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For any odd n, we prove that the coherent sheaf FA on
Pn

C , defined as the cokernel of an injective map f : OPn
⊕2 →

OPn(1)⊕(n+2), is Mumford-Takemoto stable if and only if the
map f is stable, when considered as a point of the projective
space P(Hom(OPn

⊗2, OPn
⊗(n+2))∗) under the action of the re-

ductive group SL(2)×SL(n+2). This proves a particular case
of a conjecture of J.-M.Drezet and it implies that a compo-
nent of the Maruyama scheme of the semi-stable sheaves on
Pn of rank n and Chern polynomial (1 + t)n+2 is isomorphic
to the Kronecher moduli N(n+1, 2, n+2), for any odd n. In
particular, such scheme defines a smooth minimal compactifi-
cation of the moduli space of the rational normal curves in Pn,
that generalizes the construction defined by G. Ellinsgrud, R.
Piene and S. Strømme in the case n = 3.

1. Introduction.

Let us consider all the exact sequences:

0 −→ I∗ ⊗OP(V )
fA−→ W ∗ ⊗OP(V )(1) −→ FA −→ 0(1)

where W , V and I are complex vector spaces of dimension m+k, n+1 and k
respectively, fA is an injective morphism of sheaves canonically induced by a
linear map A ∈ P(Hom(W, I⊗V )∗) (= P(Hom(I∗⊗OP(V ),W

∗⊗OP(V )(1))∗))
and FA = Coker fA is a coherent sheaf of rank m over the projective space
P(V ) (= (V ∗ \ {0})/C∗).

In particular, if n = m and if the degeneracy locus of fA is empty, then
FA is a vector bundle of rank n on Pn, called Steiner bundle. In [GKZ] it
is shown that A, considered as a multidimensional matrix of size (n + k)×
k× (n + 1), defines a Steiner bundle FA if and only if its hyperdeterminant
does not vanish.

In [AO], the authors give a complete description of the moduli space Sn,k

of the Steiner bundles on Pn: Such moduli space can be considered as an
open subset of the categorical quotient:

Mn,m,k = P(Hom(W, I ⊗ V )∗)//(SL(I)× SL(W )).
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with n = m. It is known that Mn,m,k is canonically isomorphic to the Kro-
necker module N(n+1, k,m+k) defined as the quotient G(W, I⊗V )// SL(I):
The isomorphism is given by considering the image TA := A(W ) of the lin-
ear map A : W → I ⊗ V . Such modules are extensively described in [Dr1]
and [Dr2]. In particular we have:

Theorem 1.1. Let A ∈ P(Hom(W, I ⊗ V )∗) and T = A(W ) ⊆ I ⊗ V . The
following are equivalent:

(1) A is semi-stable (resp. stable) under the action of SL(I)× SL(W );
(2) T ∈ G(m + k, I ⊗ V ) is semi-stable (resp. stable) under the action of

SL(I);
(3) for any nonempty subspace I ′ ( I

dim T ′

dim I ′
≤ dim T

dim I
(resp. <)

where T ′ = (I ′ ⊗ V ) ∩ T .

In general, if m ≥ n, every element A of Mn,m,k determines a coherent
sheaf FA on Pn = P(V ) of rank m: In fact, every A : W → I ⊗ V induces
a morphism fA : I∗ ⊗ OPn → W ∗ ⊗ OPn(1), as in (1). We will call Steiner
bundle of rank m, a vector bundle FA contained in the sequence (1) even
when m ≥ n. Such bundles defines a moduli space Sn,m,k, that is an open
subset of the projective variety Mn,m,k.

Important examples of rank n Steiner bundles are the Schwarzenberger
bundles [Schw], defined by the morphism

fA =

x0 x1 . . . xn

. . . . . . . . .
x0 x1 . . . xn


t

∈ P(Hom(I∗ ⊗OPn ,W ∗ ⊗OPn(1))∗).

The set of equivalence classes of these bundles is in one-one correspon-
dence with the variety Sn of the rational normal curves. In fact if W (S) =
{H ∈ (Pn)∗|h0((F∗

A ⊗ OPn(1))|H) 6= 0} is the scheme of the unstable hy-
perplanes of a Steiner bundle of rank n FA, then FA is a Schwarzenberger
bundle if and only if W (S) is a rational normal curve in (Pn)∗ (see [V]).

In particular, if k = 2, all the indecomposable Steiner bundles are Schwar-
zenberger bundles (see [DK]), and thus Sn ' Sn,2 ' P GL(n+1)/ SL(2). In
this paper we will consider exactly this case. In fact we will show that, if
k = 2 and m is odd, then A ∈ P(Hom(W, I⊗V )∗) is stable if and only if the
correspondent coherent sheaf FA is µ−stable. This will imply the following:

Theorem 1.2. Mn,m,2 is isomorphic to the connected component of the
Maruyama moduli space MPn(m, c1, . . . , cn) containing the Steiner bundles.
Such component is smooth and irreducible.
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This result gives an affirmative answer to a particular case of a question
queried by J.-M. Drezet [Dr3]. Before that, R.M. Miro-Roig and G. Traut-
mann had proved a similar result in the case n = 3, k = 2 and m = 3
[MT].

Moreover the variety Mn,n,2 defines a smooth compactification of the
moduli space of the rational normal curves in Pn for any odd n (this result
is proved in [Dr2] and in [ES]). In fact, such construction generalizes the
one given in [EPS], defined as the variety of nets of quadrics defining twisted
cubics.

From a topological point of view, [Dr2] provides a method to compute
the Betti numbers of Mn,m,2 (see also [C] for further details).

I would like to thank V. Ancona and G. Ottaviani for many fruitful dis-
cussions and the referee for his very helpful comments.

2. Preliminares.

Let W,V and I be complex vector spaces of dimension m + 2, n + 1 and 2
respectively, with 2+m ≤ 2(n+1) and let us define X = P(Hom(W, I⊗V )∗).

For any ω ∈ I we define Rω = ω ⊗ V ⊆ I ⊗ V : By Theorem 1.1 we have
that an injective linear map A ∈ X is semi-stable (resp. stable) under the
action of SL(I)× SL(W ) if and only if, for any ω ∈ I,

dim Rω ∩ TA ≤ m + 2
2

(resp. <),

where, we remind, TA is the image of W by A (the arithmetic assumption
over n and m guarantees that Xss is not empty).

Let D(A) denote the degeneracy locus of fA, i.e., the set of all the points
x ∈ Pn such that rank((fA)x : I∗ ⊗ OPn,x → W ∗ ⊗ OPn,x(1)) ≤ 1, then for
any j ∈ N we construct the subsets:

Sj = {A ∈ Xss|∃ ω ∈ I such that dim Rω ∩ TA ≥ j + m− n} and

S̃j = {A ∈ Xss|dim D(A) ≥ j − 2}.
These subsets canonically define two filtrations of X:

∅ = Sj0+1 ⊆ Sj0 ⊆ · · · ⊆ S2 ⊆ S1 = Xss

∅ ⊆ · · · ⊆ S̃j0+1 ⊆ S̃j0 ⊆ · · · ⊆ S̃2 ⊆ S̃1 = Xss

where j0 = [m+3
2 ] + n−m ([x] denotes the integer part of x ∈ Q).

It results Sj0 = Xss \ Xs and in particular it is empty if m is odd.
Furthermore we have:

Theorem 2.1.
(1) Sj ⊆ S̃j ⊆ Sj−1 for any j ≥ 2;
(2) S2 = S̃2;
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(3) S1 = S̃1 = Xss.
In particular such subsets define a unique G-invariant filtration:

∅ = Sj0+1 ⊆ S̃j0+1 ⊆ Sj0 ⊆ S̃j0 ⊆ . . .

· · · ⊆ S3 ⊆ S̃3 ⊆ S2 = S̃2 ⊆ S1 = S̃1 = Xss.

Before proving the theorem, we remind the following known lemma:

Lemma 2.2. Let F be a vector bundle of rank f on a smooth projective
variety X such that cf−k+1(F ) 6= 0 and let φ : Ok

X −→ F be a morphism
with k ≤ f . Then the degeneracy locus D(φ) = {x ∈ X| rank(φx) ≤ k − 1}
is nonempty and codim D(φ) ≤ f − k + 1.

Proof of Theorem 2.1.
(1) Let A ∈ Sj , then there exists ω ∈ I such that dim Rω∩TA ≥ j +m−n

and thus ω defines a morphism of sheaves: f̃A : OPn → OPn(1)n−j+2.
The degeneracy locus of f̃A is contained in D(A) and by Lemma 2.2,
since cn−j+2(OPn(1)n−j+2) 6= 0 if j ≥ 2, it follows that dim D(A) ≥
j − 2, i.e., Sj ⊆ S̃j for any j ≥ 2.

Let now A ∈ S̃j and let us denote by D0(A) the variety of all the
points x ∈ Pn such that rank(fA)x = 0. We consider first the case
D0(A) ( D(A): Each point x ∈ Pn naturally defines an evaluation
map ηx : I⊗V → P(I∗). Thus we can define π : D(A)\D0(A) → P(I∗)
where π(x) is the only point of ηx(TA) and, since dim D(A) \D0(A) ≥
j − 2, there exists ω ∈ I such that dim π−1([ω]) ≥ j − 3.

Let R′
ω = {f ∈ I ⊗ V |ηx(f) = [ω] in P(I∗) for any x ∈ π−1([ω])}:

In order to compute the dimension of R′
ω we consider p1, . . . , pj−2 ∈

π−1([ω]) not contained in a linear subspace Pj−4 ⊆ Pn: Such points
define a linear system of j − 2 linearly independent equations whose
solutions are contained in R′

ω and thus we have dim R′
ω ≤ 2(n + 1) −

(j − 2) = 2n + 4− j.
Since TA, Rω ⊆ R′

ω, we have that

dim TA ∩Rω ≥ dim T + dim Rω − dim R′
ω ≥ j + m− n− 1,

i.e., A ∈ Sj−1.
If D0(A) = D(A), then it can be similarly proven that for any ω ∈ I,

dim R′
ω ≤ 2n + 3− j and thus A ∈ Sj ⊆ Sj−1.

(2) We have already proven that S2 ⊆ S̃2. Let now A ∈ S̃2. As before,
we can suppose D0(A) ( D(A).

Let x ∈ D(A) \D0(A) and ω ∈ I such that ηx(TA) = {[ω]}. If R′
ω =

{f ∈ I⊗V |ηx(f) = [ω] in P(I∗)}, then dim R′
ω = 2n+1: TA, Rω ⊆ R′

ω

and thus dim TA ∩Rω ≥ (m + 2) + (n + 1)− (2n + 1) = m−n + 2, i.e.,
A ∈ S2.

(3) Both the equalities are trivial. �
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Remark 2.3. In general Si 6= S̃i: Let us consider, for instance, n = m = 3
and

fA =
(

0 0 x0 x1 x2

x0 x1 0 0 x3

)t

.

Since D(A) = {(0 : 0 : t1 : t2)} ' P1, A ∈ S̃3; but S3 = ∅ (see also
Proposition 2.5).

Corollary 2.4. If m is odd and A ∈ Xs = Xss then codim D(A) ≥ m+1
2 .

If m is even and A ∈ Xss (resp. Xs) then codim D(A) ≥ m
2 (resp. >).

Proof. It suffices to notice that the previous theorem implies that S̃j0+1 = ∅
and that Sj0 is the set of the properly semi-stable points of X. �

Proposition 2.5. If m is odd, A ∈ X is stable and codim D(A) = m+1
2 ,

where t = m+1
2 , then, up to the action of SL(I)× SL(W )× SL(V ), we have

fA =
(

x0 . . . xt−1 0 . . . 0 xt

0 . . . 0 x0 . . . xt−1 xt+1

)t

.

Proof. By the Proof of Theorem 2.1 we have that for any ω ∈ I, dim(ω⊗V )∩
TA ≥ t, where, as before, TA is the image of A as a subspace of I ⊗ V , and
in fact, by Theorem 1.1 and since A is stable, it results dim(ω⊗V )∩TA = t.

Thus we have, up to a change of basis,

fA =
(

f0 . . . ft−1 0 . . . 0 ft

0 . . . 0 g0 . . . gt−1 gt

)t

,

where 〈f0, . . . , ft〉 and 〈g0, . . . , gt〉 are subspaces of V of dimension t + 1.
It is easily checked that D(A) = V (f0, . . . , ft) ∪ V (g0, . . . , gt) ∪ V (f0, . . . ,

ft−1, g0, . . . , gt−1) and since codim D(A) = t, it must be codim V (f0, . . . ,
ft−1, g0, . . . , gt−1) = t: This implies that 〈f0, . . . , ft−1〉 = 〈g0, . . . , gt−1〉 and
therefore we can assume gi = fi for any i = 0, . . . , t− 1.

Moreover gt /∈ 〈f0, . . . , ft〉 otherwise, up to the action of SL(I)× SL(W ),
it would be

fA =
(

f0 . . . ft−1 0 . . . 0 ft

0 . . . 0 f0 . . . ft−1 0

)t

,

and by Theorem 1.1, A would not be stable, because there would exist a
vector ω ∈ I such that dim(ω ⊗ V ) ∩ TA = t + 1. Therefore f0, . . . , ft are
linearly independent and we can suppose fi = xi for some basis {x0, . . . , xn}
of V . �

3. Proof of Theorem 1.2.

For any coherent sheaf E of rank r on Pn, EN will denote the normalized
sheaf of E , i.e., EN = E(t0) where t0 ∈ Z is such that −r < c1(E(t0)) ≤ 0.
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Moreover hd(E) will be the homological dimension of E (cf. [OSS]) and S(E)
the singular locus of E , i.e., S(E) = {x|dim Ex > r}.

In this section we will only consider sheaves FA of odd rank m, i.e., such
that (c1(FA),m) = 1. Hence the Mumford-Takemoto stability (also said µ-
stability) of these sheaves coincides with their Gieseker stability. Moreover
FA is stable if and only if it is semi-stable. Thus, before proceeding with
the proof of Theorem 1.2, we are interested to study the relation between
the G.I.T. stability of maps and the µ-stability of their cokernels.

In fact we have:

Theorem 3.1. Let k = 2 and m ∈ N odd. Then the following are equiva-
lent:

(1) TA ∈ G(m + 2, I ⊗ V ) is G.I.T. stable;
(2) FA is µ-stable.

The main tool needed to prove the theorem is the following lemma:

Lemma 3.2. Let A ∈ P(Hom(W, I ⊗ V )∗) be a stable map, then

H0((∧rFA)∗∗N ) = 0(2)

for any r = 1, . . . ,m− 1.

Later on, we will show that the vanishing of the cohomology groups in
(2) will imply the µ-stability of the sheaf FA.

Before proceeding with the proof of Lemma 3.2, we want to recall some
facts that will be useful during the proof: Although many of these results
are well-known, we report them for completeness.

For the proof of the following two propositions, see [HL] Prop. 1.1.6 and
Prop. 1.1.10:

Proposition 3.3. Let E be a coherent sheaf of codimension c on a smooth
projective variety Z. Then the sheaves Extq(E,ωZ) are supported on
Supp(E) and Extq(E,ωZ) = 0 for all q < c.

Proposition 3.4. Let E be a coherent sheaf on a smooth projective variety
Z. Then the following conditions are equivalent:

(1) codim(Extq(E,ωZ)) ≥ q + 1 for any q ≥ 1;
(2) the canonical map E → E∗∗ is injective.

Similarly, the following are equivalent:
(1) codim(Extq(E,ωZ)) ≥ q + 2 for any q ≥ 1;
(2) E is the dual of a coherent sheaf;
(3) E is reflexive.

We will also need:
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Lemma 3.5. Let s be a section of a vector bundle E of rank r on an al-
gebraic variety Z and let Z0 be the zero locus of s. If Z0 is of codimension
r′ ≤ r then the Koszul complex associated to s induces an exact sequence of
the first r′ + 1 terms:

0 → det E∗ → ∧r−1E∗ → · · · → ∧r−r′
E∗.(3)

Proof. By Bertini theorem, it easily follows that there exists a complete
intersection subvariety Z ′ ⊆ Z of codimension r′ and containing Z0.

It is enough to prove the lemma after restricting the bundle E∗ into a
trivializing open subset U ⊆ Z such that E∗

U ' Cr ⊗ OU where Cr is
spanned by e1, . . . , er. We can suppose that, with respect of this frame,
s = (s1, . . . , sr) and that Z ′ ∩ U is the zero locus of s′ = (s1, . . . , sr′).

Let us proceed by induction on r − r′. If r = r′, then Z0 is a complete
intersection and the Koszul complex is exact ([GH], p. 688).

Let us suppose now r > r′ and let Ek = ∧kE∗
U and Fk = ∧kCr−1 ⊗

OU ⊆ ∧kCr ⊗ OU ' Ek. The quotient Qk of Ek by Fk is isomorphic to
(er ⊗ ∧k−1Cr−1) ⊗ OU , moreover the map δ : Ek → Ek−1 induces, in a
canonical way, two maps δ′ : Fk → Fk−1 and δ′′ : Qk → Qk−1 so that F∗
and Q∗ are again Koszul complexes contained in the commutative diagram:

0 0 0

↓ ↓ ↓

0 −−−→ Fr−1 −−−→ Fr−2 −−−→ . . . −−−→ Fr−r′

↓ ↓ ↓ ↓

0 −−−→ Er −−−→ Er−1 −−−→ Er−2 −−−→ . . . −−−→ Er−r′

↓ ↓ ↓ ↓

0 −−−→ Qr −−−→ Qr−1 −−−→ Qr−2 −−−→ . . . −−−→ Qr−r′

↓ ↓ ↓ ↓

0 0 0 0

By induction hypothesis, H∗(F∗) = H∗(Q∗) = 0. Thus also H∗(E∗) = 0,
i.e., the sequence (3) is exact. �

Lemma 3.6. For any r = 1, . . . ,m− 1, the sheaf ∧rFA is contained in the
exact sequence:

I∗ ⊗ ∧r−1W ∗ ⊗OPn(r − 1) → ∧rW ∗ ⊗OPn(r) → ∧rFA → 0.(4)
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Moreover, if A ∈ X is G.I.T. stable and r ≤ m−1
2 then the sequence

(5) 0 → SrI∗ ⊗OPn → Sr−1I∗ ⊗W ∗ ⊗OPn(1) → . . .

· · · → I∗ ⊗ ∧r−1W ∗ ⊗OPn(r − 1) → ∧rW ∗ ⊗OPn(r) → ∧rFA → 0

is exact. In particular, hd(∧rFA) ≤ r.

Proof. The exactness of (4) is proven in ([Eis], p. 571).
In order to prove the exactness of (5), we proceed by mimicking the proof

of the existence of the Eagon-Northcott complex given in [GP].
Let Z = P(V ) × P(I∗) and let π : Z → P(V ) be the projection onto the

first space. The morphism A defines a section a : OZ → W ∗ ⊗ OZ(1, 1),
given by a = (y0f0,i + y1f1,i)m+2

i=1 where the fi,j ’s are the entries of A and
y0, y1 are the coordinates of P(I∗).

The zero locus of a is Z̃ = ∩iV (y0f0,i + y1f1,i) ⊆ Z, and the Koszul
complex associated is given by:

0 → ∧m+2W ⊗OZ(−m− 2,−m− 2) → . . .

· · · → ∧2W ⊗OZ(−2,−2) → W ⊗OZ(−1,−1) → OZ → O eZ → 0.

We have that π(Z̃) ⊆ D(A) and, since A is stable, then dim Z̃ ≤ dim D(A)+
1 ≤ n− m−1

2 (Cor. 2.4).
By Lemma 3.5, the sequence:

0 → ∧m+2W ⊗OZ(−r − 2,−r − 2) → · · · → ∧m+2−rW ⊗OZ(−2,−2),

is exact for any r ≤ m−1
2 .

Since each fiber of π is isomorphic to P(I∗), it results in:

Riπ∗(OZ(−2− j,−2− j)) =

{
SjI∗ ⊗OPn(−2− j) if i = 1 j ≥ 0
0 if i 6= 1 j ≥ 0

where Riπ∗ is the higher direct image functor associated to π (see [Har], Ch.
III, 8). Moreover ∧m+2−r+jW ' ∧r−jW ∗, that yields the exact sequence:

0 → SrI∗ ⊗OPn(−r − 2) → · · · → ∧rW ∗ ⊗OPn(−2).(6)

The exactness of the sequence (5) follows by gluing (6) tensored byOPn(r+2)
with (4): In fact, in both the sequences the morphisms

I∗ ⊗ ∧r−1W ∗ ⊗OPn(r − 1) → ∧rW ∗ ⊗OPn(r)

are canonically defined. �

Lemma 3.7. Let E be a coherent sheaf and S(E) its singular locus. If
codim S(E) ≥ hd(E) + 2, then E is reflexive.



MODULI SPACE OF SCHWARZENBERGER BUNDLES 319

Proof. Let t = hd(E) and let us consider a resolution of E:

0 → Ft → Ft−1 → Ft−2 → · · · → F2 → F1 → F0 → E → 0

where each Fi is a direct sum of line bundles.
Let us split the sequence into short exact sequences:

0 → Ft → Ft−1 → Gt−1 → 0

0 → Gi → Fi−1 → Gi−1 → 0
0 → G1 → F0 → E → 0

then, applying the functor Exti(·, ωPn), we get:

Exti(E,ωPn) = Exti−1(G1, ωPn) = · · · = Exti−t+1(Gt−1, ωPn) = 0,

for any i such that i− t + 1 ≥ 2. Thus Exti(E,ωPn) = 0 for any i ≥ t + 1.
Moreover

codim Exti(E,ωPn) ≥ codim S(E) ≥ t + 2 ≥ i + 2

if 1 ≤ i ≤ t and thus by Proposition 3.4, E is reflexive. �

Lemma 3.8. Let E be a sheaf of rank m on Pn such that codim S(E) ≥ 2.
Then, for any r = 1, . . . ,m− 1, we have

(∧rE)∗∗ = (∧m−rE)∗ ⊗OPn(c1(E)).(7)

Proof. The injective map ∧m−rE → Hom(∧rE,∧mE) induces the exact
sequence:

0 → ∧m−rE → Hom(∧rE,∧mE) → E → 0,

where E is a 0-rank sheaf such that codim E ≥ codim S(E) ≥ 2: Thus, dualiz-
ing this sequence and observing that, by Proposition 3.3, E∗ = Ext1(E ,OPn) =
0, it results (∧m−rE)∗ ' Hom(∧rE,∧mE)∗ ' (∧rE)∗∗⊗ (∧mE)∗, in fact by
Proposition 3.4 all these sheaves are torsion-free. Moreover (∧mE)∗∗ '
OPn(c1(E)) and therefore (7) follows. �

Thus it results H0((∧rFA)∗∗N ) = H0((∧m−rFA)∗(t0)) for suitable t0 ∈ Z:
We want to prove that such cohomology group is null.

Let us distinguish 2 cases:

I. r ≥ m+1
2 :

Let t0 be such that (∧rFA)∗∗N = (∧m−rFA)∗(t0). By the sequence (4), we
have:

0 → (∧m−rFA)∗(t0) → ∧m−rW ⊗OPn
B−→ ∧m−r−1W ⊗ I⊗OPn(1).

Thus if H0((∧m−rFA)∗(t0)) 6= 0 then there exists b : OPn ↪→ ∧m−rW ⊗OPn

(i.e., b ∈ ∧m−rW ) such that B ◦ b = 0.
It is easy to see that if A is injective then B ◦ b = 0 implies b = 0.

II. r ≤ m−1
2 :
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If 4 codim D(A) ≥ 2 + m−1
2 = m+3

2 , then, by Lemma 3.7, the sheaf ∧rF
is reflexive, and by the sequence (5), it is easy to show that:

H0((∧rFA)∗∗N ) = H0((∧rFA)N ) = 0.

By Corollary 2.4, we have that the G.I.T. stability of A implies that
codim D(A) ≥ m+1

2 and thus it just remains to consider the matrices A such
that codim D(A) = m+1

2 .

Lemma 3.9. If codim D(A) = m+1
2 then H0((∧rFA)∗∗N ) = 0 for any r =

1, . . . ,m− 1.

Proof. By Proposition 2.5, we can suppose

fA =
(

x0 . . . xt−1 0 . . . 0 xt

0 . . . 0 x0 . . . xt−1 xt+1

)t

.

Moreover the same technique used above can be applied to prove the thesis
for all r 6= t.

Thus it suffices to show that H0((∧tFA)∗(t0)) = H0((∧t−1FA)∗∗N ) = 0. It
is easily checked that by dualizing the sequence (5) we get the sequence

0 → (∧tFA)∗(t0) → ∧tW ⊗OPn(1) B−→ ∧t−1W ⊗ I ⊗OPn(2).

Thus we just need to prove that if b : OPn → ∧tW ⊗ OPn(1) is such that
B ◦ b = 0 then b = 0: This is a direct computation. �

Thus Lemma 3.2 is completely proven. We can proceed now with the
Proof of Theorem 3.1.

Proof of Theorem 3.1. The first statement of Proposition 3.4 easily implies
that the map FA → (FA)∗∗ is injective. Since (FA)∗∗ is torsion-free, so is
FA.

Let now E ⊆ FA be a torsion-free sub-sheaf of rank r. Then OPn(c1(E)) =
(∧rE)∗∗ ⊆ (∧rFA)∗∗: Since H0((∧rFA)∗∗N ) = 0 (Lemma 3.2), it results
c1(E) < µ(∧rFA) = rµ(FA), i.e., µ(E) < µ(FA). Thus FA is µ-stable.

Vice-versa, let A ∈ X be a non-stable matrix. Then, by Theorem 1.1, we

can write A =
(

0 A0

A1 A2

)
where A0 is a vector of length s ≤ m+1

2 . Thus A0

defines a sub-sheaf FA0 ⊆ FA that is contained in the exact sequence:

0 −→ OPn

fA0−→ OPn(1)s −→ FA0 −→ 0.

It is easily checked that µ(FA0) > µ(FA). �

We show now an interesting relation within the automorphism group of
FA and the stabilizer of A.
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Theorem 3.10. Let A ∈ X such that FA is simple, i.e., Aut(FA) = C∗.
Then

StabG(A) = {(λ Id2, µ Idm+2) ∈ G|λn+k = µk = 1}.(8)

In particular dim StabG(A) = 0 and dimMn,m,2 = dim X − dim G, for any
m < 2n.

Proof. Let us prove first that any f ∈ Aut(FA) is uniquely determined by a
morphism of sequences:

0 −−−→ I∗ ⊗OPn
fA−−−→ W ∗ ⊗OPn(1) −−−→ FA −−−→ 0

P

y Q

y yf

0 −−−→ I∗ ⊗OPn
fA−−−→ W ∗ ⊗OPn(1) −−−→ FA −−−→ 0 .

This is a direct consequence of the fact that, by the vanishing of
Hom(On+k

Pn ,OPn(−1)k) and Ext1(On+k
Pn ,OPn(−1)k) we get the exact sequ-

ence:
0 → Hom(On+k

Pn ,On+k
Pn ) → Hom(On+k

Pn ,FA) → 0.

Thus if FA is simple, then the only automorphisms of FA are the homoth-
eties, that implies (8). �

We are ready now to prove Theorem 1.2. Let c1, . . . , cn be the Chern
classes of FA and let MPn(m, c1, . . . , cn) be the Maruyama moduli space of
all the µ-stable sheaves or rank m and Chern classes c1, . . . , cn. By The-
orem 3.1, if m is odd, each A ∈ Mn,m,2 defines uniquely an isomorphism
class of coherent sheaves [FA] ∈MPn(m, c1, . . . , cn) and thus there exists an
injective projective morphism:

φ : Mn,m,2 −→MPn(m, c1, . . . , cn).

Moreover, by the sequence (1) that defines FA, it is easily checked that
Ext2(FA,FA) = 0, i.e., every point of the image of φ is a smooth point of the
Maruyama moduli space. By Theorem 3.10 and by sequence (1), it imme-
diately follows that dimMn,m,2 = dim Ext1(FA,FA) = dim[FA]MPn(m, c1,
. . . , cn), and thus, by Stein factorization theorem, φ maps isomorphically
Mn,m,2 onto a smooth connected component of MPn(m, c1, . . . , cn). This
completely proves Theorem 1.2.

Remark 3.11. In general, the same result does not hold for higher k, even
if (m, k) = 1 (i.e., in the case where all the semi-stable sheaves are stable).
Consider, for istance, the matrix

f =

x1 x0 0 0 0
0 x2 x1 x0 0
0 0 0 x2 x1

t
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and the sequence

0 −→ O3
P2

f−→ OP2(1)5 −→ FA −→ 0.

Then, since the degeneracy locus of the sheaf F , {x1 = 0}, is of codimension
1, F is not torsion-free and in particular it cannot be µ-stable. On the other
hand, using Theorem 1.1, it is a direct computation to prove that f defines
a stable morphism.
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