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Under typical physical conditions, the solution of the cap-
illarity equation for a tube of circular section D will always
exceed over D the solution obtained for a concentric tube of
the same material and larger radius. We address here a ques-
tion raised by M. Miranda, as to whether a solution over a
general domain D0 will exceed, over that section, the solution
over any domain D1 strictly containing D0. We show that
whenever a domain D1 admits a zero gravity solution surface
in a variational sense for the given contact angle, and has at
some point a boundary curvature inward directed and exceed-
ing the ratio of perimeter to area of the section, there is then
a subdomain D0 for which a negative answer appears for all
sufficiently small gravity g; that occurs with height differences
inversely proportional to g, uniformly over D0.

Under other conditions, positive answers appear. We pro-
vide an example in which the limiting behavior as g → 0
reverses in a discontinuous way, with smooth infinitesimal
change of ∂D0. Remarkably, the discontinuous change occurs
at a circular cylinder configuration, for which one normally
expects stable behavior.

The discussion includes some results that seem to have gen-
eral geometric interest; notably, we characterize in Theorem 5
all convex domains containing a disk, and for which the ratio
of perimeter to area is not less than for the disk.

1.

We are interested in solutions u(x), over a plane domain D, of the capillarity
equation

div Tu = Bu+ 2H, Tu ≡ Du√
1 + |Du|2

(1)

for the height of the free surface interface S in a vertical capillary tube of
section D, positioned in a gravity field. We interpret (1) nondimensionally in
terms of the “Bond number” B = ρga2/σ, with ρ = density change across S,
g = gravitational acceleration, σ = surface tension; here a is a representative
length, which is taken as the unit for scaling the position vector x and the
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height u(x). The constant H is to be determined by an eventual volume
constraint.

On the boundary Σ = ∂D with exterior normal ν the transversality con-
dition

ν · Tu = cos γ(2)

is imposed. Geometrically, the surface is required to meet the vertical bound-
ing walls of the tube over Σ in a (prescribed) constant angle γ. We may
always suppose 0 ≤ γ < π/2; the complementary case π/2 < γ ≤ π trans-
forms to that one on replacing u and H by their negatives. If γ = π/2 then
under the conditions we will impose, the unique solution of (1), (2) is the
trivial solution u ≡ const.

Our attention will focus on solutions of (1) without volume constraint, in
downward directed gravity fields, with the denser fluid below the surface,
that is, on solutions of

div Tu = Bu(3)

with B > 0. Solutions of (3) represent the height of the free surface in a
vertical capillary tube dipped into an infinite fluid reservoir, with surface
height u = 0 at infinity.

About twenty five years ago Mario Miranda raised in informal conversa-
tion the question, as to whether under these conditions a tube of section D0

will raise liquid to a greater height over its section than will a tube of section
D1 ⊃⊃ D0. In [1] an example is given under which a local singular behavior
at a corner point of D1 induces a negative answer to the question relative
to a particular subdomain D0, at least over some open subset of D0. Some
conditions for a positive answer to the question appear in [4], Sec. 5.3. In
Sec. 5.4 of [4] another example is given in which D1 raises a larger volume
over D0 than does D0 itself, under conditions for which both solutions are
smooth and bounded.

In [10], the latter author re-examined the question in the context of the
ratios of the perimeters p to the areas A of the domains, with emphasis
on configurations for which B is small. He was led to height relationships
depending on the ratios of p to A, rather than on inclusion properties of the
domains. The present paper pursues that approach further, and develops
also other relationships that do derive from geometric inclusion properties;
the juxtaposition of results leads to some consequences, notably for the
Miranda question, that seem to us remarkable and unexpected.

If B = 0, Equation (1) becomes

div Tu = 2H.(4)

Under the boundary condition (2) we find from the divergence theorem that
2HA = p cos γ. Thus, the value of H cannot be imposed, but is determined
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by the geometry of the base domain. The determination is independent of
volume, and a consequence of that is that the shape of the surface interface
is the same for every volume.

Every strict solution of (1), (2) in D satisfies the variational condition∫
D

(∇η · Tu+ (Bu+ 2H)η) dx−
∮

∂D
η cos γ ds = 0(5)

for all η ∈ Q(D) ≡ H1,1(D) ∩ L∞(D). If B > 0, then under fairly general
conditions solutions of (5) will exist, and will in fact be strict solutions
of (1), (2) when D ∈ C2+α, see, e.g., [3], [5], [7], [8], [9], [15], [16]. In
the material below we will encounter domains that are only piecewise of
that smoothness. For such domains, the existence of solutions of (5) is
nevertheless available [3, 5, 7] when B > 0, and we will not require further
information on boundary smoothness.

As is known, when B = 0 solutions of (4) (or even of (5)) that are regular
in D do not in general exist under the boundary condition (2); existence can
fail even for analytic convex D. Solutions do however exist in many cases of
interest; for such configurations, we find:

Theorem 1. Let u(x) be a “variational solution” of (3), (2) in D, in the
sense that it is of class C2 in D and that∫

D
(∇η · Tu+Buη) dx−

∮
∂D
η cos γ = 0(6)

for every η ∈ Q(D), and suppose B > 0. Suppose there exists a variational
solution U(x) of (4), (2) in D, in the sense∫

D
(∇η · TU + 2Hη) dx−

∮
∂D
η cos γ ds = 0(7)

for every η ∈ Q(D). If U(x) admits lower and upper bounds m, M in D,
then ∣∣∣u− p

BA
cos γ

∣∣∣ < M −m(8)

throughout D.

Proof. Choosing η ≡ 1, we obtain from (7) that 2HA = p cos γ, thus deter-
mining H. From (6) and (7) we find∫

D
(∇η · (Tu− TU) +B(u− U)η) dx =

∫
D

(2H −BU)η dx(9)

for every η ∈ Q(D). If we replace U in (9) by U + (2H/B) − m, then
(9) continues to hold, and the integral on the left will be non-positive for
every non-negative η ∈ Q(D). From Lemma 3 of [7] we conclude u <
U +(2H/B)−m < (2H/B)+M −m. Similarly, we may make that integral
non-negative for all such η on replacing U by U + (2H/B) − M . There
follows u > U+(2H/B)−M > (2H/B)− (M−m), as was to be shown. �
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This result extends a reasoning of D. Siegel [14] in the case of solutions
smooth to the boundary. In interpreting the result, it should be noted that
in view of (3), (p cos γ)/BA is exactly the mean value of the solution u(x)
over the domain D. Note also that the bound in (8) is independent of B,
for all positive B. We remark that when a bounded variational solution of
(4), (2) fails to exist, then the left side of (8) will in general increase without
bound, as B → 0.

In order to apply Theorem 1, one needs criteria for existence and bound-
edness of variational solutions of (4), (2). For reference, we state here the
following necessary and sufficient condition, established in [5] and in [4]
Chapter 7, for existence in a piecewise smooth D of a “variational” solution
of (4) (2), that is smooth interior to D and assumes the data γ in the weak
generalized sense imposed by (7).

Property A. A solution u(x) of (5) with B = 0 exists if and only if, for
every subdomain D∗ ⊂ D, such that D∗ 6= ∅, D and such that D∗ is bounded
on Σ by subarcs Σ∗ ⊂ Σ and within D by subarcs Γ∗ of semicircles of radius
A/(p cos γ) with the properties:

i) The curvature vector of each Γ∗ is directed exterior to D∗, and
ii) each Γ∗ meets Σ, either in the angle γ measured within D∗ or else at

re-entrant corner points of Σ,
there holds

Φ(D∗; γ) = |Γ∗| − |Σ∗| cos γ +
p

A
|D∗| cos γ > 0.(10)

Every such solution is smooth interior to D, and uniquely determined up to
an additive constant.

The utility of (10) derives largely from the circumstance that in configu-
rations typically encountered only a finite number N of arcs Γ∗ can be found
that meet the geometrical requirements, and thus only a finite number of
cases need be examined. With reference to our particular needs below, we
note that if D is a rectangle and if γ ≥ π/4, then N = 0. The requirements
are in this case vacuously satisfied, and we conclude that a solution exists.
If γ < π/4, then subdomains bounded as indicated can be found for which
Φ < 0, and no solution exists.

In conjunction with the above result, one has ([6]):

Property B. Suppose that at all “corner” points at which ∂D consists
locally of arcs forming a protruding angle 2α < π, ∂D lies locally exterior
to a corner consisting of linear segments that meet in angle 2α. Then every
variational solution of (4), (2) in D is bounded.

The condition indicated here is chosen for convenience in verification; for
a more precise condition, cf. Hypothesis α(γ) in [6]. In connection with this
property, we note that if α+γ < π/2 at any corner point, then no variational
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solution of (4), (2) can exist in D. This can be seen by examining (10) for
the case in which D∗ is the region cut off at the vertex of the corner by a
straight segment orthogonal to the angle bisector.

2.

We are now prepared for applications to Miranda’s question. From Theo-
rem 1 follows immediately:

Theorem 2. Let D0, D1 be plane domains with perimeters p0, p1 and areas
A0, A1, and let u0(x), u1(x) be variational solutions of (3) in the respective
domains, corresponding to boundary angle γ. Suppose there exist variational
solutions of (4) in D0, D1, bounded below and above by m0, M0 and by
m1, M1. Then

inf
D0

u0 − sup
D1

u1 >
1
B

(
p0

A0
− p1

A1

)
cos γ − (M0 +M1) + (m0 +m1)(11)

inf
D1

u1 − sup
D0

u0 >
1
B

(
p1

A1
− p0

A0

)
cos γ − (M0 +M1) + (m0 +m1).

Corollary 2.1. Under the hypotheses of Theorem 2, suppose D0 ⊂ D1. If
p0

A0
> p1

A1
then the Miranda question has a positive answer for all small

enough B. If p0

A0
< p1

A1
then the Miranda question has a negative answer for

all small enough B.

We emphasize that the inclusion relation D0 ⊂ D1 is not necessary for the
inequalities (11), and thus the content of the theorem applies to a much more
general class of configurations than were envisaged in Miranda’s original
question.

It is not difficult to find examples in which the former eventuality of
Corollary 2.1 holds. Notably, for any domain D0 that admits a bounded
variational solution of (4) and (2), an appropriate D1 ⊃ D0 can be obtained
by similarity transformation. Further, if D1 is a disk then by the isoperi-
metric inequality any proper subdomain admitting a variational solution of
(4) and (2) will serve as D0. Examples for the second eventuality are less
evident; however, one has the following general theorem and corollary:

Theorem 3. Let D be a domain that is piecewise of class C2+α, having
perimeter p and area A. Suppose there exists a point q ∈ ∂D which is
either the vertex of a protruding corner or else a smooth point at which the
boundary curvature κ is directed inward and for which κ(q) > p/A. Then
there exists a subdomain Dε ⊂ D, such that pε/Aε < p/A.

Proof. Suppose first that q is a point of boundary smoothness, so that we
may describe ∂D locally in the form

y =
κ

2
x2 + o(x2), with y′ = κx+ o(x).(12)
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Figure 1. Proof of Theorem 3.

For ε > 0 and κε < κ to be determined, we introduce a new arc Σε of the
form

y = ε+
κε

2
x2(13)

as in Figure 1, cutting off an arc Σ̂ε on ∂D. We form the domain Dε on
replacing Σ̂ε by Σε and removing the region between the arcs.

For the changes in p and in A for small ε, we find up to terms of smaller
order in ε

δp ≈ − (2ε)3/2

3
√
κ− κε

(κ+ κε), δA ≈ − (2ε)3/2

3
√
κ− κε

· 2.(14)

Thus for small ε

δ
( p
A

)
=

1
A

{
δp−

( p
A

)
δA

}
≈ (2ε)3/2

3A
√
κ− κε

{
−(κ+ κε) + 2

p

A

}
.(15)

By hypothesis, we may choose κε < κ and large enough that −(κ + κε) +
2p/A < 0; the assertion then follows on choosing ε small enough.

If q is the vertex of a protruding corner, we may cut off a tip of the corner
with a straight segment orthogonal to the angle bisector at q. The assertion
then follows by an analogous, somewhat simpler reasoning. �

Corollary 3.1. Under the hypotheses of Theorem 3, suppose that for some
particular value of γ > 0 there exists a variational solution of (4), (2) in D.
Suppose further that α+γ > π/2 at each vertex point. Then the construction
of the theorem can be so effected that a variational solution of (4), (2) exists
in Dε, and thus, for B small enough, D will lift liquid to a higher level over
the entire section Dε than does Dε itself.
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Proof. Assume for contradiction that a sequence of constructions as indi-
cated, with ε → 0, could be found, for which no such variational solution
exists. By Property A above, for each ε in the sequence, there would exist
a subdomain D∗(ε) as indicated, for which Φ(D∗(ε); γ) ≤ 0. The radius
of each of the subarcs of semicircles Γ∗(ε) that bound D∗(ε) within D(ε)
is Aε/2pε cos γ which remains bounded from zero as ε → 0. Since γ > 0,
since each arc Γ∗(ε) must start and end at a boundary point, since the angle
between Σε and Σ tends to zero, and since α+ γ > π/2 at each vertex, each
Γ∗(ε) must subtend a length bounded from zero on ∂Dε. Thus, there can be
at most a fixed finite number N of such arcs, for all ε in the sequence. A sub-
sequence exists, for which all the arcs Γ∗ converge in position and in radius.
Since for each D∗(ε) there holds Φ(D∗; γ) ≤ 0, the same inequality must
hold in the limit configuration. It thus remains only to show that the limit
configuration is not degenerate, that is, that limD∗(ε) 6= ∅, D. Degeneracy
can occur only if all the arcs move into an arbitrarily small neighborhood of
∂D. That cannot happen, for the reasons just given. �

We note that Theorem 3 gives no information when the outer domain is
a disk, as in that case there holds κ(q) = p/(2A) < p/A at all boundary
points. In fact, a disk yields a positive answer to Miranda’s question relative
to any piecewise smooth subdomain (Theorem 5.8 in [4]).

We turn now to further conditions for a positive answer. Siegel [13] pro-
vided two kinds of particular conditions under which the answer is positive
relative to an inner disk; one of these is especially adapted to our needs.
Preliminary to stating the theorem, we observe that for any rotationally
symmetric solution u(r) of (3) in a disk centered at the origin there holds

r
ur√

1 + u2
r

≡ r sinψ = B

∫ r

0
ρu(ρ) dρ(16)

where ψ(r) is the inclination angle of the profile curve u(r) with the posi-
tively directed r-axis. From (16) we see that the sign of sinψ is that of u(0),
and thus under our hypothesis 0 ≤ γ < π/2 there holds u(0) > 0. We see
that u(r) is increasing, and thus for r > 0 and within the range of existence
we have

u(0)
2

<
sinψ(r)
Br

<
u(r)
2
.(17)

From (17) we conclude the existence of a maximal disk D̂0 of radius R̂0 <
2/Bu(0) in which such a solution can be defined; there holds sinψ(r) → 1
(u′(r) →∞) as r → R̂0.

Let D0 be a disk of radius R0 > 0, u0(x) a solution of (3) in D0 under the
boundary condition (2) on Σ0 = ∂D0. We observe first that u0(x) is radial,
since a radial solution exists as is proved in [9], and the solution is unique by
Theorem 5.1 of [4]. With some abuse of notation, we denote this solution by
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u0(r). By the above remarks u0(r) can be extended to a maximal domain
D̂0 of radius R̂0 ≥ R0. The following result is a slightly sharpened version of
the corresponding statement in [13] Theorem 20. The proof we give differs
from that in [13] and brings out in somewhat more detail the behavior of
the solutions.

Theorem 4. Let D0 be a disk, u0(r) the solution of (3) in D0 under the
boundary condition (2) on Σ0 = ∂D0. Let D̂0 be the maximal domain for
this solution (see above). Let D1 be any domain that is piecewise of class C1,
such that D1∩D̂0 is star-shaped relative to the center of D0 and such that the
tangent line at any smooth point of its boundary does not enter D0. Let u1(x)
satisfy (3) in D1∩D̂0 and (2) at all smooth points of Σ̂1 = ∂(D1∩D̂0)∩∂D1.
Then u0 > u1 in D1 ∩ D̂0, or else D1 = D̂0 and u1 ≡ u0.

In this theorem, note that the shape of ∂D1 at points exterior to D̂0, and
the boundary data achieved by u1(x) at such points, are irrelevant to the
result.

Proof of Theorem 4. Let R0 be the radius of D0, let U0(r) be the height of
a lower spherical cap over D0, satisfying (2) on Σ0. The cap is unique up to
an additive constant, and it extends to a lower hemisphere over a disk D+

0

of radius R+
0 ≥ R0.

Lemma 4.1. D+
0 ⊇ D̂0.

Proof. Let ϕ be the inclination angle of the profile curve U0(r). At r =
R0, we have by construction ψ = ϕ. Thus, the latitudinal curvature kl =
(sinψ)/r of the surface u0(r) equals at that point the latitudinal curvature
κl of the surface U0(r). But U0(r) represents a sphere, so that κl equals the
meridional curvature κm, and both quantities are independent of r. With
regard to u0(r), we may write from (16)

kl + km ≡ sinψ
r

+ (sinψ)r = Bu0(r).(18)

There follows from (17) and from (18) that km(r) ≡ (sinψ)r > kl(r) on the
entire trajectory, and thus, since kl(R0) = κl, we have km(R0) > κl = κm =
(sinϕ)r. From kl = (sinψ)/r and km = (sinψ)r we have by (16)

k′l = B
u0(r)
r

− 2
sinψ
r2

> 0(19)

by (17), and thus

km(r) ≡ (sinψ)r > (sinϕ)r ≡ κm(20)

for r ≥ R0. Since sinψ(R0) = sinϕ(R0), the lemma follows.

We return to the proof of the theorem. Since a plane cuts a sphere in
a constant angle, we see that at any point p interior to a smooth interval
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of Σ1 and also interior to D̂0, we have ν · TU0

]
p

= ν · TU0

]
p⊥

, where p⊥
is the point on the line tangent to Σ1 at p, that is closest to the center
point p0 of D0. Since this line by hypothesis does not enter D0, there holds
|p⊥ − p0| ≥ R0, and hence |ν · TU0|p ≥ cos γ. Since D1 ∩ D̂0 is star shaped
relative to p0, the exterior normal on Σ1 is inclined less than 900 from the
outwardly directed radial line from p0; thus ν · TU0 > 0 at p and hence
ν · TU0 ≥ cos γ. Since as we have shown, sinψ(r) > sinϕ(r) at such points,
we have also ν · Tu0 ≥ cos γ at p. If there are points of Σ̂0 = ∂D̂0 that are
interior to D1, there would hold ν · Tu0 = 1 > ν · Tu1 at such points, since
|ν ·Tu| < 1 for any differentiable function u(x). Thus, at all smooth points on
the boundary of D1∩D̂0, we have ν ·Tu0 ≥ ν ·Tu1. The remaining boundary
points of this domain form a set of linear Hausdorff measure zero. By the
general maximum principle Theorem 5.1 of [4], we obtain u0(x) > u1(x) or
else the two functions coincide, as was to be shown. �

We note that in Theorem 4 there is no restriction on the magnitude of B,
nor is it necessary to assume existence of a zero gravity solution.

3.

The following example illustrates both Theorem 3 and Theorem 4, and ex-
hibits a striking discontinuity in behavior:

Example. Let D1 be a square of side length 2. We determine an interior
“disq domain” Dt = D(t) by rounding the corners of D1 by circular arcs of
radius (1 − t), 0 < t < 1. Denoting the perimeter of D(t) by p(t) and its
area by A(t), we find

p(t)
A(t)

= 2λ(t) = λ(t)
p1

A1
(21)

with

λ(t) =
π + t(4− π)

π + t(2− t)(4− π)
< 1(22)

for any t in the indicated range.

We wish to apply Corollary 2.1 in order to translate this result into a
property of solutions of (3), (2). To that purpose, one needs existence of
variational solutions of (4), (2) inD(t) and inD1. If γ < π/4, then there is no
variational solution of (4), (2) in D1, see the remarks following “Property A”
above. But if γ ≥ π/4 then a strict solution of (4) in D1, with data (2)
assumed strictly except at the corner points, is available explicitly as a lower
spherical cap. This solution is also a variational solution of the problem. The
existence of variational solutions in the smoothed domains was proved by
Concus and Finn in [2], as a consequence of Property A. Each such solution
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is bounded in its domain, in view of Property B. Thus, for each of the disq
domains D(t), if the gravity field is small enough, a capillary tube with the
original square section containing D(t) will raise liquid to a higher level over
all of D(t) than will D(t) itself. In fact, for each fixed t the difference of
heights will tend to infinity by an amount asymptotically λ/B, as indicated
in Theorem 2.

We may contrast that result with the behavior of solutions in the inscribed
disk D0. This disk is smoothly contained in the above family D(t), from
which it is obtained by setting t = 0. But in this limiting case, one finds
p0/A0 = p1/A1, so that Corollary 2.1 is inconclusive. In fact, by Theorem 4
we see that instead of the solutions in D0 being dominated by those of D1

for small B, the inequality goes the other way around, and in fact that
happens for all B > 0. The height u0 in the inscribed disk D0 in the example
above exceeds at each point of D0 the height for the square and also the
height ut(x;B) in any of the intermediate “disq” domains Dt obtained by
smoothing of the corners. There is thus a positive answer to Miranda’s
question, for any B > 0, when the inner domain is a disk and the outer
domain is either a circumscribed square or any of the disqs indicated above.
This is despite the fact that for any of the disq domains, no matter how close
to D0, an (arbitrarily large) negative answer occurs between that domain
and the square for all small enough B.

Even though for each fixed t ∈ (0, 1) there holds limB→0(u1(x;B) −
ut(x;B)) = +∞, there nevertheless holds u1(x;B)− u0(x;B) < 0 for every
B > 0. This behavior is the more remarkable, as it is easily shown that
limt→0 ut(x;B) = u0(x;B), uniformly over compact subsets of D0, for every
fixed B. For convenience of the reader, we offer a proof of that property in
the Appendix. One finds (see (24) below) limB→0(u1(x;B) − u0(x;B)) ≡
const. = −Λ. Although ut(x;B) is continuous in t at t = 0 for each fixed
B > 0, its limiting behavior as B → 0 changes discontinuously in t at that
value.

The following remarks may lend further insight to the situation. We
consider a representation for solutions of (3), (2) proved by D. Siegel [14]
(see also Miersemann [12]) under the hypothesis that the domain D ∈ C2+α.
Although each D(t) in the above example contains eight boundary points
with discontinuous second derivatives, and D1 has four boundary points
with discontinuous normal, we will presume that the result of Siegel can be
applied. Siegel assumes the existence of a strict solution U(x) of (4), (2) in
a domain D, and normalizes it by an additive constant to have mean value
zero over D. He then proves that any solution u(x;B) of (3), (2) over D has
the asymptotic behavior

u(x;B) =
p

BA
cos γ + U(x) +O(B).(23)
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The solutions U0(x) and U1(x) over the inscribed disk and the square are
known explicitly as lower spherical caps of the same radius, and thus differ
by a constant. A formal calculation yields

1
R

(U0(x)− U1(x))

(24)

=
1

12 cos3 γ

{
2 tan−1 −1 + cos γ + cos2 γ

cos γ
√

1− 2 cos2 γ
− 2 tan−1 −1− cos γ + cos2 γ

cos γ
√

1− 2 cos2 γ

+ (cos3 γ − 9 cos γ) sin−1 cot γ − 4 cos2 γ
√

1− 2 cos2 γ

− 3 cos γ sin2 γ tan−1 cos γ√
1− 2 cos2 γ

+ 8− 8 sin3 γ

}
= Λ(γ) > 0.

Since the values p/A are the same for D0 and D1, we find

u0(x;B)− u1(x;B) = U0(x)− U1(x) +O(B) ≡ Λ(γ) +O(B)(25)

as B → 0. This relation provides an asymptotically precise formulation of
our qualitative result above based on Theorem 4.

The intermediate domains D(t) exhibit a very different dependence on B.
We find in fact by Siegel’s representation

u1(x;B)− ut(x;B) =
1
B

(
2
R
− pt

At

)
cos γ + U1(x)− Ut(x) +O(B)(26)

u0(x;B)− ut(x;B) =
1
B

(
2
R
− pt

At

)
cos γ + U0(x)− Ut(x) +O(B)

for each fixed t ∈ (0, 1); this again brings out the close relationship between
the solutions in D0 and D1, as opposed to those in the intermediate do-
mains D(t), since the quantity in brackets is positive and the same for both
expressions. Thus, each of the differences on the left side of (26) becomes
arbitrarily large for decreasing B.

From another point of view, we have

lim
t→0

{
u1(x;B)− ut(x;B)

}
= u1(x;B)− u0(x;B).(27)

By (21), (22) and Corollary 2.1, the quantity in brackets in (27) is positive
at each t for all sufficiently small B. But the right side of (27) is negative
for every B > 0, by Theorem 4. Thus there can be no uniform choice of B
for which u1(x;B) − ut(x;B) stays positive for all t ∈ (0, 1). Beyond that,
we have

lim
B→0

lim
t→0

{u1(x;B)− ut(x;B)} = U1(x)− U0(x) = −Λ(28)
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by (27), (25), (24), while

lim
B→0

{
u1(x;B)− ut(x;B)

}
= ∞(29)

so the limiting order cannot be interchanged.
The behavior described in the example above was verified by formal com-

puter calculations of the surfaces. This work will appear elsewhere in an
independent paper, currently in preparation, by V. Brady, P. Concus, and
R. Finn.

4.

The above result expressed in Theorem 4, that within D0 the inscribed
disk solution u0(x;B) lies above any of the disq solutions, is put into fur-
ther relief by the observation that given any domain D̂0 with area equal
to that of D0 and which admits a variational solution of (4), (2), then
supD0

u0(x;B) < infD̂0
û(x;B) for all small enough B. That follows im-

mediately from Theorem 2 and from the isoperimetric inequality. Thus, any
modification of one of the domains D(t) for any t ∈ (0, 1) that decreases
its area to that of D0 and preserves the existence property for (4), (2), will
reverse the conclusion in the second paragraph following (22). Such a mod-
ification can be effected, e.g., by a similarity transformation. The change is
the more remarkable, in that all height differences become unboundedly large
for decreasing B.

5.

The properties of the disq construction suggest that the result of Theorem 3
cannot be substantively improved. In fact, as t decreases from 1 to 0 the
values p/A at first decrease monotonically from 2 to a minimum (p/A)min =
1+

√
π/2, at a value tm =

√
π/(2+

√
π). In this interval, the curvature κ of

the smoothing arc satisfies κ > p/A, and indeed for such arcs the Miranda
question has a negative answer for all the disq domains in the remaining
range to the minimum point t = tm. At t = tm there holds exactly κ = p/A,
and beyond that point one finds κ < p/A, until κ = p/2A for the inscribed
disk. The domains of the smoothing family corresponding to values t < tm
yield heights that are above those produced by the configuration for which
t = tm. The change in behavior occurs exactly at the curvature value that
appears in the statement of Theorem 3. �

Under the hypotheses of Theorem 3, suppose in addition that D is star-
shaped relative to x0 ∈ D and that no tangent to a smooth point of ∂D
enters a disk D0 centered at x0. For prescribed data γ and B > 0, let u(x;B)
and u0(x;B) be solutions of (3), (2) in D and in D0. Then by Theorem 4,
u0(x;B) > u(x;B) in D0, and more generally in the extended domain D̂0∩D.
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Thus, the situation is formally analogous to that of the inscribed disk in the
square described above. Both u(x;B) and u0(x;B) dominate the solution
determined by the intermediate domain Dε when B is sufficiently small; in
D̂0∩D∗, u0(x;B) dominates the solution in any domain D∗ for every B > 0,
whenever ∂D∗ satisfies the geometrical requirement.

Given any domain D, a local deformation at the boundary will create
a new domain to which the criterion of Theorem 3 can be applied. The
following results provide partial information as to what can be expected in
general, and have also an independent interest. We prove first:

Theorem 5. Let D ∈ C1 be convex, with area A and perimeter p. Let Ω0

be a disk of maximal radius r0 inscribed in D. Then r0 ≤ 2A/p, equality
holding only if D coincides with Ω0. If D is known only to be convex, then
r0 ≤ 2A/p, equality holding only if ∂D consists of a countable number of
arcs of ∂Ω0 joined with countably many supporting lines of Ω0. Conversely,
if ∂D has that form, then r0 = 2A/p.

*

+

-

L
L

L

Ω@

q
r@

q

D
E

Figure 2a. Proof of Theorem 5; initial steps.

Proof. We approximate ∂D by a convex circumscribed polygon of n sides.
Denoting by hj the distance from the center O of Ω0 to the (linearly ex-
tended) j-th segment, and by δl the length of that segment, the n-th ap-
proximation to the area yields

An =
1
2

n∑
1

hjδlj ≥
1
2
rn

n∑
1

δlj(30)
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where rn is the smallest of the hj . Since the linear extension of each segment
lies exterior to Ω0, we have limn→∞ rn = r0, and thus A = limn→∞An ≥
1
2r0p, as asserted. If D and Ω0 do not coincide, let q denote a boundary point
of D that is exterior to Ω0 and of maximal distance from O, and denote by
L−, L+ the support lines of Ω0 containing q. Referring to Figure 2a, we
note first that no points of the domain E cut off by these lines can be
boundary points of D, as otherwise there would be a segment containing
three boundary points and also interior points, which is excluded by the
convexity of D. Suppose there were a boundary point q∗ /∈ L+ on the side
of L+ exterior to Ω0. Then the segment joining q to q∗ would lie on a line
L situated exterior to Ω0, and every point τ on the segment of L between
q and q∗ would lie on a distinct line Lτ through O. Since every convex
domain is star shaped with respect to each of its points, the points τ bi-
uniquely correspond to intersection points of Lτ with ∂D. We introduce
the support line L∗ of Ω0 through q∗ as in Figure 2b, and the point q∗∗

determined by the intersection of L∗ with a concentric circle through q, as
indicated in the figure. We observe that at all interior points of the segment

*

-

L

L

q

r@
q

D

L
*

q**

C

Figure 2b. Proof of Theorem 5; concluding steps.
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C of ∂D between q∗ and q∗∗, support lines of C cannot cross that segment
and thus all such lines lie exterior to Ω0. On any compact subset of C all
support lines are bounded from Ω0. Since C has positive length, there would
hold A = limn→∞An >

1
2 r0p. We conclude, since ∂D is connected, that if

r0 = 2A/p then the two support segments from q to Ω0 are contained in ∂D,
and that they are support segments of D.

We next repeat the procedure, restricting attention to the complement of
these segments. Continuing in that way, we establish the asserted form of
D, in an at most countable number of steps.

The final assertion of the theorem, that every such domain satisfies r0 =
2A/p, is established by formal evaluation of the area and perimeter of the
figure. �

We may now prove:

Theorem 6. Let D ∈ C2 be convex, and denote by κ its boundary curvature.
Then either D is a circular disk or else there exists q ∈ ∂D at which κ(q) >
p/2A.

Strict convexity is not needed for the result; however, convexity (or some-
thing in that direction) is essential, as one sees from Figure 3.

Figure 3. Convexity is needed for Theorem 6.

Proof. Let Ω0 be a disk of maximal radius r0 inscribed in D, let κ0 = 1/r0.
We observe first that any semicircle on ∂Ω0 must contain at least one contact
point with D: Otherwise it would be possible to move D0 into D and then
increase its radius within D, contrary to the construction. If Ω0 is not
identically D then there would be a point q ∈ ∂Ω0, with q interior to D. By
the above remark, the largest segment on ∂Ω0 that contains q and contains
no points of ∂D cannot exceed a semicircle. We thus obtain a configuration
as in Figure 4, with an arc of ∂Ω0 and an arc of ∂D both passing through the
two endpoints of a segment, both having equal slopes at the endpoints, and
both expressible as graphs over the segment. Denoting the angle between the
tangent to ∂Ω0 and the direction of the segment by ϕ and the corresponding
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Ω@

ψ

n

a b

D

Figure 4. Proof of Theorem 6.

angle on ∂D by ψ, we have (− sinϕ)x = κ0 > p/2A by Theorem 5, while
(− sinψ)x = κ, the curvature on ∂D. Thus,∫ b

a
(κ− κ0) dx = 0(31)

and we conclude that either κ ≡ κ0 on the segment, or else there exist points
where κ > κ0. The theorem follows. �

Returning to the Miranda question, we have:

Theorem 7. Let D0, D1 be piecewise of class C1, let D0 ⊂ D1 and sup-
pose that D1 admits a variational solution of (4), (2). Suppose that D0 lies
interior to a disk B of radius R < 2A1/p1, where A1, p1 are the area and
perimeter of D1. Let u0(x;B), u1(x;B) be variational solutions of (3), (2)
in D0 and in D1. Then

lim
B→ 0

{
inf
D0

u0(x;B)− sup
D0

u1(x;B)
}

= +∞.(32)

Proof. Denote by w(x;B) the solution of (3), (2) in B. By Theorem 5.8 of
[4], there holds u0(x;B) > w(x;B) throughout D0. A solution of (4), (2) in
B is known explicitly as a spherical cap. By Theorem 1 above, there holds∣∣∣∣w(x;B)− 2

BR
cos γ

∣∣∣∣ < C <∞(33)
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for all B > 0. By hypothesis, we may write R = 2λA1/p1 with 0 < λ < 1;
hence by (33)

w(x;B) >
p1

λBA1
cos γ − C.(34)

But by Theorem 1 we have for all B > 0 that∣∣∣∣u1(x;B)− p1

BA1
cos γ

∣∣∣∣ < C1 <∞(35)

and the result follows. �

In interpreting Theorem 7, we note the related result:

Theorem 8. Let D1 ∈ C1 be convex and Ω0 the maximal inscribed disk.
Suppose that D0 ⊂ Ω0 and that D0, D1 admit variational solutions of (4),
(2). Then either all three domains are identical, or else (32) holds.

The proof is immediate from Theorem 5 above, and from the isoperimetric
inequality applied to D0. �

We close with a conjecture:

Conjecture. Suppose the boundary curvature κ of a convex domain D
satisfies κ < p/A at all points. Then for any contact angle γ in 0 ≤ γ < π/2
and any downward directed gravity field, any strict subdomain D0 ⊂ D will
lift fluid higher over all points of its section than will D.

The result of the conjecture would be a generalization of Theorem 5.8 in
[4], which provides that result in the particular case for which D is a disk.
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Appendix.

We prove here the result stated in Section 3 above, that if ut(x;B) are varia-
tional solutions of (3), (2) in Dt for a fixed B > 0, there holds limt→0 ut(x;B)
= u0(x;B) at each x ∈ D0. We are given∫

Dt

(∇η · Tut −Butη) dx−
∮

∂Dt

η cos γ ds = 0(36)

for all η ∈ Q(Dt), and∫
D0

(∇η · Tu0 +Bu0η) dx−
∮

∂D0

η cos γ ds = 0(37)
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for all η ∈ Q(D0).
Let η ∈ Q(D0). Then η

(
1

1+(
√

2−1)t
x
)
∈ Q(Dt). For this η, we find

(38)
∫
D0

(∇η · (Tu0 − Tut) +B(u0 − ut)η) dx

−
∫
Dt\D0

(∇η · Tut +Bηut) dx−
∮

∂D0

η cos γ ds+
∮

∂Dt

η cos γ ds = 0.

The domains Dt satisfy a uniform internal sphere condition (see [7] or
[4] Sec. 5.4). It follows that the functions ut are bounded throughout
Dt, independent of t. From general estimates [11], all derivatives of these
functions are uniformly bounded in every compact subdomain of D0, and
thus there is a subsequence of the ut that converges, uniformly in each such
subdomain, to a solution û0(x) ∈ Q(D0) of (3) in D0.

Since |Tuj | < 1, all j, the second integral in (38) vanishes in the limit.
Similarly, the last two integrals combine to vanish in the limit. In view of
the uniform bound on the ut, we obtain∫

D0

(∇η · (Tu0 − T û0) +B(u0 − û0)η) dx = 0.(39)

The choice η = u0 − û0 leads to the conclusion u0 ≡ û0, since ∇(u0 − û0) ·
(Tu0−T û0) ≥ 0 and vanishes only if ∇u0 = ∇û0, see, e.g., [4] Sec. 5.1. �
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