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In this paper we consider the inverse spectral problem for
the Sturm–Liouville Operator on the interval [0, 1]. We show
that given the Dirichlet and Neumann spectra of such an op-
erator we find a generically uncountable family of potentials
with these spectra.

1. Introduction.

We will consider this problem: Given the Dirichlet and Neumann spectra of
the Sturm–Liouville Operator

− d2

dx2
+ q(x)(1)

for a potential q in C3([0, 1]), determine q. Instead of finding a unique q we
get a generically uncountable family of potentials that will have the given
joint spectra. Borg [1] showed that if the gaps (see Figure 1) are all trivial
then the potential q(x) is 0. Levinson [11] showed that if given the spectra
of (1) corresponding to the two sets of boundary conditions,

y(0) cos α + y′(0) sinα = 0, y(1) cos β + y′(1) sinβ = 0(2)
y(0) cos α + y′(0) sinα = 0, y(1) cos γ + y′(1) sin γ = 0(3)

with sin(γ − β) 6= 0, then q(x) is uniquely determined. Notice that this
theorem does not include the case of Dirichlet (boundary conditions y(0) =
y(1) = 0) and Neumann (boundary conditions of y′(0) = y′(1) = 0) spectra.
Borg [1], Levinson [11], Isaacson, McKean and Trubowitz [8] among others
demonstrated that the spectrum given by one boundary condition does not
determine the operator.

The dynamical behavior of solutions to Hill’s Operator (the 1-D Schröd-
inger or Sturm-Liouville Operator with periodic potential) is determined by
the properties of the associated Floquet discriminant function [12]. Its and
Matveev [10], Gelfand [5], Gelfand and Levitan [6], McKean [15], Garnett
[4], Trubowitz [17], and Buslaev and Faddeev [2] illustrate that for periodic
potentials the periodic, anti-periodic, and Dirichlet spectra determine the
potential.
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We address our stated problem by applying the well understood periodic
theory to a periodic extension of q. This approach to the problem was
originally suggested by H. McKean [private communication]. To state the
theorem we must first introduce some terminology. By {µn} (resp. {νn}) we
denote the Dirichlet (resp. Neumann) spectrum of the operator (1). Define
an even periodic potential Q(x) for which {4µn, 4νn} comprise the periodic
spectrum of the operator − d2

dx2 + Q(x). Let {λj} denote the joint periodic
and anti-periodic spectra of this operator. Note that the periodic spectrum
determines the anti-periodic spectrum (see Proposition (6)). The advantage
of an even potential is that its periodic and anti-periodic spectra are also its
Dirichlet and Neumann spectra.

Theorem 1 (Main Theorem). We are given the Dirichlet {µn}, and Neu-
mann {νn}, eigenvalues of (1) which satisfy the asymptotics

µn, νn = n2π2 +O
(

1
n2

)
.

The family of potentials, q(x), having the same Dirichlet and Neumann
eigenvalues is of the form q(x) = 1

4Q(1
2x) x ∈ [0, 1] (6) where Q(x) is an

even potential of the form

Q(x) = λ0 +
∑
n≥1

λ2n−1 + λ2n − 2cn(x),(4)

with cn(x) the W 1,2
per([0, 1]) (the Sobolev space of differentiable functions with

L2([0, 1]) first derivative) solution of

c2n(0) = 4µn(5)

c2n−1(0) = λ4n−3 or λ4n−2

dcn

dx
=

√√√√(cn − λ2n−1)(cn − λ2n)
∏
k 6=n

(cn − λ2k−1)(cn − λ2k)
(cn − ck)2

.

In the above theorem we utilize the Trace Formula (4) for potentials q
which are C3 on all but a finite number of points. This formula says that
such a q is determined by the periodic, anti-periodic and shifted Dirichlet
eigenvalues of the operator − d2

dx2 + q(x) [17]. The shifted Dirichlet eigenval-
ues satisfy a first order ODE (5) and so are themselves determined by the
Dirichlet eigenvalues of q.

Therefore the periodic and Dirichlet spectra of the Sturm-Liouville oper-
ator with periodic Q uniquely determine Q. It is at the step of passing from
knowing the periodic, and only the half of the Dirichlet spectrum corre-
sponding to periodic eigenvalues of the operator − d2

dx2 + Q(x) that we reach
an ambiguity when we are given a choice as to the anti-periodic half of the
Dirichlet spectrum.



THE POTENTIAL OF A STURM–LIOUVILLE OPERATOR 499

2. Even potentials.

For an arbitrary potential q(x) ∈ L2
R([0, 1]) we form an even periodic poten-

tial

Q(x) =
{

4q(2x) : x ∈ [0, 1/2]
4q(2(1− x)) : x ∈ (1/2, 1] .(6)

Notice that for q(x) ∈ C3([0, 1]), Q(x) is C3 everywhere except at the point
1
2 where it is only continuous.

Let u(x) be a Dirichlet eigenfunction of the operator − d2

dx2 + q(x) corre-
sponding to eigenvalue µj . Then

U(x) =
{

u(2x) : x ∈ [0, 1/2]
−u(2(1− x)) : x ∈ (1/2, 1](7)

is a Dirichlet eigenfunction of the operator − d2

dx2 +Q(x) with eigenvalue 4µj .
Likewise if v(x) is a Neumann eigenfunction with eigenvalue νj then

V (x) =
{

v(2x) : x ∈ [0, 1/2]
v(2(1− x)) : x ∈ (1/2, 1](8)

is a Neumann eigenfunction for the operator − d2

dx2 + Q(x) with eigenvalue
4νj .

Both U(x) and V (x) are also periodic eigenfunctions of the operator
− d2

dx2 + Q(x). We conclude that the Dirichlet and Neumann spectra of
− d2

dx2 + q(x) determine the periodic spectrum of − d2

dx2 + Q(x). Using the
Counting Lemma (2) and Proposition (4) we see that the Dirichlet and Neu-
mann eigenvalues paired with their respective U(x) or V (x) account for only
the gaps which are given by the periodic spectrum.

Therefore we reduce the inverse problem to the case of a periodic poten-
tial. We use the monodromy matrix,(

y1(1, λ) y2(1, λ)
y′1(1, λ) y′2(1, λ)

)
= M(λ),(9)

where y1 and y2 are the two linearly independent fundamental solutions
given by y1(0, λ) = y′2(0, λ) = 1 and y′1(0, λ) = y2(0, λ) = 0. This matrix
describes the behavior of the solutions to Hill’s operator on R. For example
periodic solutions to the differential equation correspond to unit eigenvalues
of this matrix. Because of the initial values of y1 and y2 a Dirichlet eigenvalue
µ corresponds to y2(1, µ) = 0 and a Neumann eigenvalue η corresponds to
y′1(1, η) = 0.

The periodic and anti-periodic eigenvalues are values of λ for which M(λ)
has respectively eigenvalues ±1. In either case Equation (1) has a solution
with period 2. ∆(λ) denotes the trace of M(λ). Periodic (resp. anti-periodic)
eigenvalues of q(x) are roots of ∆− 2 (resp. ∆ + 2).
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Lemma 1. If Q(x) is an even potential and λj is both a Neumann and
Dirichlet eigenvalue then ∆(λj) = ±2 and ∆′(λj) = 0.

Proof. From the results above, y2(1, λj) = 0 and y′1(1, λj) = 0. Therefore
M(λj) is diagonal with determinant 1, so ∆(λj) = ±2. To prove the state-
ment about the derivative of ∆ we will use a formula from [12],

∆′(λ) =
(
y1(1, λ)− y′2(1, λ)

) ∫ 1

0
y1(x, λ)y2(x, λ)dx(10)

− y2(1, λ)
∫ 1

0
y2
1(x, λ)dx + y′1(1, λ)

∫ 1

0
y2
2(x, λ)dx.

Now notice that if y1(x, λj) is a solution of (1) then so is

y1(1− x, λj) = y1(1, λj)y1(x, λj) + y′1(1, λj)y2(x, λj)(11)

as y1(1− x, λj) will satisfy Equation (1) with Q(1− x) = Q(x). Therefore,
since λj is a Neumann eigenvalue we see that

y1(1− x, λj) = y1(1, λj)y1(x, λj).(12)

Setting x = 1 in the above equation we get y1(1, λj) = ±1. The determinant
of the monodromy matrix is 1, and because λj is a Dirichlet eigenvalue
y2(1, λj) = 0 so

y′2(1, λj) =
1

y1(1, λj)
= ±1.(13)

We then substitute into (10)

y2(1, λj) = y′1(1, λj) = 0

and

y1(1, λj) = y′2(1, λj) = ±1

to get ∆′(λj) = 0. �

Proposition 1. λj is a periodic or anti-periodic eigenvalue of an even po-
tential Q if and only if λj is a Neumann or Dirichlet eigenvalue of Q.

Proof. Suppose λj is a periodic eigenvalue so ∆(λj) = 2. We must show
that y2(1, λj) = 0 or y′1(1, λj) = 0. Suppose λj is not a Neumann eigenvalue
for Q; that is y′1(1, λj) 6= 0.

From ∆(λj) = 2 we see that the monodromy matrix is of the form

M(λj) =
(

y1(1, λj) y2(1, λj)
y′1(1, λj) 2− y1(1, λj)

)
,(14)

as λj is a periodic eigenvalue.
If Q(x) is even then y1(1− x, λj) is also a solution of

−d2y

dx2
+ (Q(x)− λj)y = 0.(15)
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Because y1 and y2 form a basis for the solutions to this equation we may
write y1(1− x) as

y1(1− x, λj) = y1(1, λj)y1(x, λj)− y′1(1, λj)y2(x, λj).(16)

By setting x = 1 in this equation and its derivative we get the following
two equations:

1 = y1(1, λj)2 − y′1(1, λj)y2(1, λj)(17)

0 = y1(1, λj)y′1(1, λj)− y′1(1, λj)y′2(1, λj).(18)

From (14) we have y′2(1, λj) = 2− y1(1, λj) and using this relation in (18)
we get the equation

0 = 2y′1(1, λj)(y1(1, λj)− 1).(19)

By the assumption that λj is not a Neumann eigenvalue we conclude that
y1(1, λj) = 1. Substituting this into Equation (17) we conclude that y2(1, λj)
= 0 and so λj is a Dirichlet eigenvalue.

Conversely, suppose that λj is a Dirichlet eigenvalue, y2(1, λj) = 0. We
must show that ∆(λj) = ±2. Since det M(λ) = 1 we have y′2(1, λj) =
1/y1(1, λj). Substituting this into (18) we conclude that either y′1(1, λj) = 0
in which case Lemma (1) completes the proof; otherwise, we get y1(1, λj) =
±1, which implies that ∆(λj) = ±2.

A similar argument may be made for the Neumann case with the addi-
tional feature that, when Q is an even potential, the lowest Neuman eigen-
value, ν0, is equal to the lowest periodic eigenvalue, λ0. �

We introduce the picture of gaps and bands associated to ∆(Q,λ). The
bands are the ranges of eigenvalues whose eigenfunctions are bounded (sta-
ble) on R. That is the range of λ’s for which the eigenvalues of the mon-
odromy matrix are complex valued with modulus less than 1. These bands
are clearly the intervals over which |∆(λ)| < 2. Correspondingly the inter-
vals for which |∆(λ)| > 2 are called the gaps. These are intervals for which
there exist unbounded (unstable) solutions to (1). Gap intervals may be
trivial; i.e., they may collapse to a single point.

Finally we need Theorem 2 from [17].

Theorem 2 (Trace Formula). Let q ∈ C3[0, 1] be a potential with Dirichlet
eigenvalues µn and periodic, anti-periodic eigenvalues λj. Let µn(t), n ≥ 1,
be the unique periodic solution of the system

dµn

dt
=

√√√√(µn − λ2n−1)(µn − λ2n)
∏
k 6=n

(µn − λ2k−1)(µn − λ2k)
(µn − µk)2

,(20)

on the Riemann surface given by the equation

yn =
√

(µn − λ2n−1)(µn − λ2n),
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Figure 1. Gaps and Bands.

whose initial values µn(0) = µn the nth Dirichlet eigenvalue and for which
the initial velocities are prescribed by choosing the signature of the radical√

∆2(µn)− 4 such that√
∆(µn)2 − 4 = 2y′2(1, µn)−∆(µn).(21)

Then,

q(t) = λ0 +
∑
n≥1

λ2n−1 + λ2n − 2µn(t).(22)

The proof in [17] is given for potentials in C3
per([0, 1]). For the purposes

of this paper we wish to apply this theorem to the potential Q(x) which is C3

for every point except 0, 1
2 and 1 where Q is not continuously differentiable.

To show that the theorem still holds in this case we will demonstrate that
the trace formula is still well-defined.

We have from [16] the estimate

µn = n2π2 −
∫ 1

0
cos(2πnx)q(x)dx +O

(
1
n2

)
(23)

for q(x) ∈ W 2,2([0, 1]). In fact our q(x) is twice differentiable for all but
one point. Below we give an argument for a bound on the cos(2πnx) inner
product above. This same technique shows that the O

(
1
n2

)
term above will
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remain of the same order. Compute an estimate of the integral above∫ 1

0
cos(2πnx)q(x)dx(24)

= q(x)
sin(2πnx)

2πn

∣∣∣∣1
0

−
∫ 1

2

0
q′(x)

sin(2πnx)
2πn

dx−
∫ 1

1
2

q′(x)
sin(2πnx)

2πn
dx.

Integrating by parts a second time we get∫ 1

0
cos(2πnx)q(x)dx(25)

= q′(x)
cos(2πnx)

4π2n2

∣∣∣∣ 12
0

+ q′(x)
cos(2πnx)

4π2n2

∣∣∣∣1
1
2

−
∫ 1

2

0
q′′(x)

cos(2πnx)
4π2n2

dx−
∫ 1

1
2

q′′(x)
cos(2πnx)

4π2n2
dx.

So we see that µn = n2π2 + O(1/n2) for the Q(x) we are concerned with.
There was nothing special about the points where differentiability failed so
the shifted Dirichlet eigenvalues will have the same asymptotics as well. The
periodic and anti-periodic spectra satisfy the same asymptotics as they are
the Dirichlet and Neumann spectra of the even potential. The sum we are
concerned with is ∑

n≥1

|λ2n−1 + λ2n − 2µn(t)| .(26)

By the analysis above each term satisfies the asymptotics n2π2 + O(1/n2)
and so the sum converges absolutely.

Proposition 2. If µn(0) = λ2n−1 or λ2n for all n then the function q(x)
determined by (22) is even.

Proof. As a consequence of the trace formula it will suffice to show that
µn(x) = µn(1− x). Differentiating this function with respect to x we get

d

dx
µn(1− x)(27)

= −

√√√√(µn − λ2n−1)(µn − λ2n)
∏
k 6=n

(µn − λ2k−1)(µn − λ2k)
(µn − µk)2

.

From the periodicity of the original solutions the initial conditions which
determine µn(1− x) are the same as the ones for µn(x) specifically µn(0) =
µn(1) = λ2n−1 or λ2n. There exists a solution of Equation (27) which is
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periodic and does not pause at the endpoints of the interval [λ2n−1, λ2n].
However from the ambiguity of the choice of sign this solution must be
identical to that of the original equation which is also periodic and does not
pause at the endpoints of the interval. �

3. Eigenvalues.

The following proposition examines further the relationship between the
Dirichlet and Neumann spectra, and the gaps.

Proposition 3. Suppose q is a potential on [0, 1] and [λ2j−1, λ2j ] is a gap.
In other words |∆(λ)| ≥ 2 for all λ in [λ2j−1, λ2j ], then there is a µ and
η in [λ2j−1, λ2j ] such that µ is a Dirichlet eigenvalue and η is a Neumann
eigenvalue.

Proof. We will prove this by showing that y′1(1, λ) and y2(1, λ) switch sign
from the left of λ2j−1 to the right of λ2j .

We follow Magnus and Winkler for this proof [12].
Combining Formula (10) into one integral and shortening notation via

η1 = y1(1, λ2j−1), η′1 = y′1(1, λ2j−1) etc., we get the equation

∆′(λ2j−1) =
∫ 1

0

((
η1 − η′2

)
y1y2 − η2y

2
1 + η′1y

2
2

)
dx.(28)

We also need the formula

∆2 − 4 =
(
η1 + η′2

)2 − 4
(
η1η

′
2 − η′1η2

)
(29)

=
(
η1 − η′2

)2 + 4η′1η2.

Note that η′1 6= 0 to the left of λ2j−1 and to the right of λ2j , where
|∆(λ)| < 2. So by adding and subtracting (∆2 − 4)

∫ 1
0 y2

1dx/4η′1 from (28)
we get ∫ 1

0

((
η1 − η′2

)
y1y2 − η2y

2
1 + η′1y

2
2(30)

+
(η1 − η′2)

2 y2
1

4η′1
+

4η′1η2y
2
1

4η′1
− ∆2 − 4

4η′1
y2
1

)
dx

= sign(η′1)
∫ 1

0

(√|η′1|y2 +
η1 − η′2
2
√
|η′1|

sign(η′1)y1

)2

− ∆2 − 4
4|η′1|

y2
1

 .

As |∆(λ)| < 2 in the regions being considered, the integrand is a positive
number. Yet ∆′(λ) switches sign once in [λ2j−1, λ2j ]. This implies that η′1
switches sign as needed. A similar proof will show that η2 also switches
sign. �

A corollary of Formula (30) is that if ∆′(λ) = 0 then |∆(λ)| ≥ 2.
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4. Counting Lemma.

How many Dirichlet and Neumann eigenvalues are in each gap? To answer
this question we use the Counting Lemma from Pöschel and Trubowitz [16].

Lemma 2 (Counting Lemma: Dirichlet Eigenvalues). Let q ∈ L2
R([0, 1])

and let N > 2e‖q‖ be an integer. Then y2(1, λ) has exactly N roots, counted
with multiplicities, in the open half plane

Re (λ) <

(
N +

1
2

)2

π2(31)

and for each n > N , exactly one simple root in the egg shaped region

|
√

λ− nπ| < π

2
.(32)

There are no other roots.

An analogous result is true for Neumann eigenvalues. The necessary tools
are available in [16]. For completeness we will state the lemma here:

Lemma 3 (Counting Lemma: Neumann Eigenvalues). Let q ∈ L2
R([0, 1])

and let N > 2e‖q‖ be an integer. Then y′1(1, λ) has exactly N + 1 roots,
counted with multiplicities, in the open half plane

Re (λ) <

(
N +

1
2

)2

π2(33)

and for each n > N , exactly one simple root in the egg shaped region

|
√

λ− nπ| < π

2
.(34)

There are no other roots.

The “extra” Neumann eigenvalue in the half plane corresponds to the
“ground state” of the Neumann problem. For general potentials, this eigen-
value is less than or equal to λ0, the first periodic eigenvalue; but, when q
is even it is pinned at λ0.

For the periodic and anti-periodic spectra we shift the potential until
it is an even potential, then the Dirichlet and Neumann spectra form the
periodic and anti-periodic spectra. Therefore we get the analogous result
for the periodic and anti-periodic spectra (the periodic and anti-periodic
spectra are invariant under translation of the potential q and the average
value of q is invariant under translation).

Proposition 4. For periodic q∈L2
R([0, 1]) there is one and only one Dirich-

let eigenvalue within each gap.
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Proof. Choose N satisfying the hypothesis of the Counting Lemma. By
Proposition 3 there is at least one Dirichlet eigenvalue in each gap. There
are N Dirichlet eigenvalues in the region Re(λ) < (N + 1

2)2π2. Therefore in
the same region there is one and only one Dirichlet eigenvalue within each
gap.

With n > N for the intervals |
√

λ − nπ| < π
2 there is one gap. Within

this same region there is one Dirichlet eigenvalue. In these zones there is
one and only one Dirichlet eigenvalue within each gap. �

Proposition 5. For periodic q ∈ L2
R([0, 1]) there is one and only one Neu-

mann eigenvalue within each gap. There is one and only one Neumann
eigenvalue within the interval (−∞, λ0].

The proof of this proposition follows the one above.

Proposition 6. ∆ is determined by the periodic eigenvalues of q.

Proof. The periodic eigenvalues are the roots of ∆ − 2, they are real since
they are eigenvalues of a self-adjoint operator . Therefore we have

∆− 2 = C

( ∞∏
n=1

(λ2n−1 − λ)(λ2n − λ)
n4π4

)
(λ− λ0),(35)

(see [13]) where {λi} are the periodic eigenvalues and C is a constant, pro-
vided that this product converges. C is determined by the asymptotic con-
dition on the roots of ∆2 − 4,

λ2n−1, λ2n = n2π2 +
∫ 1

0
q(x)dx +O(n−2)(36)

for q ∈ C3([0, 1]). Without loss of generality we may take
∫ 1
0 q(x)dx = 0.

We first show that the product converges uniformly. From Markushevich

([13]) we have that
∞∏
i=1

(1 − λ
λi

) converges uniformly if and only if
∞∑
i=1

λ
λi

is

uniformly convergent.
Choose N such that |λ2n−1−n2π2| < δ and |λ2n−n2π2| < δ for all n > N

and that
∞∑

i=N+1

1
i2π2

<
δ

4
.(37)

Consider

∞∑
i=1

∣∣∣∣ λλi

∣∣∣∣ = |λ|
∞∑
i=1

∣∣∣∣ 1
λi

∣∣∣∣ = |λ|

 ∞∑
j=1

∣∣∣∣ 1
λ2j−1

∣∣∣∣+ ∞∑
j=1

∣∣∣∣ 1
λ2j

∣∣∣∣
 .(38)
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We examine the tail of this series,
∞∑

i=N+1

∣∣∣∣ 1
λ2i−1

∣∣∣∣+ ∞∑
i=N+1

∣∣∣∣ 1
λ2i

∣∣∣∣ ≤ ∞∑
i=N+1

2
i2π2 − δ

≤ 4
∞∑

i=N+1

1
i2π2

.(39)

Which is the estimate we need.
Finally to combine this with our problem we have the infinite product

∞∏
i=1

λ2n−1λ2n

n4π4

(
1− λ

λ2n

)(
1− λ

λ2n−1

)
.(40)

The term we have factored out of each part of the product is a constant
in λ and therefore our conclusion is that the original product converges
uniformly. �

This proposition says that ∆ is determined by the periodic spectrum.

5. Proof of the main theorem.

If we are given the Dirichlet and Neumann spectra with appropriate asymp-
totic conditions for an C3([0, 1]) potential q on [0, 1] we begin the solution of
the inverse problem by first extending q to an even potential Q(x) on [0, 1].
Q(x) is C3([0, 1]) at all but one point. As described in Section 1 the Dirichlet
and Neumann spectra, {µn, νn} give the periodic spectrum, {4µn, 4νn, 4ν0},
of the operator with potential Q(x). The eigenvalue 4ν0 is the first pe-
riodic eigenvalue of the operator with potential Q(x). The corresponding
eigenfunctions remain Dirichlet and Neumann eigenfunctions.

For an even potential we have shown that for each pair of endpoints of a
gap one is Dirichlet and the other is Neumann. We have also shown that
these are all of the Dirichlet and Neumann spectra. The endpoints of a gap
are either a pair of periodic or of anti-periodic eigenvalues of Q. Therefore
the Dirichlet and Neumann eigenvalues of − d2

dx2 + q(x) give the periodic half
of the Dirichlet and Neumann spectra.

This periodic spectrum, {4µn, 4νn, 4ν0} determines ∆(λ) by Proposition
(6). From ∆(λ) we find the anti-periodic spectrum as the roots of ∆(λ)+2.
For each pair of anti-periodic eigenvalues one must be Dirichlet and the other
Neumann by Propositions (4) and (1). The choice we make as to which anti-
periodic eigenvalue of a given pair are to be a Dirichlet eigenvalue is where
the ambiguity in the problem arises. That is we do not get a determined
Dirichlet spectrum; potentially, one half of the spectrum is known only up
to a sequence of pairs from which it may be chosen.

The Dirichlet spectrum once chosen specifies the initial conditions for the
ODEs found previously (20). The solutions to these ODEs and the periodic
and anti-periodic spectrum are inserted into the trace formula (22) giving
an expression for Q(x). An admissible q(x) for the stated inverse problem is
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the first half of Q(x) appropriately scaled to be a function on [0, 1], explicitly
q(x) = 1

4Q(1
2x) x ∈ [0, 1].

What Dirichlet and Neumann spectra would lead to only a finite number
of possibilities for q(x) determined by the method discussed above? One
interesting method used to address this question utilizes theta functions and
other tools from algebraic geometry, constructing q(x) as a ratio of theta
functions ([10] and [7]). Hochstadt [7] showed that if the gaps (see Figure 1)
are all trivial then the potential q(x) is 0. Hochstadt went on to show that
if only one of the gaps does not vanish then q(x) is an elliptic function. He
finished with a proof that if only a finite number of the instability intervals
were nontrivial then q(x) is a C∞ function. In these cases there are only
finitely many q(x) solving the inverse problem.
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