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Given an abstract triangulation of a torus, there is a unique
point in moduli space which supports a circle packing for this
triangulation. We will describe combinatorial deformations
analogous to the process of conformal welding. These combi-
natorial deformations allow us to travel in moduli space from
any packable torus to a point arbitrarily close to any other
torus we choose. We also provide two proofs of Toki’s result
that any torus can be transformed into any other by a confor-
mal welding and compute the maps necessary to accomplish
the welding.

1. Introduction.

A circle packing is a configuration of circles with a prescribed pattern of
tangencies. The interplay between the combinatorial “pattern” and the ge-
ometry provided by the circles has generated intense interest in recent years.
As a result, a discrete version of complex analysis based on maps between
circle packings has now emerged. The seeds of a discrete Teichmüller theory
have been sown, but it is still in the very early stages of development.

It has been understood that the underlying combinatorial structure of a
circle packing determines its geometry. For packings on surfaces, the com-
binatorics determine a unique point in moduli space on which the packing
“lives” [4]. As we will see in Section 5, changing the combinatorics generally
changes the point in moduli space, but the precise mechanism remains very
mysterious. Our goal then is to develop some controlled combinatorial pro-
cedure for which we not only understand the resulting movement in moduli
space, but which we can actually use to drive us to a specified target.

Toki [26] proved that for the torus, any point in moduli space can be
deformed into any other by a conformal welding. That is, any torus can
be cut open along an appropriate geodesic and then glued (unevenly) back
together to form any other torus. After introducing some background ma-
terial in Section 2, we present another proof of Toki’s result in Section 3.
Our approach allows us to explicitly compute the welding maps involved.

Theorem 1.1. Consider a point τ ∈ H. If τ ′ ∈ {z| 0 < Im z ≤ Im τ}, then
there is a conformal welding along any vertical geodesic which will transform
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Rτ to Rτ ′. Conversely, if τ ′ ∈ {z| Im z ≥ Im τ}, then there is a conformal
welding along any horizontal geodesic which will transform Rτ to Rτ ′.

In Section 6, we describe a combinatorial deformation analogous to weld-
ing. Packings are cut open along a geodesic, then reconnected in a different
pattern than before. In Section 7 we prove that these discrete weldings
approximate their classical counterparts.

Theorem 1.2. Fix any abstract triangulation K of a torus and any point
τ ′ ∈ H. Then combinatorially deforming K by hex refinement and combi-
natorial welding along an appropriate geodesic produces packable surfaces
which converge in the Teichmüller metric to Rτ ′.

Thus we can prescribe the combinatorial changes necessary to move in
moduli space from any packable surface to a point arbitrarily close to any
other surface we choose. This also gives a second proof of Toki’s theorem
using only circle packing techniques. Moreover, our proof holds for any
bilipschitz welding map, not only the ones needed for our excursions in
moduli space. Thus we have a discrete method for approximating the surface
created by any bilipschitz welding.

Our procedure allows for several arbitrary choices in the small scale
changes made to the complexes. However, the welding process is remarkably
stable, forcing these variations in the construction to disappear in the limit.

Theorem 1.2 also yields a genus one version of Brooks’s density result
for compact surfaces [8]. Not only are the packable tori dense, but any
one packable torus generates a dense packable family by welding. A similar
result for hyperbolic surfaces was given by the second author in [28] using
earthquake deformations.

Finally, we would like to thank the referee for several very helpful sugges-
tions.

2. Teichmüller theory.

2.1. Riemann surfaces and their deformation spaces. We begin with
a brief review of Riemann surfaces and Teichmüller spaces. Some of the
many excellent references include [10, 11, 15, 18, 13].

Definition 2.1. A Riemann surface is a one complex-dimensional man-
ifold with charts whose overlap maps are conformal. A maximal collection
of such charts define a conformal structure.

Surfaces R1 and R2 are said to be conformally equivalent if there is a
conformal homeomorphism f : R1 → R2. The equivalence classes of surfaces
of the same topological type as R1 constitutes the moduli space of R1. For
many purposes, however, we need an equivalence relation that keeps track
of more information. Equivalent surfaces should not only share the same
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conformal structure but generators of their fundamental groups should also
correspond.

Definition 2.2. Let R be a Riemann surface and Σ a collection of canonical
generators of π1(R). Σ is then called a marking for R. Two markings are
equivalent if they differ only by the choice of basepoint.

Definition 2.3. Two marked Riemann surfaces (R,Σ) and (R′,Σ′) are
equivalent if there is a conformal map f : R → R′ for which the mark-
ing f∗(Σ) is equivalent to Σ′. The Teichmüller space of R1 is the set of
these equivalence classes.

An alternative definition can be given using maps from a reference surface.

Definition 2.4. Quasiconformal maps f1 and f2 of a Riemann surface R
are Teichmüller equivalent if f2 ◦ (f1)

−1 is homotopic to a conformal map.

Proposition 2.5. Fix a reference Riemann surface R and suppose f1 and
f2 are quasiconformal maps from R to R1 and R2, respectively. Then R1

and R2 are equivalent in Teichmüller space if and only if f1 and f2 are
equivalent mappings.

There is a natural metric on Teichmüller space determined by how nearly
conformal a homeomorphism which respects the markings may be. More
specifically, the distance between surfaces R1 = f1(R) and R2 = f2(R) is
given by

1
2

log K∗,

where K∗ is the infimum of the dilatation of g2 ◦ (g1)
−1 with gi equivalent

to fi, i = 1, 2. This infimum is attained by a unique Teichüller mapping.
The collection of homotopy classes of diffeomorphisms of R is called the

mapping class group of R. It acts on the Teichmüller space of R trans-
forming one marking into another. Teichmüller space modulo the mapping
class group is precisely the moduli space. Thus the Teichmüller metric in-
duces a metric on moduli space.
2.2. Tori. Consider a point τ ∈ H and the group Γτ of translations of C
generated by z 7→ z + τ and z 7→ z + 1. The quotient surface Rτ = C/Γτ is
a torus. A fundamental region for Rτ is the parallelogram Ωτ with vertices
at 0, 1, τ , and 1 + τ .

Such a torus has two families of geodesics corresponding to its generators
z 7→ z + 1 and z 7→ z + τ . The horizontal geodesics are the projections of
horizontal lines, that is, lines parallel to the translation z 7→ z+1. Similarly,
the vertical geodesics are the projections of lines parallel to the translation
z 7→ z + τ .

Any of the tori Rτ are topologically identical, but their conformal struc-
tures change with τ . In fact the Teichmüller space for the torus is isometric
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to H with the hyperbolic metric. The mapping class group is isomorphic to
PSL2Z, and the moduli space is isometric to H/PSL2Z.

3. A moduli space trip in a classical vehicle.

3.1. Conformal welding. Suppose R is a Riemann surface and γ a simple
closed geodesic. If we cut R open along γ, we obtain a bordered surface R
with geodesic boundary arcs γ+ and γ−. Notice that each point z ∈ γ splits
into points z+ ∈ γ+ and z− ∈ γ−.

Definition 3.1. If R is a bordered Riemann surface with geodesic bound-
aries γ+ and γ− as above and ϕ : γ+ → γ−, then a conformal welding for
ϕ is a map f from R to some surface R′ which is conformal off γ+ ∪ γ− and
satisfies the welding property

fϕ(z+) = f(z−),

where z+ ∈ γ+ and z− ∈ γ− are copies of the same point z ∈ γ.

From a topological viewpoint, gluing γ+ and γ− together is relatively
uninteresting. The new surface R′ is topologically equivalent to the original
surface R, and the welding curve γ′ = f(γ+) = f(γ−) is homotopic to γ.
From a conformal point of view, however, R and R′ may be dramatically
different surfaces. The welding map ϕ stretches and compresses γ+ as it
attaches it to γ−. The new “seam” γ′ must absorb this distortion, bending
and warping as the competing metric forces do battle. See Figure 1.

The existence of a conformal welding allows us to define coordinate charts
on R′ \ γ′ using the charts on R. That is, if {φα} is the conformal structure
on the bordered surface R, then {φαf−1} is a conformal atlas on R′ \ γ′. As
a result, the metric distortion between R and R′ is completely captured in
the geometry of γ′.

Notice that if g : R′ → R′′ is conformal, then gf is another conformal
welding for ϕ. If every welding for ϕ is of this form, then ϕ determines
a unique point in moduli space. Oikawa [20] proved that unique weldings
exist for locally quasisymmetric maps (that is, maps which can locally be
extended to quasiconformal maps) gluing the sides of infinite strips to form
a cylinder. Since a torus is covered by a cylinder, locally quasisymmetric
welding maps on a torus can be lifted to periodic locally quasisymmetric
welding maps on a cylinder. Oikawa’s result can then be restated as follows.

Theorem 3.2. If ϕ is a locally quasisymmetric welding map on a torus,
then welding by ϕ determines a unique point in moduli space.

Beyond uniqueness, we are interested in the geometry of tori deformed
by welding. The following result appears in a paper of Toki [26]. Toki’s
proof, however, filters the welding through the exponential map and does
not provide a simple description of the welding f . Our proof is similar in
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γ

Figure 1. A torus before, during, and after welding. Notice
that before welding (top) the torus is much “fatter” than
after the welding (bottom). The global geometric distortion
is also reflected in the distortion of the image of the geodesic
γ.

spirit, but yields an explicit description of the deformation needed to convert
one torus to another. In Section 7, we present a second proof using discrete
maps induced by circle packings.

Theorem 1.1. Consider a point τ ∈ H. If τ ′ ∈ {z| 0 < Im z ≤ Im τ}, then
there is a conformal welding along any vertical geodesic which will transform
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Rτ to Rτ ′. Conversely, if τ ′ ∈ {z| Im z ≥ Im τ}, then there is a conformal
welding along any horizontal geodesic which will transform Rτ to Rτ ′.

Proof. First suppose 0 < Im τ ′ ≤ Im τ and choose a geodesic γ of Rτ corre-
sponding to the translation z 7→ z + τ . Recall that a fundamental region for
Rτ and Rτ ′ is given by the parallelogram Ωτ having vertices 0, 1, τ, 1 + τ .
By an appropriate choice of basepoint, we can assume γ lifts to the left and
right sides of Ωτ . We will label these sides γ̃+ and γ̃−, respectively.

Similarly, Rτ ′ lifts to a fundamental region given by the parallelogram
Ωτ ′ with vertices 0, 1, τ ′, 1 + τ ′. In general, Ωτ and Ωτ ′ will have different
conformal moduli (as quadrilaterals) and hence no conformal map between
them. However, if we distort Ωτ ′ , we can obtain a fundamental region for
Rτ ′ whose conformal modulus equals that of Ωτ .

By decreasing the angle at τ ′ and 0 and simultaneously increasing the
angle at τ ′ + 1 and 1, we bend the middle of Ωτ ′ to the right. See Figure 2.

τ 1+τ

0 1

τ 1+τ 1+τ

0 1 0 1

’ ’ ’’τ
απ’

απ

α0 π

Figure 2. The quadrilateral Ωτ (left) has a smaller modulus
than Ωτ ′ (middle). By sliding the “middle” of Ωτ ′ to the
right, we can lower the modulus of Ωτ ′(α′) (right).

If α0π = π − Arg(τ ′) is the angle in Ωτ ′ at τ ′, then for 0 < α′ ≤ α0, let
Ωτ ′(α′) be the 6-gon with vertices at 0, τ ′, 1 + τ ′, and 1, angle α′π at 0 and
τ ′, and angle (1− α′)π at 1 and 1 + τ ′

Notice that mod(Ωτ ′(α0)) = mod(Ωτ ′) ≥ mod(Ωτ ) and mod(Ωτ ′(α′))
decreases continuously to 0 as α′ → 0. Consequently, there is a unique value
of α′ > 0 for which mod(Ωτ ′(α′)) = mod(Ωτ ).

Since the moduli are equal, there is a conformal map f̃ : Ωτ → Ωτ ′(α′).
By Schwarz reflection, f̃ sends points on the edges of Ωτ which correspond
under Γτ to points on the edges of Ωτ ′(α′) which correspond under Γτ ′ . Thus
f̃ projects to a map f : Rτ → Rτ ′ which is conformal off γ.

Now let ϕ̃τ,τ ′ = f̃−1(f̃(z) + 1) on γ+. Then ϕ̃ projects to a welding map
ϕ on γ. Notice that f(z+) = f ◦ ϕ(z−) on γ.
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The case Im τ ′ ≥ Im τ is similar. By bending a horizontal geodesic, we
can increase the modulus of Ωτ ′ until it equals that of Ωτ . The existence of
a welding then follows precisely as before. �

It follows from the well-known behavior of conformal maps at corners that
in shrinking the angle at τ and 0, ϕ must act locally at τ and 0 like a power
map z 7→ zβ , with β < 1. As a result, 0 and τ are not only fixed points of
ϕ, but attracting fixed points.

Conversely, at the midpoint of the side between 0 and τ , the straight line
is bent to form an angle measuring more than π. Thus ϕ acts locally at
the midpoint like a power map z 7→ zβ , β > 1. Hence, the midpoint is a
repelling fixed point. See Figure 3.

ϕ

Figure 3. The welding map ϕ constructed in the proof of
Theorem 1.1 glues two points of γ+ back to their original
positions and then “pulls” the remainder of γ+ away from
one fixed point and toward the other.

Notice also that there was no great need to take α′ ≤ α0 in the above
proof. There is also a unique α′ ≥ α0 so that mod(Ωτ ′(α′)) = mod(Ωτ ).
This α′ will bend to the left; thus we obtain welding maps which stretch in
the other direction.

3.2. Computing the welding map. The welding map ϕτ,τ ′ used in the
proof of Theorem 1.1 can be expressed explicitly using Schwarz-Christoffel
maps.

First observe that the unit disk D is taken onto the parallelogram Ωτ by
the Schwarz-Christoffel map

f1(z) = c1

∫ z

−1
(1− ξ)α−1(1− e−iθ0ξ)−α(1 + eiθ0ξ)α−1(1− ξ)−α dξ,(3.1)

where απ = π − Arg(τ) is the exterior angle at τ + 1 and c1 and θ0 are
defined by the requirements that

f(1) = c1

∫ 1

−1
(1− ξ)α−1(1− e−iθ0ξ)−α(1 + eiθ0ξ)α−1(1− ξ)−α dξ = 1
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f f
3

3, ε

-1

1

f

f
2

Figure 4. Our conformal welding is given by the compo-
sition f3f2f

−1
1 . The images of the four corners of Ωτ are

indicated by dots.

and f1(−e−iθ0) = τ . See Figure 4.
The map f1 takes −1, −e−iθ0 , eiθ0 and 1 onto the corners 0, τ , 1 + τ and

1, respectively. To take advantage of the symmetry of the region Ωτ ′(α′),
we use the map

f2(z) =
z − ir

1 + irz
,(3.2)

with 1−ir
1+ir = e−i

θ0
2 , to take −1, −e−iθ0 , eiθ0 and 1 to the symmetric points

±e±i
θ0
2 .

Now these points are mapped to the corners of Ωτ ′(α′) by the Schwarz-
Christoffel map

f3(z) = c3

∫ z

−1
(1− ξ)1−2α′(1− 2 cos (θ0/2) ξ + ξ2)−α′(3.3)

(1 + 2 cos (θ0/2) ξ + ξ2)α′−1(1 + ξ)2α′−1 dξ + 1− τ ′

2
,

where c3 is chosen so that f3(eiθ0) = 1 + τ ′. Our desired welding map is
then given by ϕτ,τ ′ = f3f2f

−1
1 restricted to the left side of Ωτ .

Notice, however, that the sharp corners of Ωτn destroy the smoothness of
f3 there. We can obtain a bilipschitz approximation to f3f2f

−1
1 if we re-

place Ωτ ′(α′) by a region Ω̂τ ′(α′) in which these corners have been smoothly
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rounded. This technique was used in [3]. We replace f3 by

f3,ε(z) = c4

∫ z

−1
[(1− ξeiε)2α′ + (1− ξe−iε)2α′ ](3.4)

[(1− ξei(θ0/2−ε))1−α′ + (1− ξei(θ0/2+ε))1−α′ ]

[(1 + ξei(−θ0/2−ε))1−α′ + (1 + ξei(−θ0/2+ε))1−α′ ]

[(1 + ξei(θ0/2−ε))α′ + (1 + ξei(θ0/2+ε))α′ ]

[(1 + ξei(−θ0/2−ε))α′ + (1 + ξei(−θ0/2+ε))α′ ]

[(1− ξeiε)1−2α′ + (1− ξe−iε)1−2α′ ] dξ + 1− τ

2
where ε is small and c4 is chosen so that f3,ε(eiθ0/2) = 1 + τ ′.

Thus we obtain a C1 welding map ϕτ,τ ′,ε = f3,εf2f
−1
1 . The smoothness of

ϕτ,τ ′ will prove useful in constructing a circle packing version of Theorem 1.1.

Remark 3.3. The reader may object to the description of ϕτ,τ ′ as “explicit”
since an inverse for f1 was not given in closed form. In practice, however,
the inverse is obtainable by recently developed Schwarz-Christoffel packages
to the desired accuracy [9].

Remark 3.4. The nature of conformal weldings of tori is in marked con-
trast to the well-studied problem of welding discs [11, 14, 16, 19, 21, 27,
29]. Since there is only one possible conformal structure on the sphere
formed by welding discs, welding discs does not alter position in moduli
space. Moreover, except for a few special cases, it has not been possible to
find either a closed form of the conformal welding or an explicit description
of the “seam” resulting from a given welding. The best known result is the
discrete approximation scheme developed in [27].

4. Circle packing.

4.1. Abstract triangulations. We will use the term abstract triangu-
lation to mean a simplicial 2-complex. In particular, these are purely com-
binatorial objects. They possess no geometric structure until they are em-
bedded in a surface.

We also require our abstract triangulations to be CP-complexes; how-
ever, notice that the restrictions imposed by Conditions (2) through (4) are
extremely mild and are met by any reasonable complex.

Definition 4.1. A CP-complexK is an abstract simplicial 2-complex such
that:

(1) K is simplicially equivalent to a triangulation of an (orientable) surface.
(2) Every boundary vertex of K has an interior neighbor.
(3) The collection of interior vertices is nonempty and edge-connected.
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(4) There is an upper bound on the degree of vertices in K, that is, on the
number of edges incident at each vertex.

4.2. Circle packings.

Definition 4.2. A circle packing is a configuration of circles with a spec-
ified pattern of tangencies. In particular, if K is a CP-complex, then a circle
packing P for K is a configuration of circles such that:

(1) P contains a circle Cv for each vertex v in K,
(2) Cv is externally tangent to Cu if [v, u] is an edge of K,
(3) 〈Cv, Cu, Cw〉 forms a positively oriented mutually tangent triple of cir-

cles if 〈v, u, w〉 is a positively oriented face of K.
A packing is called univalent if none of its circles overlap, that is, if no pair
of circles intersect in more than one point.

A univalent circle packing produces a geometric realization of its under-
lying complex. Vertices can be embedded as centers of their corresponding
circles, and edges can be embedded as geodesic segments joining centers
of circles. This embedding for K is called the carrier of the packing, and
denoted by |K|.

If K is embedded in C in two different ways, there is a natural piecewise
affine map sending triangles in one embedding to triangles in the other. If
the embeddings for K are created using circle packings, we will refer to the
induced map as a discrete conformal map. As the name suggests, there
are deep connections between discrete conformal maps and their classical
counterparts.

4.3. Packable surfaces. Various existence results for circle packings have
been given by Thurston [24], Minda and Rodin [17], and Beardon and
Stephenson [4]. Moreover, Brooks [8] showed that compact packable surfaces
are dense in moduli space. His result was extended to surfaces of finite
analytic type by Bowers and Stephenson [6, 7]. In summary:

Theorem 4.3. Let K be an abstract triangulation of a surface R of finite
analytic type. Then there is a unique point in the moduli space for R which
supports a packing for K. Similarly, K and a marking for R determine a
unique packable point in the Teichmüller space of R. Moreover, the collection
of all packable surfaces is dense in both the moduli space and Teichmüller
space of R.

Unfortunately, a thorough description of the effect of K on the global
geometry of R has been extremely elusive. For hyperbolic surfaces, the
effect of combinatorial manipulation of K by earthquakes has been studied
in [28]. In Section 6, we will consider combinatorial deformations of tori
analogous to the conformal weldings of Section 3.1.
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4.4. Combinatorial influence on geometry. It has been known for some
time that the local combinatorics of a packing exert an important influence
on the local geometry. Rodin and Sullivan’s Ring Lemma [22] connects the
combinatorial properties of packings and the function theoretic properties
of associated discrete conformal maps.

Ring Lemma. Suppose K is a complex of degree D. If v an interior vertex
of K and w is a neighbor of v, then there is a lower bound CD on the ratio
of the radius of Cw to Cv in any univalent packing for K. In particular, the
lengths of any two sides of a triangle in |K| are CD-comparable.

The constant CD of the Ring Lemma has been computed by Aharonov [1,
2] to be

CD =
1

a2
D−2 + a2

D−1 − 1
,

where ai is the ith Fibonacci number. This bound is sharp.
It is easy to show that affine maps between triangles are quasiconformal

with dilatation depending only on the difference in corresponding angles of
the triangles. The Ring Lemma implies that angles at interior vertices in the
carrier of a univalent packing are bounded away from 0 and π. This gives an
upper bound on the difference between corresponding angles in the carriers of
two different packings for the same complex. Consequently, discrete analytic
functions are k-quasiconformal on faces which do not contain a boundary
vertex, where k depends only on the degree of the packing.

Even greater control on the dilatation is possible by considering more
generations of circles. The resulting Packing Lemma was first shown for
packings in which every vertex has degree 6 [22, 25] and later extended by
Stephenson [23] and He and Rodin [12].

Definition 4.4. A chain of circles in packing P for K is a collection of
circles Cv1 , Cv2 , . . . , Cvn of P so that vi and vi+1 share an edge in K, i =
1, 2, . . . , n − 1, and vi 6= vj , if i 6= j. Thus a chain describes a non-self-
intersecting edge path in K. A chain is closed if v1 = vn.

Packing Lemma. If a circle Cv of a circle packing P is surrounded by n
closed chains of circles, each circle having degree at most m, then the dilation
of a discrete conformal map defined on faces containing v decreases to 0 as
n →∞.

Finally the Length-Area Lemma [22] provides combinatorial control over
the size of circles. It is a type of combinatorial isoperimetric inequality.

Length-Area Lemma. Let P be a univalent circle packing in D and Cv a
circle in P with euclidean radius r. Assume there are m disjoint chains of
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circles in P having combinatorial lengths n1, n2, . . . , nm, and each separating
Cv from the origin and a point on the boundary. Then

r ≤ 1√∑m
i=1

1
ni

.

5. Simple combinatorial deformations.

5.1. Changing the triangulation vs. changing the embedding. Re-
call that our abstract triangulations are purely combinatorial objects until
they are embedded in some surface, usually by means of a circle packing.
If a triangulation K is realized by a packing of a surface τ , then changing
K will lead not only to a new complex K′, but K′ will also induce a new
packing on a (most likely different) surface τ ′.

If we wish to directly compare the circle packing-induced geometries of τ
and τ ′ we must limit the type of changes we make to K. In particular, any
combinatorial change we make to K should be realizable in τ by adding or
moving edges of |K|. These in situ changes to |K| will produce an embedding
of the new complex K′ in τ . Now we construct a discrete conformal map f
sending triangles in the embedding of K′ in τ to the corresponding triangles
in the embedding of K′ in τ ′. By thus comparing the embeddings of K ′ in
τ and in τ ′, we can compare the geometry of τ and τ ′.

If the in situ modification to |K| can be made in such a way that the angles
in the newly embedded triangles are bounded away from 0 and π and if the
degree of K is controlled, then using the Ring Lemma, the dilatation of f
can be estimated and an upper bound on the Teichmüller distance between
τ and τ ′ computed.

For the remainder of the this section, we will consider examples of these
combinatorial modifications which

1) permit bounds on the degree of the new complex
2) can be realized by an in situ deformation of the original embedding

while maintaining control over angles.

5.2. Hex refinement. A particularly useful example of this type of com-
binatorial deformation is the hex refinement scheme of Bowers and Stephen-
son [5].

Definition 5.1. The hex refinement of a complex K is the complex
formed by adding a vertex to each edge and adding an edge between new
vertices lying on the same face. See Figure 5.

Notice that any new interior vertices added to K by hex refinement have
degree 6, while the degrees of the original vertices remain unchanged.

Aside from the embedding provided by circle packing, there is another
useful embedding of the hex refinement of K. If K is embedded in C in
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Figure 5. Two triangles before (left) and after (right) hex
refinement. Notice that the new interior vertex has degree 6.

such a way that edges correspond to euclidean line segments, then its hex
refinement may be realized by adding line segments joining the mid-point
of each edge. In this case, each face of K will be subdivided into four new
faces, each similar to the original and having edges one-half as long.

This second embedding is generally different from the embedding pro-
vided by circle packing. Since the faces are broken into similar faces, no
new geometry emerges. By contrast, the circle packings can make fine ad-
justments to the embeddings as K is repeatedly refined. In fact, the Packing
Lemma implies that after many hex refinements, most triangles embedded
by a circle packing are nearly equilateral. This phenomenon leads to the
following result of Bowers and Stephenson [5].

Lemma 5.2. Let K be an abstract triangulation of a compact Riemann sur-
face realized by a packing Pn on a surface Rτn and suppose Kn is the nth hex
refinement of K. Then {Rτn} converges in the Teichmüller metric to the
point τ∞ corresponding to the surface formed by gluing together equilateral
triangles in the pattern given by K. In particular, τ∞ lies in a ball centered
at τ with radius determined only by the degree of K.

5.3. Trivalent barycentric subdivision. A second very instructive ex-
ample is provided by trivalent barycentric subdivision, or starring
from the barycenter. In this refinement scheme, a face is subdivided
by adding a vertex with edges to each of the three existing vertices. See
Figure 6.

Proposition 5.3. Trivalent barycentric subdivision doubles the degree of
every interior vertex. Notice that the new complex can be embedded using
the original packing by adding a vertex at the barycenter of each face and
embedding the new edges as geodesic segments.

Since the degree of the complex grows without bound, the Ring Lemma
and Packing Lemma are useless to control the angles in the refined complex
(and hence the distortion of discrete maps).
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Figure 6. The effect of trivalent barycentric subdivision on
a complex (top left) and its packing (lower left). Notice the
subdivided complex (top right) has changed, but the six large
circles in the new packing (lower right) are unchanged.

Surprisingly, however, trivalent barycentric subdivision does not affect
the location of the packed surface in moduli space at all! A packing for
this complex is formed by simply adding a circle to each interstice without
moving any of the original circles.
5.4. Vertex-edge subdivision. Notice that if a vertex is added to an edge
of an existing triangle, this triangle will become a quadrilateral, having four
vertices instead of only three. Thus without additional modifications, our
complex will cease to be a triangulation.

This situation can be easily remedied by adding a new edge to the com-
plex. See Figure 7. The new edge can obviously be embedded in |K| as a
line segment. It was shown in [27] that if the new vertex is bounded away
from the old vertices, the angles created by this vertex-edge subdivision
will be bounded.
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v v

w w

Figure 7. The addition of a vertex w to an edge (left) can
be embedded by simply adding a new edge [v, w] (right).

Lemma 5.4. If a vertex w is added to an edge e of length l and the distance
from w to the endpoints of e is at least εl, then the angles created by vertex-
edge subdivision are bounded away from 0 and π by a constant depending
only on ε.

5.5. Local hex refinement. A final example is provided by “local hex re-
finement”. See Figure 8. Notice that the hex refinement procedure described
in Section 5.2 adds a vertex to each edge of the complex. If we wish to refine
only one triangle, we quickly run into difficulty since adding a vertex to an
interior edge affects the neighboring triangle as well.

γ γ

Figure 8. A complex (left) can be locally hex refined along
an edge path γ (right).

It is possible, however, to refine in a neighborhood of an edge path γ
without affecting the remainder of the complex. Let G be the collection
of triangles hitting γ. We first hex refine triangles in G as before. Notice,
however, that this procedure adds a vertex to the midpoint of all triangles
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which share an edge with G. We cannot hex refine these neighboring tri-
angles, as that would force us to propagate the refinement throughout the
entire complex. Instead, we use vertex-edge subdivision to absorb these
extra vertices.

Notice that all angles created by hex refinement have the same bounds as
the original angles. Similarly, the angles created by vertex-edge subdivision
are bounded by Lemma 5.4. Finally, notice that the degree of the locally
hex refined complex is bounded by the larger of 6 and D + 1, where D is
the original degree of K.

6. Combinatorial welding deformations.

6.1. Correctly cutting a torus. We now describe a combinatorial de-
formation analogous to the conformal welding process. Suppose K is an
abstract triangulation of a torus with degree D. By Theorem 4.3 (or origi-
nally, [4]), there is a circle packing Pτ on a torus Rτ . We would like to cut
K along some geodesic γ and reattach the two copies γ+ and γ− of γ using
a welding map ϕ : γ+ → γ−.

Unfortunately, the γ is an object from the continuous world, not one
of our discrete creations. In general, γ will pass indiscriminately through
triangles and vertices of |K| with no regard for the underlying combinatorial
structure. Thus we need to construct an edge path of K corresponding to γ.

One option is to completely replace γ with a polygonal edge path em-
bedded nearby. This approach is used, for example, in [28] to cut open
hyperbolic triangulations and approximate earthquakes. We prefer a dif-
ferent construction here, adding edges to |K| so that γ itself becomes the
desired edge path.

If some portions of γ already correspond to edges of |K|, then we accept
these edges without modification. Elsewhere, however, as γ enters each
triangle T , it joins either a vertex to an edge or, more commonly, an edge
to an edge.

In the first case, γ splits T into two smaller triangles. Thus it would be
combinatorially acceptable to merely add a new edge to K corresponding to
this segment of γ. Unfortunately, we must embed the new edge using this
segment of γ since we need our welding map ϕ : γ+ → γ− to act on our
new edge path. This addition might unacceptably alter the embedding |K|.
In particular, if γ exits T very near an existing vertex v1, one of the new
triangles will have a small angle. See Figure 9.

To avoid this difficulty, we will slightly alter our embedding |K| by moving
v1 to lie on γ. We let ε = 1

3CD
, where CD is the constant from the Ring

Lemma. If the distance from v1 to γ is less than ε times the minimum side
length of T , then we will move v1 to the closest point on γ. Notice that the
angles in a euclidean triangle vary continuously with the side lengths, and
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γv1

Figure 9. If γ hits one vertex and passes very near another,
the resulting angle will be small.

all the triangles in |K| containing v1 have CD-comparable side lengths by
the Ring Lemma. Thus we maintain a uniform (albeit weaker) bound on
the angles.

In the second case, if the distance from γ to a vertex is less than ε times
the minimum side length of T , we again move that vertex to γ. Thus we
may assume that γ is bounded away from the vertices of T . Notice that
adding an edge corresponding to γ ∩ T divides T into a smaller triangle T1

and a quadrilateral. We then add another edge to divide the quadrilateral
into triangles T2 and T3. See Figure 10.

T

T
T

γ
1

2

3

Figure 10. Adding an edge corresponding to γ, we form a
triangle T1 and a quadrilateral. A second edge then breaks
the quadrilateral into triangles T2 and T3.

Lemma 6.1. All the angles in T1, T2, and T3 are bounded away from 0 and
π. This bound depends only on the degree of K.

The proof involves only elementary geometry and is similar to the proof
of Lemma 5.4 found in [27].

6.2. Combinatorial re-attachment. Once our torus has been cut open,
we have two copies of the edge path γ, one of which we label γ+ and the
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other which we label γ−. If ϕ : γ+ → γ− is an orientation reversing home-
omorphism, then we can re-attach these two copies using ϕ as our guide.
A general procedure for performing this re-attachment is described in [28];
however, for completeness, we will briefly recount it here.

If ϕ maps each edge of γ+ to a corresponding edge in γ−, then we merely
glue the edges together to form a new abstract triangulation. However, most
welding maps – and certainly those of the type described in Section 3.2 – will
not respect the combinatorial structures of γ+ and γ− in this way. Thus it
is necessary to modify K so that ϕ will respect the modified combinatorics.

A first attempt at a solution might be:
(1) For each v ∈ γ+, add a vertex to γ− corresponding to ϕ(v).
(2) For each w ∈ γ−, add a vertex to γ+ corresponding to ϕ−1(w).

Now ϕ will respect the combinatorics of γ+ and γ−.
Of course, we cannot simply add vertices to K and expect that K will

remain a triangulation. Each triangle to which a new vertex was added
must be subdivided in some way. The vertex-edge subdivision described in
Section 5.4 is precisely the tool we need.

However, since we have a future application of the Ring Lemma in mind,
our modifications must maintain a uniform bound on the degree of K and on
the angles in any new triangles we create. Lemma 5.4 allows us to control
the angles created by the vertex-edge subdivision provided the new vertices
are not placed too near either each other or the existing vertices.

A priori, ϕ might map vertices of γ+ all over the place, defying any
attempts to control angles or the degree of K. However, if ϕ is bilipschitz
and the lengths of edges of γ+ and γ− are uniformly comparable, then it is
a relatively simple matter to find such bounds [27].

Thus we will hereafter assume that ϕ is B-bilipschitz; that is, for all
x, y ∈ γ+,

1
B
|x− y|γ+ < |ϕ(x)− ϕ(y)|γ− < B|x− y|γ+ ,(6.1)

where |x−y|γ+ denotes the distance from x to y inside γ+ and |ϕ(x)−ϕ(y)|γ−
denotes the distance from ϕ(x) to ϕ(y) inside γ−. Since bilipschitz maps
are quasisymmetric, Theorem 3.2 will hold.

It follows from the Ring Lemma and the control on our modifications that
the lengths of adjacent edges of γ+ and γ− are CD-comparable. Thus edges
which are separated by n vertices are Cn

D-comparable. Unfortunately, since
this bound grows with n, if we attempt to weld a sequence of finer and finer
complexes (as we will in Section 7), we cannot maintain uniform control
throughout the entire sequence. We need a bound which depends only on
the degree of K and not on the number of edges in K.

Our remedy is to break edges which are too long into shorter pieces using
the local hex refinement scheme of Section 5.5. More precisely, let r be the
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minimum edge length of γ+ ∪ γ−. Let E1 be the set of all edges in γ+ ∪ γ−

with length greater than CDr.
Recall that our method for embedding a local hex refinement along an

edge path splits edges in the path in half. Thus we can locally hex refine
each component of E1 and reduce the edge lengths by a factor of 2. Recall
that edges of γ+ ∪ γ− which share a vertex with an edge of E1 will also be
split in half.

Now let E2 be the set of all edges in γ+ ∪ γ− whose length is still greater
than CDr. Local hex refinement along E2 will again reduce edge lengths by
a factor of 2. Repeating this process, we see that after finitely many steps
all the edges in γ+ ∪ γ− will have length at most CDr.

Moreover, any edge which is created at step n but is not split at step n+1
will have length at least 1

2CDr; otherwise, it would have been too short to
be split at stage n. This does not yet give a lower bound on the lengths of
all edges after all the splitting, since it is possible such an edge might be
split once more (and only once more, by the Ring Lemma) if it shares a
vertex with an edge which is in En+1. Thus the length e of any edge formed
by splitting an edge in some Ei must satisfy

1
4CD

r <
1
4
CDr ≤ e ≤ CDr < 4CDr.(6.2)

Of course, the length of any other edge must also satisfy (6.2) since it
would have been too short to split. Thus after the splitting, all edges of
γ+ ∪ γ− have lengths which are 4CD-comparable.

6.3. Properties of the combinatorial welding. Our modifications of
the previous section now lead to a bound on the number of vertices which
can be mapped by ϕ or ϕ−1 to any given edge.

Lemma 6.2. Adding vertices to γ+ ∪ γ− as described in (1) and (2) above
will increase the degree of K by at most 4CDB, where D is the degree of K
and B is the bilipschitz constant of ϕ.

Proof. If [w1, w2] is an edge of γ− of length e, then by (6.1),

ϕ−1([w1, w2]) < Be.

But since edges of γ+ and γ− are 4CD-comparable, at most 4CDB edges of
γ+ can lie within a region of length Be. Thus at most 4CDB vertices of γ+

can be mapped onto [w1, w2].
The proof for edges of γ+ is similar. �

In the same way, notice that ϕ can map an edge of γ+ onto a region no
smaller than 1

4CDB times the length of the shortest edge of γ−. Thus the
images of vertices cannot be too close together, and Lemma 5.4 ensures that
the angles formed by our vertex-edge subdivision are bounded away from 0
and π by a constant depending only on B and CD.
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The final concern is the possibility that new vertices will be added arbi-
trarily close to an existing vertex. If [w1, w2] is an edge of length e in γ−,
we define a “buffer zone” of length 1

5CDB e around w1 and w2. If ϕ maps a
vertex v of γ+ into one of the buffer zones, we redefine ϕ(v) and “round off”
to the nearest vertex w1 or w2. Since ϕ is B-bilipschitz and all edges have
length at least 1

4CD
e, at most one vertex can be mapped into each buffer

zone. Thus ϕ is still a bilipschitz homeomorphism.
With no vertices added too closely to any existing vertices, Lemma 5.4

now implies that all angles in the in situ embedding for our newly augmented
K are bounded.

7. A discrete mode of transportation.

Now we give a discrete proof of Theorem 1.1. This will enable us to move
about in moduli space by prescribing combinatorial changes.

7.1. The starting point. Suppose K is an abstract triangulation of a torus
with degree D. By Theorem 4.3, K has a packing P on a torus Rτ . Choose
τ ′ ∈ H. As in the proof of Theorem 1.1, we will consider only the case
τ ′ ∈ {z| 0 < Im z ≤ Im τ} and weld Rτ along a vertical geodesic. The case
Im τ ′ ≥ Im τ requires welding along a horizontal geodesic, but is in all other
aspects identical.

Let Kn be the nth hex refinement of K. Each Kn has a packing Pn on
some torus Rτn . As discussed in Section 5.2, we would not expect τn to
equal τ , but by Lemma 5.2, {τn} will converge to a point τ∞ near τ [5].

Our repeated combinatorial refinements will carry finer and finer geomet-
ric information when realized by circle packings. Indeed, a standard appli-
cation of the Length Area Lemma [22] shows that the mesh of Pn decreases
to 0 as n →∞.

Fix a vertex v ∈ K. Notice that a copy of v remains in each refinement
Kn. Let γn be the vertical geodesic passing through v. Cutting Rτn open
along γn yields two copies of γn, one of which we label γ+

n and the other γ−n .

7.2. Directions for deforming the tori. In Section 3.2, we computed
a useful form for the identification map ϕτ∞,τ ′ which welds Rτ∞ into Rτ ′ .
By rounding the corners of our fundamental region, we also obtained a
C1 approximation ϕε

τ∞,τ ′ to ϕτ∞,τ ′ . Since ϕε
τ∞,τ ′ satisfies our bilipschitz

requirement, we will use it to weld γ+
n to γ−n . We will let ε → 0 and obtain

a welding for ϕτ∞,τ ′ by a diagonalization argument.
Notice also that our hex refinements resulted in a sequence of surfaces

converging to Rτ∞ , not the surface φτ∞ itself. Thus we must transfer the
map ϕε

τ∞,τ ′ to each of the surfaces Rτn .
Recall from Section 2, there is a map Mn : Rτn → Rτ∞ having minimal

dilatation. In fact, this Teichmüller map is just the projection to Rτn of a
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linear map of R2 which sends the basis {(1, 0), (Re τn, Im τn)} to the basis
{(1, 0), (Re τ∞, Im τ∞)}. In particular, Mn is uniformly bilipschitz, and as
n →∞, Mn converges to the identity map.

Now the map

M−1
n ϕε

τ∞,τ ′ Mn

is an orientation-reversing homeomorphism from γ+
n to γ−n . Moreover,

we may assume the vertex v ∈ γn corresponds to the fixed point of
M−1

n ϕε
τ∞,τ ′ Mn.

We can use

M−1
n ϕε

τ∞,τ ′ Mn

to combinatorially deform Kn as described in Section 6.
Qualitatively, this combinatorial welding holds v fixed, pulls the remain-

ing vertices away from v, and then glues the stretched path γ+
n onto the

unstretched γ−n . Finally, the resulting welded complexes K′n can be realized
by circle packings P ′

n on some tori Rτ ′n .

7.3. An example. Given the large amount of notation needed to describe
the welding process, pausing for an example is certainly in order. Consider
the circle packing on the torus Rτ depicted in Figure 11. Lifting to H and
normalizing, it is easy to compute that τ is approximately 0.5832+0.866025i.

Figure 11. A packing on the torus R0.5832+0.866025i. The
left and right sides are identified, as are the top and bottom.

Now consider the “square” torus Rτ ′ , with τ ′ = i. Our combinatorial
welding proceedure yields the welded packing of Figure 12. The right and
left sides of this packing correspond to the welding curve.
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Figure 12. The torus of Figure 11 after welding.

7.4. Maps for our journey. Notice that except for the “seams” γn and
γ′n, the complexes Kn and the welded complexes K′n are combinatorially
equivalent. Thus off γn we can define a discrete conformal map

fn : |Kn| → |K′n|.

Lemma 7.1. Each fn is K-quasiconformal, where K is independent of n.

Proof. The lemma follows directly from the Ring Lemma and Lemma 6.2.
�

Of course, the most important feature we would expect from these discrete
maps is some analog of the classical welding property f(z−) = fϕ(z+). By
gluing vertices of γ+

n to their images under the welding map M−1
n ϕε

τ∞,τ ′ Mn,
the construction itself ensures the welding property holds at vertices. On the
edges, however, the analogy breaks down somewhat. Our discrete conformal
maps fn are affine on the edges, while the welding map clearly is not. Thus
we need to form a discretized welding map which will respect the affine
nature of fn. To this end, we let

ϕn(z) = M−1
n ϕε

τ∞,τ ′ Mn(z)

if z is a vertex and extend ϕn affinely on the edges. That is, if z lies on an
edge [v, w], we can write z = (1− t)v + tw for some t ∈ [0, 1]. Then we let

ϕn(z) = (1− t)M−1
n ϕε

τ∞,τ ′ Mn(v) + tM−1
n ϕε

τ∞,τ ′ Mn(w).

With this definition, the following lemma is immediate.

Lemma 7.2. For all z ∈ γn, fn(z−) = fnϕn(z+)

Our notation is also obviously meant to suggest ϕn → ϕε
τ∞,τ ′ . We will see

that this suggestion is indeed true, with one small caveat. Since the domain
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γn of each ϕn changes with n, we must understand convergence of ϕn to
mean convergence of the maps ϕnM−1

n : γ → γ′n.

Lemma 7.3. As n →∞, the meshes of both Pn and P ′
n decrease to 0.

Proof. Recall that by Lemma 5.2, the points τn lie in a small ball about τ .
Thus each packing Pn lifts to a packing in Ωτn lying near Ωτ . In particular,
all these fundamental parallelograms are contained inside a disc of some
fixed radius. A standard application of Rodin and Sullivan’s Length-Area
Lemma [22] now shows that the mesh of Pn must decrease to 0.

Next observe that fn lifts to a quasiconformal map from Ωτn to Ωτ ′n .
Since there is a uniform bound on the dilatation of the maps fn, there is
a uniform bound on the moduli of the fundamental parallelograms for Rτ ′n .
This implies all these parallelograms lie in a disc of some fixed radius, and
again we appeal to the Length-Area Lemma. �

Lemma 7.4. As n →∞, ϕnM−1
n → ϕε

τ∞,τ ′ uniformly.

Proof. Since Mn converges to the identity map, the lemma clearly holds on
vertices of γn. If M−1

n (z) lies on an edge [v, w] of γn, then

|ϕnM−1
n (z)− ϕε

τ∞,τ ′(z)| ≤|ϕnM−1
n (z)− ϕnM−1

n (v)|+
|ϕnM−1

n (v)− ϕε
τ∞,τ ′(v)|+ |ϕε

τ∞,τ ′(v)− ϕε
τ∞,τ ′(z)|.

The second term can be made small since v is a vertex; the first and third
terms must be small by Lemma 7.3 and continuity. �

7.5. Extending our maps. To show the convergence of our discrete con-
formal maps fn, we will rely on a normal families result for quasiconformal
maps of C. However, to apply this result, we must lift each fn to a map
f̃n on the fundamental parallelogram Ωτn ⊂ C. More importantly, we must
then extend f̃n from Ωτn to all of C.

First notice that γn lifts to the line segment connecting 0 and τ , but γn

also lifts to a line segment connecting 1 and τ +1. We will consider this first
lift to correspond to γ+

n and label it γ̃+
n . Similarly, we view the second path

γ̃−n as a lift of γ−n . Now we view the lift ϕ̃n of ϕn as a map from γ̃+
n to γ̃−n .

Notice that to extend f̃ across γ̃+
n , we cannot simply copy the action of

f̃ to the adjacent fundamental parallelogram Ωτn − 1; that is, we cannot
merely set f̃n(z) = f̃n(z +1)−1. Since the boundary values of f̃n on γ̃+

n and
γ̃−n differ by ϕ̃n, such an extension could never be continuous on γ̃+

n . Thus
before we attempt to repeat f̃n on Ωτn − 1, we must first prepare the right
side of Ωτn − 1 to mesh with the action of f̃n on the left side of Ωτn .

Our solution is to apply a self-map of Ωτn − 1 which agrees with ϕ̃−1
n on

the right side, but is the identity on the left side. If ` is a horizontal line
segment through points z on γ̃+

n (the right side of Ωτn − 1) and z− 1 on the
left side of Ωτn − 1, then we define Φ̃n|` to be the affine map sending ` to
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the line segment joining ϕ̃n(z) and z − 1. See Figure 13. It is not difficult
to see that Φ̃n is quasiconformal with dilatation depending only on ϕ̃n. But
Lemma 7.4 then implies the entire family {Φ̃n} is uniformly quasiconformal
with dilatation depending only on ε and τ∞.

Ωn−1

Ωn−1 Ωn

Ωn

ϕ( z )1z−

z1z−

Figure 13. We extend ϕn to all of Ωτn − 1 by acting on
horizontal geodesics with endpoints on γ+

n .

Notice that since 0, 1, τ , and τ + 1 all correspond to the fixed point v

of ϕn, Φ̃n is the identity map on the top and bottom of the parallelogram
Ωτn − 1.

If z ∈ γ̃+
n , then Φ̃−1

n (z)+1 ∈ γ̃−n . Thus by Lemma 7.2 (assuming here and
throughout a compatible choice of liftings f̃n and ϕ̃n),

f̃n(Φ̃−1
n (z) + 1)− 1 = f̃n(ϕ̃−1

n (z) + 1)− 1(7.1)

= f̃nϕ̃n(ϕ̃−1
n (z))

= f̃n(z).

As a result, we can continuously extend f̃n across γ̃+
n . On the fundamental

parallelogram Ωτn − 1 lying to the left of γ̃+
n , we define

f̃n(z) = f̃n(Φ̃−1
n (z) + 1)− 1.

Since Φ̃n was the identity on the left side of Ωτn − 1, our extension of f̃n

reduces to f̃n(z + 1)− 1 there. That is, both f̃n restricted to the left side of
Ωτn − 1 and f̃n|γ̃+

n are lifts of fn|γ+
n . Consequently, we may propagate our

extensions periodically on Ωτn − 2, Ωτn − 3, and so forth.
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Similarly, on the fundamental parallelogram Ωτn + 1 lying to the right of
γ̃−n , we define

f̃n(z) = f̃nΨ̃n(z − 1) + 1,

where Ψ̃n is the extension of ϕ̃n to Ωτn which sends line segments joining
z ∈ γ̃+

n and z +1 to line segments joining ϕ̃n(z) and z +1. The family {Ψ̃n}
will be uniformly quasiconformal with dilation depending only on ε and τ∞.

Again observe that if z ∈ γ̃−n , then Ψ̃n(z − 1) ∈ γ̃+
n . Hence

f̃n

(
Ψ̃n(z − 1)

)
+ 1 = f̃n (ϕ̃n(z − 1)) + 1(7.2)

= f̃n(z),

and f̃n is continuous across γ̃−n . As before, we may extend f̃n periodically
to the right.

Finally we extend f̃n vertically by conjugation with the covering transfor-
mations z 7→ z±mτn, m = 1, 2, . . . ,∞. Since the covering transformations,
Φ̃n, Ψ̃n, and fn are all uniformly quaisiconformal, the maps f̃n will be uni-
formly quasiconformal on all of C.
7.6. Arriving at a proof. Our newly extended maps now lead us to a
proof of Theorem 1.2.

Theorem 1.2. Fix any abstract triangulation K of a torus and any point
τ ′ ∈ H. Then combinatorially deforming K by hex refinement and combi-
natorial welding along an appropriate geodesic produces packable surfaces
which converge in the Teichmüller metric to τ ′.

Proof. Each f̃n is a quasiconformal map of C onto itself which fixes Z. The
dilatations of these maps are uniformly bounded. Thus by a standard nor-
mal families argument [16], a subsequence converges uniformly on compact
subsets of C to a quasiconformal homeomorphism f̃ . In particular, since
τn → τ∞, a subsequence converges uniformly on a compact set which con-
tains each parallelogram Ωτn . We will temporarily re-number and assume
the entire sequence {f̃n} converges uniformly there.

It follows from the Packing Lemma that f̃ restricted to Ωτ∞ is conformal.
Moreover, since each f̃n was extended by conjugation by the covering trans-
formations z 7→ z ±mτn, each f̃n projects to Rτn , and f̃ projects to a map
f on Rτ∞ .

Since Mn converges uniformly to the identity, Lemma 7.4 implies

fnϕnM−1
n (z+) → fϕε

τ∞,τ ′(z
+)(7.3)

uniformly on γ+
n .

But by Lemma 7.2,

fnϕnM−1
n (z+) → f(z−).(7.4)
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Combining (7.3) and (7.4), we see f satisfies the welding condition

f ϕε
τ∞,τ ′(z

+) = f(z−)

on γ. Thus f is a conformal welding for ϕε
τ∞,τ ′ . By the Theorem 3.2 [20],

Rτ∞ must then be the unique surface determined by ϕε
τ∞,τ ′ .

Notice that any subsequence of {fn} would satisfy the normality condi-
tions and the welding conditions in the limit. Thus every subsequence of the
original {fn} converges to the unique welding f . Consequently, the entire
original sequence must converge.

Finally, we let ε → 0. The theorem follows by a standard diagonalization
argument. �

7.7. Density in Teichmüller space. Not only are the packable tori dense
[8], but any one complex K generates a dense packable subset. This is even
more surprising in light of the fact that aside from the hex refinements which
occur evenly over the complex, welding essentially changes the combinatorics
of K only near a fixed geodesic.

Corollary 7.5. Let K be any abstract triangulation of a torus. The set of
all points in moduli space which support a packing for a welding deformation
of K is dense.

7.8. Approximating any bilipschitz welding. Finally notice that the
proof of Theorem 1.2 can be applied to any bilipschitz welding map, not
just the special ones defined in Section 3.2. Thus our discrete welding pro-
vides a means to compute the heretofore unknown target surface for a given
bilipschitz welding map.

Corollary 7.6. Let Rτ be any torus, γ ⊂ Rτ a simple closed geodesic, and
ϕ : γ → γ a bilipschitz homeomorphism with a fixed point v. Then there is
a sequence of packable welded tori converging in the Teichmüller metric to
a surface Rτ ′ obtainable from Rτ by welding by ϕ.
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