 0, a contradiction to the
assumption. Otherwise, if |u1, u2| 6= π, we have, for t = |u1, u2|/2 in
(∗) along some minimal geodesic σ : [0, |u1, u2|] −→ ΣpX from u1 to u2,
dϕp(u1) = max dϕp < dϕp(σ(|u1, u2|/2)). This contradicts the choice of
u1. �
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We discuss the zero level set (dϕp)−1(0) of dϕp. For simplicity, we put

O(dϕp) := (dϕp)−1(0).

If o1, o2 ∈ O(dϕp) satisfy 0 < |o1, o2| < π, then Lemma 2.1 implies that
all minimal geodesics from o1 to o2 are contained entirely in O(dϕp). Thus
we obtain the following lemma:

Lemma 2.4. O(dϕp) is locally convex.

We deal with a point p ∈ X such that ϕ(p) < supX ϕ, or equivalently,
max dϕp > 0. Then by Lemma 2.3, the generalized gradient ∇ϕ(p) is de-
fined. For such point p, we investigate ∇̂ϕ(p) and O(dϕp) in the following
proposition:

Proposition 2.5. Let p be a point of X with ϕ(p) < supX ϕ. Then the
following (i) and (ii) hold:

(i) For every o ∈ O(dϕp), we have |∇̂ϕ(p), o| ≤ π/2.
(ii) If there are elements o1 and o2 of O(dϕp) such that 0 < |o1, o2| < π

and |∇̂ϕ(p), o1| = |∇̂ϕ(p), o2| = π/2, then the triple (∇̂ϕ(p), o1, o2)
spans a totally geodesic triangular surface of constant curvature 1.

Remark 2.6. Since −ϕ is also affine, the same assertions as above hold for
p ∈ X with ϕ(p) > infX ϕ and for ∇̂(−ϕ)(p) instead of ∇̂ϕ(p).

Proof of Proposition 2.5. (i) We want to use (∗∗) in Corollary 2.2 for
u = ∇̂ϕ(p) and v = o ∈ O(dϕp). If |∇̂ϕ(p), o| = π, then it follows from
Lemma 2.1 that maxu∈ΣpX dϕp(u) = dϕp(∇̂ϕ(p)) = −dϕp(o) = 0, a contra-
diction. Thus |∇̂ϕ(p), o| 6= π. Applying (∗∗) to ∇̂ϕ(p) and o along some
minimal geodesic from ∇̂ϕ(p) to o and using d̃ϕ

p, b∇ϕ(p)
≤ 0, we have

dϕp(o)− |∇ϕ|(p) cos |∇̂ϕ(p), o| ≤ 0.

Hence |∇̂ϕ(p), o| ≤ π/2.
(ii) Draw a comparison triangle 4(∇̂ϕ(p), o1, o2) in the unit sphere S2(1)

corresponding to a geodesic triangle 4(∇̂ϕ(p), o1, o2) in ΣpX. Take a point
o3 in the interior of the edge o1o2 and a point o3 in the edge o1o2 correspond-
ing to o3. Then the Global Comparison Theorem implies that |∇̂ϕ(p), o3| ≥
|∇̂ϕ(p), o3| = π/2 (see Fact 1.0). Since o3 ∈ O(dϕp) by Lemma 2.4, it follows

from (i) that |∇̂ϕ(p), o3| ≤ π/2. Hence |∇̂ϕ(p), o3| = |∇̂ϕ(p), o3|. Therefore
(ii) follows from the rigidity of geodesic triangle in the Global Comparison
Theorem. �
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3. Affine functions of D2,2 class.

Proposition 3.1. If ϕ : X −→ R is a nontrivial affine function of D2,2

class, then the following (i)-(v) hold:
(i) ΣpX is the spherical suspension of O(dϕp) with its suspension points

∇̂ϕ(p) and ∇̂(−ϕ)(p) for every p ∈ X.
(ii) We have

dϕp(u) = |∇ϕ|(p) cos |∇̂ϕ(p), u|ΣpX

for every p ∈ X and for every u ∈ ΣpX, or equivalentlly,

Dϕp(u) = |∇ϕ|(p)|u| cos ∠p∗(∇ϕ(p), u)

for every u ∈ KpX. Here ∠p∗ denotes the angle distance at the vertex
p∗.

(iii) Fix two arbitrary numbers a, b ∈ ϕ(X) with a < b. Then for every
q ∈ ϕ−1(a) and for every minimal geodesic σq : [0, l(q)] −→ X from q
to ϕ−1(b), we have

σ̇q(0) = ∇̂ϕ(q) and ˙(σ−1
q )(0) = ∇̂(−ϕ)(σ−1

q (0)),

where σ−1
q : [0, l(q)] −→ X is defined by σ−1

q (t) := σq(l(q) − t), t ∈
[0, l(q)].

(iv) There is a unique complete gradient curve φ : R −→ X of ϕ passing
through p parameterized by ϕ◦φ(t) = ϕ(p)+ t, t ∈ R, for every p ∈ X.
Moreover, it satisfies

|ϕ(φ(t1))− ϕ(φ(t2))|
|φ(t1), φ(t2)|

= |∇ϕ|(φ(t)) = |∇ϕ|(p)

for all t, t1, t2 ∈ R, and in partucular φ is a straight line.
(v) |∇ϕ|(p) is constant for all p ∈ X.

Proof. (i) Fix a point p ∈ X arbitrarily. Since ϕ is nontrivial, either
max dϕp > 0 or min dϕp < 0 holds. If max dϕp > 0, then min dϕp < 0
since ϕ is particularly of D2,1 class. Similarly, we have max dϕp > 0 if
min dϕp < 0. Thus ∇̂ϕ(p) and ∇̂(−ϕ)(p) at p are defined.

By Proposition 2.5 (ii), it suffices to show the following:

Assertion. |∇̂ϕ(p), o|ΣpX = |∇̂(−ϕ)(p), o|ΣpX = π/2 for all o ∈ O(dϕp).

Suppose that there is o ∈ O(dϕp) such that |∇̂ϕ(p), o| 6= π/2. Then by
Proposition 2.5 (i), |∇̂ϕ(p), o| < π/2. Apply (∗∗) to ∇̂ϕ(p) and o along
a minimal geodesic σ : [0, |∇̂ϕ(p), o|] −→ ΣpX from ∇̂ϕ(p) to o. Then
we have dϕ

p, b∇ϕ(p)
(σ̇(0)) < 0. Since ϕ is particularly of D2 class, there is a

neighborhood W of σ̇(0) in Σb∇ϕ(p)
ΣpX such that dϕ

p, b∇ϕ(p)
(w) < 0 for every
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w ∈ W . Since dϕ
p, b∇ϕ(p)

≤ 0 and W is of positive measure with respect to
(n− 2)-dimensional Hausdorff measure, we obtain∫

Σ b∇ϕ(p)
ΣpX3w

dϕ
p, b∇ϕ(p)

(w) dHn−2(w) < 0.

This contradicts the assumption that ϕ is of D2,2 class.
(ii) It suffices to show the equation for u ∈ ΣpX\{∇̂ϕ(p), ∇̂(−ϕ)(p)}. By

(i), any such u is contained in a minimal geodesic τ : [0, π] −→ ΣpX joining
two suspension points. Applying (∗∗) to ∇̂ϕ(p) and τ(π/2) along τ , we have
dϕ

p, b∇ϕ(p)
(τ̇(0)) = 0. Using again (∗∗) for ∇̂ϕ(p) and u along τ , we obtain

dϕp(u) = |∇ϕ|(p) cos |∇̂ϕ(p), u|.
(iii) Suppose that σ̇q(0) 6= ∇ϕ(q) for some minimal geodesic σq : [0, l(q)]

−→ X from q to ϕ−1(b). Then we can find a broken geodesic

ξ =
⋃
i

γi : [0, l(ξ)] −→ X

such that (ϕ ◦ ξ)′+(s) > dϕq(σ̇q(0)) for every s ∈ [0, l(ξ)) and ξ(0) = q,
ξ(l(ξ)) ∈ ϕ−1(b). The construction of ξ is achieved in the same way as in
2-dimensional Alexandrov space (see [7, Lemma 2(2)]). Since ϕ◦ξ is almost
everywhere differentiable, we conclude that l(q) > l(ξ). This contradicts the
minimizing property of σq.

(iv) Choose a double-ended sequence {aj}j∈Z such that a0 = ϕ(p), aj ↗
supX ϕ as j →∞ and aj ↘ infX ϕ as j → −∞. We start from p ∈ ϕ−1(a0)
and repeat the same construction by minimal projections as in (iii). That
is, let p0 := p and pj+1 denote the foot of the (unique) minimal geodesic
from pj to ϕ−1(aj+1) for j ≥ 0. For j ≤ 0, let pj−1 denote the foot of the
(unique) minimal geodesic from pj to ϕ−1(aj−1). Then we obtain the curve

φ :=
⋃
j∈Z

pjpj+1 :
(

inf
X

ϕ− ϕ(p), sup
X

ϕ− ϕ(p)
)
−→ X

parameterized by ϕ◦φ(t) = ϕ(p)+ t. By the construction, we see that every
subarc from φ(t1) to φ(t2) of φ is a minimal geodesic and

|ϕ(φ(t1))− ϕ(φ(t2))|
|φ(t1), φ(t2)|

= |∇ϕ|(φ(t)) = |∇ϕ|(p)

for all t, t1, t2 ∈ (infX ϕ− ϕ(p), supX ϕ− ϕ(p)).
Once supX ϕ = ∞ and infX ϕ = −∞ are established, the proof of (iv)

is completed. Suppose that supX ϕ < ∞. Then the sequence {pj}j=0,1,...

accumulates to some point p∞. (i) implies that max dϕp∞ > 0 also at p∞.
This is a contradiction to ϕ(p∞) = supX ϕ. Therefore supX ϕ = ∞. On the
other hand, infX ϕ = −∞ follows from which −ϕ is also affine.
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(v) Choose two points p0 and p1 arbitrarily. Let φ0, φ1 : R −→ X be two
gradient curves passing through p0, p1 respectively obtained by (iv). We
may assume from (iv) that ϕ(p0) = ϕ(p1) and φ0 6= φ1. It is easily seen
from (i) and (iv) that ∠p1(p1p0, p1φ1(t)) = π/2, |p1, φ1(t)| = t/|∇ϕ|(p1) and
|∇ϕ|(p0) ≥ (ϕ(φ1(t))− ϕ(p0))/|p0, φ1(t)| = t/|p0, φ1(t)| for all t ∈ [0,∞).

For every t ∈ [0,∞), draw a comparison hinge (p1p0, p1φ1(t)) of a hinge
(p1p0, p1φ1(t)) in hyperbolic surface H2(−κ2) of constant curvature −κ2.
Then the Global Comparison Theorem and the cosine formula in H2(−κ2)
implies that

|p0, φ1(t)| ≤ |p0, φ1(t)| =
1
κ

cosh−1
[
cosh(κ|p0, p1|) cosh(κ|p1, φ1(t)|)

]
.

Therefore we have

|∇ϕ|(p0) ≥
κ · t

cosh−1
[
cosh(κ|p0, p1|) cosh(κ · t/|∇ϕ|(p1))

] .

Taking t → ∞ and applying L’Hospital’s formula, we obtain |∇ϕ|(p0) ≥
|∇ϕ|(p1). The symmetric property of the above discussion implies the re-
verse inequality. This completes the proof. �

We now assume that ϕ : X −→ R is a nontrivial affine function of D1

class satisfying the condition of the assertion (i) of Proposition 3.1. Then
all other assertions (ii)-(v) follow. More precisely, the following holds:

Proposition 3.2. Let ϕ : X −→ R be a nontrivial affine function of D1

class. If ϕ satisfies the condition that ΣpX forms the spherical suspension
with its suspension points ∇̂ϕ(p) and ∇̂(−ϕ)(p) for every p ∈ X, then ϕ is
of Dn,n class, n = dim X.

Remark 3.3. It is easily seen that η in Example 1.3 is of D1 class and
satisfies the assumption of Proposition 3.2. Hence η is of D2,2 class.

Proof of Proposition 3.2. We first prove that ϕ is of D1,1 class. Fix a
point p ∈ X arbitrarily. Since ΣpX is a spherical suspension with its sus-
pension points ∇̂ϕ(p) and ∇̂(−ϕ)(p), there is a unique point u ∈ ΣpX for
every u ∈ ΣpX such that |∇̂ϕ(p), u| = |u, ∇̂(−ϕ)(p)| and that u, u are lying
on a common minimal geodesic joining suspension points. The correspon-
dence u 7→ u is a isometry between dϕ+

p := {v ∈ ΣpX|dϕp(v) ≥ 0} and
dϕ−p := {v ∈ ΣpX|dϕp(v) ≤ 0}. Note that Proposition 3.1 (ii) is valid under
the assumption of Proposition 3.2. Hence by Proposition 3.1 (ii), we have
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dϕp(u) = −dϕp(u) for every u ∈ ΣpX. A direct computation implies that∫
ΣpX3u

dϕp(u) dHn−1(u)

=
∫

dϕ+
p 3u

dϕp(u) dHn−1(u) +
∫

dϕ−p 3u
dϕp(u) dHn−1(u) = 0.

That is, ϕ is of D1,1 class.
We next show that ϕ is of D2,2 class. For every w ∈ Σb∇ϕ(p)

ΣpX, there

is a minimal geodesic σw : [0, π] −→ ΣpX from ∇̂ϕ(p) to ∇̂(−ϕ)(p) tan-
gent to w. Apply (∗∗) to ∇̂ϕ(p) and σw(π/2) along σw. Then we have
dϕ

p, b∇ϕ(p)
(w) = 0 for all w ∈ Σb∇ϕ(p)

ΣpX. Therefore we conclude that ϕ is

of D2,2 class at (p, ∇̂ϕ(p)) ∈ ΣX for all p ∈ X. Similarly, ϕ is of D2,2 class
at (p, ∇̂(−ϕ)(p)) ∈ ΣX for all p ∈ X.

Therefore it suffices to show the D2,2 condition for all u ∈ ΣpX\{∇̂ϕ(p),
∇̂(−ϕ)(p)}. Such u is contained in a minimal geodesic from ∇̂ϕ(p) to
∇̂(−ϕ)(p). Letting db∇ϕ

: ΣpX −→ R denote the distance function from

∇̂ϕ(p), we see that ΣuΣpX is also a spherical suspension with its suspen-
sion points ∇(−db∇ϕ

)(u) and ∇db∇ϕ
(u). For every w ∈ Σ̃uΣpX let σw :

[0, l(w)]−→ΣpX be a geodesic tangent to w and put θw :=∠(∇(−db∇ϕ
(u), w).

Then by a direct computation, we have

d̃ϕp,u(w) =
d

dt
(dϕp(σw(t)))

∣∣
t=0

= |∇ϕ|(p) sin |∇̂ϕ(p), u| cos θw.

This means that d̃ϕp,u has the continuous extension dϕp,u : ΣuΣpX −→ R.
Therefore ϕ is of D2,1 class. Moreover, the D2,2 condition at (p, u) ∈ ΣX is
implied by the same computation as in the proof of the D1,1 condition of ϕ.

Repeating the above computation, we see that ϕ is of Dn,n class. �

4. Totally geodesic flat strip spanned by gradient curves.

In this section we prove Theorem A. Throughout this section let ϕ : X −→
R be a nontrivial affine function of D2,2 class.

Let p0 and p1 be two arbitrary points with ϕ(p0) = ϕ(p1) =: a and
γ : [0, 1] −→ X a minimal geodesic from p0 to p1 parameterized to be
proportional to arclength. By Proposition 3.1 (iv), there is a unique gradient
curve φλ : R −→ X passing through γ(λ) for every λ ∈ [0, 1].

We will prove in Proposition 4.3 that

S :=
⋃

λ∈[0,1]

φλ(R)

is totally geodesic and flat. Once this is established, Theorem A easily
follows.
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We first prove the following lemma:

Lemma 4.1. Fix λ1, λ2 ∈ [0, 1] and s0 ∈ R arbitrarily. Setting l(s, t) :=
|φλ1(s), φλ2(t)| for all s, t ∈ R, we have

lim
h→0

l(s0 + h, s0 + h)− l(s0, s0)
h

= 0.

Proof. Let τst : [0, l(s, t)] −→ X be a minimal geodesic from φλ1(s) to
φλ2(t) and θi(s, t) := ∠(τst,∇ϕ(φλi

)), i = 1, 2. We note that θi(s, t),
i = 1, 2, is independent of the choice of the minimal geodesic τst. Actu-
ally, Proposition 3.1 (ii) implies that |∇ϕ| cos θ1(s, t) = dϕφλ1

(s)(τ̇st(0)) =
dϕφλ1

(s)(τ̇ ′st(0)) = |∇ϕ| cos θ′1(s, t) for every other minimal geodesic τ ′st from
φλ1(s) to φλ2(t) and for θ′1(s, t) = ∠(τ ′st,∇ϕ(φλ1)). Similarly, we have
θ′2(s, t) = θ2(s, t) for θ′2(s, t) := ∠(τ ′st,∇ϕ(φλ2)). Therefore it follows from
the first variation formula ([9, Theorem 3.5]) that for all s, t ∈ R, the par-
tial derivatives ∂l

∂s(s, t) and ∂l
∂t(s, t) exist and equal (−1/|∇ϕ|) cos θ1(s, t) and

(−1/|∇ϕ|) cos θ2(s, t) respectively. Thus we obtain for every h ∈ R,

|l(s0 + h, s0 + h)− l(s0 + h, s0)| =
1

|∇ϕ|

∣∣∣∣∣
∫ |h|

0
cos θ2(s0 + h, s0 + t)dt

∣∣∣∣∣
and

|l(s0 + h, s0)− l(s0, s0)| =
1

|∇ϕ|

∣∣∣∣∣
∫ |h|

0
cos θ1(s0 + t, s0)dt

∣∣∣∣∣ .

Proposition 3.1 implies that for every ε > 0 there is δ = δ(ε) > 0 such that
|θ1(s, t)− π/2|, |θ2(s, t)− π/2| ≤ ε for all s, t ∈ [s0 − δ, s0 + δ]. Therefore we
have for all h ∈ [−δ, δ],

|l(s0 + h, s0 + h)− l(s0, s0)| ≤
2

|∇ϕ|
|h|

∣∣∣cos
(π

2
± ε

)∣∣∣ .

Since δ(ε) → 0 as ε → 0, we obtain the desired equality. �

Define cs : [0, 1] −→ S by cs(λ) := φλ(s) for an arbitrarily fixed s ∈ R.
Then the following holds:

Corollary 4.2. The curve cs is minimal for every s ∈ R.

Proof. Let pra : X −→ ϕ−1(a) be the minimal projection to ϕ−1(a) and τ a
minimal geodesic from φ0(s) to φ1(s). Then Lemma 4.1 implies that

L(cs) ≥ L(τ) = L(pra ◦ τ) ≥ L(γ) = L(pra ◦ cs) = L(cs),

where L(·) means the length of a curve. This completes the proof. �

The proof of Theorem A is completed by the following:

Proposition 4.3. The strip S is totally geodesic and flat.



A SPLITTING THEOREM FOR ALEXANDROV SPACES 457

Proof. Let y0, y1 be two points in S and τ : [0, 1] −→ X a minimal geodesic
from y0 to y1 parameterized proportionally to arclength. We may assume
that y0 ∈ φ0(R) and y1 ∈ φ1(R). Moreover, we may assume from Corol-
lary 4.2 that ϕ(y0) < ϕ(y1). We define a curve c : [0, 1] −→ S in S by
c(λ) := φλ((1− λ)ϕ(y0) + λϕ(y1)). Then ϕ ◦ c is an affine function. We will
calculate the length of c. We denote by prφλ

: X −→ φλ(R) the minimal
projection to φλ(R) and put y′1 := prφ1(y0). Fix λ ∈ (0, 1) arbitrarily and
let h ∈ R\{0} be a number such that |h| is sufficiently small. We consider
the triangle 4(c(λ), c(λ + h), prφλ+h

(c(λ))) whose sides are all minimal if
h > 0 (if h < 0 consider 4(c(λ), c(λ + h), prφλ

(c(λ + h)))). This is a right
triangle on X. By Lemma 4.1 and the parameterization of c, we have for
h > 0,

|c(λ), prφλ+h
(c(λ))| = L(γ)|h| and |prφλ+h

(c(λ)), c(λ + h)| = |y1, y
′
1||h|,

and for h < 0, |c(λ), prφλ
(c(λ+h))| = L(γ)|h| and |prφλ

(c(λ+h)), c(λ+
h)| = |y1, y

′
1||h|. Note that c(λ) is a point of the straight line φλ. Fact 1.0

together with this imply that |c(λ), c(λ + h)| =
√

L(γ)2|h|2 + |y1, y′1|2|h|2 +
o(|h|). Equivalently,

|ċ|(λ) := lim
h→0

|c(λ), c(λ + h)|
|h|

=
√

L(γ)2 + |y1, y′1|2

for all λ ∈ (0, 1). This implies that c is a Lipschitz curve. Therefore L(c) is
calculated as

L(c) =
∫ 1

0
|ċ|(λ)dλ =

√
L(γ)2 + |y1, y′1|2.

A similar calculation shows that L(pra ◦ τ) =
√

L(τ)2 − |y1, y′1|2, where pra

is the same as in the proof of Corollary 4.2. Thus we obtain

L(c)2 ≥ L(τ)2 = L(pra ◦ τ)2 + |y1, y
′
1|2 ≥ L(γ)2 + |y1, y

′
1|2 = L(c)2.

This completes the proof. �
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