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We state a conjecture about centralizers of certain roots of
central elements in braid groups, and check it for braid groups
of type A, B, G(d, 1, r) and a couple of other cases. Our proof
makes use of results from Birman-Ko-Lee, of which we give a
new intrinsic account.

Notations. If G is a group acting on a set X, we denote by XG the subset
of X of elements fixed by all elements of G. If (X, x) is a pointed topolog-
ical space, we denote by Ω(X, x) the corresponding loop space, by ∼ the
homotopy relation on Ω(X, x) and by π1(X, x) the fundamental group. For
all n ∈ N, we denote by µn the set of n-th roots of unity in C.

0. Introduction.

Springer theory of regular elements (introduced in [Sp]) explains how certain
complex reflection groups naturally arise as centralizers in other complex
reflection groups of particular elements, the regular elements. The construc-
tion relies on invariant theory and elementary algebraic geometry, and gives
precise information on the relation between the two reflection groups in-
volved (in terms of basic invariants, hyperplane arrangements,...). In their
work on Deligne-Lusztig varieties ([BrMi]), Broué and the third author
gave a partial interpretation of Springer theory in terms of roots of central
elements in braid groups associated to complex reflection groups. Following
some of the implicit ideas in [BrMi], we state (and prove in some cases)
a conjecture which explains how Springer theory of regular elements can
be seen as the image in complex reflection groups of a more general theory
holding in braid groups. Of course, Springer’s original invariant-theoretical
arguments have no analog in braid groups. Instead, we rely on properties of
the monoid structure recently discovered by Birman-Ko-Lee ([BiKoLee])
and on a geometric interpretation of this monoid.

Before stating our conjecture, let us recall some properties of complex
reflection groups. Let V be a finite dimensional complex vector space and let
W ⊂ GL(V ) be an irreducible finite group generated by complex reflections
(that is, elements s ∈ GL(V ) such that ker(s − Id) is a hyperplane). We
denote by M the complement in V of the union of all reflecting hyperplanes.
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The elements of M are said to be regular vectors. The space M/W is called
the complement of the discriminant of W . Choose a basepoint in M, take
its image as basepoint for M/W . The braid group BW associated to W is,
by definition, the fundamental group of M/W . The fundamental group of
M is the pure braid group, denoted by PW . The covering M → M/W is
unramified and one has an exact sequence

1 //PW
//BW

//W //1.

Let ζ ∈ C be a root of unity of order d. An element w ∈ W is ζ-regular, as
defined in [Sp], if and only if it admits an regular eigenvector with eigenvalue
ζ or, in other words, if and only if

ker(w − ζ Id) ∩M 6= ∅.
Assume that there exists a ζ-regular element w (ζ is then said to be a reg-
ular eigenvalue, its order d is a regular number). Let V (w) := ker(w − ζ Id)
and M(w) := ker(w − ζ Id) ∩ M. The centralizer CW (w) stabilizes each
eigenspace of w. In particular, CW (w) has a linear representation in V (w).
According to the main result in [Sp], this representation is faithful and
CW (w), viewed as a linear group acting on V (w), is a complex reflection
group. Moreover, the set of regular vectors for this reflection group is pre-
cisely M(w). Let BCW (w) be the braid group associated with CW (w), i.e.,
the fundamental group of M(w)/CW (w).

Let k be such that ζ = e2iπk/d. Assume that the basepoint x0 ∈ M is
chosen in M(w). Let γ be the path:

γ : [0, 1] −→ M
t 7−→ e2iπkt/dx0.

Let p be the quotient map M → M/W . As noticed in [BrMi] (p. 92),
the composed map p ◦ γ is a loop in M/W , defining an element w ∈ BW ,
such that wd is central in BW , and w is the image of w by the canonical
epimorphism BW → W . In other words, there is a natural way of lifting a
regular element of W to a root of a central element in BW . Moreover, the
natural map M(w)/CW (w) → M/W defines a morphism BCW (w) → BW ,
whose image can be easily checked to lie in the centralizer CBW

(w).
The following conjecture claims that there is an analog of Springer theory

in braid groups, where the regular elements have to be replaced by the
corresponding roots of central elements:

Conjecture 0.1. The natural morphism BCW (w) → BW induces an iso-
morphism between BCW (w) and the centralizer CBW

(w).

The conjecture can be reformulated in a more intrinsic way:
Let (X, x) be a pointed topological space and G be a group acting on

(X, x) (by morphisms in the category of pointed spaces, so x ∈ XG). The
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action of G can be naturally extended to the loop space Ω(X, x). As clearly
∀g ∈ G,∀γ, γ′ ∈ Ω(X, x), γ ∼ γ′ ⇔ g(γ) ∼ g(γ′), this induces a mor-
phism G → Aut(π1(X, x)). For a given G, the construction of π1(X, x)G

from (X, x) is actually functorial, from the category of pointed topological
spaces with G-action to the category of groups. Thus the natural injection
(XG, x) ⊆ (X, x) induces a natural morphism from π1(XG, x) = π1(XG, x)G

to π1(X, x)G.
If W is as above a finite irreducible complex reflection group in GL(V ),

we denote by X the corresponding space M/W . For all integers m, the
inclusion µm ⊂ C× and the identification of C× with the center of GL(V )
define a natural quotient action of µm on X. As noticed in [Be] 1.2, when d is
regular and w and w are as defined above, M(w)/CW (w) is homeomorphic
to its image Xµd in X. Let x ∈ Xµd . It is an easy calculation to check that
the subgroup of Aut(π1(X, x)) generated by the conjugation by w coincides
with the one arising from the action of µd on X.

Thus the above conjecture is equivalent to the statement that the natural
morphism

π1(Xµd , x) → π1(X, x)µd

is an isomorphism.
The fact that the morphism is an isomorphism doesn’t depend on the

choice of x ∈ Xµd .
Our main theorem checks the conjecture for some specific groups (we use

the standard notations from [ShTo]):

Theorem 0.2. Let W be an irreducible complex reflection group. Suppose
W is of one of the following types: Sn; G(p, 1, r) with p > 1; G4; G5; G8;
G10; G16; G18; G25; G26; G32. Let X be the complement of the discriminant
of W . Let d be a regular number for W , and let x ∈ Xµd. The natural
morphism

π1(Xµd , x) → π1(X, x)µd

is an isomorphism.

1. The local monoid.

We will deduce our theorem from the particular case where W is the sym-
metric group Sn, and B the Artin braid group on n strings. In [BiKoLee],
Birman, Ko and Lee describe a remarkable monoid for this group. The
properties of their monoid will be crucial in our proof. However, contrary to
what is done in [BiKoLee], where the Artin braid group is initially given
by the Artin presentation, we prefer to use its more intrinsic definition as a
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fundamental group. Of course, both viewpoints give (non-canonically) iso-
morphic groups; however, we believe our reformulation is more natural than
the original description.1

Let Xn be the space of subsets of C of cardinal n, with its natural topol-
ogy. In the setting of the introduction, when taking the natural irreducible
reflection representation of the symmetric group W = Sn on Cn−1, the
complement of the discriminant M/W is homotopy equivalent (in a way
compatible with the action of C×) to Xn. We choose the usual direct (=
anti-clockwise) orientation on C.

Let us choose a basepoint x ∈ Xn, and let Bx = π1(Xn, x). We define
in this section a monoid Mx, which is a set of group generators for Bx.
The structure of Mx depends on the choice of x: When x is taken to be the
“usual” basepoint {1, . . . , n}, the monoid Mx will be isomorphic to the usual
Artin monoid; choosing µn (the set of n-roots of unity) will yield what we
call the Birman-Ko-Lee monoid, which is isomorphic to the one described
in [BiKoLee].

If γ ∈ Ω(Xn, x) and z ∈ x, we denote by γz the “string” of γ with origin
z. It is a path [0, 1] → C, with γz(0) = z and γz(1) ∈ x. The element γ is
uniquely determined by (γz)z∈x. Conversely, a set of n such strings which
do not intersect define an element of Ω(Xn, x).

Definition 1.1. A pair {z, z′} ⊂ x is said to be non-crossing if and only if
the closed line segment [z, z′] intersects x only at z and z′.

We denote by Sx the set of non-crossing pairs of elements of x.

Examples. The two crucial examples are x = {1, . . . , n} and x = µn. The
corresponding Sx have respectively cardinal n− 1 and n(n− 1)/2.

For each {z, z′} ∈ Sx, we denote by δ{z,z′} ∈ Bx the generator of the
monodromy naturally associated to [z, z′], as in the appendix of [Be]. A
representative of this element can be defined for instance by the set of strings
γz′′(t) = z′′ if z′′ /∈ {z, z′}, γz(t) = f(z, z′, ε)(t), γz′(t) = f(z′, z, ε)(t) for
ε ∈ R∗

+ small enough (depending only on x) where

∀t, f(z, z′, ε)(t) =
z + z′

2
+

z − z′

2
cos(πt) + iε

z − z′

2
sin(πt)

(the corresponding arc is a half-ellipse with great axis [z, z′] and small axis
of length ε|z−z′|. The exact choice of f(z, z′, ε) is not important. One could
for example replace the half-ellipse by a half-rhomb, or any other variation.
However, for later use where defining a loop up to homotopy will not be
sufficient, it is convenient for us to define this explicit element of Ω(Xn, x)).

1After the present article was accepted for publication, the authors were informed that
T. Brady had independently obtained a similar description of the Birman-Ko-Lee monoid.
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Definition 1.2. The submonoid Mx of Bx generated by

{δ{z,z′}|{z, z′} ∈ Sx}
is called the local monoid at x.

Clearly, the map {z, z′} 7→ δ{z,z′} is injective, so we may identify Sx with
its image in Mx. Let l be the natural length function on Bx (the map
Bx → Z induced by the discriminant function M→ C×). The elements of
Sx, being generators of the monodromy, have length 1, so the monoid Mx is
N-graded (only the trivial element being of length 0).

We denote by ≺ the left divisibility relation in Mx, i.e.,

∀m,m′ ∈ Mx,m ≺ m′ ⇔ ∃m′′ ∈ Mx,mm′′ = m′.

It results from the N-grading of Mx that the relation ≺ is a partial order
on Mx.

We will later study extensively the structure of Mµn . We complete this
section with some first properties which are valid for all x.

Proposition 1.3. The set Sx is a set of group generators for Bx (i.e., by
taking Sx ∪ {s−1|s ∈ Sx}, one has a set of monoid generators for Bx).

Proof. Distinguish one point z ∈ x. Draw the segments {[z, z′]|z′ ∈ x}.
Some of them may be crossing, but by splitting these into smaller ones, one
gets a planar graph connecting all points in x and whose edges are non-
crossing. The result then follows from the main theorem in [Se] and its
reformulation in the appendix of [Be]. �

Notations and conventions. We write λ ` x to say that λ is a partition
of x, in the usual set theoretical sense. If y ⊂ x and λ ` y, we will also use λ
to denote the partition of x obtained by completing λ with parts of cardinal
1. In other words, we will sometimes, for convenience, omit to write the
cardinal 1 parts of a partition. By convex polygon, we mean either a point
(if the number of vertices is 1), a segment (if the number of vertices is 2),
or (if the number of vertices is 3 or more) a nondegenerate convex polygon,
i.e., such that three vertices never lie on the same line. When y ⊂ C, we
write y for the convex hull of y.

We now extend the notion of non-crossedness to partitions of x:

Definition 1.4.
• A finite nonempty subset y ⊂ C is said to be convex if and only if it

is the set of vertices of a convex polygon in C.
• A partition λ of x is said to be non-crossing if and only if it satisfies

the following two properties:
– Every part ν in λ is convex.
– If two parts ν1 and ν2 are distinct, their convex hulls ν1 and ν2 do

not intersect.
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• The set of non-crossing partitions of x is denoted by Px. We use the
notation λ |= x to express that λ ∈ Px.

We already have a notion of non-crossing pairs. The partition {{z, z′}}
is non-crossing if and only if {z, z′} is a non-crossing pair.

Let ν be a part of a non-crossing partition of x. Choose z1 an arbitrary
element of ν. For i ∈ {1, . . . , k}, denote by zi the i-th element of ν for the
clockwise order on ν starting at z1. In the next lemma, when k = 1, the
product is the empty product, thus the trivial element in Mx.

Lemma 1.5. The element δ{z1,z2}δ{z2,z3} . . . δ{zk−2,zk−1}δ{zk−1,zk} ∈ Mx does
not depend on the choice of z1 in ν.

Proof. This is a consequence of one of the Sergiescu relations (see [Se], 1.1(ii)
or [Be], Théorème A.6) namely that

δ{z1,z2}δ{z2,z3} . . . δ{zk−2,zk−1}δ{zk−1,zk}

= δ{zk,z1}δ{z1,z2}δ{z2,z3} . . . δ{zk−2,zk−1}.

The proof of this relation is by induction on k. The case k = 3 is checked
by a direct computation, and for other k we have

δ{z1,z2}δ{z2,z3} . . . δ{zk−2,zk−1}δ{zk−1,zk}

= δ{z2,z3} . . . δ{zk−2,zk−1}δ{zk−1,z1}δ{zk−1,zk}

= δ{z2,z3} . . . δ{zk−2,zk−1}δ{zk−1,zk}δ{zk,z1}

where the first equality is by induction and the second by the case k = 3. �

We denote δν the element of 1.5 (when {z, z′} is a non-crossing pair,
δ{{z,z′}} coincides with the element δ{z,z′} defined earlier).

Lemma 1.6. Let ν and ν ′ be two finite nonempty subsets of C. Suppose
{ν, ν ′} can be completed to a non-crossing partition of x. Then we have
δνδν′ = δν′δν .

Proof. The convex hulls of ν and ν ′ cannot intersect, thus the generators
corresponding to their edges commute pairwise. �

Let λ |= x. The above lemma makes it natural (and non-ambiguous) to
define

δλ =
∏
ν∈λ

δν .

Definition 1.7. Given two partitions λ and λ′ of x, we say that λ is finer
than λ′ (or equivalently that λ′ is coarser than λ), and we write λ ≺ λ′, if
and only if ∀ν ∈ λ, ∃ν ′ ∈ λ′, ν ⊂ ν ′.

Clearly ≺ is a partial order on the set of partitions of x. We intentionally
use the same symbol ≺, as for the left divisibility order in Mx. The next
proposition justifies this notation.
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Let Px = {δλ|λ ∈ Px}. The main result in this section is the following
proposition.

Proposition 1.8.
(i) The left divisibility order in Px coincides with the restriction of ≺ from

Mx to Px; in other words,

∀p, p′ ∈ Px, (∃p′′ ∈ Px, pp′′ = p′) ⇔ (∃m′′ ∈ Mx, pm′′ = p′).

We denote this partial order by ≺.
(ii) The map

D : Px −→ Px

λ 7−→ δλ

is a poset isomorphism from (Px,≺) to (Px,≺).

Before proving the proposition, we need some definitions and lemmas.

Definition 1.9. Let ν be a convex subset of C, and let ν ′ be a subset of
ν. Let z1, . . . , zk be a clockwise numbering of the elements of ν, such that
zi1 , . . . , zik′ is a clockwise numbering of ν ′ with 1 = i1 < i2 < · · · < ik′ ≤
k. Then we denote by ν ′\ν (ν “cut at” ν ′) the partition with parts the
sets {zij , zij+1, . . . , zij+1−1} (where for j = k′ we make the convention that
ik′+1 = k + 1).

Example. In the picture below, the grey points are the points of ν ′, the
other points of ν are black, and the parts of ν ′\ν are enclosed by dashed
curves.

Note that ν ′\ν is well-defined (does not depend on the chosen numbering)
and is a non-crossing partition of ν. We will need the following alternative
description of ν ′\ν: Its parts of cardinal ≥ 2 are the intersections of ν with
each connected component of the complement of ν ′ in ν, to which has been
added the element of ν ′ just before the connected component (in clockwise
order).
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Denote by φx the natural epimorphism from Bx to Sx. It maps δ{z,z′}
to the transposition (z, z′). Thus, when λ |= x, it is clear by construction
that λ is the orbit decomposition for the action in x of φx(δλ). Thus if
λ 6= λ′, then φx(δλ) and φx(δλ′) have different cycle decompositions, and are
different. We have proved the:

Lemma 1.10. The restriction of φx to Px is injective.

Lemma 1.11.

(i) Let ν be a convex subset of C, and let ν ′ be a subset of ν. We have
δν = δν′δν′\ν .

(ii) Suppose λ, λ′ |= x, λ′ has only one part of cardinal ≥ 2, and λ is finer
that λ′. Then there exists a unique non-crossing partition of x, which
we denote by λ\λ′ such that δλδλ\λ′ = δλ′.

(iii) Suppose λ, λ′ |= x and λ is finer that λ′. Then there exists a unique
non-crossing partition of x, which we denote by λ\λ′ such that δλδλ\λ′ =
δλ′.

Proof. We prove (i) by induction on the cardinality of ν ′. With the notations
of 1.9, let ν1 = {z1, . . . , zi2−1}, ν2 = ν − ν1 so that δν = δν1δ{zi2−1,zi2

}δν2 ,
and let ν ′2 = ν ′ − {z1}, so that δν′ = δ{z1,zi2

}δν′2
. Then by 1.5 applied to

ν1∪{zi2} we have δν = δ{z1,zi2
}δν1δν2 . By the induction hypothesis, we have

δν2 = δν′2
δν′2\ν2

. As ν ′\ν = {ν1} ∪ ν ′2\ν2, and as δν′2
commutes to δν1 (since

ν ′2 ∩ ν1 = ∅), we get the result by induction.
(ii): Denote by ν the only nontrivial part of λ′, and by λ1, . . . , λl the

nontrivial parts of λ. To prove the result, the essential step is to notice that
since for i > 1 we have λi ∩ λ1 = ∅, each λi lies inside a single connected
component of the complement of λ1 in ν, thus each is included in a part of
λ1\ν. Thus (ii) follows by induction on the number of parts of λ from (i).
The uniqueness comes from the fact that the identity δλδλ\λ′ = δλ′ is valid
in Mx ⊂ Bx, and Bx is a group.

Finally, (iii) is easily obtained by applying (ii) to all the nontrivial parts
of λ′. �

For σ ∈ Sx, we denote by |σ| the minimum number of transpositions in
a decomposition of σ as a product of transpositions; such a decomposition
is called reduced (note that we allow all transpositions). The map σ 7→ |σ|
is not a morphism, but we have the relation |σ1σ2| ≤ |σ1|+ |σ2|.

Lemma 1.12.

(i) Let λ ` x be the orbit decomposition of σ ∈ Sx. We have

|σ| =
∑
ν∈λ

(|ν| − 1) = |x| − |λ|.
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(ii) Let σ ∈ Sx. Let t = (z, z′). If z and z′ are in the same orbit of σ, then
|σt| = |σ|−1. If z and z′ are in different orbits of σ, then |σt| = |σ|+1.

(iii) Let σ ∈ Sx. Let t1t2 . . . t|σ| be a reduced decomposition of σ. Then if
ti = (z, z′) is one of the transpositions, z and z′ belong to the same orbit
of σ. Let λ ` x be the orbit decomposition of σ and, for i = 1, . . . , |σ|,
λi ` x be the orbit decomposition of t1t2 . . . ti. Then λi ≺ λ.

(iv) For all m ∈ Mx, we have l(m) ≥ |φx(m)|.
(v) If λ |= x, we have l(δλ) = |φx(δλ)|.

Proof. (i) is easy.
(ii) comes from (i) and the following remark: When z and z′ are in the

same orbit, multiplying by t splits this orbit into two orbits, thus increasing
by 1 the number of orbits; when z and z′ are in different orbits, multiplying
by t merges their orbits, thus decreasing by 1 the number of orbits.

(iii) is an easy induction from (ii) and its proof: As the decomposition is
reduced, the relation |σ| = |t1t2 . . . t|σ|| can only be achieved if the successive
multiplications by the ti merge orbits.

(iv) and (v) are easy. �

We can now prove Proposition 1.8:

Proof. (i) Let λ, λ′ ∈ Px. As the converse implication is trivial, we only have
to check that

(∃m′′ ∈ Mx, δλm′′ = δλ′) ⇒ (∃λ′′ ∈ Px, δλδλ′′ = δλ′).

Let m′′ ∈ Mx such that δλm′′ = δλ′ . Consider the image in Sx of this iden-
tity: φx(δλ)φx(m′′) = φx(δλ′). By Lemma 1.12 (v), we have |φx(δλ)| = l(δλ)
and |φx(δλ′)| = l(δλ′), and, using Lemma 1.12 (iv), we have |φx(δλ′)| =
l(δλ′) = l(δλm′′) = l(δλ) + l(m′′) ≥ |φx(δλ)|+ |φx(m′′)| and thus |φx(δλ′)| =
|φx(δλ)|+ |φx(m′′)|. Consequently, when concatenating reduced decomposi-
tions for φx(δλ) and φx(m′′), one gets a reduced decomposition for φx(δλ′).
By Lemma 1.12 (iii), this implies that the orbit decomposition for φx(δλ) is
finer than the one for φx(δλ′), i.e., λ ≺ λ′. We conclude by Lemma 1.11 (iii).

(ii) By Lemma 1.11 (iii), the map D is a poset morphism. It is injective:
From δλ, one recovers λ by considering the orbit decomposition of φx(δλ).
The fact that the inverse map is a poset morphism, i.e., δλ ≺ δλ′ ⇒ λ ≺ λ′,
has already been obtained in our proof of (i). �

Remark 1.13. If x is convex, then there is a largest element δ{x} in the
poset (Px,≺) (which corresponds to the coarsest partition which has just
one part equal to x).

2. Pre-Garside structures and Garside monoids.

The existence of nice normal forms in the Birman-Ko-Lee monoid will be
of crucial importance in the proof of our main theorem. This property is
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proved in [BiKoLee], and we could have just quoted and translated it into
our setting. However, it appeared that our geometric interpretation allows
us to give a new proof, far less computational, of some of the main results in
[BiKoLee]. The Birman-Ko-Lee monoid is a Garside monoid, in the sense
of [DePa], and this implies (among others) the existence of the normal
form. To give a simple proof of this fact, we make use a new criterion of
“Garsiditude”. This criterion relies on the notion of pre-Garside structure,
which can be seen as an axiomatization of the context in which most of the
proofs in [Mi] are actually valid.

When A and B are two sets, we mean by “partial map” from A to B a
datum consisting of a subset A′ ⊂ A and a map f : A′ → B. It is convenient
to refer to A′ implicitly, and to use a slightly abusive language, e.g., we will
write “f(a) is defined” instead of “a ∈ A′”.

Definition 2.1. Let P be a set. An atomic partial product on P is a partial
map m : P × P → P (we will denote m(a, b) by a.b or ab), satisfying the
following axioms:

(i) (Unit element and associativity.) There exists an element 1 ∈ P such
that for all a ∈ P , both 1.a and a.1 exist and are equal to a. For any
a, b, c ∈ P , it is equivalent for ab and (ab)c to be defined or for bc and
a(bc) to be defined and then a(bc) = (ab)c.

(ii) (Finite number of atoms.) Let P ∗ = P − {1}; the image of P ∗ × P ∗

is in P ∗, and the complement S = P ∗ − m(P ∗ × P ∗) is finite (the
elements of S are the atoms of (P,m)).

(iii) (Grading.) There exists a function l : P → N such that p ∈ P ∗ ⇒
l(p) > 0 and l(ab) ≥ l(a) + l(b) whenever ab is defined.

If a, b ∈ P are such that ab is defined, we say that a (resp. b) is a left
(resp. right) divisor of ab. Conversely, ab is a right (resp. left) multiple of a
(resp. b).

Definition 2.2. Suppose P is a set together with an atomic partial prod-
uct. The associated monoid M(P ) is the monoid defined by the following
presentation:

• As a set of generators we take P .
• For relations we take ab = c whenever a, b, c ∈ P are such that ab is

defined in P and equal to c.

Note that if P is a subset of a monoid M ′, and if the partial product on
P is a restriction of the monoid law in M ′, then there is a natural morphism
M(P ) → M ′. If P generates M ′, the morphism is surjective.

As in [Mi], we note that we can identify M(P ) to the set of finite sequences
of elements of P , quotiented by the minimal equivalence relation ∼ such that

(p1, . . . , pi−1, pi, pi+1, . . . , pn) ∼ (p1, . . . , pi−1, a, b, pi+1, . . . , pn)
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whenever the product ab is defined and equal to pi.
Let (x1, . . . , xn) be a sequence of elements of P . There are (2(n−1))!/(n!(n

−1)!) different ways to put brackets on the product x1 . . . xn. By an obvious
induction from the associativity axiom, if the product is defined in P for one
of these bracketings, then it is defined in P for any other bracketing, and
the value of this product does not depend on the choice of the bracketing.
When this is the case, we write x1 . . . xn for this product.

Lemma 2.3. Let (x1, . . . , xn) be a sequence of elements of P equivalent, in
M(P ), to a single term sequence (y). Then the product x1 . . . xn is defined
in P and we have x1 . . . xn = y.

Proof. By assumption (x1, . . . , xn) can be transformed into (y) by a finite
rewriting process

l0 = (x1, . . . , xn) → l1 → · · · → lk = (y)

in which, at each step, the elementary transformation lj−1 → lj is
• either of the type

(p1, . . . , pi−1, a, b, pi+1, . . . , pm) → (p1, . . . , pi−1, pi, pi+1, . . . , pm)

• or of the type

(p1, . . . , pi−1, pi, pi+1, . . . , pm) → (p1, . . . , pi−1, a, b, pi+1, . . . , pm)

where a, b are such that their product is defined in P and equal to pi. Sup-
pose the length k of the rewriting process is minimal.

Suppose some of the transformations are of the second type, and chose j
maximal such that lj−1 → lj is of the second type

(p1, . . . , pi−1, pi, pi+1, . . . , pm) → (p1, . . . , pi−1, a, b, pi+1, . . . , pm).

As all further steps are of the first type, we have k = j +m and the product
p1 . . . pi−1abpi+1 . . . pm is defined in P (and is equal to y). Choosing a brack-
eting starting by . . . (ab) . . . , we see that the product p1 . . . pi−1pipi+1 . . . pm

must also be defined in P (and equal to y). But this yields a rewriting of
length j + m− 2 < k and we have a contradiction.

Thus there are no transformation of the second type in a minimal rewrit-
ing. The result follows. �

The following proposition is a straightforward consequence of the lemma:

Proposition 2.4.
(i) The natural map from P to M(P ) is injective.
(ii) If x ∈ M(P ) divides a ∈ P then x ∈ P .

A right common multiple of s and t is an element u which is a right
multiple of both s and t. A common right multiple u of s and t is a least
right common multiple if and only if, for all common right multiple v of s
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and t, u is a left divisor of v. Similarly, there are notions of (least) left
common multiple, of (greatest) right common divisor and of (greatest) left
common divisor.

Definition 2.5. A pre-Garside structure on a set P is an atomic partial
product, with set of atoms S, satisfying the following additional axioms:

(iv) If two elements of S have a common right multiple in P , they have a
least common right multiple. When s, t ∈ S have a least right common
multiple, we write it ∆s,t.

(iv′) If two elements of S have a common left multiple in P , they have a
least common left multiple.

(v) If s, t ∈ S have a common right multiple in P , and if a ∈ P is such
that as ∈ P and at ∈ P , then a∆s,t ∈ P .

(vi) For all m ∈ M(P ) and a, b ∈ P , if either am = bm or ma = mb, then
a = b.

In [Mi], S was taken to be the set of usual Artin generators, and P was
the set of reduced braids. To handle the Birman-Ko-Lee monoid, we will
take for S the set Sµn and for P the set Pµn .

Condition (v) is satisfied e.g., if there exists a common right multiple in
P of all elements of P , which is the case in the usual braid monoid and
also in the Birman-Ko-Lee monoid (see 1.13). Note that such an element is
necessarily unique and if it exists, the finiteness of S implies that P is finite.
We shall see (2.22) that its existence is equivalent to the fact that all pairs
of elements of S have a right lcm.

The following lemmas and propositions are rephrasings of [Mi], 1.4 to 1.9.

Lemma 2.6. Let X be a finite subset of M(P ) such that:

• If x ∈ X, a ∈ M(P ), a ≺ x then a ∈ X.
• If a ∈ M(P ), s, t ∈ S, as, at ∈ X, then ∆s,t exists and a∆s,t ∈ X.

Then there exists g ∈ X such that X is the set of left divisors of g.

Proof. The statement follows [Mi] 1.4, and the proof is exactly the same
(after having extended the length function to M(P ) by setting l(m) :=
max{

∑n
i=1 l(pi)|p1, . . . , pn ∈ P,m = p1 . . . pn}). �

Proposition 2.7. Any two elements of P have a left g.c.d. in P .

Proof. We can follow the proof of [Mi] 1.6, replacing 1.5 in [Mi] by Axiom
(iv). �

We shall denote by a ∧ b the left g.c.d. of a and b.

Proposition 2.8. For a and b in P there exists a unique maximal c ≺ b
such that ac ∈ P .
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Proof. We apply Lemma 2.6 to the set X of c such that c ≺ b and ac ∈ P .
To check the assumptions of that lemma, we need that if s, t ∈ S and if
cs, ct ∈ X then ∆s,t exists and ac∆s,t ∈ P (then we have c∆s,t ∈ X). Since
cs and ct divide b ∈ P , by cancellability and 2.4 s and t have a common
multiple in P , so by Axiom (iv) ∆s,t exists and by Axiom (v) ac∆s,t ∈ P . �

Definition 2.9. In the situation of 2.8 we denote by α2(a, b) the element
ac and we denote by ω2(a, b) the unique d ∈ P such that b = cd. We thus
have ab = α2(a, b)ω2(a, b).

Note that the uniqueness of ω2 follows from Axiom (vi).

Proposition 2.10. For a, b, c, ab ∈ P we have α2(ab, c) = α2(a, α2(b, c)).

Proof. The statement is [Mi], 1.8 and the proof is the same. �

Proposition 2.11. For a, b, c, ab ∈ P we have

ω2(ab, c) = ω2(a, α2(b, c))ω2(b, c).

Proof. By Propositions 2.8 and 2.10 the products of both sides with α2(ab, c)
are equal. By Axiom (vi) we will be done if we show that ω2(a, α2(b, c))ω2(b, c)
is in P . By definition 2.9 there exists z ∈ P such that α2(b, c) = bz and
c = zω2(b, c). As ab ≺ abz and ab ∈ P we have α2(a, bz) = abz1 for some
z1 ≺ z (by definition of α2 and cancellability in P ). Hence bz = bz1ω2(a, bz)
and z = z1ω2(a, bz). So z1ω2(a, α2(b, c))ω2(b, c) = z1ω2(a, bz)ω2(b, c) =
zω2(b, c) = c. The result follows since any divisor of c is in P by 2.4. �

We now extend the definition of α2 to M(P ), following [Mi], 2.1 to 2.6.
All the proofs of [Mi] can be reproduced, replacing Proposition 1.5 in [Mi]
by Axiom (iv).

Proposition 2.12. There is a unique function α : M(P ) → P extending
the identity of P and satisfying α(ab) = α2(a, b) for a, b ∈ P and α(gh) =
α(gα(h)) for g, h ∈ M(P ). Moreover α(g) is the unique maximal element
in {c ∈ P |c ≺ g}.

Proposition 2.13. There exists a unique function ω : M(P ) → M(P ) such
that ω(ab) = ω(a, b) for a, b ∈ P (in particular ω(a) = 1 for a ∈ P ) and
such that ω(gh) = ω(gα(h))ω(h) for g, h ∈ M(P ).

Proposition 2.14. Let g ∈ M(P ); then ω(g) is the unique y ∈ M(P ) such
that g = α(g)y.

Proposition 2.15. The monoid M(P ) has left and right cancellation prop-
erty (i.e., in Axiom (vi) we can replace the condition a, b ∈ P by a, b ∈
M(P )).

Proposition 2.16. If s, t ∈ S divide a ∈ M(P ) on the left, then ∆s,t exists
and divides a.
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Proposition 2.17. For a, b ∈ M(P ) there exists a unique maximal c ∈
M(P ) (for ≺) such that c ≺ a and c ≺ b.

We shall still denote this left g.c.d. by a ∧ b.

Proposition 2.18. A family of elements of M(P ) which has a right (resp.
left) common multiple has a right (resp. left) lcm in M(P ).

Proof. Assume that all elements of the family {ai}i∈I divide c. If we can ap-
ply 2.6 to the set X of elements of M(P ) which divide all common multiples
of the ai, it will give the result. Let us check the assumption of 2.6. This set
X is finite as it is included in the set of divisors of c. The first assumption
of 2.6 is clearly satisfied. The second assumption is a consequence of the
fact that if s, t ∈ S are such that xs and xt divide some element xz, then s
and t divide α(z), so ∆s,t exists and divides z, whence x∆s,t divides xz. �

We have a more precise result for elements of P :

Proposition 2.19. If a family of elements of P has a common right (resp.
left) multiple in M(P ) then its right (resp. left) lcm exists and is in P .

Proof. The lcm exists by the preceding proposition. Let m be this lcm. Any
divisor of m divides α(m) ∈ P , whence the result. �

We now get a normal form for any element of M(P ) exactly as in [Mi].

Definition 2.20. A decomposition (g1, . . . , gn) of an element g1 . . . gn of
M(P ) is said to be its normal form if no gi is equal to 1 and for any i we
have gi = α(gi . . . gn).

The following statement is 4.2 of [Mi] and the same proof applies.

Proposition 2.21. A decomposition (g1, . . . , gi) with gi ∈ P is a normal
form if and only if (gi, gi+1) is a normal form for any i. In particular any
segment (gi, . . . , gj) of a normal form (g1, . . . , gn) is a normal form.

In the same way, statements 4.6 to 4.9 and 5.1 to 5.3 of [Mi] generalize
to our setting.

Assume that all elements of P have a right common multiple (which is in
P by 2.19). By 2.18, this is the same as assuming that any finite subset of
elements of P has a lcm. As already noticed, the existence of a lcm ∆ of all
elements in P implies the finiteness of P . The converse is not true, but we
have:

Proposition 2.22. The elements of P have a common right multiple if and
only if P is finite and any pair of elements of S has a common multiple.

Proof. Implication “only if” is clear. The converse is an immediate applica-
tion of 2.6, taking X = P . �
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By 2.12, for any a ∈ M(P ) we have α(a) = a ∧∆.

Proposition 2.23. Assume P has a right lcm ∆.
• There is an automorphism x 7→ x of M(P ) mapping S to itself and

such that x∆ = ∆x.
• The element ∆ is the left lcm of P .

Proof. It is sufficient to define the automorphism on P . As ∆ is a right
multiple of all elements of P , for any a ∈ P there exists a unique ∆a ∈ P
such that ∆ = a∆a and there exists a unique a ∈ P such that ∆ = ∆aa,
so that a∆ = a∆aa = ∆a. The map a 7→ a is injective by cancellability in
M(P ) and is thus compatible with the product. As P is finite, it is surjective.
If a ∈ S, by surjectivity a cannot be the product of two nontrivial elements
of P , so has to be in S by Axiom (ii).

As a 7→ a is a bijection of P , the above proof shows that ∆ is a left
multiple of all elements of P . So it is the left lcm of P . �

We can now compare our formalism with the one in [DePa]: If P is a pre-
Garside structure with right common multiples, then, it is readily seen that
any two elements of M(P ) have left and right common multiples: Indeed,
if m1,m2 ∈ M(P ) are both products of n or less elements of S, then ∆n

is a left and right multiple of both m1 and m2 (use Proposition 2.22: The
conjugation by ∆ maps S into itself). Thus, by Proposition 2.18, pairs
of elements in M(P ) have both a right lcm and a left lcm. Moreover, by
Proposition 2.22, ∆ is both the right lcm and the left lcm of P . Conversely,
elements of P are left and right divisors of ∆, and, by Proposition 2.4, ∆
has no other left or right divisors. We have proved that M(P ) is a Garside
monoid, as defined in [DePa].

Conversely, if M is a Garside monoid, then the restriction of the monoid
product to the set P of simple elements (see [DePa]) is a pre-Garside struc-
ture with common multiples.

We have proved the:

Theorem 2.24. Let P be set, endowed with a pre-Garside structure, such
that all atoms have a common right multiple. Then M(P ) is a Garside
monoid.

Conversely, when M is a Garside monoid with fundamental element ∆,
the set P of divisors of ∆ has a pre-Garside structure for the partial product
obtained by restriction of the product in M; all elements of P have a common
right multiple and M ' M(P ).

Note that our approach already gives interesting results (e.g., 2.26 below)
even when some elements of P have no common multiple, e.g., in the case
of braid groups attached to infinite type Coxeter groups; in this case, M(P )
is no longer a Garside monoid. More important is, for the present article,
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that pre-Garside structures provide us with a convenient criterion to check
that the Birman-Ko-Lee monoid is a Garside monoid.

Let us recall the following proposition about Garside monoids, which is
already in [DePa].

Proposition 2.25. Assume that P has a right lcm. The monoid M(P )
injects into the group G(P ) having the same presentation and any element
of G can be written uniquely as x−1y with x, y ∈ M(P ) and x ∧ y = 1.

Proof. The statement follows [Mi] 3.2 and the same proof applies. �

We now generalize [Mi] 4.4.

Proposition 2.26. Let Γ be a group of automorphisms of M(P ) stabilizing
S. Let Σ be the set of lcms of Γ-orbits in S which exist and are not the
product of other such lcms; then PΓ has a pre-Garside structure with atoms
Σ; the monoid M(P )Γ identifies with M(PΓ). If moreover we assume that
P has a right lcm then the group G(P )Γ identifies with G(PΓ) (cf. 2.25).

Proof. Axiom (i) holds as it holds in P and as the product of two Γ-fixed
elements is Γ-fixed. Let x ∈ PΓ, and let s ∈ S such that s ≺ x; then
x is divisible by all elements in the orbit of s, so is divisible by their lcm
(which exists). So PΓ is generated by the lcms of Γ-orbits in S which exist,
thus by Σ, and we have arranged for elements of Σ to be atoms, so Axiom
(ii) is satisfied. The length inherited from P is still compatible with the
product so we have Axiom (iii) (but note that the elements of Σ may have
length greater than 1 even if all elements of S had length 1). The lcm of
two elements of PΓ is Γ-fixed by its uniqueness and is in P by 2.19, whence
Axioms (iv) and (iv′). If σ and τ are in Σ and have a lcm ∆σ,τ and if a ∈ PΓ

is such that aσ and aτ are in P then a∆σ,τ is the lcm of aσ and aτ so is in
P by 2.19, and is clearly Γ-fixed, whence Axiom (v). The monoid M(PΓ) is
by definition a submonoid of M(P ), so Axiom (vi) holds.

Let x ∈ M(P )Γ; the uniqueness of its normal form implies that each term
is in PΓ. On the other hand, if x ∈ M(P )Γ, as α(x) is the unique maximal
element in P dividing x it is also the unique maximal element in PΓ dividing
x, so, by the definition of normal forms, the normal form of an element of
M(P )Γ is a normal form in M(PΓ). This shows that M(P )Γ identifies with
M(PΓ). The same argument shows that G(P )Γ identifies with G(PΓ) when
∆ exists, as ∆ is in PΓ. �

3. The Birman-Ko-Lee monoid.

Let x ∈ Xn, and let Sx, Px and Mx as defined as in Section 1.

Lemma 3.1. The restriction of the product in Mx defines an atomic partial
product in Px with set of atoms Sx.
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Proof. Axiom (i) is a consequence of the associativity in the monoid Mx and
of 1.8(i). Axioms (ii) and (iii) are easy consequences of the existence of the
length function l : Mx → N introduced in Section 1. The atoms are clearly,
by construction, the elements of Sx. �

We call the monoid Mµn the Birman-Ko-Lee monoid (whenever x is con-
vex, we have Mx ' Mµn).

Remark 3.2. If we map the base point µn to the usual base point {1, . . . , n}
by choosing z1 ∈ µn and numbering clockwise the elements of µn starting
at z1 as z1, z2, . . . , zn, then the δ{zi,zi+1} map to the usual Artin generators
σi of π1(Xn, µn) and the δ{zi,zj} map to the generators aij considered in
[BiKoLee] (note that they always suppose i > j while we don’t order the
pairs {z, z′}). Then the elements of Pµn map to the canonical factors defined
in [BiKoLee]. In order to compare our definition to that of [BiKoLee] one
should note that [BiKoLee] call aij , akl an “obstructing pair” exactly when
the partition {{zi, zj}, {zk, zl}} is crossing.

The monoid Mµn enjoys remarkable properties which are consequences of
the discussion in the previous section and of the following theorem.

Theorem 3.3. The restriction of the product in Mµn to a partial product
in Pµn is a pre-Garside structure, and Pµn has a lcm δ.

Proof. Since µn is convex, δ = δ{µn} is an lcm of Pµn , as explained in 1.13.
This eliminates the need to check Axiom (v).

Let us now prove Axiom (iv). Using the isomorphism in Proposition 1.8,
and noticing that any pair of elements of µn defines a non-crossing edge, we
have to prove: For all z1, z

′
1, z2, z

′
2 ∈ µn, the set

E = {λ |= µn|{{z1, z
′
1}} ≺ λ and {{z2, z

′
2}} ≺ λ}

has a minimum element for ≺. We discuss by cases:
• Assume [z1, z

′
1]∩ [z2, z

′
2] = ∅. Then let λ = {{z1, z

′
1}, {z2, z

′
2}}. Clearly,

λ ∈ E, and any partition coarser than {{z1, z
′
1}} and {{z2, z

′
2}} must

be coarser than λ.
• Assume [z1, z

′
1] ∩ [z2, z

′
2] 6= ∅. Let λ = {{z1, z

′
1, z2, z

′
2}} (the nontrivial

part may have three or four elements). Clearly λ ∈ E. Now let λ′ ∈ E.
Consider ν1 the part of λ′ in which z1 lies, ν2 the part of λ′ in which
z2 lies. Because {{z1, z

′
1}} ≺ λ′ and {{z2, z

′
2}} ≺ λ′, we have z′1 ∈ ν1

and z′2 ∈ ν2. As λ′ is non-crossing, we must have ν1 = ν2 (otherwise
we would have ν1 ∩ ν2 = ∅, which contradicts [z1, z

′
1] ∩ [z2, z

′
2] 6= ∅).

Thus λ is finer than λ′.
(iv′) is proved similarly.
To prove (vi), consider the natural morphism M(Pµn) → Mµn and its

composition with the epimorphism Mµn → Sµn . Let m ∈ M(Pµn), λ, λ′ |=
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µn such that either δλm = δλ′m or mδλ = mδλ′ . Denote by σ the image of
m in Sµn . We have φµn(δλ)σ = φµn(δλ′)σ or σφµn(δλ) = σφµn(δλ′). As Sµn

is a group, this implies φµn(δλ) = φµn(δλ′). By Lemma 1.10, the restriction
of φµn to Pµn is injective, thus we have as required δλ = δλ′ . �

Remark 3.4. According to the isomorphism in Proposition 1.8, the above
theorem implies that the poset of non-crossing partitions of µn is a lattice.
If λ1, λ2 |= µn, the set

E = {λ |= µn|λ1 ≺ λ and λ2 ≺ λ}
admits a minimum element. We leave to the reader to check that this can be
proved directly, using the following arguments: Given two (possibly cross-
ing) partitions, the set of (possibly crossing) partitions coarser than the two
partitions admits a minimum element; given a (possibly crossing) partition,
the set of non-crossing partitions which are coarser admits a minimum ele-
ment.

Of course, by construction, Mx embeds in Bx for all x ∈ Xn. What is
specific to the Birman-Ko-Lee monoid is the following result, which is the
analog in our intrinsic setting of the embedding theorem in [BiKoLee].

Corollary 3.5. The natural morphism M(Pµn) → Mµn is an isomorphism.

Proof. Consider the group G(Pµn) given by the group presentation corre-
sponding to the monoid presentation of M(Pµn). As the partial product in
Pµn is a restriction of the one in Bµn , there is a natural morphism

G(Pµn) → Bµn .

By Proposition 1.3, this morphism is surjective.
Note that it is easy to adapt Sergiescu’s presentations to find a presenta-

tion of Bµn where the generators corresponds to the elements of Sµn . A set
of defining relations is for example given in [BiKoLee], Proposition 2.1:

• δ{z1,z′1}δ{z2,z′2} = δ{z2,z′2}δ{z1,z′1} when {{z1, z
′
1}, {z2, z

′
2}} is non-obstruc-

ting,
• δ{z1,z2}δ{z2,z3} = δ{z2,z3}δ{z3,z1} = δ{z3,z1}δ{z1,z2} for z1, z2, z3 coming in

clockwise order.
These relations are valid in Pµn , thus in G(Pµn), and the morphism G(Pµn) →
Bµn is an isomorphism.

We conclude using the natural commutative diagram:

M(Pµn) // //

��

Mµn� _

��
G(Pµn) ∼ // Bµn

and the injectivity of the map M(Pµn) → G(Pµn) (Proposition 2.25). �



SPRINGER THEORY IN BRAID GROUPS 305

We identify M(Pµn) and Mµn through the natural isomorphism. As Mµn

is a Garside monoid, we have nice normal forms, an algorithm for the word
problem, . . . The following property is the one we need for the proof of our
main theorem.

Proposition 3.6. Let ζ = e
2iπ
n .

(i) For λ |= µn the automorphism of Mµn induced by δ maps δλ to δζλ.
(ii) For d dividing n, the centralizer of δn/d in π1(Xn, µn) is generated by

the elements δλ for λ |= µn such that ζn/dλ = λ.

Proof. It is an immediate consequence of 1.5 that (i) holds for a generator
of the form δ{si,si+1} where si and si+1 are two consecutive points in a
numbering of µn. It follows that it holds for any generator δ{s1,sa} by using
that δ{s1,sa} = δ{s1,s2} . . . δ{sa−1,sa}δ

−1
{sa−2,sa−1} . . . δ−1

{s1,s2} (which follows also
from 1.5), and it follows thus for any element of P . Part (ii) is then a
consequence of 2.26. �

Remark. Note that 2.26 gives a “Birman-Ko-Lee” presentation of CB(δi).
Let us work out an example to show that one has to take only a part of the
lcms of δi-orbits on S to get an atomic set. Take n = 6 and i = 2. Then the
δ2-orbits in S are

{δ{s1,s2}, δ{s3,s4}, δ{s5,s6}}, {δ{s2,s3}, δ{s4,s5}, δ{s1,s6}},
{δ{s1,s3}, δ{s3,s5}, δ{s1,s5}} and {δ{s1,s4}, δ{s2,s5}, δ{s3,s6}}

whose respective lcm are

δ({s1,s2},{s3,s4},{s5,s6}), δ({s2,s3},{s4,s5},{s1,s6}), δ{s1,s3,s5} and δ;

but δ = δ{s1,s3,s5}δ({s1,s2},{s3,s4},{s5,s6}), so must be eliminated.

4. A geometric normal form for canonical factors.

Let n be a positive integer. If K1,K2 are non-intersecting compact subsets
of C, we denote by d(K1,K2) the positive number

inf
(z1,z2)∈K1×K2

|z1 − z2|.

It is clear that
inf

λ|=µn

inf
ν1,ν2∈λ

ν1 6=ν2

d(ν1, ν2) > 0.

We define
εn :=

1
3

inf
λ|=µn

inf
ν1,ν2∈λ

ν1 6=ν2

d(ν1, ν2).

The exact value is not important, we will only use the fact that εn is fixed and
small enough. In particular, the reader should check for himself that in the
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following definition, the strings do not intersect and thus γλ is well-defined
(note that the function f has been defined in the first section).

Definition 4.1. Let λ |= µn.
• Let z ∈ µn. We define a path γz : [0, 1] → C in the following way:

– If z is in a part of λ with exactly one element then we set

∀t, γz(t) = z.

– If z is in a part of λ with exactly two elements z and z′ we set:

∀t, γz(t) = f(z, z′, εn)(t).

– If z is in a part ν of λ with three or more elements, we denote
by z′ the element of ν immediately after z in the direct (i.e., anti-
clockwise) cyclic order on the vertices of ν and we set:

∀t, γz(t) = z + t(z′ − z).

• These strings uniquely determine an element of Ω(Xn, µn) which we
denote by γλ.

Lemma 4.2. Let λ |= µn, and let ζ = e
2iπ
n .

(i) The loop γλ represents δλ.
(ii) ∀z ∈ µn, γz·λ = z · γλ.
(iii) Let λ′ |= µn. We have λ = λ′ ⇔ δλ = δλ′ ⇔ γλ = γλ′.
(iv) Let k ∈ N. Denote by d the order of the root of unity ζk. Then

ζkλ = λ ⇔ δkδλ = δλδk ⇔ γλ ∈ Ω(Xµd
n , µn).

Proof. The first three statements are obvious consequences of the previous
definition.

As δ−kδλδk = δζkλ, we have, using (iii),

e
2ikπ

n λ = λ ⇔ δkδλ = δλδk ⇔ γζkλ = γλ.

By (ii), we have
γζkλ = γλ ⇔ ζkγλ = γλ.

It is clear that ζkγλ = γλ is equivalent to γλ ∈ Ω(Xµd
n , µn). We have proved

(iv). �

5. Proof of the theorem.

We start with one particular case.

Proposition 5.1. Let r, d ∈ N. Let n = dr. The inclusion Xµd
n ⊂ Xn

induces an isomorphism

π1(Xµd
n , µn) ∼−→ π1(Xn, µn)µd .
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Proof. The injectivity part of the proposition has been proved in [Be]. Let
us prove the surjectivity. Let ζ = e

2iπ
d . Multiplication by ζ coincides with

conjugating by δn/d, so, by 3.6(ii), we know that π1(Xn, µn)µd is generated
by the δλ such that ζλ = λ. Using (iv) of Lemma 4.2, this means that
γλ ∈ Ω(Xµd

n , µn). Thus any such δλ is in the image of π1(X
µd
n , µn). So we

have proved that the image of π1(X
µd
n , µn) is π1(Xn, µn)µd . �

We now have to study the other type of regular numbers for Sn. We
denote by νn the basepoint of Xn defined by νn := µn−1 ∪ {0}.

Proposition 5.2. Let r, d ∈ N. Let n = dr + 1. The inclusion Xµd
n ⊂ Xn

induces an isomorphism

π1(Xµd
n , νn) ∼−→ π1(Xn, νn)µd .

Proof. For all integer m, let us denote by X∗
m the space of configurations of

m points in C∗, with its natural topology.
There is a natural inclusion X∗

m ⊂ Xm and a natural injection X∗
m ⊂

Xm+1 defined by x 7→ x∪{0}. The action of µd on Xm restricts to an action
on X∗

m. Thus we have a commutative diagram of continuous maps:

Xµd
n� _

��

X∗µd
dr

oo //
� _

��

Xµd
dr� _

��
Xn X∗

dr
//oo Xdr

According to [Be], Lemme 3.1., the first line consists of homeomorphisms.
Consider the following commutative diagram of group morphisms:

π1(X
µd
n , νn)

��
α

""

π1(X
∗µd
dr , µdr)

∼oo ∼ //

��

π1(X
µd
dr , µdr)

��
β

||

π1(Xn, νn) π1(X∗
dr, µdr)

B
//

A
oo π1(Xdr, µdr)

π1(Xn, νn)µd
?�

OO

π1(X∗
dr, µdr)µd

?�

OO

b
//

a
oo π1(Xdr, µdr)µd

?�

OO

where α and β are defined by functoriality, as in the introduction. According
to our Proposition 5.1, β is an isomorphism. What we want to prove is that
α is also an isomorphism. This will result from the fact that both a and b
are isomorphisms.

• The map a is an isomorphism: By an easy (and almost classical) argu-
ment, one can see that A is injective and identifies π1(X∗

dr, µdr) with
the subgroup of π1(Xn, νn) consisting of elements whose associated
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permutations of νn fix the point 0. As clearly π1(Xn, νn)µd is included
in this subgroup, a is an isomorphism.

• The map b is an isomorphism: As noticed in [Be] (fact (∗), used in
the proof of Theorem 3.2.(I), page 14), there is an exact sequence

1 //Fn
//π1(X∗

dr, µdr)
B

//π1(Xdr, µdr) //1

where Fn is the free group on n generators and such that the action
of µd permutes without fixed points the images of the generators of
Fn. As a consequence, the intersection of kerB with π1(X∗

dr, µdr)µd

is trivial, and b is injective. The surjectivity of b results from the
surjectivity of B and from the µd-equivariance of the diagram.

�

Together, the last two propositions prove the part of Theorem 0.2 about
symmetric groups, where the only regular numbers are the divisors of n and
n− 1.

Now consider the irreducible reflection group G(p, 1, n), denote by Xp,n

the complement of its discriminant. As G(p, 1, n) is the centralizer of a p
regular element of Spn, we can identify Xp,n and X

µp
pn (in a way compatible

with the action of µp).
Let d be a regular number for G(p, 1, n). Consider the following diagram

of inclusions:
Xµe

pn
� � //
� p

""DD
DD

DD
DD

X
µp
pn

nN

||zz
zz

zz
zz

Xpn

where e is the lcm of d and p. By Proposition 5.1, the π1-images of downward
arrows factorize through isomorphisms with centralizers in π1(Xpn, µpn) (all
base points being µpn):

π1(X
µe
pn) � � //

� s

%%KKKKKKKKKK
∼

xxqqqqqqqqqq
π1(X

µp
pn )

kK

yyssssssssss
∼

&&MMMMMMMMMM

π1(Xpn)µe � � // π1(Xpn) π1(Xpn)µp ._?
oo

Using the identification between Xp,n and X
µp
pn , the part of the theorem

about G(p, 1, n) says that the natural morphism π1(X
µe
pn) → π1(X

µp
pn ) induces

an isomorphism π1(X
µe
pn) ∼→ π1(X

µp
pn )µd ; this is obvious on the above diagram,

which identifies π1(X
µe
pn) with π1(Xpn)µe and π1(X

µp
pn ) with π1(Xpn)µp .

To complete the proof of the theorem, it is enough to notice that the
exceptional groups mentioned are Shephard groups (see [OrSo]) and that
their discriminants are isomorphic to ones we have already studied.
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