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We give a condition on a family of solutions of quotients of
an embedding problem which implies the embedding problem
has a solution. This shows, in particular, that to solve an
embedding problem associated to the maximal extension of
a number field unramified outside a fixed finite set of places,
it suffices to find a solution for each finite quotient of the
embedding problem. This statement is not true in general
over global function fields, but one can prove variants of it in
this case in which extra conditions on the embedding problems
or on the ramification of solutions are assumed.

1. Introduction.

Let C be a finite class of finite groups which is closed under taking subgroups,
quotients and group extensions. The category of C-profinite groups is the
category of topological groups Γ which are isomorphic topologically to the
inverse limit of their discrete finite quotients, each of which is in C. By an
embedding problem we will mean a diagram

Γ
↓

1 ← T ← G ← A ← 0
↓
1

(1.1)

of C-profinite groups and C-profinite group homomorphisms, in which the
vertical and horizontal sequences are exact. A solution of this embedding
problem is a continuous homomorphism h : Γ → G making the diagram
commute. Call h a proper solution if h is surjective.

Suppose C is a closed normal subgroup of G which is contained in A. One
then has a related embedding problem

Γ
↓

1 ← T ← G/C ← A/C ← 0.
↓
1

(1.2)
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The study of embedding problems with the following property was sug-
gested to us by D. Harbater and A. Tamagawa.

Definition 1.1. An embedding problem (1.1) will be said to be determined
by finite quotients if it has a (proper) solution whenever there is a (proper)
solution to (1.2) for each closed normal subgroup C of G of finite index in
A.

We will prove:

Theorem 1.2. Suppose T is finite. Let K be a global field, and let D be
a finite set of places of K. Define ΓK,D to be Galois group over K of the
maximal Galois extension of K unramified outside of D. The embedding
problem (1.1) is determined by finite quotients if Γ and G satisfy one of the
following conditions:

(a) For all positive integers n, Γ has only finitely many closed subgroups
of index n.

(b) Γ = ΓK,D and K is a number field.
(c) Γ = ΓK,D for a global function field K, and the group G is abelian with

a countable basis of open neighborhoods of the identity element.

Theorem 1.2(a) is a consequence of a compactness result, Theorem 2.2 of
Section 2. Part (b) of Theorem 1.2 follows from Part (a) and a theorem of
Hermite and Minkowski. Note that Part (b) is equivalent to the statement
that if (1.1) is not determined by finite quotients, but (1.2) has a (proper)
solution for each C, then the latter solutions must acquire ramification at
an unbounded set of places of K.

We discuss in Section 2 an example due to D. Haran, D. Harbater, F.
Pop and A. Tamagawa which shows (1.1) may not be determined by finite
quotients if Γ = ΓK,D and K is a global function field. Motivated by this
example, we show in Corollary 2.8 and Remark 2.9 that if one has a proper
solution to (1.2) for each C in the function field case, the non-existence of a
proper solution to (1.1) results from the fact that solutions to (1.2) acquire
too much ramification as C varies.

In Section 3 we compare condition (a) of Theorem 1.2 to a finiteness
condition Φp of Mazur on the group Γ. The proof of Theorem 1.2(c) is
given in Section 4 and relies on class field theory. An example given in
Remark 4.3 showing that (1.1) is not determined by finite quotients for
arbitrary profinite abelian groups Γ and G having a countable basis of open
neighborhoods of the identity.

We end this introduction with an open problem.

Question 1.3. Is Theorem 1.2(c) true if one drops the hypothesis that G
is abelian?
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2. A compactness theorem.

Let T be a collection of closed normal subgroups C of G which are contained
in A, and whose intersection is the identity element of G. Let SC be a
(possibly empty) set of solutions hC of the embedding problem (1.2)

Question 2.1. For which embedding problems (1.1) and collections
{SC}C∈T of solutions to (1.2) are the following conditions equivalent?

(1) There exists a (proper) solution h.
(2) For all C ∈ T , there exists a (proper) solution hC in SC .

Clearly (1) implies (2) if for each C ∈ T , SC is the set of all solutions to
(1.2). We will focus on finding sufficient conditions for (2) to imply (1).

If Γ1 and Γ2 are topological groups, let Homc(Γ1,Γ2) be the set of con-
tinuous homomorphisms from Γ1 to Γ2. Choose topologies on the sets
Homc(Γ, G/C) as C ranges over T with the property that the natural maps

πC
C′ : Homc(Γ, G/C ′)→ Homc(Γ, G/C)

for C,C ′ ∈ T and C ′ ⊂ C are continuous. The usual choice is the uni-
form convergence topology, in which a countable sequence {fi}i of func-
tions in Homc(Γ, G/C) converges to a function f if it does so uniformly
on compact subsets of Γ. If Γ is compact and G/C is discrete, then the
uniform convergence topology on Homc(Γ, G/C) is the discrete topology.
However, there are other choices than the uniform convergence topology on
the Homc(Γ, G/C) which one could consider.

Theorem 2.2. Condition (2) of Question 2.1 implies Condition (1) if T
and {SC}C∈T have the following properties:

(a) The intersection of any finite set of elements of T contains an element
of T .

(b) SC is a compact subset of Homc(Γ, G/C) for all C ∈ T .
(c) If C,C ′ ∈ T and C ′ ⊂ C then πC

C′(SC′) ⊂ SC .

Proof. The elements of T form an inverse system under inclusion. Let
{C1, . . . , Cn} be a finite subset of T . By Condition (a) of Theorem 2.2,
there is a C ∈ T which is a subset of ∩n

i=1Ci. We may assume (2) of Ques-
tion 2.1 holds, so SC is nonempty. Each element of SC gives an element of
the finite inverse limit of the SCi as i ranges from 1 to n because of assump-
tion (c) of Theorem 2.2. The compactness assumption (b) then implies the
inverse limit of SC over all C ∈ T is nonempty.

This produces a continuous homomorphism

f : Γ→ lim
←
C

G/C.(2.1)



34 T. CHINBURG AND D. GLASS

We now construct a continuous homomorphism

γ : lim
←
C

G/C → G.(2.2)

Write G as the inverse limit of finite quotients G/Ni. Pick one such G/Ni.
Since we assumed that ∩C∈T C = {e}, there is a finite subset of T whose
intersection is contained in Ni. Hence Condition (a) of Theorem 2.2 implies
C ⊂ Ni for some C ∈ T . We now send an element {gC}C of the inverse
limit on the left side of (2.2) to the element {hi}i of G, where for each i we
choose a group C ∈ T such that C ⊂ Ni and we let hi be the image of gC

in G/Ni. The composition of f in (2.1) and γ in (2.2) gives us a solution h
to the embedding problem (1.1).

We still need to show that h = γ ◦f is surjective if f in (2.1) is the inverse
limit of surjections fC : Γ→ G/C. Choose g ∈ G and write it as the inverse
limit of elements gC ∈ G/C as C ranges over T . We know that f−1

C (gC) is
a nonempty compact subset of Γ for each C. Because of Assumption (a) of
Theorem 2.2, the intersection of f−1

C (gC) over any finite set of C’s contained
in T is nonempty. Therefore h−1(g) = ∩C∈T f

−1
C (gC) is nonempty, so h is

surjective.

Example 2.3. Suppose T is a finite group and that T is the set of all
closed normal subgroups C of G of finite index in A. Then Condition (a)
of Theorem 2.2 holds. If all the groups Homc(Γ, G/C) for C ∈ T are given
the discrete topology, then Condition (b) of Theorem 2.2 is equivalent to
SC being finite for all such C. If SC is the set of all solutions of (1.2) then
Condition (c) of Theorem 2.2 holds.

The proof of Theorem 1.2(a) is now immediate from this example and
Theorem 2.2. Part (b) of Theorem 1.2 is implied by Part (a), since by a
Theorem of of Hermite and Minkowski, there are only finitely many exten-
sions of a number field K which have a given degree and are unramified
outside a fixed finite set of places D of K.

The following example of Tamagawa motivated this note, and follows
readily from classfield theory. It illustrates an embedding problem (1.1)
which is not determined by finite quotients because proper solutions to (1.2)
must acquire ramification at an unbounded number of places.

Example 2.4 (Tamagawa). Suppose G is the direct sum of two copies of
the p-adic integers Zp, T is trivial and Γ = Gal (Q/Q). Then (1.1) has no
proper solutions, but (1.2) has a proper solution for each subgroup C of
finite index in G.

We are grateful to D. Haran, D. Harbater, F. Pop and A. Tamagawa for
the following example which shows Theorem 1.2(b) does not hold in general
if K is a global function field.
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Example 2.5 (Haran, Harbater, Pop, Tamagawa). Let G be the direct
product of an uncountable number of copies of Z/p, and give G the prod-
uct topology. Let T be trivial, and let K be Fp(t). Let D have a single
element consisting of the place of Fp(t) where t has normalized absolute
value p. Then one can construct a proper solution to each finite embed-
ding problem (1.2) using a compositum of Artin-Schreier covers of the form
xp − x = j(t) ∈ Fp[t], but one cannot solve the embedding problem (1.1).

We would like to explain how even in the function field case, Theorem 2.2
shows the non-existence of a proper solution to (1.1) results from the fact
that solutions to (1.2) acquire too much ramification as C varies.

Let L/K be a finite separable extension of global function fields. The
relative discriminant dL/K is an effective divisor of K defined locally as in
[2, §III.3]. Thus for each place v of K, the multiplicity of v in dL/K is the
valuation at v of the discriminant d(Rv/Av), where Av is the local ring of v
in K and Rv is the integral closure of Av in L. (We do not take completions,
so Av is a discrete valuation ring and Rv is a semi-local Dedekind ring.)

For the convenience of the reader we will include a proof of the following
well-known result.

Lemma 2.6. Given K, an effective divisor B on K and an integer n, there
are only finitely many separable extensions L of K of degree n for which
dL/K is bounded above by B.

Proof. We can reduce to considering only those L for which K is the only
proper subfield of L which contains K. By [4, Cor. to Prop. VIII.14], the
genus g(L) of L is bounded by a function of K, n and deg(B). Let v be
a place of K, and let d be the effective divisor of L associated to v. By
applying the Riemann-Roch Theorem to K and L and multiples of v and d,
respectively, we can conclude the following. There is an integer t bounded
above by a function of v, K, n and B together with a function f ∈ L not in
K such that div (f)+ td is effective. Then L = K(f). The valuations of f at
places over v (resp. not over v) in the Galois closure of L over K are bounded
below by functions which depend only on n, K and B (resp. are bounded
below by 0). Taking elementary symmetric functions in the conjugates of
f , we conclude that f is a root of a polynomial over K of degree at most
n whose coefficients have divisors whose positive and negative parts have
degrees bounded by functions of n, K and B. There are only finitely many
such polynomials, so there are only finitely many L.

Definition 2.7. Let Ksep be a separable closure of K, and let Γ =
Gal (Ksep/K). Suppose fC is a (proper) solution of (1.2) and G/C is a
finite discrete quotient of G. Let L = (Ksep)ker(fC) be the Galois extension
of K associated to fC , so Gal (L/K) is a subgroup of G/C. We will say fC
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is bounded by an effective divisor B = B(C) on K if dL/K ≤ B(C). By
Lemma 2.6, the set SC,B(C) of all fC bounded by B(C) is finite.

Corollary 2.8. Suppose that K is a global function field, T is finite, and
that Γ = Gal (Ksep/K). Let T be the set of all closed normal subgroups C of
G which are of finite index in A. Suppose that for C ∈ T , there is a (proper)
solution to (1.2). Then the following two statements are equivalent:

(1) There is a (proper) solution to (1.1).
(2) There is a function B from T to effective divisors on K together with

a nonempty subset SC of (proper) elements of SC,B(C) for each C ∈ T
such that πC

C′(SC′) ⊂ SC whenever C ′ ⊂ C and C ′, C ∈ T .

Proof. If there is a (proper) solution h to (1.1), then we can take SC to be
the single element set consisting of the induced (proper) solution to (1.2).
Clearly SC satisfies (2) of Corollary 2.8 for some effective divisor B(C).
Conversely, suppose that there is a B and a subset SC for C ∈ T as in (2)
of Corollary 2.8. Then SC is finite by Lemma 2.6, so Theorem 2.2 produces
a (proper) solution to (1.1).

Remark 2.9. One can view Corollary 2.8 as saying that if (1.1) has no
solution, then there is no way to set discriminant constraints on the embed-
ding problem (1.2) for each C ∈ T in such a way that these constraints can
be satisfied consistently as one varies C. This could be rephrased in terms
of higher ramification groups using the connection between discriminants
of finite Galois extensions and higher ramification groups (cf. [2, §III.4 and
Prop. IV.4]).

It is a natural question whether (2) of Corollary 2.8 can be replaced by
the following stronger condition:
(2′) There is a function B from T to effective divisors on K such that

πC
C′(SC′,B(C′)) ⊂ SC,B(C) whenever C ′ ⊂ C and C ′, C ∈ T .

The following counterexample shows that (1) of Corollary 2.8 need not imply
(2′).

Let N be the compositum over K = Fp(t) of all cyclic extensions of degree
p which are ramified at the place of K where t has normalized absolute
value p. Let Γ = G = Gal (N/K) and let T be the trivial group, so that
the identity map h is a proper solution of the embedding problem (1.1).
Then Γ is topologically isomorphic to the product of a countable number of
copies of Z/pZ, since it is isomorphic to an inverse limit of (Z/pZ)m over
positive integers m with respect to the natural projection maps. Suppose
B is a function from C ∈ T to effective divisors of K. Each proper f ∈
SC,B(C) determines a Galois G/C extension Nf of K. Suppose C ′, C ∈ T ,
C ′ ⊂ C 6= Γ, f ′ is a proper element of SC′,B(C′) and that L is a subfield of
degree p over K inside Nf ′ . Then L corresponds to an index p subgroup
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H of G/C ′. Since the natural projection µ : G/C ′ → G/C is a surjection
of nontrivial finite dimensional vector spaces over Z/pZ, we can find an
automorphism of G/C ′ which sends ker(µ) into H. Hence composing f ′

with a suitable automorphism of G/C ′ gives a proper element f ′′ ∈ SC,B(C)

such that when f = πC
C′(f ′′), the field L is a subfield of Nf . There is a

function t(C ′) which increases to positive infinity with [G : C ′] such that for
each proper f ′ ∈ SC′,B(C′) there is a subfield L of Nf ′ such that [L : K] = p

and deg(dL/K) ≥ t(C ′). Thus there must be a C ′ such that πC
C′(SC′,B(C′))

is not contained in SC,B(C), since dL/K is bounded if f ∈ SC,B(C) is proper
and L is a subfield of Nf with [L : K] = p.

3. Finiteness conditions.

Let Γ be a profinite group, and let p be a prime. In [1, §1.1], Mazur specifies
that Γ satisfies the finiteness condition Φp if for every open subgroup Γ0 of
finite index in Γ, the following equivalent conditions hold:

(a) The pro-p completion of Γ0 is topologically finitely generated, or
(b) The abelianized pro-p completion of Γ0, given its natural Zp-module

structure, is of finite type over Zp, or
(c) There are only a finite number of continuous homomorphisms from Γ0

to Fp.
(Note that a subgroup of finite index in Γ is open if and only if it is closed.)

Condition (ii) of the following Proposition is the hypothesis of Theo-
rem 1.2(a).

Proposition 3.1. Consider the following conditions on Γ:
(i) Γ is topologically finitely generated.
(ii) For each positive integer n, Γ has only finitely many closed subgroups

of index n.
(iii) Γ satisfies the finiteness condition Φp for all primes p.

Then (i) implies (ii), and (ii) implies (iii), but neither converse implication
holds.

Proof. Clearly Condition (i) implies (ii). The converse is not true, as seen
by taking Γ to be the product of l copies of Z/lZ as l ranges over all primes.
Condition (ii) implies the same condition holds for each subgroup Γ0 of
finite index in Γ, so (ii) implies (iii). We now construct an example in
which (iii) holds but (ii) does not. Let J be a finite nonabelian simple
group. Let Γ be the direct product of a countable number of copies of J .
There are a countable set of surjective projections Γ → J having distinct
kernels, so Γ has infinitely many subgroups of index #J . We claim that Γ
satisfies condition Φp for all p. To show this, let Γ0 be an open subgroup
of finite index in Γ. By the definition of Γ as a topological group, Γ0 must
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contain a closed normal subgroup H of Γ which is isomorphic to the product
of a countable number of copies of J such that Γ/H is isomorphic to the
product of a finite number of copies of J . Any homomorphism from J to Fp

must be trivial, since J is a finite nonabelian simple group. Since H is the
direct product of copies of J , we conclude that Homc(H,Fp) contains only
the trivial homomorphism. Thus Homc(Γ0,Fp) = Homc(Γ0/H,Fp) is finite
because Γ0/H is finite. This proves Γ satisfies condition (iii) but not (ii).

We end this section by showing that one cannot replace the hypothesis of
Theorem 1.2(a) by the requirement that Γ satisfy Φp for all primes p.

Counterxample 3.2. Let T be the trivial group. Let Γ (resp. G) be the
product of a countable (resp. uncountable) number of copies of a fixed non-
abelian finite simple group J . Give Γ and G the product topology. It was
shown in Proposition 3.1 that Γ satisfies condition Φp for all primes p. Each
discrete finite quotient G/C of G is a quotient of a finite product of copies of
J , and one can find a proper solution of the associated embedding problem
(1.2). However, one cannot find a proper solution of the embedding problem
(1.1), since G has uncountably many distinct discrete quotients isomorphic
to J while Γ does not.

It is an interesting open question whether one can find counterexamples
of this kind in which both Γ and G are countably topologically generated.

4. The abelian case.

Throughout this section we will suppose K is a global function field and that
D is a finite set of places of K. Let Γ = ΓK,D. To prove Theorem 1.2(c),
we need the following description of the topological type of Γab.

Theorem 4.1. As a topological group, Γab is isomorphic to Ẑ×W if D is
empty and to Ẑ×W ×

∏∞
i=1 Zp otherwise, where W is a finite group and Ẑ

is the profinite completion of Z.

For lack of a suitable reference we will give a proof of this Theorem. Define
J1

K to be the group of ideles of norm 1. By class field theory [3, §5-6] we
have an exact sequence

0−→
J1

K

K∗
∏

v/∈D O
∗
v

−→Γab µ−→Ẑ→ 0(4.1)

in which µ results from restricting automorphisms to the maximal constant
field extension of K. Let C = CK be the smooth projective curve with
function field K. Define

Pic0
D(C) =

J1
K

K∗ ·
∏

v∈D(1 + πvOv) ·
∏

v/∈D O
∗
v

(4.2)
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where πv is a uniformizing parameter in Ov. We then have an exact sequence

0→
∏
v∈D

(1 + πvOv)→
J1

K

K∗
∏

v/∈D O
∗
v

→ Pic0
D(C)→ 0(4.3)

in which Pic0
D(C) is a finite abelian group. By [4, Prop. II.10]1 , the mul-

tiplicative group (1 + πvOv) is topologically isomorphic to
∏∞

i=1 Zp for each
place v of K. Since one can find a topological splitting of (4.1) by lifting
any generator of Ẑ to the middle term of this sequence, we see from (4.1)
and (4.3) that Theorem 4.1 now results from the following Lemma.

Lemma 4.2. Suppose there is an exact sequence

0→ E → A→ B → 0(4.4)

of abelian topological groups in which E =
∏∞

i=1 Zp and B is finite. Then A
is topologically isomorphic to a product E′ × B′ in which E′ is isomorphic
to

∏∞
i=1 Zp and B′ is finite.

Proof. The torsion subgroup A0 of A is finite, and A/A0 is a torsion free
profinite group which is the extension of a finite p-group by E. Since E is a
projective object in the category of profinite groups, it will suffice to show
that A/A0 is isomorphic to E. On replacing A by A/A0, we can thus reduce
to the case in which A is torsion free and B is a finite p-group. By induction
on the order of B, we can reduce further to the case in which B has order p.
For j ≥ 1, let ψj : E → Zp be the projection of E onto its jth direct factor.
Since A is torsion free, pA is contained in E but not in pE. Hence there
is a j ≥ 1 so that a → ψj(pa) defines a surjection τ : A → Zp inducing an
isomorphism A/E → Zp/pZp. This implies the kernel of τ is contained in
E, and must in fact be E′ =

∏∞
1≤i6=j Zp. Since the resulting exact sequence

of profinite groups

0−→E′−→A τ−→Zp−→0

must split, we find that A is isomorphic to E.

Proof of Theorem 1.2(c).
We assume G is a profinite abelian group having a countable basis of open

neighborhoods of the identity. By Theorem 4.1, the embedding problem
(1.1) has the form

Γab = Ẑ×W × E
↓ δ

1 ← T ← G ← A ← 0
↓
1

(4.5)

1The authors would like to thank Doug Ulmer for this reference.
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in which W is finite and E is the trivial group or is isomorphic to
∏∞

i=1 Zp.
We assume that for every open normal subgroup C of G which is contained
in A we can solve the embedding problem (1.2). We must show the existence
of a map h : Γab → G which lifts the map δ of the embedding problem. It
will suffice to construct the restriction of h to each factor of Γab = Ẑ×W×E.

Consider first the factor W . The inverse limit of the sets Hom(W,G/C) =
Homc(W,G/C) as C varies is Homc(W,G), where W and Homc(W,G) have
the discrete topology. Furthermore, because W and G/C are both finite
sets, Homc(W,G/C) if finite. By hypothesis, the subset of Homc(W,G/C)
consisting of lifts of the restriction δW of δ to W is thus finite and not
empty. Hence the inverse limit of these subsets over C is not empty, and a
continuous lift hW : W → G of δW exists.

For the Ẑ factor, we can construct a continuous lift hẐ : Ẑ → G of
the restriction of δ to Ẑ by choosing any lift to G of the image in T of a
topological generator of Ẑ.

To deal with the E factor, we let hE be trivial if E is trivial. Suppose
E =

∏∞
i=1 Zp. Since the restriction δE of δ to E is continuous, it is trivial

on En =
∏∞

i=n+1 Zp for some n. By lifting from T to G images under δ
of n topological generators of

∏n
i=1 Zp, we can construct a continuous lift

h′E :
∏n

i=1 Zp → G of the restriction of δ to
∏n

i=1 Zp. Extending h′E to be
trivial on En produces a continuous lift hE : E → G of δE .

Putting together the lifts hW , hE and hẐ leads to a continuous lift h :
Γab → G of δ. We now suppose that for all C as above, there exists a
surjective lifting hC : Γab → G/C. We must show there is a surjective
lifting h0 : Γab → G. It will suffice to construct continuous surjections
h′ : Γab

p′ → Gp′ and hp : Γab
p → Gp which lift the restrictions δ′ and δp of δ to

the prime-to-p part Γab
p′ and the p-part Γab

p of Γab, respectively.
The prime-to-p part of hC gives a surjection h′C : Γab

p′ = Wp′ × Ẑp′ →
(G/C)p′ for each C. There are only finitely many such surjections, since
Γab

p′ is topologically finitely generated and (G/C)p′ is finite. Thus by the
usual argument concerning inverse limit of finite sets, there is a surjective
continuous lift h′ : Γp′ → Gp′ of δ′.

We now construct hp. If E is trivial, then Γab
p = Wp × Zp, and the

argument is the same as for h′. Suppose now that E is not trivial, so that
E =

∏∞
i=1 Zp. We have constructed above one lift h of δ which is trivial on

En =
∏∞

i=n Zp for some n. The p-primary part Ap of A has a countable basis
of open neighborhoods of 0, and is an abelian pro-p group. Hence there is a
continuous surjection λ : En → Ap. Extend λ to Γab = Ẑ×W × (

∏n
i=1 Zp)×

En by making λ trivial on the other factors of Γab. Define hp : Γab
p → Gp to

be the restriction of h+ λ to Γab
p . This hp also lifts δp because λ has image

in A. The group hp(Γab
p ) contains (h + λ)(En) = λ(En) = Ap, and surjects
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onto Tp because δ is surjective. Hence hp(Γab
p ) = Gp, which completes the

proof of Theorem 1.2(c).

Remark 4.3. In view of Theorem 1.2(c) and Question 1.3, it is natural to
ask if all embedding problems (1.1) defined by profinite groups G and Γ hav-
ing a countable basis of open neighborhoods of the identity are determined
by finite quotients. The following example shows this is not the case even
when G and Γ are abelian. Let T be the trivial group, G =

∏∞
i=1 Zp, and

Γ =
∏∞

j=1(
∏∞

s=1 Z/pj). Then (1.1) has no proper solution, but (1.2) has a
proper solution for each open subgroup C of finite index in G.

Acknowledgement. The authors would like to thank the referee for several
useful comments.
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