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Let f (resp. ϕ) be a C∞ (resp. real-analytic) function germ
near the origin in Rn. Assume that f is divisible by ϕ in
C∞, and that it belongs to a sufficiently regular utradifferen-
tiable class {`! M`} of Carleman type (for example, one of the
Gevrey rings familiar in the theory of differential equations).
What can then be said about the regularity of the quotient
f/ϕ? In this paper, we obtain first a complete solution of
this problem in the case n = 2. Namely, it is shown that
f/ϕ belongs to the Carleman class {`! M

d(ϕ)
` }, where d(ϕ) is

a suitable  Lojasiewicz exponent for the regular separation be-
tween the space R2 and certain components of the complex
zero set Zϕ of ϕ. This number can be explicitely computed by
means of Puiseux expansions. We prove moreover that the di-
vision result is sharp for any ϕ and M. Finally, we apply it to
get a characterization of closed principal ideals generated by
real-analytic functions in Carleman classes of two variables,
improving a result which was known previously only in the
case of generators with isolated real zeros.

Introduction.

Many studies in differential analysis involve a more or less explicit version of
the following division problem: Let ϕ be a given real-analytic function germ
at the origin in Rn and let f be another germ enjoying some regularity
properties. What kind of control on the quotient f/ϕ is it then possible
to derive from the knowledge of geometric and differential properties of
ϕ and f ? As typical examples of questions in this spirit, we refer the
reader to the  Lojasiewicz division theorem [10], [11], the work of Mostow-
Shnider on continuity of C∞ quotients [12], theorems of Izumi [8] and Wang
[17] on Chevalley estimates, and so on. Of course, the kind of regularity
property which is dealt with (order of vanishing, smoothness, estimates on
derivatives...) has a strong influence on the nature of the corresponding
result.

The present article studies division estimates in the setting of very smooth
germs, namely ultradifferentiable classes. Denote by C∞(Rn, 0) the ring
of infinitely differentiable function-germs at the origin in Rn, and recall
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that the Carleman class of germs CM (Rn, 0) is defined as the subclass of
C∞(Rn, 0) containing all those germs f whose derivatives at any order `
are majorized by C`+1

f `!M` in some fixed neighborhood of 0, where Cf is a
constant depending on f, and (M`)`≥0 is a given sequence of real numbers
satisfying suitable regularity assumptions. In some sense, the role of this
sequence consists in putting a bound on the defect of analyticity of the ele-
ments of CM (Rn, 0). Thus, such classes provide scales of regularity between
the analytic and the C∞ ones. A well-known and much studied example is
given by the scale of Gevrey classes (M` = `!α with α > 0). In Carleman
classes, the general division problem described above can be precisely stated
as follows: Being given a germ ϕ of real-analytic function at the origin in
Rn and a Carleman class CM (Rn, 0), investigate the smallest possible class
CM+(Rn, 0) containing CM (Rn, 0) and enjoying the following property: If f
is an element of CM (Rn, 0) which can be written as ϕg for some g belonging
to C∞(Rn, 0), then the quotient g = f/ϕ belongs to CM+(Rn, 0). Of course,
the sequence M+ should depend only on M and on geometric and differen-
tial properties of ϕ. The reason why we consider different classes CM and
CM+ lies in the fact that some loss of regularity turns out to be generally
unavoidable in the division process; hence the class of the quotient has to
be (possibly strictly) wider than CM . The only exception arises for n = 1,
where obvious arguments show that M+ = M.

In this paper, we obtain a complete solution of the problem for n = 2,
that is, for germs in two variables. As a starting point, we mention that in
the particular case where the real zero set of ϕ reduces to the single point
{0}, it is possible to see, as a corollary of the results in [15], that the solution
is given by M+

` = M
τ(ϕ)
` , where τ(ϕ) is the  Lojasiewicz exponent for the

regular separation between R2 and the complex zero set of ϕ. Moreover, this
choice of M+ is sharp. However, after [15], the previous division problem
remained unsolved for general zero sets, even for two variables. In this
setting, we shall show here (Theorem 2.1) that the previous solution is still
valid, provided we extend the definition of M+ by putting

M+
` = M

d(ϕ)
` ,

where d(ϕ) is, roughly speaking, the greatest number among all  Lojasiewicz
exponents for the regular separation between R2 and one of those branches
of the complex zero set of ϕ whose intersection with a half-plane in R2

reduces to {0} (see Section 1 for details). Of course, we have d(ϕ) = τ(ϕ)
when the intersection of the zero set itself with R2 reduces to {0}.

Our method of proof relies exclusively on explicit estimates, striving to
stay as accurate as possible at each step. The underlying reason why di-
mension 2 plays a special role lies in the fact that, as in [15], it allows to
relate d(ϕ) to some numbers occuring explicitely in Puiseux expansions of
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the roots of ϕ. However, some particular results can be extended to the
higher dimensional case; see the details in Subsection 4.3 below. We owe
these extensions to Edward Bierstone and we take here the opportunity to
thank him for his insightful comments on the subject.

Finally, we mention that another strategy to study such division problems
in certain classes of smooth functions has been developed by Bos-Milman
[4] and Chaumat-Chollet [7]: Using resolution of singularities, these authors
are led to a quite different kind of results, as explained in Remark 4.4 below.

The article is organized as follows: Section 1 recalls definitions and vari-
ous prerequisites; Section 2 states and partly proves the main result (The-
orem 2.1). Section 3 is devoted to establishing a technical estimate, thus
completing the proof of Theorem 2.1; this is the most delicate part of the
paper. In Section 4, we discuss the sharpness of the main result (see The-
orem 4.1); we apply it to a characterization of closed ideals (Theorem 4.2)
and give some comments.

1. Preliminaries.

1.1. Notations. Throughout the paper, for any multi-index L = (`1, . . . ,
`n) in Nn, we shall denote by the corresponding lower case letter ` the length
`1 + · · ·+`n of L. We also put L! = `1! . . . `n! and denote by DL the operator
∂`1

1 . . . ∂`n
n , with ∂j = ∂/∂xj for j = 1, . . . , n. We say that a C∞ germ f is

flat at a point a if f and all its derivatives vanish at a. For any subset E
of Rn or Cn, we shall sometimes write (E, 0) to denote E ∩ U where U is
some neighborhood of 0. When we write that a property P(x, y), depending
on x ∈ Rn and on some family of other parameters y, holds for x in (E, 0),
it is assumed that the neighborhood U does not depend on y. We denote by
d(x,E) the euclidean distance from a point x to E. At last, the following
classical notation will be useful: If A(t) and B(t) are two positive functions
of a variable t belonging to a set T, one writes A(t) . B(t) (or equivalently
B(t) & A(t)) to say that there exists a real C, not depending on t, such that
the inequality A(t) ≤ CB(t) holds for all t ∈ T. The notation A(t) ≈ B(t)
means that one has A(t) . B(t) and B(t) . A(t) simultaneously.

1.2. On ultradifferentiable germs. Let M = (M`)`≥0 be an increasing
sequence of real numbers with M0 = 1. The sequence M is said to be
strongly regular if there exists a positive constant A such that the following
assumptions are satisfied:

(1) M is logarithmically convex,

(2) Mj+k ≤ Aj+kMjMk for any (j, k) ∈ N2,

(3)
∑
j≥`

Mj

(j + 1)Mj+1
≤ A

M`

M`+1
for any ` ∈ N.
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Condition (1), which amounts to saying that M`+1/M` increases with `,
implies

(4) MjMk ≤Mj+k for any (j, k) ∈ N2.

Thus (2), which is in some sense converse to (4), means that the growth
of M is not too wild. The role of condition (3) will be recalled later, af-
ter the definition of ultradifferentiable germs. To each strongly regular se-
quence M, one associates classically the function hM defined by hM (t) =
inf`≥0 t

`M` for any t ∈ R+. This function, which is a sort of Legendre
transform, is continuous, non-decreasing; we have hM (0) = 0 and hM (t) = 1
for t ≥ 1. In virtue of (1), the knowledge of hM fully determines the sequence
M since we have

(5) M` = sup
t>0

t−`hM (t) for any ` ∈ N.

For the typical example of Gevrey sequences M` = `!α (α > 0), we have
hM (t) = exp(−λ(t)) with λ(t) ≈ t−1/α.

Now let s be a real number with s ≥ 1. Obviously, the sequence M s =
(M s

` )`≥0 is also strongly regular, and we have hMs(ts) = (hM (t))s. We recall
also that there exists a constant ρ(s) ≥ 1, depending only on s and M, such
that

(6) hM (t) ≤ (hM (ρ(s)t))s for any t ∈ R+.

From (2), (5) and (6), it is straightforward to deduce that there exists a
positive constant A(s), depending only on s and M, such that

(7) t−s`hM (t) ≤ A(s)`M s
` hM (A(s)t) for any t ∈ R∗

+ and ` ∈ N.

As in [15], for any strongly regular sequence M, we define now CM (Rn, 0)
as the class of germs f in C∞(Rn, 0) for which there exist a neighborhood
U of 0 in Rn and a constant C > 0 such that the inequality

|DLf(x)| ≤ C`+1`!M`

holds for any x in U and any multi-index L in Nn. The class CM (Rn, 0) is a
local algebra, stable under derivation. As remarked in the introduction, the
sequenceM majorizes, in some sense, the defect of analyticity of its elements.
Condition (3) is the so-called strong non-quasianalyticity condition ensuring
the existence of “good” cutoff functions with CM regularity [5]. For a more
detailed interpretation of (1), (2), (3) in terms of ultradifferentiable classes,
we refer the reader to [5], [9], [13]. Beware that the notations in [5], [9], [13]
are different, since M` plays there the role played by `!M` in the present
paper. The latter notation, viewing M as a defect of analyticity, is more
convenient here, since it seems, as a general rule, that any loss of regularity
involved by the various operations of differential analysis (division, etc.)
in the setting of ultradifferentiable functions, acts only on the defect of
analyticity.
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1.3. On analytic germs. Denote by O(Rn, 0) (resp. O(Cn, 0)) the ring
of real-analytic (resp. holomorphic) function germs at the origin in Rn

(resp. Cn). By means of the power series expansion, O(Rn, 0) can obvi-
ously be viewed as the subset of elements of O(Cn, 0) taking real values on
Rn. Thus, to each real-analytic germ γ in O(Rn, 0), one can associate the
set of its complex zeros Zγ = γ−1(0) as a germ of complex analytic set.

From now on, we shall denote by ω(v) the order of any element v of
O(C, 0), that is the least degree of monomials occuring in the power series
expansion of v, with the convention ω(0) = ∞.

Let ϕ be a given element of O(R2, 0). After a linear change of coordinates
with real matrix, one can clearly assume, without changing the fact that ϕ
is real, that the z1-axis is transversal to the zero set Zϕ at 0. Using Puiseux’s
theorem as in [15], we can write, for some integer m in N∗,

ϕ(z1, zm
2 ) = u(z1, zm

2 )
p1∏

p=1

(z1 − Up(z2))np ,

where n1, . . . , np1 are positive integers, u is a unit in O(C2, 0) and U1, . . . ,
Up1 is a suitable family of germs in O(C, 0), satisfying ω(Up) ≥ m for p =
1, . . . , p1. Put Up = Rp + iSp with Rp ∈ O(R, 0) and Sp ∈ O(R, 0). Using
the fact that ϕ is real, it is not difficult to see that for x2 in R∗, the roots
Up(x2) for which Sp(x2) is non-identically zero are pairwise conjugate. After
reindexation, we can thus write, for some suitable integer p0 satisfying 2p0 ≤
p1,

Up =


Rp + iSp with m ≤ ω(Sp) <∞ for p = 1, . . . , p0,

Rp−p0 − iSp−p0 for p = p0 + 1, . . . , 2p0,

Rp with ω(Rp) ≥ m for p = 2p0 + 1, . . . , p1.

Note that we can write

ϕ(z1, zm
2 ) = u(z1, zm

2 )
p0∏

p=1

(ψp(z1, z2))np

p1∏
p=2p0+1

(z1 −Rp(z2))np

with ψp(z1, z2) = (z1 −Rp(z2))2 + (Sp(z2))2; and we have also u ∈ O(R2, 0)
since ϕ is real. The special case p1 = 2p0, occuring when Zϕ ∩ (R×R+) =
{0}, has been studied in detail in [15]. In the same spirit, we define here

µp = ω(Sp) and τ+
p = µp/m for p = 1, . . . , p0,

d+(ϕ) = max { τ+
p ; p = 1, . . . , p0} if p0 ≥ 1 and d+(ϕ) = 1 if p0 = 0,

d−(ϕ) = d+(ϕ̌) with ϕ̌(z1, z2) = ϕ(z1,−z2),

d(ϕ) = max (d+(ϕ), d−(ϕ)).



242 VINCENT THILLIEZ

We denote by Xϕ the set Zϕ ∩R2 of real zeros of ϕ. For technical reasons,
we also define, for p = 1, . . . , p1,

Zp = {z ; Re z2 ≥ 0 and z1 = Up(z1/m
2 )}, Xp = Zp ∩R2,

Z±ϕ = {z ∈ Zϕ ; Re z2 ∈ R±}, X±
ϕ = Z±ϕ ∩R2,

where z1/m
2 is the principal determination of the mth-root of z2.

1.4. On  Lojasiewicz exponents. Let X and Y be two germs of closed
subsets at the origin in Rn, with 0 ∈ X ∩ Y; and let T be the set of real
numbers t ≥ 1 for which there exists a constant ct > 0 such that one has

d(x,Y) ≥ ctd(x,X ∩ Y)t for any x ∈ (X , 0).

Recall that X and Y are said to be regularly separated if T is not empty (it
is classical that this definition is symmetric with respect to X and Y, see e.g.,
[11]). The  Lojasiewicz exponent for the regular separation between X and
Y is then defined as the infimum of T . As a fundamental fact of subanalytic
geometry, it is known that the subanalyticity of X and Y implies regular
separation, and that the  Lojasiewicz exponent is rational and attained (in
other words, it belongs to T ), see [3]. If it is equal to 1, the sets X and Y
are said to intersect transversally.

Here, according to [15], the number d+(ϕ) defined in the previous subsec-
tion is precisely the  Lojasiewicz exponent for the regular separation between
R2 and the union

⋃
1≤p≤2p0

Zp of all those “branches” Zp in Z+
ϕ for which

Xp = {0} (for the other ones, Xp is a C1 real arc originating in {0}, and
Zp intersects R2 transversally, as shown in Lemma 2.3 below). Notice also
that when we have Zϕ ∩ R2 6= {0}, the number d(ϕ), which has been de-
fined as max(d+(ϕ), d−(ϕ)), generally does not coincide anymore with the
 Lojasiewicz exponent for the regular separation between R2 and Zϕ. In-
deed, it is possible to check that the latter exponent τ(ϕ) always satisfies
τ(ϕ) ≤ d(ϕ); but this inequality can be strict, see the following Example
(iv).

1.5. Examples.
(i) ϕ(x) = x2

1 − x2k
2 (k ∈ N∗). This the simplest kind of example: We can

write ϕ(x) = ϕ̌(x) = (x1 − xk
2)(x1 + xk

2), hence m = 1, p1 = 2, p0 = 0
for both ϕ and ϕ̌. We derive d+(ϕ) = d−(ϕ) = d(ϕ) = 1.

(ii) ϕ(x) = x2
1 − x2k+1

2 (k ∈ N∗), for which Xϕ is a cusp. We can write
ϕ(x1, x

2
2) = (x1 − x2k+1

2 )(x1 + x2k+1
2 ), hence m = 2, p1 = 2, p0 = 0

and d+(ϕ) = 1. On the other hand, we have ϕ̌(x) = x2
1 + x2k+1

2 , thus
ϕ̌(x1, x

2
2) = (x1 − ix2k+1

2 )(x1 + ix2k+1
2 ): For this one, we get m = 2,

p1 = 2, p0 = 1, µ1 = 2k + 1, hence d−(ϕ) = d+(ϕ̌) = k + 1
2 . We derive

finally d(ϕ) = k + 1
2 .
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(iii) ϕ(x) = (x2
1 − x3

2)(x3
1 − x4

2). We have

ϕ(x1, x
6
2) =(

x1 +
1
2
x8

2 + i

√
3

2
x8

2

)(
x1 +

1
2
x8

2 − i

√
3

2
x8

2

)
(x1 − x8

2)(x1 − x9
2)(x1 + x9

2).

This yields m = 6, p1 = 5, p0 = 1, µ1 = 8 and consequently d+(ϕ) =
4/3. We have also ϕ̌(x) = (x2

1 + x3
2)(x3

1 − x4
2), hence

ϕ̌(x1, x
6
2) =

(x1−ix9
2)(x1+ix9

2)

(
x1 +

1
2
x8

2 + i

√
3

2
x8

2

)(
x1 +

1
2
x8

2 − i

√
3

2
x8

2

)
(x1−x8

2).

For ϕ̌, we can thus take m = 6, p1 = 5, p0 = 2, µ1 = 9, µ2 = 8 and
d−(ϕ) = d+(ϕ̌) = 3/2. Finally, we get d(ϕ) = 3/2.

(iv) ϕ(x) = x1((x1 − x2
2)2 + x8

2). We can write

ϕ(x) = ϕ̌(x) = x1(x1 − x2
2 + ix4

2)(x1 − x2
2 − ix4

2),

hence m = 1, p1 = 3, p0 = 1, µ1 = 4 and d(ϕ) = 4. Now we compute
the  Lojasiewicz exponent τ(ϕ) for the regular separation between R2

and Zϕ. In C3, the set Zϕ has 3 smooth irreducible components Z ′, Z ′′+,
Z ′′− respectively given by Z ′ = {z1 = 0} and Z ′′± = {z1− z2

2 ± iz4
2 = 0}.

Pick x ∈ (R2, 0). Elementary arguments show that d(x, Z ′) = |x1|
and d(x,Z ′′±) ≈ |x1 − x2

2 ± ix4
2| ≈ |x1 − x2

2| + x4
2, hence d(x,Zϕ) ≈

min(|x1|, |x1−x2
2|+x4

2). For |x1| ≤ 2x2
2, we have |x1−x2

2|+x4
2 ≥ x4

2 & x2
1

and otherwise we have |x1 − x2
2| + x4

2 ≥ |x1 − x2
2| & |x1|. We derive

thus the separation inequality d(x,Zϕ) & x2
1 = d(x,Xϕ)2. On the

other hand, the point x(ε) = (ε2, ε) satisfies d(x(ε), Xϕ) = ε2 and
d(x(ε), Zϕ) ≤ ε4, since x(ε) + (iε4, 0) belongs to Zϕ. Therefore, the
exponent 2 can not be lowered in the separation inequality, and we
have τ(ϕ) = 2 whereas d(ϕ) = 4.

(v) Note finally that if ϕ is a homogeneous polynomial, we have obviously
d(ϕ) = τ(ϕ) = 1.

2. A division theorem.

In the sequel, ϕ denotes a given germ in O(R2, 0). Using the notations of
Section 1, the main result of this paper reads as follows:

Theorem 2.1. Let M be a strongly regular sequence and let g be a
germ in C∞(R2, 0) such that ϕg belongs to CM (R2, 0). Then g belongs to
CMd(ϕ)(R2, 0).
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This theorem reveals that in some sense, the real arcs of Zϕ do not con-
tribute to the loss of regularity involved in the division process. We give
now a few geometric lemmas to prepare the proof.

Lemma 2.2. For 1 ≤ p ≤ 2p0 and x ∈ (R × R+, 0), one has d(x,Zp) &

|x|τ
+
p .

Proof. Use the same argument as in [15, Lemma 3.2]. �

Lemma 2.3. For 2p0 +1 ≤ p ≤ p1 and x ∈ (R×R+, 0), one has d(x,Zp) &
d(x,Xp).

Proof. Put y = (Rp(x1/m
2 ), x2); then y belongs to Xp and one has thus

d(x,Xp) ≤ |x−y| = |x1−Rp(x1/m
2 )|. Besides this, as in [15, Lemma 3.2], the

function given by z 7→ |z1−Rp(z1/m
2 )| for Re z2 ≥ 0 can be extended to a C1-

function Tp in a neighborhood of 0 in C2; and T−1
p (0) is a 2-dimensional real

submanifold of C2 containing Zp. Hence we derive d(x,Zp) ≥ d(x, T−1
p (0)) ≈

|Tp(x)| = |x1 −Rp(x1/m
2 )|, which ends the proof. �

Lemma 2.4. For 1 ≤ p ≤ p1 and x ∈ (R×R−, 0), one has d(x,Zp) & |x|.

Proof. Use the same argument as in [15, Lemma 3.3]. �

Proposition 2.5. For x ∈ (R2, 0), one has d(x,Zϕ) & min
(
|x|d(ϕ),

d(x,Xϕ)
)
.

Proof. We remark first that we have

(8) d(x,Z+
ϕ ) & min

(
|x|d+(ϕ), d

(
x,X+

ϕ

))
.

Indeed, for x ∈ (R × R+, 0), the estimate (8) is a direct consequence of
Lemmas 2.2 and 2.3. For x ∈ (R×R−, 0), it is a consequence of Lemma 2.4.
Now, applying (8) to ϕ̌(z) = ϕ(z1,−z2), it is easy to obtain symmetrically

(9) d(x,Z−ϕ ) & min
(
|x|d−(ϕ), d

(
x,X−

ϕ

))
.

The estimates (8) and (9) yield the proposition. �

The previous geometric proposition, which extends [15, Proposition 3.1],
is one of the two key ingredients in the proof of Theorem 2.1. The other key
ingredient is of a more analytic nature; it can be stated as follows:

Proposition 2.6. Under the assumptions of Theorem 2.1, one can find con-
stants B1 and B2 such that one has, for any bi-index L and any point a of
the real zero set Xϕ,

|DLg(a)| ≤ B1B
`
2 `!M

d(ϕ)
` .
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The proof of Proposition 2.6 is quite technical and all of Section 3 will be
devoted to it. Taking the result for granted, we shall end Section 2 by the
proof of Theorem 2.1. Before this, the following important first step has to
be carried out:

2.7. Reduction to the case of flat germs at the origin. Under the
assumptions of Theorem 2.1, we claim that for any point a in Xϕ, there
exist constants B1,a and B2,a, depending on a, such that we have

(10) |DLg(a)| ≤ B1,aB
`
2,a `!M` for any L ∈ N2.

It is indeed an easy consequence of results of Chaumat-Chollet [6, Theo-
rem 9 and Remark 17], but it can be proved by elementary arguments as
well [16]. Such a statement means that division estimates hold pointwise
(that is: On formal power series) without loss of regularity. However, the
constants in (10) are by no means uniformly bounded with respect to a,
whereas Proposition 2.6 gives a uniform estimate, at the cost of some loss
of regularity. Nevertheless, the above estimate (10) will be useful, in the
following way: Taking into account (10) for a = 0 and Borel’s theorem for
Carleman classes [13], we get some g0 in CM (R2, 0) such that g − g0 is flat
at 0. Clearly, replacing g by g − g0 does not change the assumption nor the
conclusion of Theorem 2.1. Thus we see that it is always possible to make
the extra assumption that ϕg is flat at 0, without disturbing the generality
of the theorem. In the sequel, we shall use systematically this property,
which, by standard arguments (see e.g., the estimate (2.17) in [15]) yields
the majorization

(11) |DK(ϕg)(x)| ≤ Bk+1
3 k!Mk hM (B4|x|)

for any bi-index K and any point x in a suitable neighborhood of 0 in R2,
where B3 and B4 are constants depending only on g and ϕ.

2.8. Proof of Theorem 2.1. From now on, put f = ϕg. Taking Proposi-
tion 2.6 into account, we still have to estimate the derivatives of g at each
point of R2\Xϕ. By the Leibniz formula, we have

(12) DLg(x) =
∑

J,K ; J+K=L

L!
J !K!

(
DJ(1/ϕ)(x)

)
DKf(x).

The  Lojasiewicz inequality asserts that there exist constants B5 and ν, with
B5 > 0 and ν ≥ 1, such that the estimate |ϕ(z)| ≥ B5d(z, Zϕ)ν holds for any
z in (C2, 0). Applying the Cauchy formula to 1/ϕ on the bi-disk of radius
1
4d(x,Zϕ) centered at x, we derive, in virtue of Proposition 2.5 and of the
previous inequality, that one has

(13)
∣∣DJ(1/ϕ)(x)

∣∣ ≤ Bj+1
6 j!

(
min

(
|x|d(ϕ), d(x,Xϕ)

))−(j+ν)
.

Now there are two distinct situations:
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First case: min
(
|x|d(ϕ), d(x,Xϕ)

)
= |x|d(ϕ). Then we proceed exactly as

in [15, Theorem 2.3] to deduce from (7), (11), (12), (13) that we have
|DLg(x)| ≤ B`+1

7 `!Md(ϕ)
` for some suitable constant B7.

Second case: min
(
|x|d(ϕ), d(x,Xϕ)

)
= d(x,Xϕ). Using Proposition 2.6 to-

gether with Petzsche’s continuous version of the Borel theorem for Carleman
classes [13], we see that for any point a in Xϕ, there exists a C∞ function
ga satisfying, for any bi-index L,

(14) DLga(a) = DLg(a),

(15) |DLga(y)| ≤ B1B8(B2B9)` `!Md(ϕ)
` for any y in R2,

with constants B8 and B9 depending only on M ; in particular, uniform with
respect to a. Put fa = ϕga. From (14) and (15) we derive that f−fa belongs
to CMd(ϕ)(R2, 0), is flat at a and we have, in the same way as for (11),

(16) |DK(f − fa)(x)| ≤ Bk+1
10 k!Md(ϕ)

k hMd(ϕ)(B11|x− a|)
for any bi-index K, with constants B10 and B11 not depending on a. We
have also hMd(ϕ)(B11|x − a|) ≤ (B11|x − a|)j+[ν]+1M

d(ϕ)
j+[ν]+1 and, using (4)

and (2), Md(ϕ)
j+[ν]+1M

d(ϕ)
k ≤ B`+1

12 M
d(ϕ)
` for j + k = `. Pick a point a in

Xϕ satisfying |x − a| = d(x,Xϕ). Then, applying (12) with g − ga instead
of g and f − fa instead of f, one gets, in virtue of (7), (13), (16) and
the previous inequalities, |DL(g − ga)(x)| ≤ B`+1

13 `!Md(ϕ)
` . Taking (15) into

account, we derive |DLg(x)| ≤ B`+1
14 `!Md(ϕ)

` for some suitable B14, thus
ending the proof. �

We turn now to the proof of Proposition 2.6.

3. Estimates along the zero set.

We shall use the analytic vector field Y = m−1x1−m
2 ∂2 on R×R∗, in such

a way that we have, for any h in C∞(R2, 0) and any x in (R×R∗, 0),

(∂2h)(x1, x
m
2 ) = Y(h(x1, x

m
2 )).

The following proposition will play a crucial role.

Proposition 3.1. Let R be an element of O(R, 0) satisfying ω(R) ≥ m and
let N be an integer with N ≥ 1. Consider a germ g in C∞(R2, 0) and assume
that for every real β > 0, there exist constants C1 and C2, depending on β,
such that for any point x in (R2, 0) satisfying |x1| < β|x2|m, the estimate∣∣∣∂k

1Y`
(
(x1 −R(x2))NG(x)

)∣∣∣ ≤ Ck+`+1
1 (k + `)!Mk+` hM (C2|x2|m)

holds for every bi-index (k, `) in N2. Then, for every real β > 0, there exist
constants C3 and C4, depending only on C1, C2, R, N, m, β and M, such
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that for any point x in (R2, 0) satisfying |x1| < β|x2|m, the estimate∣∣∣∂k
1Y`G(x)

∣∣∣ ≤ Ck+`+1
3 (k + `)!Mk+` hM (C4|x2|m)

holds for every bi-index (k, `) in N2.

Proof. The proof is quite technical and it will be cut into several lemmas.
We define, for 0 ≤ t ≤ 1 and x2 ∈ R∗,

Q(x2, t) = (1− t)m−1x1−m
2 R′(x2).

We also put, for 0 ≤ t ≤ 1 and x ∈ (R2, 0),

y = y(x, t) = (tx1 + (1− t)R(x2), x2).

When x satisfies |x1| < β|x2|m, one gets, for some constant C5 depending
only on R,

(17) |y1| < β|x2|m + |R(x2)| < (β + C5)|y2|m

since y2 = x2 and ω(R) ≥ m.

Lemma 3.2. For any x2 in (R∗, 0), any p in N and any t in [0, 1], one has

|YpQ(x2, t)| ≤ C6C
p
7 p! |x2|−mp,

where the constants C6 and C7 depend only on R and m.

Proof. The assumption ω(R) ≥ m ensures that Q is analytic for x2 in a
neighborhood of 0. We have therefore

(18) |∂j
2Q(x2, t)| ≤ C8C

j
9 j!

for any j ∈ N, where the constants C8 and C9 depend only on R and m.
Besides this, an induction on the integer p gives the expansion

(19) Yp =
p∑

j=1

Y(p)
j (x2)∂j

2

where the coefficients Y(p)
j (x2) satisfy the estimate

(20) |Y(p)
j (x2)| ≤ Cp+1

10 (p− j)! |x2|j−mp for j = 1, . . . , p.

This estimate can be obtained as a very special case of [14, Proposition 2.5].
Finally, Lemma 3.2 is easy to deduce from (18), (19), (20). �

Lemma 3.3. For any germ h in C∞(R2, 0), any point x in (R × R∗, 0),
any integer ` ≥ 1 and any real t in [0, 1], one has

(21) Y` (h(y(x, t))) =
∑

(i,j)∈N2; 1≤i+j≤`

Γ(`)
i,j (x2, t)

(
∂i

1Y
jh
)

(y(x, t)),
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where the coefficients Γ(`)
i,j (x2, t) satisfy, for every integer k ≥ 0, the estimate

(22)
∣∣∣YkΓ(`)

i,j (x2, t)
∣∣∣ ≤ (4C11)`(2C7)k+`−i−j(k + `− i− j)! |x2|−m(k+`−i−j)

with C11 = max (1, C6).

Proof. We proceed by induction on `. A simple computation shows that

Y (h(y(x, t))) = Q(x2, t)(∂1h)(y(x, t)) + (Yh)(y(x, t)),

which proves (21) for ` = 1, with Γ(1)
1,0(x2, t) = Q(x2, t) and Γ(1)

0,1(x2, t) = 1. In
this case, the estimate (22) is a direct consequence of Lemma 3.2. Now, an
integer ` being given, the computation of Y

(
Y`(h(y(x, t)))

)
starting from

the expansion (21) gives

(23) Γ(`+1)
i,j (x2, t) = YΓ(`)

i,j (x2, t) + Γ(`)
i,j−1(x2, t) +Q(x2, t)Γ

(`)
i−1,j(x2, t),

where we have put Γ(`)
i,j = 0 for i < 0 or j < 0, for i = j = 0, and for i+j > `.

In virtue of the Leibniz formula, (23) yields

YkΓ(`+1)
i,j (x2, t) = Yk+1Γ(`)

i,j (x2, t) + YkΓ(`)
i,j−1(x2, t)(24)

+
∑

p+q=k

k!
p!q!

(YpQ(x2, t))
(
YqΓ(`)

i−1,j(x2, t)
)
.

By induction assumption, both terms Yk+1Γ(`)
i,j (x2, t) and YkΓ(`)

i,j−1(x2, t)
are majorized by (4C11)`(2C7)k+`+1−i−j(k+`+1− i−j)! |x2|−m(k+`+1−i−j).
For each term occuring with p+ q = k in the sum at the right-hand side of
(24), we have also, in virtue of Lemma 3.2,∣∣∣(YpQ(x2, t))

(
YqΓ(`)

i−1,j(x2, t)
)∣∣∣ ≤ C6C

p
7 p! |x2|−mp(4C11)`(2C7)q+`+1−i−j

· (q + `+ 1− i− j)! |x2|−m(q+`+1−i−j).

Using the elementary fact p!(q + ` + 1 − i − j)! ≤ (k + ` + 1 − i − j)!, we
deduce, from these estimates and from the definition of C11, that we have

(25)
∣∣∣YkΓ(`+1)

i,j (x2, t)
∣∣∣

≤ (4C11)`(2C7)k+`+1−i−j(k + `+ 1− i− j)! |x2|−m(k+`+1−i−j)S,

with S = 2 +C11
∑

p+q=k
k!(q+`+1−i−j)!
q!(k+`+1−i−j)!2

−p. It is easy to check that one has

k!(q + `+ 1− i− j)!
q!(k + `+ 1− i− j)!

≤ 1 for 0 ≤ q ≤ k and i+ j ≤ `+ 1.

We have thus S ≤ 2 + C11
∑

0≤p≤k 2−p ≤ 2 + 2C11 ≤ 4C11. Therefore the
estimate (25) completes the induction and Lemma 3.3 is proved. �
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3.4. End of the proof of Proposition 3.1. Put

(26) F (x) = (x1 −R(x2))NG(x)

and consider the real analytic change of coordinates near the origin of R2

given by u1 = x1 − R(x2), u2 = x2. In this system of coordinates, (26)
becomes

F ◦ ψ(u) = uN
1 (G ◦ ψ)(u) with ψ(u) = (u1 +R(u2), u2).

This yields easily, for x = ψ(u),

G ◦ ψ(u) =
∫ 1

0

(1− t)N−1

(N − 1)!
∂N (F ◦ ψ)

∂uN
1

(tu1, u2)dt

=
∫ 1

0

(1− t)N−1

(N − 1)!
(∂N

1 F )(y(x, t))dt.

Taking into account Lemma 3.3 and the fact that ∂1 and Y commute, we
get thus
(27)

∂k
1Y`G(x) =

∑
1≤i+j≤`

∫ 1

0

tk(1− t)N−1

(N − 1)!
Γ(`)

i,j (x2, t)
(
∂i+k+N

1 YjF
)

(y(x, t))dt.

Now, the assumptions on F in Proposition 3.1, together with the estimate
(17) on y(x, t), ensure that one has∣∣∣(∂i+k+N

1 YjF
)

(y(x, t))
∣∣∣ ≤ Ci+j+k+N+1

12 (i+ j + k +N + 1)!(28)

·Mi+j+k+N+1hM (C13|x2|m)

for any t in [0, 1] and any x in (R2, 0) satisfying |x1| < β|x2|m, where C12

and C13 are suitable constants depending on β. Besides this, the estimate
(22) in Lemma 3.3 gives

(29)
∣∣∣Γ(`)

i,j (x2, t)
∣∣∣ ≤ C`+1

14 (`− i− j)! |x2|−m(`−i−j)

with C14 = max (4C11, 2C7). We have also, in virtue of (6), the inequality

(30) hM (C13|x2|m) ≤ (C15|x2|m)`−i−jM`−i−jhM (C15|x2|m)

with C15 = ρ(2)C13. Finally, we have the elementary estimates (i+ j + k +
N + 1)!(`− i− j)! ≤ (k+ `+N + 1)! ≤ 2k+`+N+1(k+ `)!(N + 1)! as well as
Mi+j+k+N+1M`−i−j ≤ Mk+`+N+1 ≤ Ak+`+N+1Mk+`MN+1 by (2) and (4).
Thus, gathering (28), (29) and (30) in (27), we obtain the desired estimate
of Proposition 3.1. �

Now, going back to Section 2, we have to obtain bounds for the derivatives
of g on the real zero set Xϕ. In this purpose, we shall carry out the estimates
on Xp for any fixed p with 2p0 + 1 ≤ p ≤ p1. This will yield a global
estimate, first on X+

ϕ , then on the whole of Xϕ by symmetry. Of course, if
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2p0 = p1 (which means X+
ϕ = {0}), we have nothing to do. Otherwise, it is

clearly enough (since Xp ∩ (R × {0}) = {0}) to prove a uniform bound on
Xp ∩ (R×R∗

+). In the sequel, a denotes a point on this set; in other words,
we have

(31) a2 > 0 and a1 = Rp(a1/m
2 ).

Let H be the half-plane {w ∈ C ; Rew > 0}. For any z in (C×H, 0), put

(32) ϕ̃(z) = u(z)
2p0∏
q=1

(
z1 − Uq(z1/m

2 )
)nq

.

We also define, for any x in (R×R∗
+, 0),

(33) g̃(x) = ϕ̃(x)g(x),

in such a way that we have

g̃(x)
p1∏

q=2p0+1

(
x1 −Rq(x1/m

2 )
)nq

= (ϕg)(x).

Lemma 3.5. There exist constants C16 and C17 such that one has, for any
bi-index L,

|DLg̃(a)| ≤ C`+1
16 `!M` hM (C17|a|).

Proof. For j = 2p0 + 1, . . . , p1 + 1, put

Gj(x) = g̃(x1, x
m
2 )

∏
j≤q≤p1

(x1 −Rq(x2))nq .

Using (32) and (33), the functions Gj defined above for x ∈ (R×R∗
+, 0) are

easily seen to be, in fact, of class C∞ in a whole neighborhood of 0 in R2.
Moreover, one has

(34) (x1 −Rj(x2))njGj+1(x) = Gj(x),

(35) G2p0+1(x) = (ϕg)(x1, x
m
2 ).

In particular, we have ∂k
1Y`G2p0+1(x) =

(
∂k

1∂
`
2(ϕg)

)
(x1, x

m
2 ). In virtue of

the estimate (11) and the induction relations (34) and (35), it is possible to
apply Proposition 3.1 repeatedly with j = 2p0 + 1, . . . , p1. We get thus

(36)
∣∣∣∂k

1Y`Gp1+1(x)
∣∣∣ ≤ Ck+`+1

18 (k + `)!Mk+` hM (C19|x2|m)

for any (k, `) in N2 and any x in (R2, 0) satisfying

(37) |x1| < β|x2|m,
with suitable constants C18 and C19 depending on β. Finally, the point
x = (a1, a

1/m
2 ) satisfies (37) for some β > 0 depending only on ϕ, in virtue

of (31) and since ω(Rp) ≥ m. Therefore, applying (36) for this choice of x
completes the proof of the lemma, since we have Gp1+1(x) = g̃(x1, x

m
2 ). �
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In order to estimate the derivatives of g = g̃/ϕ̃ at the point a, we finally
need some bounds on 1/ϕ̃. Such bounds are obtained in the following lemma.
Put first

Z̃ =
⋃

1≤q≤2p0

Zq.

Lemma 3.6. One has

(38) |ϕ̃(z)| ≥ C20d(z, Z̃)eν for any z ∈ (C×H, 0),

(39) d(a, Z̃) ≥ C21|a|d
+(ϕ),

with ν̃ =
∑

1≤q≤2p0
nq and constants C20, C21 depending only on ϕ.

Proof. For z ∈ C×H, the point z(q) = (Uq(z1/m
2 ), z2) belongs to Zq, hence

d(z, Zq) ≤ |z − z(q)| = |z1 − Uq(z1/m
2 )|. One has also d(z, Z̃) ≤ d(z, Zq) for

q = 1, . . . , 2p0. Taking ν̃ as indicated, we get thus

d(z, Z̃)eν ≤ ∏
1≤q≤2p0

d(z, Zq)nq ≤
∏

1≤q≤2p0

∣∣∣z1 − Uq(z1/m
2 )

∣∣∣nq

,

which, by definition of ϕ̃, proves (38). We have also, using (31) and the
same sort of arguments as in Lemma 2.3, d(a, Zq) & |a1 − Uq(a1/m

2 )| =
|Rp(a1/m

2 )−Uq(a1/m
2 )| ≥ |Sq(a1/m

2 )| & a
µq/m
2 for q = 1, . . . , 2p0. The estimate

(39) follows, since (31) implies |a| . a2. �

Lemma 3.7. For any bi-index J, one has the estimate∣∣DJ (1/ϕ̃) (a)
∣∣ ≤ Cj+1

22 j! |a|−d+(ϕ)(j+eν),

where the constant C22 depends only on ϕ.

Proof. Since we have |a| . a2, we derive d(a, Z̃) . a2. Therefore, for a
sufficiently small ε > 0, the bi-disk of radius ε d(a, Z̃) centered at a lies in
C × H and we can apply the Cauchy formula, together with the estimate
(38) of Lemma 3.6, to obtain∣∣DJ (1/ϕ̃) (a)

∣∣ ≤ Cj+1
23 j! d(a, Z̃)−(j+eν)

for some suitable C23. Then the estimate (39) of Lemma 3.6 yields the
conclusion. �

3.8. End of the proof of Proposition 2.6. It is now enough to estimate
DL(g̃/ϕ̃)(a) by means of the Leibniz formula, with the help of Lemmas 3.5
and 3.7. By arguments similar to those in Subsection 2.8, we obtain

|DLg(a)| ≤ C`+1
24 `!Md+(ϕ)

`
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for any L in N2 and any a in Xp, with 2p0 + 1 ≤ p ≤ p1, hence any a
belonging to X+

ϕ . We have symmetrically

|DLg(a)| ≤ C`+1
25 `!Md−(ϕ)

`

when a belongs to X−
ϕ . Clearly, Proposition 2.6 follows. �

4. Further results and comments.

We shall discuss here first the sharpness of Theorem 2.1. In the particular
situation Zϕ∩R2 = {0}, it can be obtained as a consequence of [15, Theorem
2.6]. The result is in fact optimal in full generality, as shown by the following
theorem.

Theorem 4.1. For any germ ϕ in O(R2, 0) and any strongly regular se-
quence M, one can always find a germ g in CMd(ϕ)(R2, 0), flat at the origin,
such that ϕg belongs to CM (R2, 0) and g does not belong to any Carleman
class strictly smaller than CMd(ϕ)(R2, 0).

Proof. It goes partly along the same lines as [15, Subsection 3.3], so we shall
skip some details. Without losing generality, we can assume d(ϕ) = d+(ϕ).
Put

(40) g(x) =
η(x2)

ϕ̃(x1, x2)
for x2 > 0 and g(x) = 0 for x2 ≤ 0,

where η is the special flat germ in CM (R, 0) given by [15, Lemma 3.6]; and
ϕ̃ has been defined by (32). Proceeding as in [15], it is readily seen that g
belongs to CMd(ϕ)(R2, 0) but not to any smaller class. Now, the only thing
which remains to be checked is that ϕg belongs to CM (R2, 0). By definition
of g in (40), it is enough to obtain estimates in R×R+. For x2 ≥ 0, we have

(41) (ϕg) (x1, x
m
2 ) = η(xm

2 )
p1∏

q=2p0+1

(x1 −Rq(x2))nq .

Now, using the flatness of η and the definition of Y at the beginning of
Section 3, we have

(42)
∣∣∣Y` (η(xm

2 ))
∣∣∣ ≤ D`+1

1 `!M` hM (D2|x2|m)

for any positive integer `, where D1 and D2 are suitable constants. Besides
this, in the same way as for Lemma 3.2, we have

(43) |Y`Rq(x2)| ≤ D`+1
3 `! |x2|−m`

for q = 2p0 + 1, . . . , p1. Using (41), (42), (43) and the Leibniz formula,
we obtain, by the same sort of arguments as in the end of the proof of
Proposition 3.1,

(44)
∣∣∣∂k

1Y` ((ϕg)(x1, x
m
2 ))
∣∣∣ ≤ Dk+`+1

4 (k + `)!Mk+` hM (D5|x2|m)
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for any bi-index (k, `). Applying (44) with x = (y1, y
1/m
2 ), where y is any

given point of R×R+, we get thus∣∣∣∂k
1∂

`
2 (ϕg) (y)

∣∣∣ ≤ Dk+`+1
4 (k + `)!Mk+` hM (D5|y2|),

hence the desired result. �

Next we describe an application of Theorem 2.1 to the study of closed
ideals in ultradifferentiable classes. It requires only a few basic facts about
topology on Carleman classes, recalled hereafter. For any smoothly bounded
neighborhood U of 0 in Rn and any real σ > 0, let CM,σ(U) be the set of
those functions f belonging to C∞(U) and such that there exists a constant
Cf > 0 for which we have |DLf(x)| ≤ Cf σ

``!M` for any x in U and any
multi-index L. This set is a Banach space for the norm ‖f‖U,σ defined as
the smallest possible Cf in the previous condition. One can then define
the Carleman class CM (U) as the inductive limit of all spaces CM,σ(U) for
increasing σ > 0 (we refer the reader to [9] for a detailed study of such
spaces). We shall say that the ideal Iϕ,M generated by a real-analytic germ
ϕ in CM (Rn, 0) is closed if any germ which, for some suitable neighbor-
hood U of 0, belongs to the closure of the ideal ϕCM (U) generated by ϕ in
CM (U), actually belongs to Iϕ,M (that is, it belongs to ϕCM (V ) for some
neighborhood V of 0, maybe smaller than U). Now, the following result ex-
tends [15, Corollary 4.2] to the case of general zero sets. Note that we state
it for germs in order to stay in the setting of the paper, but a corresponding
theorem for functions can be written as well.

Theorem 4.2. The ideal Iϕ,M generated by ϕ in CM (R2, 0) is closed if and
only if one has d(ϕ) = 1.

Proof. First, any element f of CM (R2, 0) belonging belongs to the closure
of ϕCM (U) in CM (U) for some neighborhood U of 0, also belongs to the
C∞-closure of ϕC∞(U). The  Lojasiewicz-Malgrange division theorem [10],
[11] ensures that the latter ideal is C∞-closed, thus f can be written ϕg
for some g in C∞(R2, 0). Assuming d(ϕ) = 1, Theorem 2.1 implies that g
belongs to CM (R2, 0). Therefore the condition is sufficient for closedness.
Now, we prove the converse: Let g be the germ constructed in Theorem 4.1.
From the argument of Subsection 2.7, we deduce that for any point a in a
suitable neighborhood U of 0, there exists some function fa belonging to the
ideal ϕCM (U) and such that ϕg − fa is flat at the point a. Applying the
ultradifferentiable version of Whitney’s spectral theorem [6] and assuming
that Iϕ,M is closed, we derive that ϕg belongs to Iϕ,M , hence g belongs to
CM (R2, 0). In virtue of Theorem 4.1, this implies d(ϕ) = 1. �

4.3. A discussion of the higher-dimensional case. We shall see here
that Theorem 4.1 can be extended to germs in Rn with n ≥ 3, provided that,
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as in [15], we assume to be in the special situation Zϕ ∩Rn = {0}, and we
replace consequently d(ϕ) by the  Lojasiewicz exponent τ(ϕ) for the regular
separation between Zϕ and Rn. As a consequence, the answer to Problem
2.7 in [15] is affirmative and the assumption n = 2 is no longer necessary in
[15, Theorem 2.6]. Note that Theorem 4.2 extends as well, since it reduces
to [15, Corollary 4.2] in this situation. The scheme of proof, pointed out by
Bierstone [1], is as follows:

• First, using the curve-selecting lemma as in [2, Theorem 6.4] or [3], one
can find a real-analytic curve σ : [−ε, ε] → Zϕ, with σ(0) = 0, which
realizes the  Lojasiewicz exponent τ(ϕ); in other words, such that τ(ϕ)
is also the  Lojasiewicz exponent for the regular separation between Rn

and σ([−ε, ε]). Now, consider the germ of complex curve Σ defined as
the image of σ : (C, 0) → (Cn, 0) and denote by τ+(ϕ) the  Lojasiewicz
exponent for the regular separation between Rn and Z+

ϕ = Zϕ ∩ {z ∈
Cn; Re zn ≥ 0}. We have clearly σ([−ε, ε]) ⊂ Σ ⊂ Zϕ, thus τ+(ϕ) is
also the  Lojasiewicz exponent for the regular separation between Rn

and Σ+ = Σ ∩ {z ∈ Cn; Re zn ≥ 0}. Write σ(t) = (σ1(t), . . . , σn(t))
for t ∈ (C, 0). Up to analytic changes of coordinates, we can assume
that σn(t) = tm for some integer m ≥ 1, and that ω(σj) ≥ m for
j = 1, . . . , n− 1. Put σj(t) = Xj(t) + iYj(t), where both Xj , Yj belong
to O(R, 0); and put µ = inf {ω(Yj); j = 1, . . . , n− 1} (the integer µ is
finite, since we have Σ ∩Rn = {0}). We claim that

(45) τ+(ϕ) = µ/m.

Indeed, this can be proved in the same way as [15, Lemma 3.2],
reasoning with Σ+ instead of Z+

ϕ : Consider the map z 7→ T (z) =
(T1(z), . . . , Tn−1(z)), where each Tj is a C1 extension to (Cn, 0) of the
function z 7→ zj − σj(z

1/m
n ), first defined on {z ∈ Cn; Re zn ≥ 0}. One

has then, for x ∈ (Rn, 0), the estimate d(x, T−1(0)) ≈ |T1(x)| + · · · +
|Tn−1(x)| with |Tj(x)| ≈ |xj −Xj(x

1/m
n )|+ |Yj(x

1/m
n )|, and arguments

similar to those in [15] can be applied.
• Now, by the definition of µ, we can write Yj(zn) = zµ

nY ∗j (zn) for j =
1, . . . , n − 1, where each Y ∗j belongs to O(R, 0). Put X = (X1, . . . ,

Xn−1), Y ∗ = (Y ∗1 , . . . , Y
∗
n−1) and, for (t, zn) ∈ (C2, 0),

ϕ∗(t, zn) = ϕ(X(zn) + tY ∗(zn), zn).

Note that ϕ∗(izµ
n , zm

n ) = ϕ(σ(zn)) = 0 for any zn ∈ (C, 0). Moreover,
for any real xn, the roots of the real-analytic germ t 7→ ϕ∗(t, xm

n )
are non-real, pairwise conjugate. Therefore, this germ is divisible by
(t − ixµ

n)(t + ixµ
n) = t2 + x2µ

n . Now, as in the proof of Theorem 4.1,
we can assume τ(ϕ) = τ+(ϕ) and consider the germ g defined, for
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x ∈ (Rn, 0), by

(46) g(x) = η(xn)/ϕ(x) for xn > 0 and g(x) = 0 for xn ≤ 0.

In virtue of [15, Theorem 2.6], g belongs to CMτ(ϕ)(Rn, 0) and it is
flat at the origin. Conversely, assuming that g belongs to CMs(Rn, 0)
and replacing x by (X(xn) + tY ∗(xn), xm

n ) in (46), we get

η(xm
n ) = (t2 + x2µ

n )g1(t, xn)

for some germ g1 ∈ CMs(R2, 0). It is now possible to argue just as in
[15, Subsection 3.3] to derive the inequality s ≥ µ/m, which, in view
of (45), yields the desired conclusion.

4.4. Concluding remark. As mentioned in the introduction, the division
problem for ultradifferentiable functions has been studied under another
angle by Chaumat-Chollet [7]. Roughly speaking, they are able, by means
of desingularization, to show that the quotient f/ϕ enjoys CM+ regularity
with M+

` = MT
` for some T ≥ 1, not only in the case of two variables, but

for higher dimensions as well. In counterpart, they have no control over the
number T and, in particular, nothing can be derived about the closedness of
the ideal Iϕ,M . Therefore, the viewpoint of [7] consists in working afterwards
in a special subclass of CM , say C, defined as the intersection of all classes
CMλ for λ > 0. The class C does not change when M is replaced by MT ;
thus, if f belongs to C, so does f/ϕ. In the same spirit, Bos-Milman [4]
had previously considered some sort of “Gevrey estimates” under a fairly
general, yet less precise, form. In contrast with these results, our approach
gives optimal estimates for natural Carleman classes, but does not seem to
work in the general higher-dimensional case. Also, we have to assume strong
non-quasianalyticity since we use Borel type theorems, whereas [7] does
not. It would be very interesting to get rid of both restrictions, especially
regarding the dimension.
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76 (1997), 499-524, MR 99e:58018, Zbl 0878.58008.

[15] , On closed ideals in smooth classes, Math. Nachr., 227 (2001), 143-157,
MR 2002f:46101.

[16] , Bounds for quotients in rings of formal power series with growth constraints,
Studia Math., 151 (2002), 49-65.

[17] T. Wang, Linear Chevalley estimates, Trans. Amer. Math. Soc., 347 (1995), 4877-
4897, MR 96k:32071, Zbl 0848.32002.

Received January 12, 2000

CNRS - UMR 8524
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