MINIMAL SUBMANIFOLDS OF K_AHLER—EINSTEIN
MANIFOLDS WITH EQUAL KAHLER ANGLES

ISABEL M.C. SALAVESSA AND GIORGIO VALLI

Volume 205 No. 1 July 2002



PACIFIC JOURNAL OF MATHEMATICS
Vol. 205, No. 1, 2002

MINIMAL SUBMANIFOLDS OF K"AHLER—EINSTEIN
MANIFOLDS WITH EQUAL KAHLER ANGLES

IsABEL M.C. SALAVESSA AND GIORGIO VALLI

We consider F : M — N a minimal submanifold M of real
dimension 2n, immersed into a Kahler—Einstein manifold N
of complex dimension 2n, and scalar curvature R. We assume
that n > 2 and F' has equal Kihler angles. Our main result
is to prove that, if n = 2 and R # 0, then F is either a
complex submanifold or a Lagrangian submanifold. We also
prove that, if n > 3, M is compact and orientable, then: (A)
If R < 0, then F is complex or Lagrangian; (B) If R = 0, the
Kihler angle must be constant. We also study pluriminimal
submanifolds with equal K&dhler angles, and prove that, if they
are not complex submanifolds, N must be Ricci-flat and there
is a natural parallel homothetic isomorphism between T M
and the normal bundle.

1. Introduction.

Let (N, J, g) be a Kéahler manifold of complex dimension 2n and F' : M — N
an immersed submanifold of real dimension 2n. We denote by w the Kéhler
form of N, w(X,Y) = ¢g(JX,Y). On M we take the induced metric gy, =
F*g. N is Kéhler-Einstein if its Ricci tensor is a multiple of the metric,
Ricci¥ = Rg. At each point p € M, we identify F*w with a skew-symmetric
operator of T,M by using the musical isomorphism with respect to gas,
namely gy (F*w(X),Y) = F*w(X,Y). We take its polar decomposition

(1.1) Frw=glJ,

where J, : T,M — T,M is a (in fact unique) partial isometry with the
same kernel I, as of F*w, and where ¢ is the positive semidefinite operator
g = |F*w| = \/—(F*w)2. Tt turns out that J, : K} — K2 defines a complex
structure on K2, the orthogonal complement of K, in T,M. Moreover, it
is gpr-orthogonal. If we denote by ng the largest open set of M where
F*w has constant rank 2k, 0 < k < n, then ICj is a smooth sub-vector
bundle of TM on ng. Moreover, g and J,, are both smooth on these open
sets. The tensor g is continuous on all M and locally Lipschitz, for the map
P — |P| is Lipschitz in the space of normal operators. Let { X, Ya}i<a<n
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be a gpr-orthonormal basis of T, M, that diagonalizes F*w at p, that is

(1.2) o= @[ 0 _C%SH" :

cos 0,
0<a<n

where cosy > cosfy > --- > cosf, > 0. The angles {04}i1<a<n are the
Kabhler angles of F at p. Thus, Vo, F*w(X,) = cos0,Y,, Frw(Y,) =
—cos0,X, and if kK > 1, where 2k is the rank of F*w at p, J, X, = Y,
Va < k. The Weyl’s perturbation theorem applied to the eigenvalues of the
symmetric operator |F*w| shows that, ordering the cos, in the above way,
the map p — cos,(p) is locally Lipschitz on M, for each a. A complex
direction of F' is a real two-plane P of T,M such that dF'(P) is a complex
line of Tpy)N, ie., JAF(P) C dF(P). Similarly, P is said to be a La-
grangian direction of F if w vanishes on dF(P), that is, JdF(P)LdF(P).
The immersion F' has no complex directions iff cosf, < 1 Va. M is a
complex submanifold iff cosf, = 1 Vo, and is a Lagrangian submanifold
iff cosf, = 0 Ya. We say that F' has equal Kdhler angles if 8, = 6 V.
Complex and Lagrangian submanifolds are examples of such case. If F' is a
complex submanifold, then J,, is the complex structure induced by J of N.
The Kéahler angles are some functions that at each point p of M measure the
deviation of the tangent plane T,M of M from a complex or a Lagrangian
subspace of Tr(,)N. This concept was introduced by Chern and Wolfson
[Ch-W] for oriented surfaces, namely F*w = cosf Vol py. This cosf may
have negative values and is smooth on all M. In our definition, for n = 1, we
demanded cos @ > 0, that is, it is the modulus of the cos 8 given for surfaces.
This may make our cosf do not be smooth. We have chosen this defini-
tion, because in higher dimensions we do not have a preferential orientation
assigned to the real planes span {X,, Y, }.

Our main aim is to find conditions for a minimal submanifold F' to be
Lagrangian or complex, or M to be a K&hler manifold with respect to J,.
A first result in this direction is due to Wolfson, for the case n = 1:

Theorem 1.1 ([W]). If M is a real compact surface and N is a complex
Kahler-FEinstein surface with R < 0, anf if F' is minimal with no complex
points, then F' is Lagrangian.

Some results of [S-V] are a generalization of the above theorem to higher
dimensions. In this paper we study the case of equal Kéhler angles. Let us
denote by VxdF (Y) = VdF(X,Y) the second fundamental form of F. It is a
symmetric tensor and takes values in the normal bundle NM = (dF(TM))*.
F is minimal iff trace,,, VAF = 0. Let ( )+ denote the orthogonal projection
of F~'TN onto the normal bundle. If F is an immersion with no complex
directions at p and {X,, Y, } diagonalizes F*w at p, then {dF(Z,,), dF (Z%),
(JAF(Z,))*, (JAF(Zg))*} constitutes a complex basis of TN, where
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X, —iY, o Xa+iY,
(13)  Zo=0_10_ g, Za:Zazio‘;lo‘:

are complex vectors of the complexified tangent space of M at p. We extend
to the complexified vector bundles the Riemannian tensor metric gps (some-
times denoted by (,)), the curvature tensors of M and N, and any other
tensors that will occur, always by C-multilinearity. On M the Ricci tensor of
N can be described by the following expression ([S-V]): For U,V € Ty, N,

(14)  Rica™(U, V)= > ;l

sin” 0
p<n #

U=
«

RN (U, JV,dF (p), (JAF (7))™"),

where R denotes the Riemannian curvature tensor of N. An application
of Codazzi equation to the above expression proves that, if N is Kahler-
Einstein with R # 0, Theorem 1.1 can be generalized to any dimension for
totally geodesic immersions without complex directions ([S-V]).

We can also obtain the same conclusion to “broadly-pluriminimal” immer-
sions for n = 2, and N Kéhler-Einstein with negative Ricci tensor ([S-V]). A
minimal immersion F' is said to be broadly-pluriminimal, if, for each p € ng,
with £ > 1, F' is pluriharmonic with respect to any gps-orthogonal complex
structure J = J, @ J' on T,M where J' is any gpr-orthogonal complex
structure of K, at p, that is, (VdF)®1) = 0. The (1,1)-part of VdF is just
given by (VAF)D)(X,Y) = L(VAF(X,Y) + VAF(JX, JY)) VX,Y € T,M.
If K, = 0, this means that F' is pluriharmonic with respect to the almost
complex structure J,, (see for example [O-V]). In this case, we say that F'is
pluriminimal in the usual sense, or simply pluriminimal. Pluriharmonic im-
mersions are obviously minimal. If F' has equal Kéhler angles, then only Q9
is considered, where I, = 0 and J = Jo. Products of minimal real surfaces
of Kéhler surfaces, totally geodesic submanifolds, minimal Lagrangian sub-
manifolds, and complex submanifolds are examples of broadly-pluriminimal
submanifolds. In Sections 2 and 3, using an isomorphism ¢ from the tangent
bundle of M into the normal bundle, we will see that pluriminimal immer-
sions with equal Kéhler angles immersed into Kéahler-Einstein manifolds,
and that are not complex submanifolds, can be interpretated as subman-
ifolds with “torsion free” normal bundle. Moreover, they have constant
Kahler angle, and only exist on Ricci-flat manifolds. In this case, ® defines
a parallel homothetic isomorphism between T'M and N M.

For a minimal immersion F' with no complex directions we consider the
locally Lipschitz map, symmetric on the Kahler angles,

1+ cosf,
L. = 1 — .
(15) " Z Og(l—cos%)
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This map is smooth on each ng, nonnegative, and vanishes at Lagrangian
points. It is an increasing map on each cosf,. In [S-V] we have given an
expression for Ak at a point pg € ng, which we prove in the appendix of
this paper, namely,

(1.6)
Ak =41 Ricci™ (JAF(8), dF (B))
B
S 511?229 Im (RN (dF(8), dF (1), dF (B), JAF (i) + i cos 0, dF (i)
Bop g

B Z 64(cos b, + cosb,)

b sin 9 sin 0

e (9(VdP (), JAF(5))g(V3dF (p), JAF (1)
+232 (cos§, — cosb,)

sin 9 sin (9

Bytsp

- (19(SpdF (1), JAF (p))? + |g(VF (), JAF (p)) )

2 9 (9
1y BHeosb c0st) (G )2 4 (o )2),

sin?6
Botop H

where {Xq,Ya}i1<a<n is a ga-orthonormal local frame of M, with Y, =
JuXo for a < k, {Xo,Ya}a>kt+1 any ga-orthonormal frame of Ky, and
which at py diagonalizes F*w. For F pluriminimal on Q3, and N Kihler-
Einstein, we can get the following very simple final expression on 03, ([S-V])

(1.7) Ak = —2R Z cos g
1<B<n

If F has equal Ké&hler angles, then the expression of Ak given in (1.6) can
also be substantially simplified. Minimal surfaces with constant curvature
and constant Kéhler angle in complex space forms have been classified in [O)].
Conditions on the curvature of M, N, and/or constant equal Kahler angles
lead to some conclusions in our case as well, as we show in the theorems
below. Henceforth, we assume N is Kahler-Einstein. The expression for
Ak, where the Ricci tensor of IV appears, and the Weitzenbock formula for
F*w, leading to an integral equation involving the scalar curvature R, some
trigonometric functions of the common Kéhler angle, and the gradient of its
cosine (Proposition 4.2), are our tools to obtain the results of this paper. In
Section 4 we prove our main results, namely:
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Theorem 1.2. Let F' be a minimal immersion of a manifold M, into a
Kahler-Einstein manifold N, with equal Kdhler angles.

(i) If n = 2 and R # 0, then F is either a complex or a Lagrangian
submanifold.
(ii) If n > 3, M is compact, orientable, R < 0, then F is either a complex
or Lagrangian submanifold.
(iii) If n > 3, M is compact, orientable, R = 0, then the common Kdhler
angle must be constant.

The conclusions in (i) and (ii) give a generalization of Theorem 1.1 to
higher dimensions and equal Kéahler angles. The case n = 2 is the most
special, because, in this dimension, immersions with equal Kahler angles
have harmonic F*w, as we will see in Section 3. The cases n = 3 or 4 also
have special properties. If the angle is constant we may allow R > 0:

Theorem 1.3. Let F' be minimal with constant equal Kdhler angles, M
compact, orientable, and R # 0. Then, F is either a complex or a La-
grangian submanifold.

Theorem 1.4. Let F' be minimal with equal Kdhler angles, and M compact,
orientable, with nonnegative isotropic scalar curvature. If n =2, 3 or4, then
one of the following cases holds:

(i) M is a complex submanifold of N.

(ii) M is a Lagrangian submanifold of N.

(ili)) R = 0 and cos® = constant # 0,1, J,, is a complex integrable struc-

ture, with (M, J,, gar) a Kdhler manifold.

For anyn > 1, any R, and constant equal Kdhler angle, (i), (ii) or (iii) hold
as well.

This theorem can be applied, for instance, to flat minimal tori on Calabi-
Yau manifolds, or to spheres or products of S? with S? or with flat tori
minimaly immersed into Ké&hler-Einstein manifolds with positive scalar cur-
vature.

2. The morphism .

We consider the following morphism of vector bundles

¢: TM — NM
X — (JdF(X))*.

We easily verify that
(2.1) O(X)=JdF(X)— dF(F*w(X)).

Both T'M and NM are real vector bundles of the same dimension 2n. F
has no complex directions iff ® is an isomorphism. In fact ®(X) = 0,
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iff JAF(X) = dF(Y) for some Y, ie., span{X,Y = “JX”} is a complex
direction of F. Assume there are no complex directions. Then,

(2.2) 9(X,Y) = gu(X,Y) — gu (Fw(X), Frw(Y))

defines a Riemannian metric on M. With this metric, ® : (T'M,§) —
(NM,g) is an isomorphism of Riemannian vector bundles. Let us denote

by V, V V4, and V', respectively, the Levi-Civita connection of (M, gur),
the Levi-Civita connection of (M, §), the usual connection of N M induced
by the Levi-Civita connection of N, and the connection on T'M that makes
the isomorphism @ parallel, namely V'= ®~1*V. We will also denote by
V the Levi-Civita connection of N and the induced connection on F~'TN,
as well. Thus, if U is a smooth section of NM C F~'TN, and X,Y are
smooth vector fields on M, we have

ViU = (WUt ®(VxY) = V(e(Y)).

The connections V and V have no torsion, because they are Levi-Civita,
but V' may have nonzero torsion 7”. Since both V and V’are Riemannian
connections of TM for the same Riemannian metric g, then 77 = 0 iff
V = V'iff & is parallel. Note that, if F is Lagrangian, then o(X) =
JdF(X) € NM, J(NM) = dF(TM), and § = gar, V = V. Therefore,
Vx® (V) = (JVxdF(Y))" = 0, that is, ® is parallel, and so V' =V, as
well. In the next section (Corollary 3.2), we will see a converse of this. We
extend ® : TM°¢ — NMF¢ to the complexified spaces by C-linearity.

Lemma 2.1. If {X,,Y,} is a diagonalizing gpr-orthonormal basis of F*w
at p, then at p, and for each a, 8

(T (Za, Z5)) = i(cos b + cos ) Vz,dF (Z3)
D(T'(Zay Z5)) = i(cosy — cosO3)Vy, dF(Zg).
Proof.
B(ViY) = Vi (B(Y)) = (Vx (2(¥)))"
= (Vx(JAF(Y) = dF (F*w(Y))))"
= (JVxdF(Y) + JAF(VxY) — VxdF (F*w(Y)))™.
Therefore, using the symmetry of the VAF and the fact that Vis torsionless,
(2.3) O(T'(X,Y)) = d(VxY — Vi X — [X,Y])
= —VxdF(F*w(Y)) + VWdF (F*w(X)).

The lemma follows now immediately. (]
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For each U € NM,, let us denote by AU T,M — T,M the symmetric
operator gy (AY(X),Y) = g(VdF(X,Y),U). From Lemma 2.1 and (2.3) we
have:

Proposition 2.1. If F' is an immersion without complex directions, then:

(i) ® is parallel iff F*w anti-commutes with AY, YU € NM.
(i) If F has equal Kdihler angles, on QS , T is of type (1,1) with respect

2ns
to J,,.
(iii) On QY,, F is pluriminimal iff T' is of type (2,0) + (0,2) with respect
to J,,.

Remark 1. If we call wyjs the restriction of the Kéhler form w to the nor-
mal bundle N M, we see that, if {X,, Y, } is a diagonalizing gps-orthonormal

basis of F*w at a point p, then {Ua =0 (L) Voa=20 ( Xa )} is a diag-

sin 6 sin 6

onalizing g-orthonormal basis of wxs. Moreover, N M has the same Kéhler
angles as F. Let Jyas denote the complex structure on N M defined by this
basis, that is, the one that comes from the polar decomposition of wp .
Then, @Jw = *JNM(I).

We should also remark the following:

Proposition 2.2. If F' is an immersion with parallel 2-form F*w, then
the Kdhler angles are constant and, in particular, M = ng for some
k. In this case, considering TM with the Levi-Civita connection V, K,
and K are parallel sub-vector bundles of TM, and J, € C®(K:* @ K1),
3,9 € C®(QO*T*M) are parallel sections. Furthermore, (X,Y,Z) —
9g(VzdF(X), JdF(Y)) is symmetric on TM, and, if F' has no complez di-
rections, V=V Moreover, if cosfy, > --- > cosb,, are the distinct
eigenvalues of F*w, the corresponding eigenspaces E,, define a smooth in-
tegrable distribution of T M whose integral submanifolds are totally geodesic
submanifolds of M. The integral submanifolds of E,, are isotropic in N
if cosf,, = 0, and the ones of E,, are complex submanifolds of N if
cosbq, = 1. The other ones are Kdhler manifolds with respect to J,, and
F restricted to each one of them is an immersion of constant equal Kdhler
angles 0, with respect to J.

Proof. If X,Y are smooth vector fields on M and Z € T,M, an elementary
computation gives

(24) VzF'w(X,Y)=—g(VzdF(X),JdF(Y)) + g(VzdF(Y), JdF (X)),
which proves the symmetry of (X,Y,Z) — ¢(VzdF(X),JdF(Y)). From
(2.2) we see that ¢ is parallel. Consequently, away from complex directions,

V= V. If we parallel transport a diagonalizing orthonormal basis {X,, Yy}
of F*w at pgy along geodesics, on a neighbourhood of pg, since F*w is parallel



204 I.M.C. SALAVESSA AND G. VALLI

we get a diagonalizing orthonormal frame on a whole neighbourhood with
the property VX, (po) = Wa(po) = 0. It also follows that cos 6, remains
constant along geodesics, so it is constant, and J,(X,) = Y, on a neigh-
bourhood of pg, with ViJ, = 0 at pg, and so J,, is parallel. Similarly we
see that g is parallel. If we extend F*w to the complexified tangent space
Ty M, then F*w(Z,) =icos0nZy, and F*w(Zgz) = —icos 0, Zz. Obviously,
the corresponding eigenspaces of F*w, are parallel sub-vector bundles of
T°M. O

3. Immersions with equal Kéahler angles.
If F' has equal Kéahler angles, then
F*w=cosfJ, and §=sin?6gqgy,

with cos @ a locally Lipschitz map on M, smooth on the open set where it
does not vanish, and ng = () Vk # 0,n. Note that sin?# and cos® 6 are
smooth on all M. The set £ = cos§~1({0}) is the set of Lagrangian points,
for, at these points, the tangent space of M is a Lagrangian subspace of
the tangent space of N. Similarly, we say that C = cos0~'({1}) is the
set of complex points. If M has a fixed orientation, we can distinguish
the set of well-oriented complex points from the twisted complex points,
according J, defines the same or the opposite orientation. On the open set
QY = cos0 YR ~ {0}) = M ~ L, J, defines a smooth almost complex
structure gps-orthogonal. On the open set cos§ 1 (R ~ {1}) = M ~C, gisa

A

smooth metric conformally equivalent to gps. Thus, ifn > 2, V=V iff 0 is
constant. Since the Kahler angles are equal, any smooth local orthonormal
frame of the type { X4, Yo = J, X} diagonalizes F*w on the whole set where
it is defined. Differentiating F*w = cos 6.J,,, we get Vx F*w = dcos0(X)J,+
cos OVx J,,, with J, orthogonal to Vx J,, with respect to the Hilbert-Schmidt
inner product (because ||J,||? = 2n is constant). Hence, considering F*w an
operator on TM, on 03, U QY

(3.1) |VE*w||> = 2n||V cos 0]|* + cos® 0|| VI, ||

Then, on QY,,, VF*w = 0 iff VJ,, = 0 and 6 is constant. Note that | VF*w||?,
considering F*w an operator on T'M, is twice the square norm when con-
sidering F*w a 2-form. From (2.3) we get, on M ~ C,

(3.2) ®(T'(X,Y)) = 2cos §(VdF) D (J,X,Y).

The right-hand side of (3.2) is defined to be zero at a Lagrangian point.
Consequentely

Proposition 3.1. If F' is an immersion with equal Kahler angles and with-
out complex points, then T' = 0, that is, V' = V iff ® is parallel iff F is
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Lagrangian or pluriminimal. In particular, if F is minimal, © is parallel iff
F' is broadly-pluriminimal.

This also holds for n = 1, where pluriminimality condition coincides with
minimality. In this case +J,, is the natural (local) complex structure of the

surface (the sign depends on the (local) chosen orientation). Let Re (u+iv) =
u, for u,v € NM.

Proposition 3.2. If F' is any immersion with equal Kdhler angles, then,
away from complex and Lagrangian points,

o <1;nV log sin? 0>

4cosb

sin? 6

Re (Y (9(VdF (1), JAF(B)) — g(NoedF (B), JAF (1)) ®(B) | .
B,

where V logsin® @ is the gradient with respect to gas.

If F' is a complex submanifold on a open set, then J,, is the induced com-
plex structure on M and VAF is of type (2,0). Applying Proposition 2.2
on 98, and Proposition 3.2 on open sets without complex and Lagrangian
points, and noting that {®(3), ®(3) = ®(8)}1<p<, multiplied by 5}1/1; con-
stitutes an unitary basis of NM¢, we immediately conclude:

Corollary 3.1. If F' is an immersion with equal Kdahler angles, and n > 2,
then 6 is constant iff

(33) > g(VadF(u), JAF(8)) =Y g(VadF(B), JdF(n)) V.
1 1

Note that (3.3) is a sort of symmetry property, and the first term is just
2g(H, JdF(B)), where H = 5-trace,,, VAdF = %Zu VAF (i, j1) is the mean

curvature of F'.

Theorem 3.1. If n > 2 and F is a pluriminimal immersion with equal
Kahler angles then co§9 = constant. Moreover, if it is not a complex sub-
manifold, then V=V = V', and N must be Ricci-flat. In particular, ®
defines a parallel homothetic isomorphism from (T M, gpr) onto (NM, g).

Proof. On a neighbourhood of a non-complex point, from Proposition 3.1,

V= V/, and from Corollary 3.1, cos 6 is constant. Then V=V, as well. So if
F'is not a complex submanlfold, it has no complex points anywhere. Finally,
(1.7) for pluriminimal immersions with k = constant gives R = 0. O

The above theorem and Proposition 3.1 lead to:

Corollary 3.2. If I' is a minimal immersion with equal Kdhler angles,
without complex points, n > 2, and R # 0, then F is Lagrangian iff ®
1s parallel.
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To prove Proposition 3.2 we will need to relate the three connections of
M, V, Vand V' Let {e1,...,ean} = {X,, Y, = JuX,}i<u<n be a local
gyr-orthonormal frame away from the Lagrangian and complex set, and
Oh,...,00, a local frame of M defined by a coordinate chart. Set g;; =
gM(ai,Gj), gz‘j = f](az,aj) = sin? Hgij, and e; = EZ Ag;0;. The Christofel
symbols are given by fo] =", 3"*(0i9sj + 0jGis — OsGij) = 0k;j0; log sin® O +
6i0jlogsin? 0 —>"_ g**g;;05 logsin® 6 + QFfj. Hence

%iaj —Vp,0; = Z(ff] — F?j)ak
k

= %(E)i(log sin? 0)9; + 9;(logsin® 0)9; — g;;V (log sin? 9))

Since D ;i gijAsidsi = 1, D @Ses = V&5 = Xy Asi)\sj(vaiaj — Vo,05) =
(1 —n)Vlogsin? @. Therefore,

(3.4) Z %u —Vap = iz (vXuXu + vYHYM - Vx, X, — VYHYM>
7 p

—i(Vx, Yy — Y, X, — Vi, Y, + W, X,,)
fz Vs = Vi) + 5 3 (¥ X, — ¥ X))

I

= a ; n) V log sin? 6.

Set §'(X,Y) = V&Y — VxY. Then S'(X,Y) — S'(Y,X) = T'(X,Y). Similarly
we get

(3.5) >, Vi — %u = jtracey,, S — £ 30, T"(X,, Yy).
Lemma 3.1. VX € T,M, >, 5(5(ei,e:),X)=—>,;6(T"(es, X), €3).

Proof. We may assume that the local referencial 9; is g-orthonormal at a
fixed point pg. On a neighbourhood of pg, we define I" Z and S’ Z as

V5.0, _Zr' O, S'(05,0;) ZS’ O = > ('} =I5
k

Then T/;*= I}, —T'%, and, at po, I'};= 5(V5,0;, ), S't; = §(S"(9:, 9;), 0%

Jjio
=T’ f] — Ff] V’ls a Riemannian connectlon with respect to g. Then

0G5 (po) = 3(V5,05,0%) + 395, Vi, 0h) = T35 + T'%.
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Hence, at pg

2fk Zg ng] + ajgls - aSg’L])

_ r’gk NN NS (R N S

k k ; ;
= (T +T75) + (Flgk - Flkz‘) + (M = T')5)
= (F/fj + Fl?i) + T+ T

But '}, + "% = 20"% + (I'%, — V%) = 21"%, + 7'%,. Thus

k koo 1 sk j i
S’y =T — Ffj = i(T/ij — T+ T

That is, at po, §(S"(9;,9;),0,) = +(a(T"(;,05), k) — g(T’(@z,ak) ;) +
G(T' (0, 05), 0 )) We may assume that, at po, 0;(po) = 5, leading to the
Lemma. |

Proof of Proposition 3.2. Following the proof of Lemma 2.1, ®(V'xu— V1)
= ((J —icos)VxdF(u))*. Hence, from (3.4),

d <(1;n)VIOgsin2 9> = (Z %u — %u)
m
= <(J - z'cosl9)nf>L - Z@(V’gu - %u)
m

But, from (3.5), EMCI)(V'EM—%M) = 1®(trace,,, ') — 1@ (O, TN X, Vo))
The skew-symmetry of 77 and (3.2) implies that

®<ZT,(Xuv ) :—QZZCI) )) = 4cos 0V, dF (1) = 2ncos O H.
I

Thus, >, (Viu — Vu) 1®(tracey,, S') — % cos H. Therefore,

(3.6) d <(1 ; n)Vlog sin? 0) = %(2n(JH)L - @(T‘racegMS')).
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Using Lemma 3.1, (3.2), and ®(u) = JdF(u) — icosOdF (u), we have
®(Traceg,,S")

— Zg (Sf(ej,ej),sieﬁ) @( . )

sin @

-5 (1 (o) ) (1)

+ (9T (1, B), 1) + §(T" (1, B), 1)) (5))
- T'(1, 8)), (1)) ®(B) + g(B(T" (1, B)), D(1)) () )

sin2 6

g
dF(B), JAF () ®(B) — g(VudF (), JAF (7)) (8)).

sin? 6

> (gl
w8
_ 8icosd Z (g(%
N
Writing (JH)* in terms of ®(3) and ®(3),

2n(TH): = 32 5 (g(TH, ®(5))2(5) + o(TH, 8(3)(3))
B

- Z SO0 (3P (), JAF(5))(B)

sin? 6

- g(%dF(u)JdF(ﬂ))@(ﬁ)),

and substituing these equations into (3.6), we prove Proposition 3.2. O

3.1. The Weitzenbock formula for F*w. For simplicity let us use the
notation

gxYZ = g(VxdF(Y), JAF (Z)).
We also observe that, from
(3.7) Vi %COSQ = F*w(u, nn),
valid on an open set, and from (2.4), we obtain Vu
(3.8) %dcosH(X) — d(Fw( )(X)

= Vx Frw(p, i) + Fw(Vxp, @) + Fw(u, Vx i)
= —gxpuft + gx g+ 2((Vx p, 1) + (Vx Tt ) F w(p, i)
= —gx Ui+ gx (no sumation over u).
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Then (3.3) is equivalent to g(VxdF (u), JAF () = g(VxdF (i), JAF (), Y
(or some ). From J,Z, = iZy, J,Zg = —iZz and the fact that J,, is gas-
orthogonal, we get, on QY | Vo, 8, and Vv € TM

(3.9) (Vodu(a), B) = 2i(Voa, ), (Vpdu(a), B) = 0.

Recall that, if £ is a r+1-form on M, r > 0, with values on a vector bundle
E over M with a connection V¥, then 0&, the divergence of ¢, is the r-form
on M with values on E given by

5€(U1,..., Z 5687u17"'7u7‘>7

where ey, ..., e, is an orthonormal basis of T),M, u; € T, M, and VE§ is the
covariant derivative of & on /\TJrl T*"M ® E. Thus, ¢ is the formal adjoint
of d on forms (cf. [E-L]). Note that 6[*w(X) = (0F*w, X), VX € T,M,
considering on the left-hand side F*w a (closed) 2-form on M and on the
right-hand side an endomorphism of T'M.

Proposition 3.3. Let F' be an immersion with equal Kdhler angles and
V cos O denote the gradient with respect to gpr. On an, and considering
F*w an endomorphism of T M.

SF*w = (n—-2)J,(Vcosb), cosb(dJ,)=(n—1)J,(Vcosh).

Thus,

(i) Forn=1, §J, =0 (obviously!), and §F*w = 0 iff 6 is constant.
(ii) Forn =2, 0F*w = 0. Moreover, 6J,, = 0 iff 6 is constant.
(iii) Formn # 1,2, 6F*w =0 iff 6J, = 0 iff 0 is constant.

In particular, if n > 2 and (99,, J.,, g) is Kdihler, then 6 is constant.

Proof. Considering F*w a 2-form on M, using the symmetry of VAF' and
(2.4),if XeT,M,

S(F*w)(X) =Y -2V, F w(fL, X) — 2V Fw(u, X)

o
= 2g,1X — 29, XTi + 295X — 297X 1
I
=2 (—gxpfi+ gxTip) — 4 Y (geXp — gapX).
B Iz

From (3.8), Zdcos(X) = > —9xpit+ gxfips. Therefore,

(3.10) O(F*w)(X) = nidcos (X 4ZVF* (u, X).
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Since F*w is of type (1,1) with respect to J,, and VZ € TSM, Vu, 0,
(VzB, 1) = —(B, Vzp), we get using (3.9)
(3.11)  VzF*w(u,p) =d(F*w(p,B))(Z) — F*w(Vzu, 8) — Frw(p, Vz )

= 2icos O(Vzp, B) = cosO(NVzJ, (1), B).

Note that, since J2 = —Id, VxJ,(J,Y) = —Ju(Vx J,(Y)), VX, Y € T,M.
So

42 Vidw( Z VXM )+ VYM w(Yu) + lVYu w(Xp) — Z'VX”JW(YM)
= —5Jw+zz Vi, o (JoXp) — Y, Ju(JuY))

= (80, +iJu(8J)).
Hence, from (3.11), and since J,, is gp-orthogonal, V3

3 VaFrw(p, 8) = COSQ(&J Fid,(8,), 8) = COSQ(&JW,@

Moreover, id cos0(3) = dcos6(J,0) = (Vcosb, J,5) = —(J,(Vcosh), ).
From (3.10), dF*w(fB) = (—nJ,(V cos8) + 2cos 0 dJ,, B). Thus, if we con-
sider F*w an endomorphism of T'M, and since (,), J,, and F*w are real
operators,

(3.12) dF*w = —nJ,(Vcos) +2cos0dJ,.

On the other hand, F*w = cos6J,,. Then, an elementary computation gives
(3.13) 0F*w = —J,(Vcos®)+cosbdJ,.

Comparing (3.12) with (3.13) we get the Proposition. O

If we apply the Weitzenbock formula to the 2-form F*w, for an immersion
F: M — N we get (see e.g., [E-L] (1.32))

1
(3.14) 5AHF*wH? = —(AF*w, F*w) + ||VF*w|]? + (SF*w, F*w),

where (,) denotes the Hilbert-Schmidt inner product for 2-forms, and S is
the Ricci operator of /\2 T*M. We note that we use the the sign convention
A¢ = +Tracey,, Hess ¢, for ¢ a smooth real map on M. This sign is opposite
to the one of [E-L], but here we use the same sign as in [E-L] for the
Laplac1an of forms A = dé + dd. If R denotes the curvature tensor of
N’ T*M, and X,Y,u,v € T,M, £ € N> T M, then

R(X>Y)§ (u,v) = _f(RM(X> Y)uv U) - 6(”7 RM(Xv Y)U)a
SFrfw(X,Y) = Z —R(e;, X)F*w (e;,Y) + R(e;, Y)F*w (e, X),

1<i<2n
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where RM™ denotes the curvature tensor of M. In general, we use the fol-
lowing sign convention for curvature tensors: RM(X,Y)Z = —VxWZ +
WVxZ + Vixy)Z. Then, RM(X,Y,Z,W) = gu(RM(X,Y)Z,W). Tt is
straightforward to prove:

Lemma 3.2. If{X,,Y,} is a diagonalizing orthonormal basis of F*w at p,
(SF*w, F*w) = Z 4 cos? 0, Ricci™ (u, 1) + Z 8 cos B, cos 0,RM (p, p, 1, 1)

H 1sp
= 2 4(cos 8, + cos 0,)* R (p, u, 5, T0)
1,p

+ 4(cos 0, — cos0,)*RM (5, i, p, Ti).
In particular, if F has equal Kdhler angles at p, then, at p,

(SF*w, F*w) = 16 cos? 0 Z RM (p, u, 5, 70).
pob

Moreover, if (M, Jy, gn) is Kdhler in a neighbourhood of p, then (SF*w, F*w)
=0.

We recall the concept of nonnegative isotropic sectional curvature, for M
with dimension > 4, defined by Micallef and Moore in [Mi-Mo]|. Let

RM(z,w,z,w)
Kiso - 0 5
(o) = Rl

)

where o = spanc{z, w} is a totally isotropic complex two-plane in T°M, that
is, u € 0 = gur(u,u) = 0, and where RM (z,y, u, v) is extend to the complex-
ified tangent space by C-multilinearity. The curvature of M is said to be non-
negative (resp. positive) on totally isotropic two-planes at p, if Kisot(o) >0
(resp. > 0) whenever o C T7M is a totally isotropic two-plane over p. If M
is compact, simply connected and has positive isotropic sectional curvature
everywhere, then M is homeomorphic to a sphere ([Mi-Mo]). If n > 1,
T?" is the flat torus, and S? is the euclidean sphere of R3, then S? x T?",
52 % 82, 5% x §2 x T?" and the complex projective space CP™ have isotropic
sectional curvature > 0 but not > 0. If {X,,Y,} is any orthonormal basis
of T,M, and “i” denotes Z,, as in (1.3), the expression

(3.15)  Sisot({Zat1<azn) = Z Kisot(spanc{p, u}) = 4 Z RM(Pa s P 11)
pFH Pt

is a hermitian trace of the curvature of M restricted to the maximal totally
isotropic subspace spanc{Zi,...,Z,} of T°M. To require it to be > 0,
for all maximal totally isotropic subspaces — and we will say that M has
nonnegative isotropic scalar curvature — seems, for n > 2, to be strictly
weaker than to have nonnegative isotropic sectional curvature. We also
note that, any other metric conformaly equivalent to the flat metric gy on
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the 2n-torus with nonnegative isotropic scalar curvature is homothetically
equivalent to go, hence flat. In fact, in general, if § = e®gy is a conformaly
equivalent metric on M, then, for each gps-orthonormal basis {X,,Ya},
Siot({Za}) = €St ({Za}) = (n = 1)e7*(24¢ + (n — 1)[[V9|?), where
Zo are defined by the g-orthonormal basis {enga,enga}. To require
2A¢ + (n —1)||V¢||?> < 0, implies, in case of M compact, ¢ constant. We
observe that, if dimg M > 6, then Siot = 0 does not imply M to be flat,
but Kist = 0 implies so. We also note that, if dimg(7,M) = 4, the set
of curvature tensors at p, with zero isotropic sectional curvature is a vector
space of dimension 9.

Recall that, for an immersion with equal Kahler angles, F*w is parallel
iff 0 is constant and if cos € # 0, (M, J,, gar) is a Kéhler manifold. We are
going to see that an extra condition on the scalar isotropic curvature of M
may imply itself that the Kahler angle is constant and/or V.J,, = 0. From
Proposition 3.3, for any n > 1, on 09, U Q)

(3.16) |6F*w||* = (n — 2)||V cos 2.

In particular, if n # 2, ||V cos 6]|? is smoothly extended to all M, and from
(3.1) we get that cos? ||V.J,|? is also smooth. Observe that ||[§F*w]||? has
the same value considering § F*w a vector or a 1-form, but considering F*w
a 2-form (as in (3.14)) ||VF*w||? is half of the square norm when considering
F*w an operator of TM (as in (3.1)). For n = 2, F*w is co-closed, and so
it is a harmonic 2-form. In fact, since F' has equal Kahler angles, F*w =
cosO(XIAY+X2AY2), and so xF*w = +£F*w, where * is the Hodge star-
operator of (M, g), for a fixed local orientation of M, and the + sign depends
on the orientation of the diagonalizing basis. In particular, F*w is co-closed
(on Q8 U QY and so on all M). From harmonicity of F*w we may conclude
that if the set of Lagrangian points has non-empty interior, or more generaly,
if F*w as a zero of infinite order, then F'is Lagrangian (see e.g., [E-L] (1.27),
(1.28)). For any n > 2, integrating (3.14) on M, using Stokes, (3.16) and
(3.1), and the fact that [, (AF*w, F*w)Vol py = [, |6F*w||? Vol a7, we have

1
(3.17) 0= / <(n —(n—2)})||Vcosh|® + B cos? 0|]VJw|2> Vol yr
M
+/ (SF*w, F*w)Vol .
M

The first integrand is smooth on M, for all n (for n = 2 it gives half of
(3.1)). The factor n — (n — 2)? is respectively, > 0, = 0, < 0, according
n=2or 3, n=4, and n > 5. If M has nonnegative isotropic scalar cur-
vature, (SF*w, F*w) > 0, by Lemma 3.2. Recall from Proposition 3.3 that
(€9,,, Ju, g) to be Kihler is a sufficient condition to conclude 6 is constant.
Then we conclude:
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Proposition 3.4. Let F' be a non-Lagrangian immersion with equal Kdahler
angles of a compact orientable M with nonnegative isotropic scalar curva-
ture into a Kdhler manifold N. If n = 2, 3 or 4, then 0 is constant and
(M, Jy, gr) is a Kahler manifold. For any n > 1 and 6 constant, F*w is
parallel, i.e., (M, J,,gn) is a Kdhler manifold.

4. Minimal immersions with equal Kahler angles.

Let us assume that F' : M — N is minimal with equal Kéhler angles. On
a open set of M ~ L where a orthonormal frame {X,,Y, = J,(Xa)} is
defined, we have from (3.11) and (2.4), for any p, Z € T, M and p,~,

(4.1) 2¢080(Vzp,7) = —iVzF w(p,v) = igzpy — igzyp-

Note that F*w(Vzu,7) = icosO(Vzu,5) = —icosO(u, Vzy) = —F*w(u,
V7). Hence, if i # 7, VP w(u, 3) = d(F*w(p, 7))(Z) = 0. Thus

(4.2) 9z = 927K, YR F -
From (3.8), for each p,
(4.3)
—%dcos 0(Z) = =z F*w(p, ) = gzpup — gz (no sumation over pu).
From (1.6), on M ~ (LUC)
Ak =41 Rica™ (JdF(B),dF(B))

[3
(4.4 m (RN (dF(8),dF (), dF (B), JdF () +i cos §dF (1)) )
1280050
(45) ——5— Y _ Rel(gsupgzom)
sin® 6
Biksp
64 cos 0
(46) + =g > (Vo) + [(Vyn, ).
Sin Bop

where now k = nlog (l—i-cosG)‘ Since R(X,Y, Z, JW) is skew-symmetric on

1—cosf

(X,Y) and symmetric on (Z, W), >_, 5 RN(dF(B),dF(n),dF(B), JAF (@) =
0. Then, from the Gauss equation and minimality of F,

(19 = % Siif St (i cos R (AF(5), dF (1), 4F (5), dF (1))
By

) - _
= S RY (5,11, 5. 7) + o(VHF (5, ), VAF (1, ).
B

sin“ 6
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Using the unitary basis {%@( )s s:nfeq)( )} of the normal bundle,
32cos b _ el
(4.7) ——= > g(VdF (8, ), VdF (u, )
sin” 6
B
64 cos 6 o
=——= Y (lgsmpl® + |gpmpl®)
sin® 6
Bip
64 cos 128 cosH
=——— > (lgspul® + |9z80) > lgspul.
sin* 6
ﬁ’/»‘ap ,8 Hm,p

From (4.2) and (4.3),
> Re(gsupgzen) =Y > lgsoul* + ZRG 95T g5HTL)

Byttsp Bt pF£p

= Z ‘gﬁﬁﬂ‘z - Z \gﬂﬂulz + ZRe gﬁﬂﬁgﬁﬂﬁ)
/Buu':p ﬁuu' /B,LL

= lgspul® - ZRG ( d cos 5)95%) :
Bipsp

SO
_ 128 cos 6 B

(4.7)+ (4.5 —ig ZRe < d cos§( ﬁ)gmm) .

On the other hand, Proposition 3.2 and minimality of F' gives,

4 -1
—ﬁz: COS;Re(zgﬁ,uu ﬁ) 7V10g51n G—WVCOSH.
Consequentely,
128 cos f
—nig ZRe ( d cos§( ﬁ)muu)
128(:089 =\
g ZR (—2d6089(ﬁ)95w>
_ 64cost R 8(n — 1) cosf 9
=~ tg dcosf | Re Zzggu,u'ﬁ ZWHVCOSQH :
B
That is,
8(n—1 0
(4.8) (4.7) + (4.5) = ("nfecosuvcosmy?.



MINIMAL SUBMANIFOLDS OF KE MANIFOLDS 215
Using (3.9),

(4.9) IV =D AVsd, V)
B

=S5 16(1(Vadu(w), )2 + [(Vadu(m), 5 2)

B P

=64 Y (I(Vi, )° + (V. )

Bi1,p

Thus we see that (4.6) = COS@ Vi 2. So we have obtained the following
formula:

Proposition 4.1. If N is Kdhler-Einstein with Ricci tensor Ricci’ = Ry,
and F is a minimal immersion with equal Kdhler angles, on an open set
without complex and Lagrangian points,

(4.10) Ak = cos@< ZRM B, i, B, 1)

(IH)HVCOSHHQ)

Note that if n = 1 we get the expression of Wolfson [W], Ax = —2R cos 6.

Proposition 4.2. If N is Kdhler-FEinstein with Ricci tensor Ricci = Ryg,
and F' is a minimal immersion with equal Kdahler angles, then:

) ffn=2,
(4.11) Rsin? 6 cos? § = 0.
(ii) If n > 3, then ||V|sinf|||?> can be smoothly evtended to all M. More-

over, if M is compact and orientable,

(4.12) /nRsin2900829VolM
M
:/ ((n —2)%|V cosb||? + 2(n — 2)||V|sin 6| [|?) Vol .
M

Proof. Multiplying (4.10) by sin? § cos 6, we get, on M ~ C U L, and using
Lemma 3.2,

sin® f cos 0A\k = —2nsin? 0 cos? R + 2(SF*w, F*w)

8(n — 1) cos? @

+ cos® 0|| VI, ||* + ( 2y |V cos 0.
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On the other hand, kK = nlog<1+°059>, and so, Ak = 827;9

1—cos @
4;52509 |V cos 6]|2. Hence,

4 2
(4.13) 2n cos O cos 6 + 7ncos |V cos 6>
sin?

= —2nsin? 0 cos® 9R+2<SF* w, F*w)
8(n — 1) cos? 0
(hgeHVCOSQP.

Recall that, from (3.1), and considering F*w a 2-form, ||[VF*w|? =
3 o8 0|| VI, || + n||V cos 6]|2. Since A cos® § = 2 cos 9 cos 6 + 2|V cos 62,
substituting this into (4.13), we have

+ cos? 0|V, ||? +

(4.14) nAcos® § = —2nsin® 0 cos> OR + 2(SF*w, F*w)
4(n — 2) cos®
12| VF | + ancosenz

and, for n = 2,
(4.15) nAcos®§ = —2nsin® 0 cos? OR + 2(SF*w, F*w) + 2| VF*w||%.

Let us now suppose that n > 3. The sign of sin § is not determined, because
we have chosen the interval where 6 is such that cosf > 0. Nevertheless
we have |sin@| = /1 — cos /1 + cosf. This map is continuous, smooth on
M ~ C U L but could be not Lipschitz near complex points. The last term
of (4.14) is given by

4(n —2)cos® 0 9 |V cos? 0||?
- |IVcosO|I = (n—-2)—F——
sin2 0 IV cos 8] (n ) sin26
|V sin? 0|2 )
= (n—2)7sin29 :4(n—2)HV]sm0|||2.

Then (4.14) is the equation
(4.16) n/ cos® § = —2nsin” § cos> R + 2(SF*w, F*w)
+ 2||VF*wl? + 4(n — 2)||V| sin 0] .

Clearly, (4.16) is valid on Q9,, ~ C and also on 2 and at interior points of C.
From smoothness over all M of all terms but the last, and the fact that the
remaining set is a set of Lagrangian and complex points with no interior,
formula (4.16) is valid on all M, extending smoothly and nonnegatively
|[V|sin @] ||2. Integrating it over M, and using (3.17) and (3.1), we have

/2nRsin20cos29VolM:/ (=2(n—(n—2)%) +2n)||V cosd|
M M

+ 4(n — 2)||V|sin 0]||* Vol yy,
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leading to (4.12). If n = 2, we see that (4.15) is also valid at Lagrangian
and complex points. In fact all terms of (4.15) vanish at interior points of
the Lagrangian and complex sets (see Lemma 3.2 and (3.1)). Since they
are smooth on all M, they must vanish at boundary points of C and of L.
Thus, the above equation is valid on all M, with or without complex or
Lagrangian points. Now, (4.11) follows from (4.15), and use of (3.14) with
| F*w||? = ncos? 6 and AF*w = 0. O

Proof of Theorem 1.2 and Theorem 1.3. If n = 2 and R # 0, (4.11) implies
sin? 6 cos?§ = 0. Hence F is either Lagrangian or a complex submanifold.
If n > 3, and M is compact and oriented, the right-hand side of (4.12)
is nonnegative, while the left-hand side is non-positive for R < 0. Then,
sin?fcos?f = 0 must hold on all M, that is, F is either Lagrangian or
complex. If R = 0, the right-hand side of (4.12) must vanish. Then, for
n > 3, cos must be constant, and we have proved Theorem 1.2. If cos@ is
constant, the right-hand side of (4.12) vanishes. Hence, if R # 0, F' is either
complex or Lagrangian, and Theorem 1.3 is proved. (]

Proof of Theorem 1.4. If M is not Lagrangian, under the curvature condi-
tion on M, by Proposition 3.4, for n = 2, 3 or 4, (M, J,, gnr) is a Kéhler
manifold and cos is constant. So, if M is not a complex submanifold, by
(4.11), or (4.12), R = 0. In general, if n > 1 and 6 is constant, Proposi-
tion 3.4 also applies. O

Under the conditions of Proposition 3.4, if M is homeomorphic to a 4
or 6 dimensional sphere, immersed into a Kéahler-FEinstein manifold, with
equal Kéhler angles and with nonnegative isotropic scalar curvature, then it
must be Lagrangian, for it is well-known that such manifolds cannot carry
a Kéhler structure. Obviously, any Riemannian manifold M with strictly
positive isotropic scalar curvature cannot carry any Kéahler structure, and
so the same conclusion must hold. No minimality is required to conclude
this.

As an observation, Proposition 3.4 should be compared with the following
lemma:

Lemma 4.1. Let F' be an immersion with equal Kdhler angles, and n > 2.
If cos 0 is constant then:

(i) (A, B,C) — gaBC is symmetric whenever A, B, and C are not all of
the same type.

(11) <VBM77> =0, V8, u, 7.

(iii) F*w is an harmonic 2-form of constant norm.

() 325, RM (8,1, B, 70) = —64 5, , [(Vart, o2 = —I| VL2 < 0 (omly
in the case cos @ # 0).
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Proof. Since cos 6 is constant, we obtain (4.3) = 0. This, together (4.2), and
the symmetry of VAF', proves (i). But (i) and (4.1) imply (ii). (iii) comes
from (3.16) and that ||[F*w|? = ncos?f. Now we prove (iv). Since F*w
is harmonic, from Weitzenbock formula (3.14) we conclude (SF*w, F*w) =
—||VF*w||?>. Lemma 3.2 and (3.1) (but considering F*w a 2-form) gives
(iv). O

Remark 2. If N is a Kéhler manifold of constant holomorphic sectional
curvature equal to K (and so R = 2(2n+1)K), and the isotropic scalar cur-
vature of M satisfies Sisot > ¢, ¢ a constant, we get by Gauss equation, that
c< M Thus, nonnegative isotropic scalar curvature on M is a possi-
ble condition for K > 0. In the case K = 0, that is, N is the flat complex
torus, for n > 2, F' must be totally geodesic, and so M is flat. We also note
that Sigot > % is not a possible condition if K > 0. Such a condition, when
possible (and so N cannot be of constant holomorphic sectional curvature),
could lead to some conclusion by applying the maximum principle to (4.10)
at a maximum point of k.

Example. Let (N,1,J,g) be an hyper-Kéhler manifold of real dimension
8. Thus, I and J are two g-orthogonal complex structures on N, such
that IJ = —JI and VI = VJ = 0, where V is the Levi-Civita connection
relative to ¢g. It is known that such manifolds are Ricci-flat ([B]). Set
K = IJ. For each v, ¢, we take “v¢” = (cosv,sinv cos¢,sinvsin¢) € S?,
and define J,4 = cosvI + sinvcos¢J + sinvsingK. These J,, are the
complex structures on N compatible with its hyper-Kahler structure, that
is, they are g-orthogonal and V.J,, = 0.

Two of such complex structures, J,4 and J,,, anti-commute at a point
p iff J,4(X) and J,,(X) are orthogonal for some nonzero X € T, N, iff v¢
and pp are orthogonal in R3. Thus, they anti-commute at a point p iff
they anti-commute everywhere. If that is the case J,4 0 J,, = Jse, where
{vé, up, o€} is a direct orthonormal basis of R3. For each unit vector X €
TpN, set Hx = span{X,IX,JX, KX} = span{X, J,4(X), Jup(X), Joe(X)},
for any orthonormal basis {v¢, up,ce}. 'Y € H )L( is another unit vector,
then Hx L Hy. Let wy,y be the Kahler form of (N, J,4,9). Let E be a 4-
dimensional vector subspace of T,N. We first note that I = Hx for some
X € E, iff J,4(E) C E for any v,¢. If that is the case, then E is not a
Lagrangian subspace with respect to any complex structure .J,,,. In general,
E contains a J,,4-complex line for some v¢ iff dim(ENHx) > 2 for some X €
E. If that is the case, and if ' is a Lagrangian subspace of T,V with respect
to Jup, then vo_Lup. Furthermore, if E is a J,4-complex subspace, then
is J,,-Lagrangian iff there exist an orthonormal basis {X, J,,X,Y, J,4Y '}
of F with Hx 1 Hy. To see this, let us suppose E is J,4-complex subspace
and J,,-Lagrangian. We take {X, J,4X,Y, J,,Y } an ortonormal basis of E.
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Then Y € span{X, J,4X, JWX}L. SoY =tJ, . X + EN/, for some t € R and
Y € H, and where {v¢, up, oe} is an ortonormal basis of R3. As E # Hy,
Y # 0. From 0 = (J,,Y, J,4X), we get t = 0. Thus, Y € Hyx. We observe
that, in general, J,,,-Lagrangian subspaces do not need to be .J,4-complex,
as for example F = {X,J,4,X,Y, J, Y}, with Y € H+, that contains two
orthogonal complex lines for different complex strutures.

Any J,4-complex submanifold F' : M — N of real dimension 4, is for each
pp, a minimal submanifold of (N, J,,, g) with equal Kéhler angles. More-
over, if for each point p € M, there exist an orthonormal basis {X, J,4X,Y,
JyeY '} of T, M with Hx 1 Hy, the Kahler angle is constant, given by cos =
|(v, up)|, where (,) is the inner product of R3, and +.J,, is the complex
structure of M which comes from polar decomposition of w,, restricted to
M. In fact, such an orthonormal basis of T),M diagonalizes w,,, restricted to
M. Next proposition is an application of Proposition 3.4 or Theorem 1.4, for
4-dimensional submanifolds of N, where w; is the Kéahler form of (N, I, g):

Proposition 4.3. Let F': M — N be a minimal immersion of a compact,
oriented 4-dimensional submanifold with nonnegative isotropic scalar curva-
ture, and such that Vvo € S%, F has equal Kéihler angles with respect to Jvg-
If 3p € M and 3X € T,M, unit vector, such that dim(T,M N Hx) > 2,
then there exists v € S? such that M is a Jyg-complex submanifold. Fur-
thermore, if J,4 = I then F' : M — (N,I,g) is obviously pluriminimal.
If J,s # I but T,M N Hy # {0}, then F*w; = cosv,y, and if F is not
I-Lagrangian, F : M — (N, I, g) is still pluriminimal.

Note that, if T,M = Hy, then J,4 can be chosen equal to I. The first
conclusion of this result should be compared with a result of Wolfson [W], for
M a real minimal surface and N a Ricci-flat K3 surface. In the latter case,
there is only one Kéhler angle, VX dim(7,M N Hx) = 2 is automatically
satisfied, and the isotropic scalar curvature is always zero.

Proof. From the assumption, dim(7,M N Hx) > 2, we may take a unit
vector Z € T,M N Hx such that Z1LX. Then, Z = J,4(X) for some v¢.
Thus, span {X, J,4(X)} C T,M. This implies F*w, (X, J,4(X)) = 1. As
the Kéhler angles are equal, cosf,4 = 1 at p. Applying Proposition 3.4
to I’ M — (N, Jyg, 9), Fwyg = cosbyyd,,, with cosf,g constant. Then
cosf,4 = 1 everywhere. That is, M is a .J,4-complex submanifold. More-
over, from the second assumption, T,M N Hyx # {0}, we may take a unit
vector Y € T,MNHy. Then {X, Ju X, Y, J,sY } constitutes an orthonormal
basis of T}, M, that diagonalizes F*wy, and F*w; = cosvJ,4. This means
that v or v+ 7 is the constant Kahler angle of F': M — (N, 1, g), and, since
M is a J,¢-complex submanifold, it is pluriharmonic with respect to 4.J,4,
and so, if cosv # 0, it is pluriminimal as an immersion into (N, I, g). O
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5. Appendix: The computation of Ax.

We prove (1.6) for F' minimal and away from complex directions. First, we
compute some derivative formulas of a determinant, which we will need.

Lemma 5.1. Let A: M — M,xm(C) be a smooth map of matrices p —
A(p) = [A1,..., Ap], where A;(p) is a column vector of C™ and M is a
Riemannian manifold with its Levi-Civita connection V. Assume that, at
po, A(po) is a diagonal matric D = D(\y, ..., Am). Then, at pg

d(det A)(2)= Y | [[ | d4%2)
1<j<m \k#j
Hess (det A)(Z, W) = Vd(det A)(Z, W)

= > | TI 2] det

1<jk<m \s#j.k

dA)(Z)  dA%(Z)
dAL (W) dAF(W)

+ Z H)\ HessA]ZW)

1<j<m \s#j
In particular, if e1, ..., e, is an orthonormal basis of Ty, M, then, at po,

A(det A) = Trace Hess (det A)

S > T A det

1<a<lr 1<j,k<m \s#j,k

+ Z H)\s AA;L

1<j<m \ s#j

J
Ai(ea) dAﬁ(ea)

dAl(eqa) dAK(eq) ]

On each ng, the complex structure J, and the sub-vector bundle ICLf
are smooth. Moreover, J,, is gas-orthogonal. Thus, for each pg € ng, there
exists a locally gps-orthonormal frame of K defined on a neighbourhood
of pg, of the form Xy, J,X1,..., Xg, JuXg. We enlarge this frame to a gys-
orthonormal local frame on M, on a neighbourhood of pg:

(51) X17Y1 = Jlea s 7Xk 7Yk = Jkav Xk‘-l—l)Yk‘-I—l) s 7Xn7Yn

where Xg41, Yit1,- .. Xn, Yn is any gpr-orthonormal frame of KCy,, and which
at po is a diagonalizing basis of F*w. Note that in general, without some
restrictive conditions, it is not possible to get smooth diagonalizing gas-
orthonormal frames in a whole neighbourhood of a point pg. We use the
notations in Section 3.1. We define a local complex structure on a neigh-
bourhood of pg € ng as J = J, @ J', where J,, is defined only on K2, and
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J' is the local complex structure on K, defined on a neighbourhood of pg
by

(5.2) J o =iZ0, JZg=—iZz Va>k+1.

Thus, the vectors Z, are of type (1,0) with respect to j, for Va. Since J is
gy-orthogonal, then, Vo, G, on a neighbourhood of py,

(5:3)  (VzJ(a),B) = 2i(Vza, B) = —(a, VzJ(8)), (Vz(a),B) =0.

Note that F*w and g, where g is given in (1.1), are both of type (1,1)
with respect to J, , and have the same kernel K,,. They are related by
J(X,Y) = F*u(X, J,(Y)). Set gap = g(A, B), and define B = B, VA, B ¢
{1,....n,1,...,n},and set ¢, = +1,eg=—1,V1 < a <n. Let V1 <, <
nand A,Be€{l,...,n,1,...,n}, Ce€{l,....n}U{k+1,...,m}. Then

‘w(a, C) = g(JdF(a),dF (C)) = Vp near po

F*u(a, B) = g(JdF (o), dF(B)) — Zaaﬁ coslo  at p
(5.4) gap = iegpF*w(A, B) = iegg(JdF(A),dF(B)) Vp near pg
JoC = Gog =0 Vp near pg

gaﬁ = JaB = %50{5 cos b, at pg.

At a point pg, with Kahler angles 6., gar £ ¢ is represented in the unitary
basis {v/2a,v/2a}, by the diagonal matrix gps = ¢ = D(1 & cosby,...,1+

cos b, 1 tcosby,...,1+cosb,), and so
(5.5) det(gns £9) = J[ (1% cosba).
1<a<n

If pg is a point without complex directions, cos 0, # 1, Va € {1,...,n}, then
g < gu- Thus, on a neighbourhood of pg, we may consider the map .

1 det g 1 0
(5.6) A= log <de<gM+€)> = Z log <1+COS€O[> )
etgmw —9)) 52, — cos O
This map is continuous away from the complex directions, and smooth on

each ng. We wish to compute Ak on ng

Lemma 5.2. At pg € ng, without complex directions and for Z,W €
TpoM,

H1<a<n (1% cosb,)?
+q =44 A
d(det(grr £9)) 1<Eu<n (1 £ cos ) dgum(Z),
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Hess(det(gp +9))(Z, W)

=16 (1= cosf,)? d9,1(2)dg,p(W)
1;:[91 g;; (1 +cosf,)(1+cosb,) " e
1
—8 (1 =+ cos 904)2 dg, 7(W)d§ 7(Z)
<1<aH<n ) — (1 £ cosf,)(1 +cosb,) a "
1
+4 1£n(1 + cosby) zﬂ: TOSH)HGSS Guu(Z, W).

Proof. Using the unitary basis {v/2a, v2a} of T5M, for p near po, g + g
is represented by the matrix
gy £5 = [ gm £ 9(V20,v29)  gu +§(v2a,v27) ]
gu £9(V2a,V2y) gu £3(v2a,v2y)
_ dary £ 2007 0 B
0 60‘7 + 295—\{

that at pg is the diagonal matrix D(1+cosf,...,1+cos,,1+cosby,..., 1+
cos 0y,). The lemma follows as a simple application of Lemma 5.1, and noting

that g.5 = gou- O
On ng,
2Ak = Nlog(det(gar +g)) — Alog(det(gar — 9))
A(det(gar +9))  lld(det(gar +9))II>

det(gar + 9) (det(gar + 9))?
_ Aldet(gn = 7)) lld(det(gar 9)II?
det(gar — 9) (det(gns — 9))2

From the above lemma and

ld(det(gar £+ )| = 4 _ d(det(gar £ ))(B)d(det(gnr +7))(5)

B
Adet(ga £g) =4 Hess(det(gu + 7))(8, B)
B
we have at pg,
(5.7)
64(cos 6, + cos @
20K = Z ( )d dgpu )+ Z Hessg,m(ﬁ B).

sinZ 6, sin2 6
Bo.p # P

Recalling (2.4), and d(F*w(X,Y))(Z) = VZF*w(X,Y) + Fw(VzX,Y) +
F*w(X,VzY), using (5.4), we obtain:
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Lemma 5.3. Vp near pg € 09,, Z € TyM, and p,y € {1,...,n}

dg,~(2) = igzpy — igzyp + 2 Z (V21 8)G 5 + (V7. 9)Gyi5)
p

0= dguy(Z) = —igzpy +igzyp+2 Y ((Vats, 03y — (Vo 0)Gup)-
p

In particular, at pg
dg,5(Z) = igzpy — igz7yp — (cos 0, — cos 0,)(Vzpu,7)
0= dguy(Z) = —igzpy +igzyp + (cos 0, + cos 6)(Vzu, 7).

Lemma 5.4. If F is minimal and py € ng is a point without complex
directions, then for each p € {1,...,n}

> Hessu(8.8) = > d(dg(8))(B) — dgun(V50)

1<f<n 1<B<n

= Y iRN(dF(8),dF(B),dF (1), JAF(T) + i cos 6,,dF (fr))

1<f<n

+ 2Im (RN (dF(B), dF (1), dF (), JAF () + i cos 0, dF (7)) )

6, — cos
v2 30 0l 0] (0o 1 gimpl?)

155en $n20p
cosf, + cosf _ B
-2 ) ( 7y ) (lgsupl* + lgs7inl?)
1<p<n ,
+ > —2i(VuB,p)ggen — 2(NuB, p)ggpit — 2i(VuB, p) 9,07
1<p<n
+ Y 2i(Vgu, p)gsplt — 2i(NuB, p)gsBT + 2151, p)gBT
1<p<n
+ > 2i(VaB, p)ggen + 2i(NaB, p)ggpu + 2i(VaB, D) g,Pu
1<p<n
+ 3 —2i(V1, p)gpBu + 2B, p)gaBi — 2i (T, p)gsBp
1<p<n
+ > 20 pYgsup + 2i(N5T, pgsp — 2i(Vau, p)gaTip
1<p<n

+ > —2i(u, pYgatip + 2i(Nsp, B)gzT — 2i(Nsp, B)g5Tip
+ Y 20(NB, p)ggup — 2i(VsT, p)ggop

—2 Y (cos 8 —cosb,)([{(Vap, p)I* + [ (V. D) 7).

1<p<n
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Proof. We denote by VxV4-dF the covariant derivative of Vi dF in T*M ®
F~ITN, and by R(X,Y)¢, the curvature tensor of this connection, namely
(R(X,Y)¢)(Z2) = RN(AF(X),dF(Y))¢(Z) — £&(RM(X,Y)Z). From Lem-
ma 5.3, for p on a neighbourhood of py,

g (B) = ig(NpdF (), JAF (1)) — ig(VpdF (1), JdF (1)
+2> " ((Vatt, ) + (Vi P)Gup)-
P

Then at pg,

(dg/m(ﬁ))( )
= ig(VG5(VpdF (1)), JAF (7)) + ig(VadF (), V5(JAF (1))
— ig(V5(VpdF (7)), JAF (1)) — ig(VadF (70), V5(JdF (11)))

Z ( (Va1 1)) Gpm + V((Vg,u P>)9up)

p

(5.8) + Z 2( VB% >d9pu(ﬁ) + 2<Vﬁﬂa p>d§uﬁ(3)

P
= ig(G(VpdF (1)), JAF (1)) + ig(VpdF (1), JV5dF (7))

+ig(VpdF (), JAF (Vgp)) — ig(V5(VsdF (i), JdF ()

— ig(VsdF (70), JV5dF (1)) — (VﬁdF L JAF (V1))
_|_

+ 08 0, (V5 ((Vare, 7)) + V5 ({1, Vi) ) + (5.8)

(5.9) = ig(V5(VpdF (1)), JdF (1))
+zg(ngF , JNGdF (7))
+ ) 2i(VaT, p)gpup + 2i(NV5T, P gaup
P
(5.10) — ig(V(VhdF (1)), JAF (1))

— ig(VpdF (), JV5dF (1))

+ ) —2i(Vau, p)gprip — 2151, pgstip
o

(5.11) +cos 0, (V5 ((Vape, 7)) + V5({, Vo))
+(5.8).
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The term (5.11) vanishes because (Vzu, r) = — (i, Vi) on a neighbourhood
of pg. Minimality of F' implies

> V(VadF ()
B

=" %(VdF(B) = Z VVLdF(8) + VudF (V50)
= ViNVGdF(B) -V, ]dm) (R(p, B)AF)(B) + VudF (V5)
B

= 3" VUV () — V3dF(VB) — V], 5dF (8)
B
+ RN(dF(u), dF(B))dF(ﬂ) — dF(R (11, )B) + VdF (V)

ZZ ~2(V,8, ) V5dF (p Z 2(V,u3, p) V5dF (p)
p

(2(Vi.B.p) — 2(Vgp, ))VdF(ﬁ)

p

—Z VB, p) — 2(V5p, p) VsdF (B)

+ RN (dF (n), dF (B))dF(8) — dF (RM (1, 5)8)
+Z2 (V58.0)ViudF (p +Z (V58, p)VudF (p).

Hence

S2(69) = 37 R (F (), aF () P9, JAF®) = cos8, " (15,57
+ Z i(VuB, p)ggoti — 2i(NuB, p)gzPi
+ Z 2i(—(VuB, ) + (V1. 9)) 9,07
+ Zm (ViB, p) + (V1. p)) 95T

+ Z 2i(V50, 0)9uplt + 2i(V38, p)g,uPP-

Similarly
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=) (5.10) = Y iRN(dF (i), dF(B), dF(8), JAF (1)) + cos 0, R (1, B, 8, )
+ Z ~2i(VaB3, p)ggpn — 2i(NB, p) ggpu
+ Z 2i(—(ViB, ) + (VG1, 7)) 9o
+ Z 2i(—(ViB, p) + (V5T, p)) g1

- Z 2i(N%30, D) gput + 215, p) gz

Using Bianchi 1dent1ty

and by Gauss equation, and minimality of F,

S —RM(u, B, 8,7) — R™ (1, B, B, )
B8

=> RM(B, 18,1 + RM(B, 8,1, ) — R™ (1, B, B, )
B

= —RM(B,B, 1, 11) + 2RM (B, 1, B, i)
B

=Y —RY(dF(B),dF(B),dF (n), dF (z))
8

— g(VBdF (1), VdF (7)) + g(VadF (1), VadF (1))
+2RN(dF(8),dF (1), dF(B), dF (1))
+29(V3dF (B), V,dF (i) — 29(VsdF (&), V. dF (5))
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= 3" —RN(dF(8),dF(B), dF (), dF (7))
B
+ 2RN (dF(8), dF (), dF (B), dF (1)
— g(VpdF (1), V3dF (7)) — g(VsdF (1), V,dF (5)).

Note that RN(dF(B),dF(u),dF(3),dF () = TIm (iRN(dF(3),dF(u),
dF(B3),dF (ﬁ))), since it is real. Therefore,

> d(dgu(8))(B)
8

= iRN(dF(B),dF(B),dF (1), JAF (1) + i cos 0,dF ()
B

+2Im(RN (dF (3), dF (u), dF(B), JAF (f0) + i cos 8,dF (1)) )
(5.12) = cos, g(VpdF (), V3dF (i) — cos 0, g(VadF (), VudF (B) )

+ Z —2i(N,53, p)gzpi — 2i(NuB, p)g5pR
+ Z 2i(—(V.B,p) + (V1,7)) 9050
+ Z 2i(— (VB p) + (Vsp. p)) 9507
(5.13)  + Z 2i(V38, 0)gupli + 2i (N5, p)gupF
;
+ ) 2i(ValB, D) ggpn + 2i(Vab, p)g5Pn
;
+ Z 2i((ViaB. p) — (5T ))gpBm + 2i((NeB, p) — (V5T p)) g1
(5.14)  + Z —2i(V50, p) gupp — 2i(V50, p) gupu

(5.15)  + zg(%dF( ). JN3dF (1)) — ig(VpdF (), JVzdF (1))

+ > 2i(NBT, pgsup + 25T, P)gpup
p

> —2i(Vgp, pgsmp — 2i{Nu, D) gstip + (5.8).

p

V2 9(p)

sin 6,

V2 o(p )} of the normal bundle, and

? sinf,

Using the unitary basis {
(2.1)
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(5.12) + (5.15)

20059 2cost,
= - |96MP| +lgsunl®) — “(1gs7ipl* + |gsmipl®)
n%o,
ﬁ?
2(:059 2cos b,
- \gﬂupl — |gsuol?) + 2(|gamp|* — gs7ipl®)
n%,
B.p
(COSH —cosb,) (cos @, + cosb,) _
ZQZ T Igﬁup\2—2z S’;nge " \gsupl®
B.p P
(cosB, + cosb,) (cosb, —cosb,)
e S

Applying Lemma 5.3 we have

a5 (V58) = _2(%8,7) dgulo) + > 2 (V38,0 dgun(p)
=2y ( <Vﬂ, >gpuﬁ - <Vﬁﬁvﬁ> GpRifL

+ <%ﬁ, p> Iplti — <Vgﬂ, p> gpﬂu>
= (5.13) + (5.14).
Finally

Z 2 (Vip, p) (ZTPN — zggup)

— Z 2 (Vap, p) (cos @, — cosb,) <Vﬁp,ﬁ>

P
+ ) 2(VsT, p) (igguﬁ - iggﬁu)
P

- Z 2(Vs@, p)(cos B, — cosb,) <V5u,ﬁ>
p

= 2i(Nsp, p)gzpm — 2i(NVau, P)gghp
P
+ > 2i(NsTi, p)ggup — 20V, p)g5pu
p
~ 237 (c0s 0 — c0s6,) (| (Vo ) + (V1. ) )-
P
These expressions lead to the expression of the lemma.
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Finally, we have:

Proposition 5.1. If F is minimal without complex directions, then for each
0<k<2n at each pg € ng,

Ak =40 Ricci™ (JdF(B),dF(B))

3
32 _
+ 3o (RN (dF (8), dF (), dF (B). JAF (B) + i cos ,dF (1))
ﬂ? ’LL
64(cos 6, +cos b, _
- Z )Re(gﬂupg@ou)
” sin 9 sin? 0,
32(008 6, —cosb,) 9 2
+BZ 6,500, (lgsuol® + lggrol?)
32(cos b, + cosb,)
+> rg (1S o) + (Ve ) ).
Bottsp sin” 0,

Proof. From (5.7) and Lemma 5.4 we get

2K
Z 64( C089H+C059 )

sin 0 sin2 0,

d95(B)dGpn (3)

Biu,p

+ 305 RN (AR (9), dF (3), dF (1), JAF () + i cos 6,dF ()
,3, 11 o

+ 30O (RY (@P (), ar (), dF @), JaF )
By ®

+icosf dF(*)))
+Z64 (cos, — cosb,)

sin? 6, sin 9

(lgsupl® + lgsmpl?)
Bytsp

B Z 64(cos b, + cosb,)
sin? 0, sin 0

(l9s1p* + |gsmip]?)
ﬁ? 7

(5.16)
Y S (B, D) g5 — S (B, )95 — 24— (LB, 7)., B8

Bisp
(5.17)

641
+ Z sm2zt9 < >gﬁp'u_ sin?

Bit,p

o= (B ) 9T + 5 <%ﬂv f’> 9911
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(5.18)

+ D e (VB P) ggom + ot (Nl p)ggpm + gt (V. 0)go0n
Bipsp

(5.19)

+ > e () 9pBu + 50 (B, g — 5845 (N ) 5B
Bytp

(5.20)

+ Y e () gsmp + 52 (Vi e) 950 — 2 (Vam. ) 95T
Byt,p

(5.21)

+ D e < p> 967 + 5oz~ (Vats ) 95T — gz g (Vah. D)g5mp

Bipsp

(5.22)
+ > SHGIZHQHWBM, P)IGHP — SH%ZGHWBM, P)95PH
Boiip
64(cos 6, — cosf,) \|? NE
- 5 ) (5,5 (o))

Interchanging p with (3 in the first term of (5.16) (that we named by (5.16)(1),
and similarly to other equations), we see that (5.16)(1)+(5.17)(2) = 0. Inter-
changing p with §in (5.18)(1), we get (5.18)(1)+(5.19)(2) = 0. In (5.16)(2),
(V.B, p) is skew-symmetric on p and 3, and 95PR is symmetric on p and f3.
Hence (5.16)(2) = 0. Similarly (5.16)(3) = (5.18)(2) = (5.18)(3) = 0. If we
interchange p with p in (5.17)(1),

i(sin? §,, — sin®
G + (5.20)2) = — 3 WO I0) (G5 ) gaup

2 2
sin“ @, sin“ 0
Bp # P

Interchanging p with p in (5.17)(3), we get

i(sin® sin?
(5.17)(3) + (5.20)(3) = — Y _ Gdifsin 0, + sin”6,) <%u,p> 9 Mp-

- 2 2
sin“ @, sin“ 0
B.pt.p # P

Interchanging p with p in (5.19)(1), we get

i(sin? sin?
(619)(1) + (5.20)(1) = 32 I EI0) (G5 5 gane

2 2
sin“ @, sin“ 6
Bitt,p # P

Interchanging p with p in (5.19)(3), we get

i(sin? 6,, — sin?
(5.19)(3) + (5.21)(1) = ) 64 (. O : ) <Vgu,ﬁ> gpRp-

2 2
sin“ @, sin“ 6
Bitt,p # P
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Interchanging p with p in (5.21)(2),

(5.21)(2) + (5.22)(1) = > 64i(—sin® 0, 4 sin?6,)

- 2 -2
sin” 0, sin” 0,

(VsIi, p) 951
Bitssp
Interchanging p with p in (5.22)(2), we obtain

64i(sin% 0, — sin®0,,) o
5.22)(2) + (5.21)(3) = = L2 (s, ) g=Tip-
(6-22)2) +(5:200) = 3 — Fapt e (Vou. ) 0570

Bsttp
Therefore,
20K
64(cos@, +cosb,) _ —
5.23) = a PLag —(B)dg.—
( ) g:p sin2 0,“ sin2 ep gup(ﬁ) gpu(ﬂ)
32t _ ' B
(524) 4+ 5 - RN(dF(9),dF(5),dF (), JAF (1) + i cos 6,dF (1))
Bip ’
64 _ -
+ Zsm m(RY(dF(8), dF (), dF (B), JAF (1)
u

+icos0,dF (it )))

64(cosf, — cosd
(5.25)  + > 2 |gapapl?

sin 0 sin 9

Bpsp
64(cos 6, + cosb,,) 9
5.26 —
(5.26) Bzu:p 76,570, 9517
64(cos b, +cos€ W) o
5.27 -
( ) ; sin 0 sin? 0, l9570)
64(cosf, —cosb,) ,
5.28 L K 2
( ) +ﬂzu:p sin? 0, sin29 l957P]
64i(sin? 0, — sin?0,)

5.29 — <Vi > p
( ) ﬁzu: sin® 6, sin 9 gt P ) 95HP
64i(sin? 0, + sin?0,)

530) - <v , > P
( ) ﬁz“:p sin® 6, sin 0 gt P ) 95HP

64i(sin? 6,, + sin® 6 o
(5.31)  + Y (s — 0) <Vﬁu,p> gsip
sin” 0, sin” 0,
Byt,p
64i(sin? 6, — sin®6,)
5.32 a £ <V ,’>
( ) * Z sin? 0, sin? 0, gl P ) 95HP

Butsp
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Py 64i(— sin® 0, + sin®0,,)

2 )
sin” 0, sin“ 0,

(5.33) (s, p) g51p

64i(sin? @, — sin20
(531) 4y SHOWO ) (o ) e

sin? 0, sin? 0,

Bu,
64(cos b, —(3089> |2 N
(5.35) =Y sin”0, ()<Vﬁ“”’>‘ +‘<%“’p>‘ )
Bipsp
By Lemma 5.3,
64(cosf, + cosb,)
(5.23) = Z sin2 HH sin? 6 ;
Bipsp . g
' (igguﬁ — iggpp — (cos 0, — cos b)) <vﬁ”’ﬁ>) '
' (igﬁpﬁ —iggfip — (cos b, — cos0,) (Vsp, 1) )
L Z 64(cosf, +cosb,) _
- sin? 0, sin? 0, IpHP9BPH
Bsu,
64(cos 8, + cosf —

) )
sin” 0, sin“ 0,

64i(cos2 6, — cos? 0 _ .
(537)  + > (<os” 6 . )%MP (Vop, i)

) )
sin” 0, sin“ 0,

64(cos 8, + cos .
(5.38)  + > (cos B, 2|

) -2
sin” 0, sin” 0,

_ Z 64(cos @, + cosf,)

sin? 0, sin? 0, IpHPIPH

64i(cos? 0, — cos?0,,)
5.39 - = = (Nsp, ) 93P,
( ) Z sin? 0, sin? 0, < Bp ) IsPH

(5.40) B Z 64i(cos® ), — cos® ) <V,u, >g,3,0ﬁ

) )
sin” 0, sin” 0,

64i(cos? 0,, — cos? 6,)
(5.41)  + Z (cos” 6, - <Vu ﬁ>gﬁﬁp

sin2 0, sin2 0,

(5.42) N Z 64(cos? 0, — cos? 0, )(cos 6, — cosf,) <Vﬁﬂyﬁ> (Vsp i)

sin? 6, sin? 0
Bopp ’ P

Immediately we have, (5.27) + (5.36) = (5.32) + (5.41) = (5.33) + (5.37) =
0, and interchanging p with p in (5.26), (5.34) and in (5.40), we get, (5.26)+
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(5.38) = (5.29) + (5.40) = (5.34) + (5.39) = 0. Note that

Z (cos 0,.1 ; cos Hp)| (Vo P |2 = Z (cos 6,? —2 cosf,,) ‘<Vg,u,ﬁ>‘2 '

o sin” 0, v sin“ 0,
Hence (5.35) + (5.42) = 0. Then,
2K

(5.43) —Z 320 pN (dF(B3),dF (B),dF (), JAF (@) + i cos 0,dF (fr))

sin 9

+Zsm Tm( RN (dF(8), dF (1), dF (), JAF (i)
,u,

+zcos@udF(u)))
64(cos @, + cos6 _ _
(544) 4+ > - s et ) (951P9sPTE + goTipg5PIL)
sin” 0, sin“ 0,
Bi,p
64(cosf, — cosb,) 9 9
+BZ 70, 576, (lgsrpl® + lgguol®)
641( sm 0, + sin? 6,) o
5.45 — AR
( ) ﬁz: sin 9 sin? 0, < sk p>ggup

642s1n9 + sin? 6,) L
4 .
40 +ﬁzl;p sin 6 sin? 0, <Vﬂu,p>ggup

Using Lemma 5.3, and interchanging p by p when necessary,

(5.45) + (5. 46)
S e (oo e ()
+S.T<%ﬂ, >95.UP+ o <Vu p> gsHp

= Z o <%M,p> (%W—%W)

+ Z oL <Vu, >(gﬁup—9mw)

_ Z 5 0 <vﬁﬂ, p> (cos 6, + cos6,,) (VsT, )

64
sin? 0,

<%ﬁ, ﬁ> (cos b, + cosb,) (Vap, p)

233
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_ Z 64(cos 6, + cosf,) <’<V5,u,p>‘2 N ’ <V3,u, p> ‘2> '

)
sin“ 0
Bitt,p #

Obviously

(5.44) = Z —128(cos b, + cosb,)

Re DG=p[L).
sin? 6, sin? 6, (95 HPIg Pr)

Bstsp

From (1.4), (2.1), and the J-invariance of Ricci,

(5.43) = 8i Y _Ricci (JdF(8),dF(B)),
3

and the expression of the Proposition follows. O

After completion and posting of this work in the e-print archive (with no.
math.DG/0002050) my attention was drawn to a related paper by A.Ghigi
[G], published in the meantime, which contains the same result as ours for
the case R # 0 and n = 2, but proved in a different way.

Acknowledgments. We would like to thank very much Professor James
Eells and Professor Claude LeBrun for helpful discussions and encourage-

ment.
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