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Let Λ be a compact planar set of positive finite one-dimen-
sional Hausdorff measure. Suppose that the intersection of Λ
with any rectifiable curve has zero length. Then a theorem
of Besicovitch (1939) states that the orthogonal projection
of Λ on almost all lines has zero length. Consequently, the
probability p(Λ, ε) that a needle dropped at random will fall
within distance ε from Λ, tends to zero with ε. However,
existing proofs do not yield any explicit upper bound tending
to zero for p(Λ, ε), even in the simplest cases, e.g., when Λ =
K2 is the Cartesian square of the middle-half Cantor set K.
In this paper we establish such a bound for a class of self-
similar sets Λ that includes K2. We also determine the order
of magnitude of p(Λ, ε) for certain stochastically self-similar
sets Λ. Determining the order of magnitude of p(K2, ε) is an
unsolved problem.

1. Introduction.

Consider K = {
∑∞

n=1 an4−n : an ∈ {0, 3}}, the middle-half Cantor set,
and the direct product K2 = K × K ⊂ R2. It is well-known that the
one-dimensional Hausdorff measure of K2 satisfies 0 < H1(K2) < ∞ and
that K2 is totally unrectifiable. Therefore, by Besicovitch’s theorem (see
[4, Theorem 6.13]), the projection of K2 on almost every line through the
origin, has zero length. This can be expressed by saying that the Favard
length of K2 equals zero. Recall (see [2, p. 357]) that the Favard length
of a planar set E is defined by

Fav(E) =
∫ π

0
|projθE| dθ,

where projθ denotes the orthogonal projection from R2 onto the line through
the origin making angle θ with the horizontal axis, and |A| denotes the
Lebesgue measure of a measurable set A ⊂ R. The Favard length of a set E
in the unit square has a probabilistic interpretation: Up to a constant factor,
it is the probability that “Buffon’s needle,” a long line segment dropped at
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Figure 1. The Cantor set K2, third stage of the construction.

random, hits E. (More precisely, suppose the needle’s length is greater than√
8, pick the distance r from the origin to the needle uniformly in [0,

√
2],

and locate the center of the needle at a uniformly chosen point on the circle
{|z| = r}.)

Now consider the n-th stage of the Cantor set construction for K,

Kn =
{ ∞∑

k=1

ak4−k : ak ∈ {0, 3}

for 1 ≤ k ≤ n and ak ∈ {0, 1, 2, 3} for k > n

}
.

Then K2
n is a union of 4n squares of side 4−n (see Figure 1 for a picture of

K2
3 ). Clearly, Fav(K2) = 0 implies limn→∞ Fav(K2

n) = 0. We are interested
in the behavior of Fav(K2

n) as n → ∞. A lower bound Fav(K2
n) ≥ c

n for
some c > 0 follows from Mattila [14, 1.4]. Our main result is a quantitative
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upper bound. For y ≥ 1 let

log∗ y = min

n ≥ 0 : log log . . . log︸ ︷︷ ︸
n

y ≤ 1

 .(1.1)

Theorem 1.1. There exist C, a > 0 such that

Fav(K2
n) ≤ C exp[−a log∗ n] for all n ∈ N.

Remarks.
1. The convergence of the upper bound to zero is extremely slow, but it
is the best we could get. It is still much better than a purely qualitative
convergence statement. The lower bound c

n seems closer to the truth. In
Theorem 2.2, proved in Section 6, we analyze a random analog of the Cantor
set K2. We show that, with high probability, the Favard length of the n-
th stage in the construction has upper and lower bounds that are constant
multiples of n−1.

2. For ρ ≤ 4−n, the ρ-neighborhood K(ρ) = {x : dist(x,K) ≤ ρ} of K can
be covered by nine translates of Kn, so Fav(K(ρ)) ≤ 9Fav(Kn).

3. It follows from the results of Kenyon [9] and Lagarias and Wang [10]
that |projθK2| = 0 for all θ such that tan θ is irrational. However, this
information does not seem to help obtain an upper bound for Fav(K2

n).

4. The set K2 was one of the first examples of sets of positive length and zero
analytic capacity, see [3] for a survey. Recently Mateu, Tolsa and Verdera
[12] proved that the analytic capacity of K2

n is bounded above and below by
constant multiples of n−1/2. The analytic capacity of certain related sets of
non σ-finite length was determined by Mattila [16]. We consider the Favard
length of such sets in Proposition 7.2.

In the next section we state our results for a class of planar self-similar
Cantor sets. The method used for estimating the Favard length of the n-th
stage of the construction also yields some information about gauges in which
almost every projection of the Cantor set has zero Hausdorff measure. The
proof of the main theorem for homogeneous self-similar sets (such as K2) is
presented in Sections 3 and 4. The non-homogeneous case, which is more
involved, is dealt with in Section 5. Favard length of random Cantor sets is
considered in Section 6. Section 7 contains some further extensions, remarks
and unsolved problems.
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2. Statement of results.

Consider a self-similar set Λ ⊂ R2, defined as the unique nonempty compact
satisfying

Λ =
m⋃

i=1

SiΛ where Si(x) = rix + bi, with ri ∈ (0, 1) and bi ∈ R2.

(2.1)

We assume that the Strong Separation Condition (SSC) holds, i.e., that
Si(Λ)∩Sj(Λ) = ∅ for i 6= j. The similarity dimension is defined as the unique
solution s of the equation

∑m
i=1 rs

i = 1. It is well-known that the Strong
Separation Condition, and even the weaker Open Set Condition, imply that
the Hausdorff dimension dimHΛ equals the similarity dimension s, and the
s-dimensional Hausdorff measure Hs(Λ) is positive and finite.

First suppose that s = 1. Then Λ is an irregular 1-set, and thus by
Besicovitch’s theorem (see [4, Theorem 6.13]) Fav(Λ) = 0. Let Λ(ρ) =
{x : dist(x,Λ) ≤ ρ} denote the ρ-neighborhood of the set Λ. Clearly,
limρ→0 Fav(Λ(ρ)) = 0. Mattila [14, 1.4] proved the lower bound

Fav(Λ(ρ)) ≥ c

(
log

(
1
ρ

))−1

for all ρ > 0,(2.2)

for some c > 0. (This lower bound follows from an energy estimate; it does
not use self-similarity, but only positivity of H1(Λ).) Our main result is the
following upper bound.

Theorem 2.1. Assuming that the SSC holds and s = 1, we have for some
C, a > 0

Fav(Λ(ρ)) ≤ C exp
[
−a log∗

(
1
ρ

)]
for all ρ > 0.(2.3)

Remark. The self-similar set is called homogeneous if ri = r for all
i ≤ m. The Cantor set K2 in Section 1 is homogeneous. For a homogeneous
set Λ, it is equivalent (up to uniform multiplicative constants) to consider the
Favard length Fav(Λn) of the nth stage of the construction and Fav(Λ(ρ)),
with ρ = rn.

We now consider random analogs of the sets K2
n from the introduction.

Partition the unit square into four dyadic subsquares of side 1/2, and in
each of these choose, uniformly at random, a dyadic subsquare of side 1/4.
Denote the union of four (closed) squares so obtained R1. Inductively, given
Rk which is a union of 4k dyadic squares of side 2−2k, we partition each of
them into four dyadic subsquares of side 2−2k−1, and in each of these 4k+1

squares choose, uniformly at random, a dyadic subsquare of side 2−2k−2, all
these choices being independent. Call the union of 4k+1 (closed) squares so
obtained Rk+1. An example of R3 is given in Figure 2.
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Figure 2. A random set R3.

Finally, write R =
⋂∞

k=1Rk. Clearly 0 < H1(R) < ∞, and the arguments
of Mattila [14, 1.4] still imply that Fav(Rn) ≥ c

n . Denoting expectation by
E , we have:

Theorem 2.2.

E [Fav(Rn)] ≤ C

n
(2.4)

for some C < ∞. Consequently, with probability 1,

lim inf
n→∞

n · Fav(Rn) < ∞.(2.5)

Next, we return to consider self-similar sets Λ as in (2.1), but only assume
that their similarity dimension satisfies s ≤ 1. Let

IP (Λ) =
{
θ ∈ [0, π] : projθ|Λ is not one-to-one

}
(the letters “IP” stand for “intersection parameters”). It is easy to see
that if s = 1, then IP (Λ) = [0, π]. (Indeed, if projθ|Λ is one-to-one, then
projθ(Λ) is a self-similar set on the real line satisfying the Strong Separation
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Condition. Increasing the contraction rates ri slightly (maintaining strong
separation), we would get a subset of R with Hausdorff dimension greater
than 1, a contradiction.)

It was proved in [18, Theorem 1.2] that if the set IP (Λ) contains a
nonempty interval J , then Hs(projθΛ) = 0 for a.e. θ ∈ J . Here we exhibit an
explicit gauge function φ(t) such that limt→0

φ(t)
ts = ∞ but Hφ(projθΛ) = 0

for a.e. θ ∈ J .

Theorem 2.3. If the SSC holds, s ≤ 1, and there is an interval J ⊂ IP (Λ),
then Hφ(projθΛ) = 0 for a.e. θ ∈ J , where

φ(t) = ts exp[L log∗(1/t)]

with L ∈ (0, log 2).

Sufficient conditions for the existence of an interval J ⊂ IP (Λ) were
found in [18]. For instance, Theorem 2.3 applies to the planar Cantor set
K(r) ×K(r) where K(r) = {

∑∞
n=1 anrn : an ∈ {0, 1}}, with r ∈ (1

6 , 1
4). It is

shown in [18, Example 6.1] that J = [arctan 1−2r
r , arctan 2

1−3r ] ⊂ IP (K(r)).

3. Proof of Theorem 2.1 (the homogeneous case).

Here we prove Theorem 2.1 in the case when ri = r; this includes Theo-
rem 1.1. Note that s = 1 implies r = m−1. Since some of the lemmas will
also be used in the proof of Theorem 2.3, up to a point we allow any value
of s ≤ 1. The more technical proofs of lemmas are postponed until the next
section.

Let m ≥ 2, A = {1, . . . , m} and A∗ =
⋃

n≥0An. Write |u| = n for u ∈ An

and let ω|n = ω1 . . . ωn for ω ∈ A∗ ∪AN, with |ω| ≥ n. For u ∈ An we write
Su = Su1 ◦ . . . ◦ Sun and Λu = Su(Λ). In our homogeneous case we have
Su(x) = rnx + bu for some bu ∈ R2. It is convenient to identify the line
through the origin with R; formally we just let projθ(x, y) = x cos θ+y sin θ.
For θ ∈ [0, π] and u ∈ An let

Sθ
u(x) = rnx + bθ

u , x ∈ R, where bθ
u = projθbu.

Observe that Λθ := projθΛ is a self-similar set on the real line satisfying
Λθ =

⋃m
i=1 Sθ

i (Λθ). The sets Λθ
u := projθΛu are called the cylinders of the

self-similar set Λθ. The map Πθ : AN → Λθ defined by

Πθ(ω) = lim
n→∞

Sθ
ω|n(0) =

∞∑
n=1

rn−1bθ
ωn

,

is called the natural projection map. We equip the sequence space AN

with the Bernoulli measure ( 1
m , . . . , 1

m)N. The projection of µ, that is, νθ :=
µ ◦Π−1

θ is called the natural measure on Λθ.
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Definition 3.1. Let u, v be two words in A∗ with |u| = |v| = n and let
θ ∈ [0, π]. We say that Sθ

u and Sθ
v are ε-relatively close if

|Sθ
u(x)− Sθ

v(x)| ≤ εrn for all x ∈ Λθ.(3.1)

This definition is motivated by the work of Bandt and Graf [1]; it was
recently used in [17]. In order to develop the setting needed for the proof of
both Theorem 2.1 and Theorem 2.3, we fix a nonempty interval J ⊂ IP (Λ);
if s = 1 then we let J = IP (Λ) = [0, π].

Lemma 3.2. There exists C1 ≥ 1 such that for all ε ∈ (0, 1] and all n ∈ N,
for any interval I ⊂ J , with |I| = C1r

n, there is a subinterval I ′ ⊂ I
satisfying:

(i) |I ′| ≥ C−2
1 ε|I| and

(ii) for every θ ∈ I ′ there exist u 6= v in An such that Sθ
u and Sθ

v are
ε-relatively close.

This is a consequence of “transversality”; the proof is given in Section 4.

Notation. Let Ψ(n, k, ε) be the set of θ ∈ J such that there is no collection
of distinct words u1, . . . , uk, with |u1| = . . . = |uk| ≤ n, such that Sθ

uj
, j ≤ k,

are pairwise ε-relatively close.

Lemma 3.3. There exist c2 > 0 and M > 0 such that

|Ψ(n, 2, ε)| ≤ Me−c2nε for all n ∈ N, ε ∈ (0, 1].(3.2)

This follows from Lemma 3.2; see Section 4 for the proof.

Lemma 3.4. If n = `0 + j0, with `0, j0 ≥ 1, and k ≥ 2, then

Ψ(n, 2k, ε) ⊂ Ψ(`0, 2, (ε/2)rj0) ∪Ψ(j0, k, (ε/2)).(3.3)

Proof. Suppose that θ is not in the right-hand side of (3.3). Then there
exist distinct u1, u2, with |ui| ≤ `0, such that Sθ

u1
and Sθ

u2
are ε

2rj0-relatively
close, and distinct w1, . . . , wk, with |wq| ≤ j0, such that Sθ

w1
, . . . , Sθ

wk
are

pairwise ε
2 -relatively close. Let 1 ≤ p < q ≤ k. By self-similarity, Sθ

uiwp
and

Sθ
uiwq

are ε
2 -relatively close. Further, Sθ

u1wq
and Sθ

u2wq
are ε

2 -relatively close,
since rj0+|ui| ≤ r|uiwq |, for i = 1, 2. This implies that Sθ

u1wp
and Sθ

u2wq
are

ε-relatively close. Thus, we have found 2k distinct words uiwq, with i = 1, 2
and q ≤ k, of length ≤ n, such that Sθ

uiwq
are pairwise ε-relatively close,

hence θ 6∈ Ψ(n, 2k, ε). �

Below we denote by logi and expi the i-th iterate of log and exp respec-
tively, assuming that log0 is the identity map.

Lemma 3.5. There exists c3 > 0 such that for all i ≥ 1,

|Ψ(n, 2i, ε)| ≤ M2i−1 exp[−c3e
−(i−1)(logi−1 n)ε] for all n ∈ N, ε ∈ (0, 1].

(3.4)
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This is proved by induction, using Lemmas 3.3 and 3.4. See Section 4 for
details. Now let

nk = expk−1(c−1
3 kek−1),(3.5)

so that, in view of (3.4),

|Ψ(nk, 2k, 1)| ≤ M2k−1e−k.(3.6)

For v, w ∈ A∗ we write v @ w if v is a subword of w, more precisely, if
w = v′vv′′ where v′ and/or v′′ may be empty. Let

N(k) := mnk · nk · k.(3.7)

For u1 ∈ A∗, with |u1| ≤ nk, we have

#{u ∈ AN(k) : u1 6@ u} ≤ (mnk − 1)N(k)/nk

= mN(k)(1−m−nk)mnk ·k ≤ mN(k)e−k.(3.8)

Lemma 3.6. For any ξ > 0 there exists Cξ > 0 such that

log∗(r
−N(k)) ≤ Cξ + (1 + ξ)k.

This is elementary; see Section 4 for a proof.

Proof of Theorem 2.1 (homogeneous case). Recall that now s = 1, so r =
m−1. We are going to show that, for some c > 0 and γ ∈ (0, 1),

Fav(Λ(ρ)) ≤ cγk, where ρ = rN(k).(3.9)

By Lemma 3.6, this will imply (2.3).
Turning to the proof of (3.9), we note that by (3.6),∫

Ψ(nk,2k,1)
|projθΛ(ρ)| dθ ≤ M2k−1e−k(diam(Λ) + 2).(3.10)

Thus, it suffices to estimate |projθΛ(ρ)| from above for θ 6∈ Ψ(nk, 2k, 1).
Fix such a θ for the rest of the proof. By definition, this means that

there exist words u1, . . . , u2k , each of length not greater than nk, such that
Sθ

uj
, j ≤ 2k, are pairwise 1-relatively close. We have

projθΛ(ρ) ⊂
⋃

|u|=N(k)

Λθ
u(ρ) =

⋃
|u|=N(k)

u1 6@u

Λθ
u(ρ) ∪

⋃
|u|=N(k)
u1@u

Λθ
u(ρ) =: F1 ∪ F2.

Since |u| = N(k) we have

diam(Λθ
u(ρ)) = diam(Λθ

u) + 2ρ ≤ (2 + diam(Λ))m−N(k),

hence, in view of (3.8),

|F1| ≤ mN(k)e−k(2 + diam(Λ))m−N(k) = (2 + diam(Λ))e−k.(3.11)

It remains to estimate |F2|. Suppose that x ∈ F2. Then x ∈ Λθ
u(ρ) for some

u containing u1 as a subword. We have u = vu1w for some (possibly empty)
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words v and w. Then clearly x ∈ Λθ
vu1

(ρ). Recall that Sθ
u1

, . . . , Sθ
u
2k

are
pairwise-1 close, hence Sθ

vu1
, . . . , Sθ

vu
2k

are pairwise-1 close as well. Let q =
|v|+ |u1|. Of course, q ≤ N(k). It follows that the ball B(x) := B(x, c4r

q),
with c4 = 2 + diam(Λ), contains all Λθ

vuj
, for j ≤ 2k. Therefore, the natural

measure νθ of the ball satisfies

νθB(x) ≥ 2km−q = 2k−1c−1
4 |B(x)|.(3.12)

By a classical covering theorem (see [15, Theorem 2.1]), we can choose a
disjoint family {Bj} of the balls {B(x) : x ∈ F2} so that F2 ⊂

⋃
j 5Bj .

Thus,

|F2| ≤ 5
∑

j

|Bj | ≤ 5c42−(k−1)
∑

j

νθBj ≤ 5c42−(k−1),

since νθ is a probability measure. Combining this estimate with (3.10) and
(3.11) yields (3.9), with γ = 2/e, and the proof is complete. �

4. Proof of the lemmas.

Proof of Lemma 3.2. This is an easy “transversality argument”, essentially
contained in the proof of [18, Theorem 2.1(i)]. We provide a proof for the
reader’s convenience.

By increasing C1 we can assume that n is sufficiently large. Let θ0 ∈
IP (Λ). This means, by definition, that projθ0

|Λ is not one-to-one, hence
there exist i 6= j such that Λθ0

i ∩Λθ0
j 6= ∅. Fix ε > 0 and n ∈ N. There exist

u, v ∈ An such that u1 = i, v1 = j, and Λθ0
u ∩ Λθ0

v 6= ∅.
Recall that Su(x) = rnx + bu, where x, bu ∈ R2, and Sθ

u(x) = rnx + bθ
u.

Consider the function f(θ) = bθ
u − bθ

v = (bu − bv) · (cos θ, sin θ). Observe
that Sθ

u and Sθ
v are ε-relatively close if and only if |f(θ)| ≤ εrn. We have

|f(θ)|2 + |f ′(θ)|2 = |bu − bv|2. Thus,

η2 − |f(θ)|2 ≤ |f ′(θ)|2 ≤ (diam(Λ))2 for θ ∈ [0, π],(4.1)

where η = min{dist(Λp,Λq) : 1 ≤ p < q ≤ m}. Note that η > 0 by
the Strong Separation Condition. Since Λθ0

u ∩ Λθ0
v 6= ∅, we have |f(θ0)| ≤

diam(Λθ0
u ) ≤ diam(Λ)rn, which can be assumed less than η

2 , since n is large.

Then |f ′(θ0)| ≥
√

3η
2 > η

2 and it follows from (4.1) that there exists θ1, with
|θ1−θ0| ≤ 2

ηdiam(Λ)rn, such that f(θ1) = 0. Then Sθ1
u ≡ Sθ1

v , and for all θ ∈
(θ1− ε

diam(Λ)r
n, θ1+ ε

diam(Λ)r
n), by (4.1), the maps Sθ

u and Sθ
v are ε-relatively

close. This implies that the interval [θ0 − 2
ηdiam(Λ)rn, θ0 + 2

ηdiam(Λ)rn]

contains a subinterval I ′ of length min{ ε
diam(Λ) ,

4diam(Λ)
η }rn which has the

property (ii) from the statement of the lemma. The claim for an arbitrary
interval I ⊂ J now follows easily. �
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Proof of Lemma 3.3. This proof is analogous to that of [19, Lemma 4.1].
Fix ` ∈ N so that r` ≤ 1

2(1 − r) and `0 such that C1r
`0 ≤ |J |. We are

going to construct inductively a family of compact sets F0 ⊃ F1 ⊃ · · · ⊃ Fn,
such that |Fn| ≤ e−cnε for some c > 0 and Fn is a union of 2n intervals,
each of length at least C1r

`0+`n. Most importantly, we will have that Fn ⊃
Ψ(`0 + `n, 2, ε). (Observe that Ψ(k, 2, ε) are nested, decreasing with k, by
the definition of these sets, so the desired estimate will follow.)

We can take F0 = J . Suppose that we already have Fn, for some n ≥ 0,
and we need to construct Fn+1. Let I be any of the 2n intervals of Fn and
find k ≤ n so that C1r

k ≤ |I| < C1r
k−1. By assumption, k ≤ `0 + `n.

Let I ′ be the subinterval of I of length C1r
k+1 with the same center. By

Lemma 3.2, there is a subinterval I ′′ ⊂ I ′ of length ≥ C−1
1 εrk+1, which

misses Ψ(k + 1, 2, ε) ⊃ Ψ(`0 + `(n + 1), 2, ε). Removing the interior of I ′′

makes two closed intervals out of I, each of length at least 1
2C1(rk−rk+1) ≥

C1r
k+` ≥ C1r

`0+`(n+1). In this way we construct Fn+1, a union of 2n+1

intervals. It remains to observe that

|I \ I ′′| ≤ |I| − C−1
1 εrk+1 ≤ |I|(1− C−2

1 ε).

Thus, |Fn+1| ≤ (1 − C−2
1 ε)|Fn| ≤ e−C2

1ε|Fn|, and the desired statement
follows. �

Proof of Lemma 3.5. We are going to prove (3.4) by induction in i. We can
assume that c3 ≤ c2; then the case i = 1 is just (3.2). Further, we can
assume that n ≥ N0 and logi−1 n ≥ M0 for any fixed constants N0,M0,
since otherwise (3.4) holds trivially for c3 > 0 sufficiently small.

Suppose that (3.4) holds for some i ≥ 1. Then by (3.3) and (3.2),

|Ψ(n, 2i+1, ε)|(4.2)

≤ |Ψ(`0, 2, (ε/2)rj0)|+ |Ψ(j0, 2i, (ε/2))|

≤ M exp[−c2`0(ε/2)rj0 ] + M2i−1 exp[−c3e
−(i−1)(logi−1 j0)(ε/2)]

=: M(A1 + A2),

where n = `0 + j0. Let j0 be the smallest integer ≥ 1
2

log n
| log r| . Then we have

for n sufficiently large:

`0 = n− j0 ≥ n− 1
2

log n

| log r|
− 1 ≥ n

2
,

rj0 ≥ r
1
2

log n
| log r|−1 = r−1n−1/2,

hence

A1 ≤ exp[−c2(n/2)r−1n−1/2(ε/2)] = exp[−c2(4r)−1n1/2ε].(4.3)
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Let α := 2| log r|. Note that α > 1 since r ≤ m−1 ≤ 1
2 . Turning to A2 in

(4.2), we obtain from our choice of j0:

A2 ≤ 2i−1 exp[−c3e
−(i−1) logi−1(α−1 log n) · (ε/2)].(4.4)

If i = 1, then in (4.2) we could use (3.2) for the second summand as well, in
which case

A2 ≤ 2i−1 exp[−c2α
−1 log n · (ε/2)] ≤ 2i−1 exp[−c3 log n · (ε/2)],(4.5)

assuming c3 ≤ c2α
−1. For i ≥ 2 we use the elementary inequality

log(x + y) ≤ log x + y for all x ≥ 1, y ≥ 0.(4.6)

We can assume that logi−1 n ≥ log α+1, since otherwise (3.4) holds trivially
for c3 > 0 sufficiently small. Then applying (4.6) i − 2 times to log2 n =
log(α−1 log n) + log α we obtain

logi n ≤ logi−1(α−1 log n) + log α.

Combining this with (4.4) and (4.5) yields

A2 ≤ 2i−1 exp[−c3e
−(i−1)(logi n− log α)(ε/2)] for all i ≥ 1.

In view of (4.3), the induction step will be finished once we check the in-
equality

exp[−c2(4r)−1n1/2ε] + 2i−1 exp[−c3e
−(i−1)(logi n− log α)(ε/2)](4.7)

≤ 2i exp[−c3e
−i(logi n)ε].

This is equivalent to

1 ≥ 2−i exp[(c3e
−i logi n− c2(4r)−1n1/2)ε]

+ 2−1 exp[c3εe
−(i−1)(logi n · (e−1 − 2−1) + 2−1 log α)] =: B1 + B2.

We have

c3e
−i logi n− c2(4r)−1n1/2 ≤ c2 log n− c2(4r)−1n1/2 < 0

for n sufficiently large, hence B1 ≤ 2−i. Further, we can assume that

logi n > log α · (1/2− e−1)−1;

then B2 ≤ 1
2 . This implies (4.7), and the proof of the lemma is complete. �

Proof of Lemma 3.6. It follows from (4.6) and (1.1) that

log∗(x + y) ≤ log∗ x + log∗(1 + y) for all x ≥ 1, y ≥ 0.
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Using this inequality, (3.7), and (3.5), we obtain

log∗(r
−N(k)) ≤ 1 + log∗(log(r−1) + log N(k))

≤ const + log∗(nk log m + log nk + log k)
≤ const + log∗ nk

= const + (k − 1) + log∗(c
−1
3 kek−1)

≤ const + k + log∗ k.

Now the desired statement is immediate. �

5. Non-homogeneous case.

Here we prove Theorem 2.1 in full generality and Theorem 2.3. The proofs
follow the same path most of the way. We use the same notation as in
Section 3, as much as possible, so the same letters often represent different
but analogous objects here and there.

We have Su(x) = rux + bu for some bu ∈ R2, where ru = ru1 · . . . · run .
The natural projection map onto Λθ is defined by Πθ(ω) = limn→∞ Sθ

ω|n(0).
The natural measure on Λθ is νθ = µ ◦ Π−1

θ , where µ = (rs
1, . . . , rs

m)N and
s ≤ 1 is the similarity dimension of Λ. For δ > 0 consider the “cut-set”
W(δ) = {u ∈ A∗ : ru ≤ δ, ru′ > δ} where u′ is obtained from u by dropping
the last symbol. Let rmin = min{ri : i ≤ m} and rmax = max{ri : i ≤ m}.
For u, v ∈ W(δ) we have rmin ≤ ru/rv ≤ r−1

min. Throughout this section we
fix a nonempty interval J ⊂ IP (Λ) (assuming that it exists). Let XΛ =
[−dΛ, dΛ] where dΛ = max{|x| : x ∈ Λ}. Observe that Sθ

i (XΛ) ⊂ XΛ for all
i ≤ m and all θ ∈ [0, π].

Definition 5.1. Let θ ∈ [0, π] and u, v ∈ A∗. We say that Sθ
u and Sθ

v are
ε-relatively close at x if

|Sθ
u(x)− Sθ

v(x)| ≤ ε min{ru, rv}.

Lemma 5.2. There exists C1 ≥ 1 such that for all x ∈ XΛ, for all ε ∈ (0, 1]
and all δ > 0, for any interval I ⊂ J , with |I| = C1δ, there is a subinterval
I ′ ⊂ I such that |I ′| ≥ C−2

1 ε|I| and for every θ ∈ I ′ there exist u 6= v in
W(δ) such that Sθ

u and Sθ
v are ε-relatively close at x.

Proof. The proof is analogous to the proof of Lemma 3.2. Let g(θ) =
Sθ

u(x) − Sθ
v(x) = (ru − rv)x + f(θ) where f(θ) = bθ

u − bθ
v. If θ0 ∈ IP (K),

then |g(θ0)| ≤ 4δdΛ which can be assumed small, increasing C1 if necessary.
Since g′(θ) = f ′(θ), the rest of the proof of Lemma 3.2 transfers. �

Notation. For x ∈ XΛ, k ≥ 2, ε ∈ (0, 1] and n ≥ 1 denote by Φ(n, k, x, ε)
the set of θ ∈ J such that there is no collection of distinct words u1, . . . , uk,
with ruj ≥ rn

max, such that Sθ
uj

, j ≤ k, are pairwise ε-relatively close at x.
Denote by Φ′(n, k, x, ε) the analogous set where it is required, in addition,
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that rmin ≤ rui/ruj ≤ r−1
min for i, j ≤ k. By the definition, Φ′(n, k, x, ε) ⊃

Φ(n, k, x, ε). Further, let

Ψ(n, k, ε) =
⋃

x∈XΛ

Φ(n, k, x, ε) and Ψ′(n, k, ε) =
⋃

x∈XΛ

Φ′(n, k, x, ε).

Lemma 5.3. There exist c2 > 0 and M > 0 such that

|Ψ′(n, 2, ε)| ≤ Mε−1e−c2nε for all n ∈ N, ε ∈ (0, 1].(5.1)

Proof. Using Lemma 5.2 and repeating the proof of Lemma 3.3, we obtain
for any fixed x ∈ XΛ that

|Φ′(n, 2, x, ε)| ≤ M̃e−ec1nε(5.2)

for some constants M̃, c̃1 > 0. Observe that if Sθ
u and Sθ

v are ε
2 -relatively

close at x and C−1 ≤ ru/rv ≤ C, then Sθ
u and Sθ

v are ε-relatively close at
x′, provided that |x′− x| ≤ ε

2C . Taking C = r−1
min and choosing an ε

2C -net N
of XΛ, we obtain

Ψ′(n, 2, ε) ⊂
⋃

x∈N
Φ′(n, 2, x, ε/2).

Since #(N ) ≤ const · ε−1, this and (5.2) yield (5.1). �

Lemma 5.4. There exists C ≥ 1 such that for n = `0 + j0, with `0, j0 ≥ 1,
and k ≥ 2, we have

Ψ(n, 2k, ε) ⊂ Ψ(j0, k, C−1ε) ∪Ψ′(`0, 2, C−1rj0
maxε).(5.3)

Proof. Fix x0 ∈ XΛ. We want to show that Φ(n, 2k, x0, ε) lies in the right-
hand side of (5.3). Suppose that θ is not in the right-hand of (5.3). Then
there exist distinct words w1, . . . , wk, with rwi ≥ rj0

max, such that Sθ
wi

are
pairwise C−1ε-relatively close at x0. Without loss of generality, suppose
that rw1 = mini≤k rwi . Further, θ 6∈ Ψ′(`0, 2, C−1rj0

maxε) =
⋃

x∈X Φ′(`0, 2, x,

C−1rj0
maxε), so there exist distinct u1, u2 such that rui ≥ r`0

max, rmin ≤ ru1/ru2

≤ r−1
min, and Sθ

u1
and Sθ

u2
are C−1rj0

maxε-relatively close at Sθ
w1

(x0) ∈ XΛ. Then
uiwj , for i = 1, 2 and j ≤ k, are all distinct and satisfy ruiwj ≥ r`0+j0

max = rn
max.

We claim that Sθ
uiwj

are pairwise ε-close at x0 if C is sufficiently large. This
will imply that θ 6∈ Φ(n, 2k, x0, ε), and since x0 is arbitrary, the lemma will
be proved.

We have for i = 1, 2 and for all j ≤ k,

|Sθ
uiw1

(x0)− Sθ
uiwj

(x0)| ≤ ruiC
−1ε min{rw1 , rwj} = C−1εruiw1 .

Further,

|Sθ
u1w1

(x0)−Sθ
u2w1

(x0)| ≤ C−1rj0
maxε min{ru1 , ru2} ≤ C−1ε min{ru1w1 , ru2w1}.
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Therefore, for 1 ≤ p < q ≤ k,

|Sθ
u1wp

(x0)− Sθ
u2wq

(x0)| ≤ C−1εrw1(ru1 + ru2 + min{ru1 , ru2})

≤ C−1εrw1(2 + r−1
min) min{ru1 , ru2}

≤ C−1ε(2 + r−1
min) min{ru1wp , ru2wq},

and the claim follows with C = 2 + r−1
min. The lemma is proved. �

Lemma 5.5. There exist a > 0 and b > 1 such that for all ε ∈ (0, 1], n ∈ N
and i ≥ 1,

|Ψ(n, 2i, ε)| ≤ Mε−1bi exp[−ae−(i−1)(logi−1 n)ε].(5.4)

Proof is analogous to the proof of Lemma 3.5, based on Lemmas 5.3 and
5.4. We leave the details to the reader. �

Let

nk = expk−1((log b + 1)a−1kek−1),(5.5)

so that, in view of (5.4),

|Ψ(nk, 2k, 1)| ≤ Me−k.(5.6)

Let

N(k) = nk · dr−s
minenk · k.(5.7)

Similarly to the proof of Lemma 3.6, we deduce from (5.5) and (5.7) that

log∗(r
−N(k)
min ) ≤ Cξ + (1 + ξ)k,(5.8)

for any ξ > 0. For any u1 ∈ A∗, with |u1| ≤ nk, we have∑
|u|=N(k)

u1 6@u

rs
u ≤ (1− rnks

min )N(k)/nk ≤ e−k.(5.9)

Now suppose that θ 6∈ Ψ(nk, 2k, 1) and x0 ∈ Λθ. Then θ 6∈ Φ(nk, 2k, x0, 1),
so we can find distinct words u1, . . . , u2k , with rui ≥ rnk

max, such that

|Sui(x0)− Suj (x0)| ≤ min{rui , ruj} for all i, j ≤ 2k.(5.10)

Without loss of generality, assume that ru1 = min{rui : i ≤ 2k}. We have

Λθ =
⋃

|u|=N(k)

Λθ
u =

⋃
|u|=N(k)

u1 6@u

Λθ
u ∪

⋃
|u|=N(k)
u1@u

Λθ
u =: Yu1 ∪ Zu1 .(5.11)

We claim that for some C ≥ 1,

∀x ∈ Zu1 , ∃ t ∈ [C−1r
N(k)
min , Cru1 ] : νθB(x, t) ≥ C−12kts.(5.12)

Indeed, suppose that x ∈ Λθ
u for some u ∈ AN(k) such that u1 @ u. Then

u = vu1w for some (possibly empty) words v and w. Let ω ∈ AN be such
that x0 = Πθ(ω). For each uj , with 2 ≤ j ≤ 2k, there exists a unique
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q = qj ∈ N∪{0} such that ũj := ujω|q ∈ W(ru1). Notice that Sθ
uj

(x0) ∈ Λθeuj

whence Sθ
vuj

(x0) ∈ Λθ
veuj

. By (5.10), we have |Sθ
vuj

(x0) − Sθ
vu1

(x0)| ≤ rvu1 .
Finally, x ∈ Λθ

vu1
, which implies that the distance from x to Λveuj

is at most
diam(Λθ

vu1
) + rvu1 . Since rveuj

= rvreuj
≤ rvu1 , we obtain that

B(x,C ′rvu1) ⊃ Λθ
vu1

∪
2k⋃

j=2

Λθ
veuj

, where C ′ = 1 + 2diam(Λ).(5.13)

Therefore,

νθB(x,C ′rvu1) ≥ rs
vu1

+
2k∑

j=2

rs
veuj

≥ 2kr−s
minr

s
vu1

.(5.14)

This implies (5.12) since r
N(k)
min ≤ ru ≤ rvu1 ≤ ru1 .

Proof of Theorem 2.1. Recall that now s = 1. By (5.8), it suffices to show
that for some c > 0 and γ ∈ (0, 1), we have

Fav(Λ(ρ)) ≤ cγk, where ρ := r
N(k)
min .

In view of (5.6), it is sufficient to estimate |Λθ(ρ)| from above for θ 6∈
Ψ(nk, 2k, 1). Fix such a θ, x0 ∈ Λθ, and the words u1, . . . , u2k as before,
satisfying (5.10), and let u1 be the word with the minimal rui . By (5.11)
we have Λθ(ρ) = Yu1(ρ) ∪ Zu1(ρ). Clearly, diam(Λθ

u(ρ)) ≤ (2 + diam(Λ))ru

for any u ∈ AN(k), so (5.9), with s = 1, implies that |Yu1(ρ)| ≤ const · e−k.
Since t ≥ C−1ρ in (5.12), the balls B(x, (1 + C)t), for x ∈ Zu1 , cover the ρ-
neighborhood Zu1(ρ). Now (5.12) implies |Zu1(ρ)| ≤ const·2−k, by repeating
the argument at the end of Section 3, and the proof is finished. �

Proof of Theorem 2.3. We use the same setting as in the proof of Theo-
rem 2.1, except that now s ≤ 1 and J ⊂ IP (Λ) is a nonempty interval. In
view of (5.6), the Borel-Cantelli Lemma implies that the set

E :=
∞⋃

n=1

⋂
k≥n

(J \Ψ(nk, 2k, 1))

has full Lebesgue measure in J . Thus, it is enough to show that Hφ(Λθ) = 0
for all θ ∈ E.

Suppose that θ ∈ E; then θ ∈ J \ Ψ(nk, 2k, 1) for all k sufficiently large.
We fix x0 ∈ Λθ and find u1 = u1(k) as above (now we have to make the
dependence on k explicit). For ρk = r

N(k)
min we have the decomposition (5.11)

Λθ = Yu1(k) ∪ Zu1(k). We can write Λθ = Ω1 ∪ Ω2 where Ω1 is the set
of x which belong to infinitely many Yu1(k) and Ω2 is the set of x which
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belong to all Zu1(k) for k sufficiently large. Recall that Yu1(k) =
⋃

|u|=N(k)

u1(k) 6@u

Λθ
u

and diam(Λθ
u) ≤ diam(Λ) · ru. Thus,

Hφ(Ω1) ≤ const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

φ(ru)

= const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

rs
u exp[L log∗(r

−1
u )]

≤ const · lim
k→∞

∑
|u|=N(k)

u1(k) 6@u

rs
u exp[L log∗(ρ

−1
k )]

≤ const · lim
k→∞

e−keL(1+ξ)k = 0,

using (5.9) and (5.8), with 0 < ξ < L−1 − 1, in the last estimate. Recall
that L < log 2 < 1.

It remains to prove that Hφ(Ω2) = 0. For any x ∈ Zu1(k) we have by
(5.12), with t = tk ≥ C−1ρk,

νθB(x, tk)
φ(tk)

≥
const · 2ktsk

tsk exp[L log∗(2t−1
k )]

(5.15)

≥ const · 2k exp[−L log∗(2Cρ−1
k )]

≥ const · 2ke−L(1+ξ)k →∞, as k →∞.

In the last line we used (5.8) with 0 < ξ < L−1 log 2 − 1. Notice that
tk ≤ ru1(k) → 0, as k →∞ (since ru1(k) is the smallest among rui(k), i ≤ 2k,
and all ui(k) are distinct). Thus, (5.15) implies

Dφ(νθ, x) := lim sup
t→0

νθB(x, t)
φ(2t)

= ∞ for all x ∈ Ω2,

and hence Hφ(Ω2) = 0 by the Rogers-Taylor Density Theorem, see [20].
The proof of Theorem 2.3 is complete. �

6. Random Cantor sets.

The proof of Theorem 2.2 is inspired by an argument of Lyons [11] involving
percolation on trees; the negative dependence in the construction of Rk

that arises from choosing exactly one of the four dyadic subsquares in the
inductive step of the construction, makes the proof here a little more delicate.

Denote by Gk the collection of 4k (closed) dyadic subsquares of the unit
square [0, 1]2 having side length 2−k. We consider all dyadic subsquares as a
rooted tree, with [0, 1]2 being the root and Gk being the set of nodes at the
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kth level. For each node there are four edges leading to nodes at the next
level, (its “children”).

Let ` be a line intersecting [0, 1]2, that does not go through any of the
vertices of the squares in G2n. Further, let

An(`) = #{B ∈ G2n : B ∩ ` 6= ∅}.
Observe that

An(`) ≤ 22n+1.(6.1)

To verify this we may assume, using symmetry, that ` forms an angle α ∈
[0, π/4] with the horizontal. Then ` intersects at most two squares in each
of the 22n columns of G2n, and (6.1) follows.

Below P(E) denotes the probability of an event E.

Lemma 6.1. Suppose that the line ` does not hit any vertices of the squares
in G2n. Then

P(Rn ∩ ` 6= ∅) ≤ C1

n
(6.2)

for some constant C1 > 0 independent of ` and n.

Proof of Theorem 2.2 assuming Lemma 6.1. Let θ ∈ [0, π] be such that the
line y cos θ = x sin θ is orthogonal to `, and let n be the unit normal vector
for `. Then by Fubini’s Theorem and Lemma 6.1,

E
[
|projθRn|

]
=

∫
R
P(Rn ∩ (` + tn) 6= ∅) dt ≤

√
2
C1

n
,(6.3)

and (2.4) follows by integrating over θ.
Finally, (2.5) follows directly from (2.4) by Fatou’s lemma. �

Proof of Lemma 6.1. We label the four dyadic subsquares of a square as in
Figure 3.

2

1

3

0

Figure 3. Labeling subsquares.

This labeling induces a natural addressing scheme for each dyadic square
B ∈ Gk. The address has length k and the symbols are from {0, 1, 2, 3}; we
write it as ω(B) = {ωi(B)}k

i=1. Recall that we arrange all dyadic squares
in a tree. The construction of the random set is such that at even levels
we take all children, but at odd levels we choose for each remaining square



490 YUVAL PERES AND BORIS SOLOMYAK

one child, uniformly at random and independently of the choices in other
squares. This yields a subtree of the full 4-ary tree, where the nodes at level
2n correspond to the random set Rn.

By symmetry, we may assume that the slope of ` is positive.
Fix a small positive constant δ, to be chosen later. We subdivide G2n into

three types as follows:
(i) Say that B ∈ G2n is Type 1 if

#{i ≤ n− 1 : ω2i+1(B) = 0} ≥ δn.

(ii) Say that B ∈ G2n is Type 2 if it is not Type 1, and

#{i ≤ n− 1 : ω2i+1(B) = 2} ≥ δn.

(iii) All remaining B ∈ G2n are said to be Type 3.
Consider the events

Zi =
{
∃B ⊂ Rn : B ∈ Type i & B ∩ ` 6= ∅

}
for i = 1, 2, 3.

We have

P(Rn ∩ ` 6= ∅) ≤
3∑

i=1

P(Zi).

First we estimate P(Z1). We have

E [#{B ⊂ Rn : B ∩ ` 6= ∅} |Z1] ≤
E [#{B ⊂ Rn : B ∩ ` 6= ∅}]

P(Z1)
.(6.4)

Writing
#{B ⊂ Rn : B ∩ ` 6= ∅} =

∑
B∈G2n

1{B⊂Rn: B∩` 6=∅}

and using that P(B ⊂ Rn) = 4−n for any B ∈ G2n, we obtain by (6.1) that

E
[
#{B ⊂ Rn : B ∩ ` 6= ∅}

]
= An(`) · 4−n ≤ 2.(6.5)

Thus, it remains to estimate the left-hand side of (6.4) from below. Let

Ψ1 := {Q ∈ G2n : Q ∈ Type 1 & Q ∩ ` 6= ∅}.
Order the squares in G2n hit by ` from left to right and from bottom to top.
This is a total order by the assumption on slope of the line `. For Q ∈ Ψ1

consider the event

YQ =
{

Q is the first square in Ψ1 hit by `
}

.

Then Z1 =
⋃

Q∈Ψ1
YQ is a disjoint union, and so, for any random variable

f ,

E [f |Z1] =
∑

Q∈Ψ1

P(YQ)
P(Z1)

E [f |YQ] ≥ min
Q∈Ψ1

E [f |YQ].(6.6)
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Fix Q ∈ Ψ1. We have

E [#{B ⊂ Rn : B ∩ ` 6= ∅} |YQ] =
∑

B∈G2n: B∩` 6=∅

P(B ⊂ Rn |YQ).(6.7)

By the definition of Type 1 squares,

#{i ≤ n− 1 : ω2i+1(Q) = 0} ≥ δn .

Fix i such that ω2i+1(Q) = 0, and denote by Q̃ the dyadic square in G2i

having the address ω(Q̃) = ω1(Q) . . . w2i(Q). The fact that Q ⊂ Rn implies
that Q̃ was chosen at the ith stage of the random construction, i.e., Q̃ ⊂ Ri.
(Note that by definition, [0, 1]2 ⊃ R1 ⊃ . . . ⊃ Rn.) Since the slope of ` is
positive, ` intersects at least 1

24n−i squares B ∈ G2n whose addresses start
with ω(Q̃)k, for k ∈ {1, 2, 3} (see Figure 3). For each of these squares we
have (using the independence of YQ from the random choices involving the
descendants of ω(Q̃)k with k ∈ {1, 2, 3}), that

P(B ⊂ Rn |YQ) = P(B ⊂ Rn | Q̃ ⊂ Ri) = 4i−n.

Therefore, the sum of P(B ⊂ Rn |YQ) over the set of squares

Bi =
{

B ∈ G2n, : B∩` 6= ∅, {ωj(B)}2i
1 = {ωj(Q)}2i

1 , ω2i+1(B) ∈ {1, 2, 3}
}

,

is at least 1
24n−i · 4i−n = 1

2 . Notice that the sets Bi are disjoint for distinct i

with ω2i+1(Q) = 0. Thus, the right-hand side of (6.6) is at least 1
2δn, which,

together with (6.7), (6.6), (6.5) and (6.4), implies

P(Z1) ≤
4
δn

.(6.8)

By symmetry, we obtain

P(Z2) ≤
4
δn

.(6.9)

It remains to estimate P(Z3). We have

P(Z3) ≤ E
[
#{B ⊂ Rn : B ∈ Type 3 & B ∩ ` 6= ∅}

]
(6.10)

=
∑

B∈Type 3 : B∩` 6=∅

P(B ⊂ Rn)

= 4−n#{B ∈ Type 3 : B ∩ ` 6= ∅}.

Thus, it suffices to bound the number of Type 3 squares hit by `. Consider
the subtree of all dyadic squares that are hit by `. Since we assumed that `
does not hit any vertices, it can hit at most three children of a dyadic square
that it intersects. For a Type 3 square, at least n− 2δn of the digits at odd
levels are either 1 or 3, and our assumption that the slope of ` is positive
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guarantees that it cannot intersect both of the children labeled by 1 and 3
of any dyadic square (see Figure 3). Therefore, summing over the number

j = #
{

i ≤ n− 1 : ω2i+1(B) ∈ {0, 2}
}

,

we obtain

#{B ∈ Type 3 : B ∩ ` 6= ∅} ≤
∑

j≤2δn

(
n
j

)
3n2j ≤ C2 · (1 + ε(δ))n3n+2δn,

where ε(δ) → 0, as δ → 0. Now we can choose δ so that (1+ε(δ))·31+2δ < 3.5,
and, in view of (6.10),

P(Z3) ≤ const · (7/8)n.

Combining this with (6.8) and (6.9) yields (6.2), and the proof is complete.
�

7. Concluding remarks and problems.

7.1. More general families of self-similar sets. Theorems 2.1 and 2.3
extend to parametrized families of self-similar sets satisfying the “transver-
sality condition.” The following set-up is taken from [18].

Let J ⊂ R be a closed interval. Consider a one-parameter family of
iterated function systems {Sλ

1 , . . . , Sλ
m}λ∈J where Sλ

i (x) = rix+ ai(λ), with
ri ∈ (0, 1) and ai(λ) ∈ C1(J). Let Π(λ, ·) : AN → R be the natural
projection map associated with the system and let Λλ = Π(λ,AN). Then
{Λλ}λ∈J is a family of self-similar sets on the real line. Note that the
similarity dimension s does not depend on λ. We denote fω,τ (λ) = Π(λ, ω)−
Π(λ, τ) and say that the transversality condition holds on J if for any
ω, τ ∈ AN,

if ∃λ ∈ J : fω,τ (λ) = f ′ω,τ (λ) = 0 then ω = τ.

Define

IP = {λ ∈ J : ∃ω, τ ∈ AN : fω,τ (λ) = 0 but ω 6= τ}.

Theorem 7.1. Suppose that the one-parameter family of iterated function
systems defined above satisfies the transversality condition and IP = J .

(i) Assume that s = 1. Then there exist C, a > 0 such that∫
J
|Λλ(ρ)| dλ ≤ C exp[−a log∗(ρ

−1)] for all ρ > 0.

(ii) Assume that s ≤ 1. Then Hφ(Λλ) = 0 for Lebesgue-a.e. λ ∈ J where
φ(t) = ts exp[L log∗(t−1)], with L ∈ (0, log 2).
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The proof of this theorem is very similar to the proofs of Theorems 2.1
and 2.3. The only change is in Lemma 3.2, where one needs to use the general
form of transversality rather than the special form (4.1) valid for projection
families. In [18] it is proved, under the assumptions of Theorem 7.1(ii), that
Hs(Λλ) = 0 for a.e. λ ∈ J .

Example. Let Λλ = {
∑∞

n=0 an4−n : an ∈ {0, 1, 2, λ}} . Then all the as-
sumptions of Theorem 7.1 hold for λ ∈ [0, 3].

7.2. Cantor sets with varying contraction ratios. Let D = {b1, . . . ,
bm} ⊂ R2 be a digit set. Suppose that δn ≥ 0 and let

r(n) = m−n
n∏

i=1

(1 + δi) for n ≥ 1.

Define Π : AN → R2 by Π(ω) =
∑∞

n=1 r(n−1)bωn and consider the set
Λ = Π(AN). If δn = 0 for all n, then Λ is self-similar, but we now assume
that δn > 0 and δn ↓ 0. Further, suppose that

min
i6=j

|bi − bj | · r(1) > max
i,j

|bi − bj | ·
∞∑

n=2

r(n).

Then it is easy to see that Π is one-to-one and so Λ is a planar Cantor
set. One can show that if the product

∏∞
i=1(1 + δi) diverges, then the one-

dimensional Hausdorff measure of Λ is not σ-finite (this follows, e.g., from
applying the results of [20] to the natural measure on Λ). It turns out that
if this product diverges sufficiently slowly, then Fav(Λ) = 0.

(Other deterministic sets of non-σ-finite H1 measure but zero Favard
length can be found in [13, 7, 8].)

Proposition 7.2. There exists c > 0 such that if
n∏

i=1

(1 + δi) ≤ exp[c log∗ n],

then Fav(Λ) = 0.

Sketch of the proof. The argument closely follows the proof of Theorem 2.3
(in the homogeneous case), so we only give a brief sketch.

Let Πθ = projθ ◦ Π and Λθ
u = Πθ([u]) where [u] is the cylinder set corre-

sponding to u ∈ A∗. For u, v ∈ A∗, with |u| = |v| = n, we say that Λθ
u and

Λθ
v are ε-relatively close if the Hausdorff distance between these sets is not

greater than εr(n). Define Ψ(n, k, ε) as the set of θ ∈ [0, π] such that there is
no collection of distinct words u1, . . . , uk, with |uj | ≤ n for j ≤ k, such that
Λθ

uj
, j ≤ k, are pairwise ε-relatively close. The four lemmas in Section 3 and

the proof of Theorem 2.3 (specialized to the homogeneous case ri = r) go
through essentially unchanged, replacing only rn, rq, etc., with r(n), r(q), etc.
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We use φ(t) = t, so that Hφ(Λθ) = 0 for a.e. θ is equivalent to Fav(Λ) = 0.
Further details are left to the reader. �

7.3. Unsolved problems.

Question 7.3. For a one-dimensional self-similar set in the plane, which
satisfies strong separation, can the bound (2.3) be strengthened to

Fav(Λ(ρ)) ≤ C

(
log

(
1
ρ

))−1

for all ρ > 0,(7.1)

for some C < ∞?

Perhaps a more accessible goal is to improve our estimates for random
Cantor sets.

Question 7.4. For the random sets Rn considered in Theorem 2.2, can the
upper bound (2.5) be improved to

lim sup
n→∞

n · Fav(Rn) < ∞ a.s. ?(7.2)

A more ambitious program would be to relate the decay rate of Favard
length of neighborhoods, to other quantitative measures of nonrectifiability.
The following question is motivated by Jones’ Traveling Salesman Theo-
rem [6]. Given a compact planar set Λ, and ε > 0, let

`(Λ, ε) = supH1
∞

(
Γ(ε) ∩ Λ

)
,

where Γ runs over recifiable curves of length 1, and H1
∞ denotes one-dimen-

sional Hausdorff content. We can show that the four-corner set K2 consid-
ered in the introduction satisfies `(K2, ε) = O(| log ε|−1) as ε → 0.

Question 7.5. Is there a quantitative estimate of Fav(Λ(ε)) in terms of
`(Λ, ε)?

In particular, is Fav(Λ(ε)) = O(`(Λ, ε)) as ε → 0?
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